Unstructured Grid Based Joint Inversion of DC Resistivity and Gravity Data: Adaptive FCM Assisted Model Coupling and Quantitative Similarity Analysis
Many geophysical studies have highlighted the limitations of relying on a single geophysical data set to understand subsurface conditions. Often, individual inversions yield inconsistent geologic models. To address this issue, this study integrates direct current (DC) resistivity and gravity data wi...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.09.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Many geophysical studies have highlighted the limitations of relying on a single geophysical data set to understand subsurface conditions. Often, individual inversions yield inconsistent geologic models. To address this issue, this study integrates direct current (DC) resistivity and gravity data within a joint inversion (JI) framework. The developed algorithm, implemented in MATLAB, features adaptive fuzzy c‐means‐based model coupling and quantitatively measures the similarity between inverted physical property models. The proposed JI approach incorporates two key parameters: the number of geologic units and the average resistivity and density values for each unit. A comparative analysis was performed between the results of JI and those obtained from separate interpretations of DC resistivity and gravity data sets. The results indicate that the developed approach significantly improves the understanding of the subsurface by producing consistent resistivity and density models—an outcome rarely achieved through individual inversions in complex geological environments. Furthermore, the framework provides a quantitative metric of similarity between the inverted resistivity and density models at each iteration. To validate the proposed approach, tests were conducted on synthetic and real‐field data sets using a triangular mesh.
This study addresses a common limitation in geophysical interpretation, where reliance on a single data set often results in inconsistent geologic models. To overcome this issue, a joint inversion (JI) algorithm was developed and implemented in MATLAB. It integrates resistivity and density data using fuzzy c‐means clustering and incorporates two key parameters: the number of geologic units and their average resistivity and density values. A comparison was carried out between the results obtained from the JI and those derived from traditional separate interpretations of DC resistivity and gravity data sets. The results demonstrate that the developed algorithm significantly improves model consistency by generating resistivity and density distributions that are geologically more coherent—a notable enhancement over separate inversions. In addition, it incorporates supplementary information such as the number of geologic units and their average physical property values. The algorithm also computes the similarity between inverted resistivity and density models during each iteration. To validate the proposed approach, tests were conducted on synthetic and field data sets using a triangular discretization.
Developed a joint inversion (JI) algorithm that integrates resistivity and density data, enhancing geologic models in geophysical studies The JI method provides consistent models with greater geological insights compared to traditional separate interpretations Validated algorithm's effectiveness on synthetic and real‐field data sets, measuring structural similarity between inverted geologic models |
---|---|
AbstractList | Many geophysical studies have highlighted the limitations of relying on a single geophysical data set to understand subsurface conditions. Often, individual inversions yield inconsistent geologic models. To address this issue, this study integrates direct current (DC) resistivity and gravity data within a joint inversion (JI) framework. The developed algorithm, implemented in MATLAB, features adaptive fuzzy c‐means‐based model coupling and quantitatively measures the similarity between inverted physical property models. The proposed JI approach incorporates two key parameters: the number of geologic units and the average resistivity and density values for each unit. A comparative analysis was performed between the results of JI and those obtained from separate interpretations of DC resistivity and gravity data sets. The results indicate that the developed approach significantly improves the understanding of the subsurface by producing consistent resistivity and density models—an outcome rarely achieved through individual inversions in complex geological environments. Furthermore, the framework provides a quantitative metric of similarity between the inverted resistivity and density models at each iteration. To validate the proposed approach, tests were conducted on synthetic and real‐field data sets using a triangular mesh.
This study addresses a common limitation in geophysical interpretation, where reliance on a single data set often results in inconsistent geologic models. To overcome this issue, a joint inversion (JI) algorithm was developed and implemented in MATLAB. It integrates resistivity and density data using fuzzy c‐means clustering and incorporates two key parameters: the number of geologic units and their average resistivity and density values. A comparison was carried out between the results obtained from the JI and those derived from traditional separate interpretations of DC resistivity and gravity data sets. The results demonstrate that the developed algorithm significantly improves model consistency by generating resistivity and density distributions that are geologically more coherent—a notable enhancement over separate inversions. In addition, it incorporates supplementary information such as the number of geologic units and their average physical property values. The algorithm also computes the similarity between inverted resistivity and density models during each iteration. To validate the proposed approach, tests were conducted on synthetic and field data sets using a triangular discretization.
Developed a joint inversion (JI) algorithm that integrates resistivity and density data, enhancing geologic models in geophysical studies The JI method provides consistent models with greater geological insights compared to traditional separate interpretations Validated algorithm's effectiveness on synthetic and real‐field data sets, measuring structural similarity between inverted geologic models |
Author | Singh, Anand Verma, Vishnu Kant |
Author_xml | – sequence: 1 givenname: Vishnu Kant orcidid: 0000-0001-6755-919X surname: Verma fullname: Verma, Vishnu Kant organization: Department of Earth Sciences Indian Institute of Technology Bombay Mumbai India – sequence: 2 givenname: Anand surname: Singh fullname: Singh, Anand organization: Department of Earth Sciences Indian Institute of Technology Bombay Mumbai India |
BookMark | eNpNkEtOwzAURS1UJErpjAV4AQRs588spH-1QlAYR6-xjYxSu7KdSl0I-yUpDDp6V3r33MG5RQNttEDonpJHSlj-xAiLVwtCSBKlV2jI8jwMYkbJ4CLfoLFz310nDBnJSDpEP5_aedvWvrWC47lVHL-A6-LKKO3xUh-FdcpobCSelPhdOOW8Oip_wqB7AM55Ah6eccHh0D0FnpUbXLi-2i1tDBcNLk17aJT-OmNvLWivPJzLW7VXDdh-ptDQnDrsDl1LaJwY_98R2s6mH-UiWL_Ol2WxDuo0TgNJdkxSTtM0YklGOKMikSHLIZdhJyGNoM4BIoi45KIWcZTThGW7Hc9kEsssHKGHv9XaGueskNXBqj3YU0VJ1TutLp2Gv_9nbQs |
Cites_doi | 10.1029/2012gl051233 10.1190/1.1440151 10.1190/geo2016‐0378.1 10.1111/1365‐2478.12060 10.1007/978-1-4757-0450-1_3 10.4401/ag‐3698 10.1016/j.jappgeo.2020.104237 10.1016/j.jappgeo.2016.07.018 10.1190/geo2011‐0154.1 10.1016/j.jappgeo.2011.07.011 10.1016/j.pepi.2008.06.022 10.1029/2003jb002716 10.1016/j.jappgeo.2017.11.014 10.1190/geo2015‐0457.1 10.1007/bf02294245 10.1111/1365‐2478.12205 10.1190/1.2670341 10.1190/geo2016‐0615.1 10.1007/s11200‐010‐0026‐6 10.5281/zenodo.15746444 10.5281/zenodo.3485127 10.1190/geo2018‐0789.1 10.1029/2003gl017370 10.1023/a:1012801612483 10.1190/geo2013‐0235.1 10.1016/j.cageo.2014.11.010 10.1093/gji/ggy341 10.1190/1.1440762 10.1111/j.1365‐246x.1994.tb00921.x 10.1190/geo2014‐0056.1 10.5194/sd‐16‐93‐2013 10.1111/j.1365‐246x.2009.04188.x 10.1111/j.1365‐2478.1979.tb00961.x 10.1016/j.cageo.2007.06.014 10.1016/s0040‐1951(00)00257‐2 10.1016/j.jappgeo.2005.12.003 10.1016/j.tecto.2018.01.012 10.5194/se‐10‐1951‐2019 10.1029/2019ea000605 10.1071/aseg2016ab229 10.4133/1.2923578 10.1016/j.cageo.2011.08.029 10.1190/1.2348091 10.5194/gi‐7‐55‐2018 10.1190/1.1444302 10.1007/s00024‐024‐03432‐0 10.1046/j.1365‐246x.2000.00007.x 10.1111/j.1365‐246x.2010.04856.x 10.1190/1.1444214 10.1190/geo2017‐0040.1 10.1109/3477.956035 10.1190/1.1444893 10.1016/j.jappgeo.2013.12.004 10.1111/1365‐2478.12763 10.1190/geo2014‐0049.1 10.1190/1.1443968 10.1109/tip.2003.819861 10.1111/j.1365‐246x.1993.tb05600.x 10.1190/1.1441851 10.1190/1.1441501 10.1190/geo2012‐0454.1 10.1093/gji/ggw413 10.1111/j.1365‐246x.1975.tb06461.x 10.1093/gji/ggt255 10.1190/geo2015‐0147.1 10.1515/acgeo‐2015‐0071 10.1007/s11053‐015‐9285‐9 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1029/2025JH000647 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
ExternalDocumentID | 10_1029_2025JH000647 |
GroupedDBID | 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c757-f0b2f1d17742680d21e6f329a9f364774ac9aa4a4dfdece5491628bbd8f65f83 |
ISSN | 2993-5210 |
IngestDate | Wed Jul 16 16:45:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c757-f0b2f1d17742680d21e6f329a9f364774ac9aa4a4dfdece5491628bbd8f65f83 |
ORCID | 0000-0001-6755-919X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000647 |
ParticipantIDs | crossref_primary_10_1029_2025JH000647 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
References | e_1_2_9_52_1 Bezdek J. C. (e_1_2_9_5_1) 1981 e_1_2_9_50_1 e_1_2_9_73_1 Franke A. (e_1_2_9_23_1) 2004 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Zhdanov M. S. (e_1_2_9_81_1) 2002 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 Tikhonov A. N. (e_1_2_9_76_1) 1977; 1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_2_1 Blakely R. J. (e_1_2_9_6_1) 1996 Dobeš M. (e_1_2_9_17_1) 1986; 21 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 Gunther T. (e_1_2_9_31_1) 2006 e_1_2_9_32_1 e_1_2_9_55_1 Peterek A. (e_1_2_9_60_1) 2011; 39 Günther T. (e_1_2_9_29_1) 2004 e_1_2_9_70_1 Flechsig C. (e_1_2_9_21_1) 2008; 36 Höppner F. (e_1_2_9_34_1) 1999 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 Katti V. (e_1_2_9_36_1) 2010 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 Tarantola A. (e_1_2_9_75_1) 2005 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 Menke W. (e_1_2_9_49_1) 2012 e_1_2_9_69_1 |
References_xml | – ident: e_1_2_9_82_1 doi: 10.1029/2012gl051233 – ident: e_1_2_9_11_1 doi: 10.1190/1.1440151 – ident: e_1_2_9_58_1 doi: 10.1190/geo2016‐0378.1 – ident: e_1_2_9_51_1 doi: 10.1111/1365‐2478.12060 – start-page: 43 volume-title: Pattern recognition with fuzzy objective function algorithms year: 1981 ident: e_1_2_9_5_1 doi: 10.1007/978-1-4757-0450-1_3 – volume-title: Potential theory in gravity and magnetic applications year: 1996 ident: e_1_2_9_6_1 – ident: e_1_2_9_16_1 doi: 10.4401/ag‐3698 – volume: 1 issue: 30 year: 1977 ident: e_1_2_9_76_1 article-title: Solutions of ill‐posed problems publication-title: New York – ident: e_1_2_9_3_1 doi: 10.1016/j.jappgeo.2020.104237 – ident: e_1_2_9_70_1 doi: 10.1016/j.jappgeo.2016.07.018 – ident: e_1_2_9_40_1 doi: 10.1190/geo2011‐0154.1 – volume-title: Inverse problem theory year: 2005 ident: e_1_2_9_75_1 – ident: e_1_2_9_4_1 doi: 10.1016/j.jappgeo.2011.07.011 – ident: e_1_2_9_7_1 doi: 10.1016/j.pepi.2008.06.022 – ident: e_1_2_9_25_1 doi: 10.1029/2003jb002716 – ident: e_1_2_9_71_1 doi: 10.1016/j.jappgeo.2017.11.014 – ident: e_1_2_9_74_1 doi: 10.1190/geo2015‐0457.1 – ident: e_1_2_9_50_1 doi: 10.1007/bf02294245 – ident: e_1_2_9_47_1 doi: 10.1111/1365‐2478.12205 – ident: e_1_2_9_59_1 doi: 10.1190/1.2670341 – ident: e_1_2_9_27_1 doi: 10.1190/geo2016‐0615.1 – ident: e_1_2_9_22_1 doi: 10.1007/s11200‐010‐0026‐6 – volume: 39 start-page: 335 issue: 5 year: 2011 ident: e_1_2_9_60_1 article-title: Neotectonic evolution of the Cheb Basin (Northwestern Bohemia, Czech Republic) and its implications for the late Pliocene to Recent crustal deformation in the western part of the Eger Rift publication-title: Zeitschrift für Geologische Wissenschaften – ident: e_1_2_9_77_1 doi: 10.5281/zenodo.15746444 – ident: e_1_2_9_30_1 doi: 10.5281/zenodo.3485127 – ident: e_1_2_9_18_1 doi: 10.1190/geo2018‐0789.1 – ident: e_1_2_9_24_1 doi: 10.1029/2003gl017370 – ident: e_1_2_9_32_1 doi: 10.1023/a:1012801612483 – volume-title: Geophysical data analysis: Discrete inverse theory: Matlab edition (Vol. 45) year: 2012 ident: e_1_2_9_49_1 – ident: e_1_2_9_63_1 doi: 10.1190/geo2013‐0235.1 – ident: e_1_2_9_45_1 doi: 10.1016/j.cageo.2014.11.010 – volume-title: Fuzzy cluster analysis: Methods for classification, data analysis and image recognition year: 1999 ident: e_1_2_9_34_1 – ident: e_1_2_9_12_1 doi: 10.1093/gji/ggy341 – ident: e_1_2_9_19_1 doi: 10.1190/1.1440762 – ident: e_1_2_9_20_1 doi: 10.1111/j.1365‐246x.1994.tb00921.x – ident: e_1_2_9_8_1 doi: 10.1190/geo2014‐0056.1 – ident: e_1_2_9_13_1 doi: 10.5194/sd‐16‐93‐2013 – ident: e_1_2_9_41_1 doi: 10.1111/j.1365‐246x.2009.04188.x – ident: e_1_2_9_14_1 doi: 10.1111/j.1365‐2478.1979.tb00961.x – ident: e_1_2_9_28_1 doi: 10.1016/j.cageo.2007.06.014 – ident: e_1_2_9_9_1 doi: 10.1016/s0040‐1951(00)00257‐2 – ident: e_1_2_9_48_1 doi: 10.1016/j.jappgeo.2005.12.003 – ident: e_1_2_9_53_1 doi: 10.1016/j.tecto.2018.01.012 – ident: e_1_2_9_55_1 doi: 10.5194/se‐10‐1951‐2019 – ident: e_1_2_9_56_1 doi: 10.1029/2019ea000605 – ident: e_1_2_9_66_1 doi: 10.1071/aseg2016ab229 – start-page: 1196 volume-title: Symposium on the application of geophysics to engineering and environmental problems 2006 year: 2006 ident: e_1_2_9_31_1 doi: 10.4133/1.2923578 – ident: e_1_2_9_67_1 doi: 10.1016/j.cageo.2011.08.029 – ident: e_1_2_9_37_1 doi: 10.1190/1.2348091 – ident: e_1_2_9_57_1 doi: 10.5194/gi‐7‐55‐2018 – ident: e_1_2_9_43_1 doi: 10.1190/1.1444302 – ident: e_1_2_9_78_1 doi: 10.1007/s00024‐024‐03432‐0 – volume: 21 start-page: 117 year: 1986 ident: e_1_2_9_17_1 article-title: Die geophysikalische untersuchung der hydrogeologischen strukturen im cheb‐becken publication-title: Sbor geol věd, Užitá geofyz – ident: e_1_2_9_54_1 doi: 10.1046/j.1365‐246x.2000.00007.x – ident: e_1_2_9_52_1 doi: 10.1111/j.1365‐246x.2010.04856.x – ident: e_1_2_9_61_1 doi: 10.1190/1.1444214 – ident: e_1_2_9_72_1 doi: 10.1190/geo2017‐0040.1 – ident: e_1_2_9_33_1 doi: 10.1109/3477.956035 – ident: e_1_2_9_65_1 doi: 10.1190/1.1444893 – volume: 36 start-page: 177 issue: 3 year: 2008 ident: e_1_2_9_21_1 article-title: The Hartoušov Mofette field in the Cheb Basin, Western Eger Rift (Czech Republic): A comparative geoelectric, sedimentologic and soil gas study of a magmatic diffuse CO2‐degassing structure publication-title: Zeitschrift für Geologische Wissenschaften – volume-title: Geophysical inverse theory and regularization problems year: 2002 ident: e_1_2_9_81_1 – ident: e_1_2_9_15_1 doi: 10.1016/j.jappgeo.2013.12.004 – volume-title: Technical committee meeting on low grade uranium deposits year: 2010 ident: e_1_2_9_36_1 – ident: e_1_2_9_10_1 – ident: e_1_2_9_69_1 doi: 10.1111/1365‐2478.12763 – ident: e_1_2_9_73_1 doi: 10.1190/geo2014‐0049.1 – ident: e_1_2_9_42_1 doi: 10.1190/1.1443968 – ident: e_1_2_9_79_1 doi: 10.1109/tip.2003.819861 – ident: e_1_2_9_46_1 doi: 10.1111/j.1365‐246x.1993.tb05600.x – ident: e_1_2_9_62_1 doi: 10.1190/1.1441851 – ident: e_1_2_9_38_1 doi: 10.1190/1.1441501 – ident: e_1_2_9_44_1 doi: 10.1190/geo2012‐0454.1 – ident: e_1_2_9_26_1 doi: 10.1093/gji/ggw413 – volume-title: Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from dc measurements (Unpublished doctoral dissertation) year: 2004 ident: e_1_2_9_29_1 – start-page: 1 volume-title: 17th workshop on electromagnetic induction in the earth, Hyderabad, India year: 2004 ident: e_1_2_9_23_1 – ident: e_1_2_9_35_1 doi: 10.1111/j.1365‐246x.1975.tb06461.x – ident: e_1_2_9_39_1 doi: 10.1093/gji/ggt255 – ident: e_1_2_9_80_1 doi: 10.1190/geo2015‐0147.1 – ident: e_1_2_9_64_1 – ident: e_1_2_9_2_1 doi: 10.1515/acgeo‐2015‐0071 – ident: e_1_2_9_68_1 doi: 10.1007/s11053‐015‐9285‐9 |
SSID | ssj0003320807 |
Score | 2.3020294 |
Snippet | Many geophysical studies have highlighted the limitations of relying on a single geophysical data set to understand subsurface conditions. Often, individual... |
SourceID | crossref |
SourceType | Index Database |
Title | Unstructured Grid Based Joint Inversion of DC Resistivity and Gravity Data: Adaptive FCM Assisted Model Coupling and Quantitative Similarity Analysis |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCQIB4tfIBTquUrJ3ESW9ll3a1qEhoW9TbyvGDjdRmo3Zz4cC_4MpvZcaJk4AWqZBDFFmxd-X5Ys-Mv5kh5E0MFxdCBUIpEURc5EEGenoQRRqL1HAVGce2-JTML6LFZXw5Gv0csJbqbX6ovu2MK_kfqUIbyBWjZP9Bst2g0ADPIF-4g4ThficZX7TpX2skkZ_eFHr8HjYlPV5sinLrUmg4ZxgqhDOcyVv8oF2xCHSXn95I9zyTW1eg51jLyhGJTqZnKDYEgHbF0tC_UFdXPp7xcy1LF5uGLy-L6wKsYxzIJzj5i8L71Wwqj4o2x9D6ECsfrVHTvfI-mjbQrqp_Jwl8wS3EsXKL23VZjz_KnrGzhH7rhp7ZFCTpHBks7pha7XrHkEoI2kRzTGN2tLULNhvgku_cBkKGWVTxRxZzp3WJfrvzR_x_7IIdN9GdyrNsNex9j9xnYIbgOnr2vffhcc7CJiK_-59tbAUM8G44wEDrGagv54_Iw1YM9LgB0WMyMuUT8mMIIIoAog5A1AGIdgCiG0tnUzoAEIV5pi2AKALoiHr4UIAP9fChDj7Uw8d1G8KH9vChHj5PyfLkw_l0HrR1OgIlYhHYMGd2oidgSLAkDTWbmMRylsnMYnECEUmVSRnJSFttlIkjsEhYmuc6tUlsU_6M7JWb0jwnVCthJ9zmCdjgkQp5ankquUm4yS3opfEL8tbP4qpqkrGsdonr5R3fe0Ue9EB8TfZgxs0-6Jjb_MD5Zg6cuH8BUt-BCg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unstructured+Grid+Based+Joint+Inversion+of+DC+Resistivity+and+Gravity+Data%3A+Adaptive+FCM+Assisted+Model+Coupling+and+Quantitative+Similarity+Analysis&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Verma%2C+Vishnu+Kant&rft.au=Singh%2C+Anand&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |