Unstructured Grid Based Joint Inversion of DC Resistivity and Gravity Data: Adaptive FCM Assisted Model Coupling and Quantitative Similarity Analysis

Many geophysical studies have highlighted the limitations of relying on a single geophysical data set to understand subsurface conditions. Often, individual inversions yield inconsistent geologic models. To address this issue, this study integrates direct current (DC) resistivity and gravity data wi...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Verma, Vishnu Kant, Singh, Anand
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text

Cover

Loading…
Abstract Many geophysical studies have highlighted the limitations of relying on a single geophysical data set to understand subsurface conditions. Often, individual inversions yield inconsistent geologic models. To address this issue, this study integrates direct current (DC) resistivity and gravity data within a joint inversion (JI) framework. The developed algorithm, implemented in MATLAB, features adaptive fuzzy c‐means‐based model coupling and quantitatively measures the similarity between inverted physical property models. The proposed JI approach incorporates two key parameters: the number of geologic units and the average resistivity and density values for each unit. A comparative analysis was performed between the results of JI and those obtained from separate interpretations of DC resistivity and gravity data sets. The results indicate that the developed approach significantly improves the understanding of the subsurface by producing consistent resistivity and density models—an outcome rarely achieved through individual inversions in complex geological environments. Furthermore, the framework provides a quantitative metric of similarity between the inverted resistivity and density models at each iteration. To validate the proposed approach, tests were conducted on synthetic and real‐field data sets using a triangular mesh. This study addresses a common limitation in geophysical interpretation, where reliance on a single data set often results in inconsistent geologic models. To overcome this issue, a joint inversion (JI) algorithm was developed and implemented in MATLAB. It integrates resistivity and density data using fuzzy c‐means clustering and incorporates two key parameters: the number of geologic units and their average resistivity and density values. A comparison was carried out between the results obtained from the JI and those derived from traditional separate interpretations of DC resistivity and gravity data sets. The results demonstrate that the developed algorithm significantly improves model consistency by generating resistivity and density distributions that are geologically more coherent—a notable enhancement over separate inversions. In addition, it incorporates supplementary information such as the number of geologic units and their average physical property values. The algorithm also computes the similarity between inverted resistivity and density models during each iteration. To validate the proposed approach, tests were conducted on synthetic and field data sets using a triangular discretization. Developed a joint inversion (JI) algorithm that integrates resistivity and density data, enhancing geologic models in geophysical studies The JI method provides consistent models with greater geological insights compared to traditional separate interpretations Validated algorithm's effectiveness on synthetic and real‐field data sets, measuring structural similarity between inverted geologic models
AbstractList Many geophysical studies have highlighted the limitations of relying on a single geophysical data set to understand subsurface conditions. Often, individual inversions yield inconsistent geologic models. To address this issue, this study integrates direct current (DC) resistivity and gravity data within a joint inversion (JI) framework. The developed algorithm, implemented in MATLAB, features adaptive fuzzy c‐means‐based model coupling and quantitatively measures the similarity between inverted physical property models. The proposed JI approach incorporates two key parameters: the number of geologic units and the average resistivity and density values for each unit. A comparative analysis was performed between the results of JI and those obtained from separate interpretations of DC resistivity and gravity data sets. The results indicate that the developed approach significantly improves the understanding of the subsurface by producing consistent resistivity and density models—an outcome rarely achieved through individual inversions in complex geological environments. Furthermore, the framework provides a quantitative metric of similarity between the inverted resistivity and density models at each iteration. To validate the proposed approach, tests were conducted on synthetic and real‐field data sets using a triangular mesh. This study addresses a common limitation in geophysical interpretation, where reliance on a single data set often results in inconsistent geologic models. To overcome this issue, a joint inversion (JI) algorithm was developed and implemented in MATLAB. It integrates resistivity and density data using fuzzy c‐means clustering and incorporates two key parameters: the number of geologic units and their average resistivity and density values. A comparison was carried out between the results obtained from the JI and those derived from traditional separate interpretations of DC resistivity and gravity data sets. The results demonstrate that the developed algorithm significantly improves model consistency by generating resistivity and density distributions that are geologically more coherent—a notable enhancement over separate inversions. In addition, it incorporates supplementary information such as the number of geologic units and their average physical property values. The algorithm also computes the similarity between inverted resistivity and density models during each iteration. To validate the proposed approach, tests were conducted on synthetic and field data sets using a triangular discretization. Developed a joint inversion (JI) algorithm that integrates resistivity and density data, enhancing geologic models in geophysical studies The JI method provides consistent models with greater geological insights compared to traditional separate interpretations Validated algorithm's effectiveness on synthetic and real‐field data sets, measuring structural similarity between inverted geologic models
Author Singh, Anand
Verma, Vishnu Kant
Author_xml – sequence: 1
  givenname: Vishnu Kant
  orcidid: 0000-0001-6755-919X
  surname: Verma
  fullname: Verma, Vishnu Kant
  organization: Department of Earth Sciences Indian Institute of Technology Bombay Mumbai India
– sequence: 2
  givenname: Anand
  surname: Singh
  fullname: Singh, Anand
  organization: Department of Earth Sciences Indian Institute of Technology Bombay Mumbai India
BookMark eNpNkEtOwzAURS1UJErpjAV4AQRs588spH-1QlAYR6-xjYxSu7KdSl0I-yUpDDp6V3r33MG5RQNttEDonpJHSlj-xAiLVwtCSBKlV2jI8jwMYkbJ4CLfoLFz310nDBnJSDpEP5_aedvWvrWC47lVHL-A6-LKKO3xUh-FdcpobCSelPhdOOW8Oip_wqB7AM55Ah6eccHh0D0FnpUbXLi-2i1tDBcNLk17aJT-OmNvLWivPJzLW7VXDdh-ptDQnDrsDl1LaJwY_98R2s6mH-UiWL_Ol2WxDuo0TgNJdkxSTtM0YklGOKMikSHLIZdhJyGNoM4BIoi45KIWcZTThGW7Hc9kEsssHKGHv9XaGueskNXBqj3YU0VJ1TutLp2Gv_9nbQs
Cites_doi 10.1029/2012gl051233
10.1190/1.1440151
10.1190/geo2016‐0378.1
10.1111/1365‐2478.12060
10.1007/978-1-4757-0450-1_3
10.4401/ag‐3698
10.1016/j.jappgeo.2020.104237
10.1016/j.jappgeo.2016.07.018
10.1190/geo2011‐0154.1
10.1016/j.jappgeo.2011.07.011
10.1016/j.pepi.2008.06.022
10.1029/2003jb002716
10.1016/j.jappgeo.2017.11.014
10.1190/geo2015‐0457.1
10.1007/bf02294245
10.1111/1365‐2478.12205
10.1190/1.2670341
10.1190/geo2016‐0615.1
10.1007/s11200‐010‐0026‐6
10.5281/zenodo.15746444
10.5281/zenodo.3485127
10.1190/geo2018‐0789.1
10.1029/2003gl017370
10.1023/a:1012801612483
10.1190/geo2013‐0235.1
10.1016/j.cageo.2014.11.010
10.1093/gji/ggy341
10.1190/1.1440762
10.1111/j.1365‐246x.1994.tb00921.x
10.1190/geo2014‐0056.1
10.5194/sd‐16‐93‐2013
10.1111/j.1365‐246x.2009.04188.x
10.1111/j.1365‐2478.1979.tb00961.x
10.1016/j.cageo.2007.06.014
10.1016/s0040‐1951(00)00257‐2
10.1016/j.jappgeo.2005.12.003
10.1016/j.tecto.2018.01.012
10.5194/se‐10‐1951‐2019
10.1029/2019ea000605
10.1071/aseg2016ab229
10.4133/1.2923578
10.1016/j.cageo.2011.08.029
10.1190/1.2348091
10.5194/gi‐7‐55‐2018
10.1190/1.1444302
10.1007/s00024‐024‐03432‐0
10.1046/j.1365‐246x.2000.00007.x
10.1111/j.1365‐246x.2010.04856.x
10.1190/1.1444214
10.1190/geo2017‐0040.1
10.1109/3477.956035
10.1190/1.1444893
10.1016/j.jappgeo.2013.12.004
10.1111/1365‐2478.12763
10.1190/geo2014‐0049.1
10.1190/1.1443968
10.1109/tip.2003.819861
10.1111/j.1365‐246x.1993.tb05600.x
10.1190/1.1441851
10.1190/1.1441501
10.1190/geo2012‐0454.1
10.1093/gji/ggw413
10.1111/j.1365‐246x.1975.tb06461.x
10.1093/gji/ggt255
10.1190/geo2015‐0147.1
10.1515/acgeo‐2015‐0071
10.1007/s11053‐015‐9285‐9
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2025JH000647
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2025JH000647
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c757-f0b2f1d17742680d21e6f329a9f364774ac9aa4a4dfdece5491628bbd8f65f83
ISSN 2993-5210
IngestDate Wed Jul 16 16:45:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c757-f0b2f1d17742680d21e6f329a9f364774ac9aa4a4dfdece5491628bbd8f65f83
ORCID 0000-0001-6755-919X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000647
ParticipantIDs crossref_primary_10_1029_2025JH000647
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_9_52_1
Bezdek J. C. (e_1_2_9_5_1) 1981
e_1_2_9_50_1
e_1_2_9_73_1
Franke A. (e_1_2_9_23_1) 2004
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Zhdanov M. S. (e_1_2_9_81_1) 2002
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
Tikhonov A. N. (e_1_2_9_76_1) 1977; 1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_2_1
Blakely R. J. (e_1_2_9_6_1) 1996
Dobeš M. (e_1_2_9_17_1) 1986; 21
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
Gunther T. (e_1_2_9_31_1) 2006
e_1_2_9_32_1
e_1_2_9_55_1
Peterek A. (e_1_2_9_60_1) 2011; 39
Günther T. (e_1_2_9_29_1) 2004
e_1_2_9_70_1
Flechsig C. (e_1_2_9_21_1) 2008; 36
Höppner F. (e_1_2_9_34_1) 1999
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
Katti V. (e_1_2_9_36_1) 2010
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
Tarantola A. (e_1_2_9_75_1) 2005
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Menke W. (e_1_2_9_49_1) 2012
e_1_2_9_69_1
References_xml – ident: e_1_2_9_82_1
  doi: 10.1029/2012gl051233
– ident: e_1_2_9_11_1
  doi: 10.1190/1.1440151
– ident: e_1_2_9_58_1
  doi: 10.1190/geo2016‐0378.1
– ident: e_1_2_9_51_1
  doi: 10.1111/1365‐2478.12060
– start-page: 43
  volume-title: Pattern recognition with fuzzy objective function algorithms
  year: 1981
  ident: e_1_2_9_5_1
  doi: 10.1007/978-1-4757-0450-1_3
– volume-title: Potential theory in gravity and magnetic applications
  year: 1996
  ident: e_1_2_9_6_1
– ident: e_1_2_9_16_1
  doi: 10.4401/ag‐3698
– volume: 1
  issue: 30
  year: 1977
  ident: e_1_2_9_76_1
  article-title: Solutions of ill‐posed problems
  publication-title: New York
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jappgeo.2020.104237
– ident: e_1_2_9_70_1
  doi: 10.1016/j.jappgeo.2016.07.018
– ident: e_1_2_9_40_1
  doi: 10.1190/geo2011‐0154.1
– volume-title: Inverse problem theory
  year: 2005
  ident: e_1_2_9_75_1
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jappgeo.2011.07.011
– ident: e_1_2_9_7_1
  doi: 10.1016/j.pepi.2008.06.022
– ident: e_1_2_9_25_1
  doi: 10.1029/2003jb002716
– ident: e_1_2_9_71_1
  doi: 10.1016/j.jappgeo.2017.11.014
– ident: e_1_2_9_74_1
  doi: 10.1190/geo2015‐0457.1
– ident: e_1_2_9_50_1
  doi: 10.1007/bf02294245
– ident: e_1_2_9_47_1
  doi: 10.1111/1365‐2478.12205
– ident: e_1_2_9_59_1
  doi: 10.1190/1.2670341
– ident: e_1_2_9_27_1
  doi: 10.1190/geo2016‐0615.1
– ident: e_1_2_9_22_1
  doi: 10.1007/s11200‐010‐0026‐6
– volume: 39
  start-page: 335
  issue: 5
  year: 2011
  ident: e_1_2_9_60_1
  article-title: Neotectonic evolution of the Cheb Basin (Northwestern Bohemia, Czech Republic) and its implications for the late Pliocene to Recent crustal deformation in the western part of the Eger Rift
  publication-title: Zeitschrift für Geologische Wissenschaften
– ident: e_1_2_9_77_1
  doi: 10.5281/zenodo.15746444
– ident: e_1_2_9_30_1
  doi: 10.5281/zenodo.3485127
– ident: e_1_2_9_18_1
  doi: 10.1190/geo2018‐0789.1
– ident: e_1_2_9_24_1
  doi: 10.1029/2003gl017370
– ident: e_1_2_9_32_1
  doi: 10.1023/a:1012801612483
– volume-title: Geophysical data analysis: Discrete inverse theory: Matlab edition (Vol. 45)
  year: 2012
  ident: e_1_2_9_49_1
– ident: e_1_2_9_63_1
  doi: 10.1190/geo2013‐0235.1
– ident: e_1_2_9_45_1
  doi: 10.1016/j.cageo.2014.11.010
– volume-title: Fuzzy cluster analysis: Methods for classification, data analysis and image recognition
  year: 1999
  ident: e_1_2_9_34_1
– ident: e_1_2_9_12_1
  doi: 10.1093/gji/ggy341
– ident: e_1_2_9_19_1
  doi: 10.1190/1.1440762
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1365‐246x.1994.tb00921.x
– ident: e_1_2_9_8_1
  doi: 10.1190/geo2014‐0056.1
– ident: e_1_2_9_13_1
  doi: 10.5194/sd‐16‐93‐2013
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365‐246x.2009.04188.x
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1365‐2478.1979.tb00961.x
– ident: e_1_2_9_28_1
  doi: 10.1016/j.cageo.2007.06.014
– ident: e_1_2_9_9_1
  doi: 10.1016/s0040‐1951(00)00257‐2
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jappgeo.2005.12.003
– ident: e_1_2_9_53_1
  doi: 10.1016/j.tecto.2018.01.012
– ident: e_1_2_9_55_1
  doi: 10.5194/se‐10‐1951‐2019
– ident: e_1_2_9_56_1
  doi: 10.1029/2019ea000605
– ident: e_1_2_9_66_1
  doi: 10.1071/aseg2016ab229
– start-page: 1196
  volume-title: Symposium on the application of geophysics to engineering and environmental problems 2006
  year: 2006
  ident: e_1_2_9_31_1
  doi: 10.4133/1.2923578
– ident: e_1_2_9_67_1
  doi: 10.1016/j.cageo.2011.08.029
– ident: e_1_2_9_37_1
  doi: 10.1190/1.2348091
– ident: e_1_2_9_57_1
  doi: 10.5194/gi‐7‐55‐2018
– ident: e_1_2_9_43_1
  doi: 10.1190/1.1444302
– ident: e_1_2_9_78_1
  doi: 10.1007/s00024‐024‐03432‐0
– volume: 21
  start-page: 117
  year: 1986
  ident: e_1_2_9_17_1
  article-title: Die geophysikalische untersuchung der hydrogeologischen strukturen im cheb‐becken
  publication-title: Sbor geol věd, Užitá geofyz
– ident: e_1_2_9_54_1
  doi: 10.1046/j.1365‐246x.2000.00007.x
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1365‐246x.2010.04856.x
– ident: e_1_2_9_61_1
  doi: 10.1190/1.1444214
– ident: e_1_2_9_72_1
  doi: 10.1190/geo2017‐0040.1
– ident: e_1_2_9_33_1
  doi: 10.1109/3477.956035
– ident: e_1_2_9_65_1
  doi: 10.1190/1.1444893
– volume: 36
  start-page: 177
  issue: 3
  year: 2008
  ident: e_1_2_9_21_1
  article-title: The Hartoušov Mofette field in the Cheb Basin, Western Eger Rift (Czech Republic): A comparative geoelectric, sedimentologic and soil gas study of a magmatic diffuse CO2‐degassing structure
  publication-title: Zeitschrift für Geologische Wissenschaften
– volume-title: Geophysical inverse theory and regularization problems
  year: 2002
  ident: e_1_2_9_81_1
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jappgeo.2013.12.004
– volume-title: Technical committee meeting on low grade uranium deposits
  year: 2010
  ident: e_1_2_9_36_1
– ident: e_1_2_9_10_1
– ident: e_1_2_9_69_1
  doi: 10.1111/1365‐2478.12763
– ident: e_1_2_9_73_1
  doi: 10.1190/geo2014‐0049.1
– ident: e_1_2_9_42_1
  doi: 10.1190/1.1443968
– ident: e_1_2_9_79_1
  doi: 10.1109/tip.2003.819861
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1365‐246x.1993.tb05600.x
– ident: e_1_2_9_62_1
  doi: 10.1190/1.1441851
– ident: e_1_2_9_38_1
  doi: 10.1190/1.1441501
– ident: e_1_2_9_44_1
  doi: 10.1190/geo2012‐0454.1
– ident: e_1_2_9_26_1
  doi: 10.1093/gji/ggw413
– volume-title: Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from dc measurements (Unpublished doctoral dissertation)
  year: 2004
  ident: e_1_2_9_29_1
– start-page: 1
  volume-title: 17th workshop on electromagnetic induction in the earth, Hyderabad, India
  year: 2004
  ident: e_1_2_9_23_1
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1365‐246x.1975.tb06461.x
– ident: e_1_2_9_39_1
  doi: 10.1093/gji/ggt255
– ident: e_1_2_9_80_1
  doi: 10.1190/geo2015‐0147.1
– ident: e_1_2_9_64_1
– ident: e_1_2_9_2_1
  doi: 10.1515/acgeo‐2015‐0071
– ident: e_1_2_9_68_1
  doi: 10.1007/s11053‐015‐9285‐9
SSID ssj0003320807
Score 2.3020294
Snippet Many geophysical studies have highlighted the limitations of relying on a single geophysical data set to understand subsurface conditions. Often, individual...
SourceID crossref
SourceType Index Database
Title Unstructured Grid Based Joint Inversion of DC Resistivity and Gravity Data: Adaptive FCM Assisted Model Coupling and Quantitative Similarity Analysis
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCQIB4tfIBTquUrJ3ESW9ll3a1qEhoW9TbyvGDjdRmo3Zz4cC_4MpvZcaJk4AWqZBDFFmxd-X5Ys-Mv5kh5E0MFxdCBUIpEURc5EEGenoQRRqL1HAVGce2-JTML6LFZXw5Gv0csJbqbX6ovu2MK_kfqUIbyBWjZP9Bst2g0ADPIF-4g4ThficZX7TpX2skkZ_eFHr8HjYlPV5sinLrUmg4ZxgqhDOcyVv8oF2xCHSXn95I9zyTW1eg51jLyhGJTqZnKDYEgHbF0tC_UFdXPp7xcy1LF5uGLy-L6wKsYxzIJzj5i8L71Wwqj4o2x9D6ECsfrVHTvfI-mjbQrqp_Jwl8wS3EsXKL23VZjz_KnrGzhH7rhp7ZFCTpHBks7pha7XrHkEoI2kRzTGN2tLULNhvgku_cBkKGWVTxRxZzp3WJfrvzR_x_7IIdN9GdyrNsNex9j9xnYIbgOnr2vffhcc7CJiK_-59tbAUM8G44wEDrGagv54_Iw1YM9LgB0WMyMuUT8mMIIIoAog5A1AGIdgCiG0tnUzoAEIV5pi2AKALoiHr4UIAP9fChDj7Uw8d1G8KH9vChHj5PyfLkw_l0HrR1OgIlYhHYMGd2oidgSLAkDTWbmMRylsnMYnECEUmVSRnJSFttlIkjsEhYmuc6tUlsU_6M7JWb0jwnVCthJ9zmCdjgkQp5ankquUm4yS3opfEL8tbP4qpqkrGsdonr5R3fe0Ue9EB8TfZgxs0-6Jjb_MD5Zg6cuH8BUt-BCg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unstructured+Grid+Based+Joint+Inversion+of+DC+Resistivity+and+Gravity+Data%3A+Adaptive+FCM+Assisted+Model+Coupling+and+Quantitative+Similarity+Analysis&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Verma%2C+Vishnu+Kant&rft.au=Singh%2C+Anand&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon