Mammalian O-mannosyl glycans: Biochemistry and glycopathology

Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Japan Academy, Series B Vol. 95; no. 1; pp. 39 - 51
Main Author ENDO, Tamao
Format Journal Article
LanguageEnglish
Published Japan The Japan Academy 01.01.2019
Subjects
Online AccessGet full text
ISSN0386-2208
1349-2896
1349-2896
DOI10.2183/pjab.95.004

Cover

Abstract Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies.
AbstractList Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies.
Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N -glycans and O -glycans, according to their glycan-peptide linkage regions. Recently, O -mannosyl glycan, an O -glycan, has been shown to be important in muscle and brain development. A clear relationship between O -mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies.
Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies.Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies.
Author ENDO, Tamao
Author_xml – sequence: 1
  fullname: ENDO, Tamao
  organization: Tokyo Metropolitan Institute of Gerontology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30643095$$D View this record in MEDLINE/PubMed
BookMark eNptkc9rFDEUx4NU7LZ68i4LXgSZNZkkM4mg0BbrDyr1oOfwJpPZzZJJ1iQrzH9vxm0XLR7ycnif9-X7vu8MnfjgDULPCV7VRNA3uy10K8lXGLNHaEEok1UtZHOCFpiKpqprLE7RWUpbjGnNBXmCTiluGMWSL9C7rzCO4Cz45W01gvchTW65dpMGn94uL23QGzPalOO0BN__6YQd5E1wYT09RY8HcMk8u_vP0Y_rD9-vPlU3tx8_X13cVLrlPFe90NBpThlmtDOSSiEGU54wA7SaNhhop_u2p0PxOlBTQ82M0FrUrGPMaHqO3h90d_tuNL02PkdwahftCHFSAaz6t-PtRq3DL9VQyVtBisCrO4EYfu5NyqrspI1z4E3YJ1WTVlJeMsEFffkA3YZ99GW9QglG2Rx6oV787eho5T7ZApADoGNIKZpBaZsh2zAbtE4RPMtRNV9PSa7K9crM6wcz97L_p68P9DZlWJsjCzFb7cyRJXP59uVCckwuFWZHQG8gKuPpb4iOtaU
CitedBy_id crossref_primary_10_1093_glycob_cwad067
crossref_primary_10_1021_acs_jproteome_1c00219
crossref_primary_10_1038_s41598_022_22758_0
crossref_primary_10_1093_glycob_cwab084
crossref_primary_10_1371_journal_pone_0278713
crossref_primary_10_3389_fmolb_2024_1371551
crossref_primary_10_1093_jb_mvab069
crossref_primary_10_1016_j_biopha_2022_112685
crossref_primary_10_1186_s12935_022_02812_7
crossref_primary_10_3389_fgene_2021_737094
crossref_primary_10_1016_j_bbagen_2020_129812
crossref_primary_10_4052_tigg_2404_2J
crossref_primary_10_4052_tigg_2404_2E
crossref_primary_10_3390_ijms23126685
crossref_primary_10_3390_molecules25235755
crossref_primary_10_1007_s13760_020_01527_8
crossref_primary_10_1016_j_bbrc_2021_09_043
crossref_primary_10_1016_j_jbc_2021_100433
crossref_primary_10_1021_acs_jproteome_0c00435
crossref_primary_10_3389_fmolb_2021_656439
crossref_primary_10_1021_acs_biomac_1c00476
crossref_primary_10_1002_cbic_202200783
crossref_primary_10_1021_acschembio_2c00181
crossref_primary_10_3233_JND_230205
crossref_primary_10_1111_gtc_12853
crossref_primary_10_3390_molecules29051072
crossref_primary_10_3389_fgene_2023_1055372
crossref_primary_10_1016_j_mcpro_2024_100796
crossref_primary_10_1098_rsob_210104
crossref_primary_10_3390_molecules26216675
crossref_primary_10_3390_molecules26185471
crossref_primary_10_1111_hel_12867
crossref_primary_10_1016_j_nmd_2021_08_002
crossref_primary_10_17650_2222_8721_2020_10_2_12_21
crossref_primary_10_1021_jacs_9b08964
crossref_primary_10_3390_genes14091764
crossref_primary_10_1007_s12031_025_02320_z
Cites_doi 10.1073/pnas.0307228101
10.1016/j.bbrc.2006.09.129
10.1016/j.ajhg.2009.06.006
10.1016/S0304-4165(98)00114-7
10.1016/j.bbrc.2018.02.162
10.1016/S1534-5807(01)00070-3
10.1093/glycob/cws152
10.1212/WNL.0b013e3182a08f53
10.1126/science.1180512
10.1093/jb/mvu066
10.1111/gtc.12480
10.1093/glycob/cwu118
10.1038/nrm.2016.94
10.1038/nchembio.2146
10.1093/glycob/cwt116
10.1126/science.1239951
10.1126/science.1233675
10.1038/s41467-018-05990-z
10.1073/pnas.1417993111
10.1523/JNEUROSCI.3137-12.2013
10.1056/NEJMoa1006939
10.1016/j.ymgme.2013.06.016
10.1093/glycob/cwq069
10.1093/brain/awm212
10.1093/glycob/cws153
10.1038/ncomms11534
10.1086/324412
10.1073/pnas.0405899101
10.1073/pnas.1708319114
10.1016/j.ajhg.2013.05.009
10.1146/annurev-micro-092412-155620
10.1371/journal.pgen.1002427
10.1093/glycob/cwx034
10.1212/WNL.0000000000001162
10.1093/hmg/10.25.2851
10.1002/ana.23632
10.1038/28653
10.1126/science.1214115
10.1093/hmg/ddu742
10.1093/glycob/cwv021
10.7554/eLife.03941
10.7554/eLife.03943
10.1016/S0304-4165(99)00182-8
10.1016/j.bbamcr.2008.10.016
10.1016/j.celrep.2016.02.017
10.7554/eLife.14473
10.1016/S0014-5793(03)01234-1
10.1093/glycob/cww075
ContentType Journal Article
Copyright 2019 The Japan Academy
Copyright The Japan Academy Jan 2019
2019 The Japan Academy 2019
Copyright_xml – notice: 2019 The Japan Academy
– notice: Copyright The Japan Academy Jan 2019
– notice: 2019 The Japan Academy 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TK
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BVBZV
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOI 10.2183/pjab.95.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Proquest Research Library
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
East & South Asia Database
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Mammalian O-mannosyl glycans
EISSN 1349-2896
EndPage 51
ExternalDocumentID PMC6395781
30643095
10_2183_pjab_95_004
article_pjab_95_1_95_PJA9501B_04_article_char_en
Genre Journal Article
GroupedDBID ---
-~X
.55
29P
2WC
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
ABJCF
ABUWG
ACIWK
ACPRK
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVBZV
BVXVI
CCPQU
DIK
DWQXO
E3Z
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IEA
ITC
JSF
JSH
KQ8
L6V
LK8
M1P
M2O
M48
M7P
M7S
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
RJT
RNS
RPM
RZJ
RZL
SV3
TN5
TR2
TUS
UKHRP
WH7
X7M
XSB
YNT
~02
AAYXX
ALIPV
CITATION
53G
ADRAZ
AFFNX
CGR
CUY
CVF
ECM
EIF
NPM
TKC
XJT
XOL
3V.
7QP
7QR
7TK
7XB
8FD
8FK
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c755t-d8cabc534043be93988fe88f8efa7c360a3bcd7d3f208f3e2a24e8cc824b44ec3
IEDL.DBID M48
ISSN 0386-2208
1349-2896
IngestDate Thu Aug 21 14:11:50 EDT 2025
Fri Sep 05 03:28:28 EDT 2025
Fri Jul 25 12:19:48 EDT 2025
Thu Apr 03 07:03:12 EDT 2025
Tue Jul 01 01:25:16 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Wed Sep 03 06:29:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords O-mannosylation
congenital muscular dystrophy
dystroglycan
ribitol-5-phosphate
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c755t-d8cabc534043be93988fe88f8efa7c360a3bcd7d3f208f3e2a24e8cc824b44ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by Kunihiko SUZUKI, M.J.A.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2183/pjab.95.004
PMID 30643095
PQID 2184342183
PQPubID 1066378
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6395781
proquest_miscellaneous_2179354300
proquest_journals_2184342183
pubmed_primary_30643095
crossref_citationtrail_10_2183_pjab_95_004
crossref_primary_10_2183_pjab_95_004
jstage_primary_article_pjab_95_1_95_PJA9501B_04_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Ueno Park
– name: Tokyo, Japan
PublicationTitle Proceedings of the Japan Academy, Series B
PublicationTitleAlternate Proc. Jpn. Acad., Ser. B
PublicationYear 2019
Publisher The Japan Academy
Publisher_xml – name: The Japan Academy
References 23) Willer, T., Prados, B., Falcon-Perez, J.M., Renner-Muller, I., Przemeck, G.K., Lommel, M. (2004) Targeted disruption of the Walker–Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc. Natl. Acad. Sci. U.S.A. 101, 14126–14131.
56) Imae, R., Manya, H., Tsumoto, H., Osumi, K., Tanaka, T., Mizuno, M. (2018) CDP-glycerol inhibits the synthesis of the functional O-mannosyl glycan of α-dystroglycan. J. Biol. Chem. 293, 12186–12198.
1) Endo, T. (2015) Glycobiology of α-dystroglycan and muscular dystrophy. J. Biochem. 157, 1–12.
29) Inamori, K., Endo, T., Ide, Y., Fujii, S., Gu, J., Honke, K. (2003) Molecular cloning and characterization of human GnT-IX, a novel β1,6-N-acetylglucosaminyltransferase that is specifically expressed in the brain. J. Biol. Chem. 278, 43102–43109.
11) Braulke, T. and Bonifacino, J.S. (2009) Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614.
10) Manya, H., Yamaguchi, Y., Kanagawa, M., Kobayashi, K., Tajiri, M., Akasaka-Manya, K. (2016) The muscular dystrophy gene TMEM5 encodes a ribitol β1,4-xylosyltransferase required for the functional glycosylation of dystroglycan. J. Biol. Chem. 291, 24618–24627.
17) Praissman, J.L., Willer, T., Sheikh, M.O., Toi, A., Chitayat, D., Lin, Y.Y. (2016) The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. elife 5, e14473.
43) Brockington, M., Yuva, Y., Prandini, P., Brown, S.C., Torelli, S., Benson, M.A. (2001) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 10, 2851–2859.
50) Lefeber, D.J., de Brouwer, A.P., Morava, E., Riemersma, M., Schuurs-Hoeijmakers, J.H., Absmanner, B. (2011) Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 7, e1002427.
14) Brown, S., Santa Maria, J.P. and Walker, S. (2013) Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336.
48) Xiong, H., Kobayashi, K., Tachikawa, M., Manya, H., Takeda, S., Chiyonobu, T. (2006) Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of α-dystroglycan. Biochem. Biophys. Res. Commun. 350, 935–941.
53) Barone, R., Aiello, C., Race, V., Morava, E., Foulquier, F., Riemersma, M. (2012) DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann. Neurol. 72, 550–558.
12) Izumikawa, T., Sato, B., Mikami, T., Tamura, J., Igarashi, M. and Kitagawa, H. (2015) GlcUAβ1-3Galβ1-3Galβ1-4Xyl(2-O-phosphate) is the preferred substrate for chondroitin N-acetylgalactosaminyltransferase-1. J. Biol. Chem. 290, 5438–5448.
31) Kanekiyo, K., Inamori, K., Kitazume, S., Sato, K., Maeda, J., Higuchi, M. (2013) Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination. J. Neurosci. 33, 10037–10047.
40) Dong, M., Noguchi, S., Endo, Y., Hayashi, Y.K., Yoshida, S., Nonaka, I. (2015) DAG1 mutations associated with asymptomatic hyperCKemia and hypoglycosylation of α-dystroglycan. Neurology 84, 273–279.
22) Avsar-Ban, E., Ishikawa, H., Manya, H., Watanabe, M., Akiyama, S., Miyake, H. (2010) Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20, 1089–1102.
24) Manya, H., Chiba, A., Yoshida, A., Wang, X., Chiba, Y., Jigami, Y. (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl. Acad. Sci. U.S.A. 101, 500–505.
16) Gerin, I., Ury, B., Breloy, I., Bouchet-Seraphin, C., Bolsee, J., Halbout, M. (2016) ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat. Commun. 7, 11534.
41) Kobayashi, K., Nakahori, Y., Miyake, M., Matsumura, K., Kondo-Iida, E., Nomura, Y. (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392.
28) Inamori, K., Endo, T., Gu, J., Matsuo, I., Ito, Y., Fujii, S. (2004) N-Acetylglucosaminyltransferase IX acts on the GlcNAcβ1,2-Manα1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. J. Biol. Chem. 279, 2337–2340.
30) Kaneko, M., Alvarez-Manilla, G., Kamar, M., Lee, I., Lee, J.K., Troupe, K. (2003) A novel β(1,6)-N-acetylglucosaminyltransferase V (GnT-VB). FEBS Lett. 554, 515–519.
60) Mohamed, M., Ashikov, A., Guillard, M., Robben, J.H., Schmidt, S., van den Heuvel, B. (2013) Intellectual disability and bleeding diathesis due to deficient CMP-sialic acid transport. Neurology 81, 681–687.
46) Kuwabara, N., Manya, H., Yamada, T., Tateno, H., Kanagawa, M., Kobayashi, K. (2016) Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan. Proc. Natl. Acad. Sci. U.S.A. 113, 9280–9285.
47) Akasaka-Manya, K., Manya, H., Kobayashi, K., Toda, T. and Endo, T. (2004) Structure-function analysis of human protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1, POMGnT1. Biochem. Biophys. Res. Commun. 320, 39–44.
9) Yaji, S., Manya, H., Nakagawa, N., Takematsu, H., Endo, T., Kannagi, R. (2015) Major glycan structure underlying expression of the Lewis X epitope in the developing brain is O-mannose-linked glycans on phosphacan/RPTPβ. Glycobiology 25, 376–385.
32) Yoshida-Moriguchi, T., Willer, T., Anderson, M.E., Venzke, D., Whyte, T., Muntoni, F. (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341, 896–899.
44) Godfrey, C., Clement, E., Mein, R., Brockington, M., Smith, J., Talim, B. (2007) Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130, 2725–2735.
13) Wen, J., Xiao, J., Rahdar, M., Choudhury, B.P., Cui, J., Taylor, G.S. (2014) Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 111, 15723–15728.
4) Endo, T. (1999) O-Mannosyl glycans in mammals. Biochim. Biophys. Acta 1473, 237–246.
33) Nagae, M., Mishra, S.K., Neyazaki, M., Oi, R., Ikeda, A., Matsugaki, N. (2017) 3D structural analysis of protein O-mannosyl kinase, POMK, a causative gene product of dystroglycanopathy. Genes Cells 22, 348–359.
39) Hara, Y., Balci-Hayta, B., Yoshida-Moriguchi, T., Kanagawa, M., Beltran-Valero de Bernabe, D., Gundesli, H. (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N. Engl. J. Med. 364, 939–946.
52) Lefeber, D.J., Schonberger, J., Morava, E., Guillard, M., Huyben, K.M., Verrijp, K. (2009) Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am. J. Hum. Genet. 85, 76–86.
19) Yoshida-Moriguchi, T., Yu, L., Stalnaker, S.H., Davis, S., Kunz, S., Madson, M. (2010) O-Mannosyl phosphorylation of α-dystroglycan is required for laminin binding. Science 327, 88–92.
3) Endo, T. (2004) Human genetic deficients in glycan formation. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 80, 128–139.
6) Chiba, A., Matsumura, K., Yamada, H., Inazu, T., Shimizu, T., Kusunoki, S. (1997) Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve α-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of α-dystroglycan with laminin. J. Biol. Chem. 272, 2156–2162.
57) Bray, S.J. (2016) Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17, 722–735.
59) Schneider, M., Al-Shareffi, E. and Haltiwanger, R.S. (2017) Biological functions of fucose in mammals. Glycobiology 27, 601–618.
37) Praissman, J.L., Live, D.H., Wang, S., Ramiah, A., Chinoy, Z.S., Boons, G.J. (2014) B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. elife 3, e03943.
42) Brockington, M., Blake, D.J., Prandini, P., Brown, S.C., Torelli, S., Benson, M.A. (2001) Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan. Am. J. Hum. Genet. 69, 1198–1209.
55) Cataldi, M.P., Lu, P., Blaeser, A. and Lu, Q.L. (2018) Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat. Commun. 9, 3448.
26) Larsen, I.S.B., Narimatsu, Y., Joshi, H.J., Siukstaite, L., Harrison, O.J., Brasch, J. (2017) Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proc. Natl. Acad. Sci. U.S.A. 114, 11163–11168.
51) Carss, K.J., Stevens, E., Foley, A.R., Cirak, S., Riemersma, M., Torelli, S. (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am. J. Hum. Genet. 93, 29–41.
61) Riemersma, M., Sandrock, J., Boltje, T.J., Bull, C., Heise, T., Ashikov, A. (2015) Disease mutations in CMP-sialic acid transporter SLC35A1 result in abnormal α-dystroglycan O-mannosylation, independent from sialic acid. Hum. Mol. Genet. 24, 2241–2246.
21) Ichimiya, T., Manya, H., Ohmae, Y., Yoshida, H., Takahashi, K., Ueda, R. (2004) The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J. Biol. Chem. 279, 42638–42647.
8) Morise, J., Kizuka, Y., Yabuno, K., Tonoyama, Y., Hashii, N., Kawasaki, N. (2014) Structural and biochemical characterization of O-mannose-linked human natural killer-1 glycan expressed on phosphacan in developing mouse brains. Glycobiology 24, 314–324.
15) Kanagawa, M., Kobayashi, K., Tajiri, M., Manya, H., Kuga, A., Yamaguchi, Y. (2016) Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep. 14, 2209–2223.
45) Jae, L.T., Raaben, M., Riemersma, M., van Beusekom, E., Blomen, V.A., Velds, A. (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 51) Carss, K.J., Stevens, E., Foley, A.R., Cirak, S., Riemersma, M., Torelli, S. (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am. J. Hum. Genet. 93, 29–41.
– reference: 22) Avsar-Ban, E., Ishikawa, H., Manya, H., Watanabe, M., Akiyama, S., Miyake, H. (2010) Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20, 1089–1102.
– reference: 43) Brockington, M., Yuva, Y., Prandini, P., Brown, S.C., Torelli, S., Benson, M.A. (2001) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 10, 2851–2859.
– reference: 56) Imae, R., Manya, H., Tsumoto, H., Osumi, K., Tanaka, T., Mizuno, M. (2018) CDP-glycerol inhibits the synthesis of the functional O-mannosyl glycan of α-dystroglycan. J. Biol. Chem. 293, 12186–12198.
– reference: 17) Praissman, J.L., Willer, T., Sheikh, M.O., Toi, A., Chitayat, D., Lin, Y.Y. (2016) The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. elife 5, e14473.
– reference: 10) Manya, H., Yamaguchi, Y., Kanagawa, M., Kobayashi, K., Tajiri, M., Akasaka-Manya, K. (2016) The muscular dystrophy gene TMEM5 encodes a ribitol β1,4-xylosyltransferase required for the functional glycosylation of dystroglycan. J. Biol. Chem. 291, 24618–24627.
– reference: 19) Yoshida-Moriguchi, T., Yu, L., Stalnaker, S.H., Davis, S., Kunz, S., Madson, M. (2010) O-Mannosyl phosphorylation of α-dystroglycan is required for laminin binding. Science 327, 88–92.
– reference: 14) Brown, S., Santa Maria, J.P. and Walker, S. (2013) Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336.
– reference: 9) Yaji, S., Manya, H., Nakagawa, N., Takematsu, H., Endo, T., Kannagi, R. (2015) Major glycan structure underlying expression of the Lewis X epitope in the developing brain is O-mannose-linked glycans on phosphacan/RPTPβ. Glycobiology 25, 376–385.
– reference: 28) Inamori, K., Endo, T., Gu, J., Matsuo, I., Ito, Y., Fujii, S. (2004) N-Acetylglucosaminyltransferase IX acts on the GlcNAcβ1,2-Manα1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. J. Biol. Chem. 279, 2337–2340.
– reference: 50) Lefeber, D.J., de Brouwer, A.P., Morava, E., Riemersma, M., Schuurs-Hoeijmakers, J.H., Absmanner, B. (2011) Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 7, e1002427.
– reference: 12) Izumikawa, T., Sato, B., Mikami, T., Tamura, J., Igarashi, M. and Kitagawa, H. (2015) GlcUAβ1-3Galβ1-3Galβ1-4Xyl(2-O-phosphate) is the preferred substrate for chondroitin N-acetylgalactosaminyltransferase-1. J. Biol. Chem. 290, 5438–5448.
– reference: 34) Ashikov, A., Buettner, F.F., Tiemann, B., Gerardy-Schahn, R. and Bakker, H. (2013) LARGE2 generates the same xylose- and glucuronic acid-containing glycan structures as LARGE. Glycobiology 23, 303–309.
– reference: 4) Endo, T. (1999) O-Mannosyl glycans in mammals. Biochim. Biophys. Acta 1473, 237–246.
– reference: 31) Kanekiyo, K., Inamori, K., Kitazume, S., Sato, K., Maeda, J., Higuchi, M. (2013) Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination. J. Neurosci. 33, 10037–10047.
– reference: 6) Chiba, A., Matsumura, K., Yamada, H., Inazu, T., Shimizu, T., Kusunoki, S. (1997) Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve α-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of α-dystroglycan with laminin. J. Biol. Chem. 272, 2156–2162.
– reference: 58) Servian-Morilla, E., Takeuchi, H., Lee, T.V., Clarimon, J., Mavillard, F., Area-Gomez, E. (2016) A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol. Med. 8, 1289–1309.
– reference: 32) Yoshida-Moriguchi, T., Willer, T., Anderson, M.E., Venzke, D., Whyte, T., Muntoni, F. (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341, 896–899.
– reference: 40) Dong, M., Noguchi, S., Endo, Y., Hayashi, Y.K., Yoshida, S., Nonaka, I. (2015) DAG1 mutations associated with asymptomatic hyperCKemia and hypoglycosylation of α-dystroglycan. Neurology 84, 273–279.
– reference: 47) Akasaka-Manya, K., Manya, H., Kobayashi, K., Toda, T. and Endo, T. (2004) Structure-function analysis of human protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1, POMGnT1. Biochem. Biophys. Res. Commun. 320, 39–44.
– reference: 23) Willer, T., Prados, B., Falcon-Perez, J.M., Renner-Muller, I., Przemeck, G.K., Lommel, M. (2004) Targeted disruption of the Walker–Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc. Natl. Acad. Sci. U.S.A. 101, 14126–14131.
– reference: 8) Morise, J., Kizuka, Y., Yabuno, K., Tonoyama, Y., Hashii, N., Kawasaki, N. (2014) Structural and biochemical characterization of O-mannose-linked human natural killer-1 glycan expressed on phosphacan in developing mouse brains. Glycobiology 24, 314–324.
– reference: 42) Brockington, M., Blake, D.J., Prandini, P., Brown, S.C., Torelli, S., Benson, M.A. (2001) Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan. Am. J. Hum. Genet. 69, 1198–1209.
– reference: 39) Hara, Y., Balci-Hayta, B., Yoshida-Moriguchi, T., Kanagawa, M., Beltran-Valero de Bernabe, D., Gundesli, H. (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N. Engl. J. Med. 364, 939–946.
– reference: 41) Kobayashi, K., Nakahori, Y., Miyake, M., Matsumura, K., Kondo-Iida, E., Nomura, Y. (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392.
– reference: 44) Godfrey, C., Clement, E., Mein, R., Brockington, M., Smith, J., Talim, B. (2007) Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130, 2725–2735.
– reference: 38) Willer, T., Inamori, K., Venzke, D., Harvey, C., Morgensen, G., Hara, Y. (2014) The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. elife 3, e03941.
– reference: 5) Briggs, D.C., Yoshida-Moriguchi, T., Zheng, T., Venzke, D., Anderson, M.E., Strazzulli, A. (2016) Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat. Chem. Biol. 12, 810–814.
– reference: 29) Inamori, K., Endo, T., Ide, Y., Fujii, S., Gu, J., Honke, K. (2003) Molecular cloning and characterization of human GnT-IX, a novel β1,6-N-acetylglucosaminyltransferase that is specifically expressed in the brain. J. Biol. Chem. 278, 43102–43109.
– reference: 2) Yoshida-Moriguchi, T. and Campbell, K.P. (2015) Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 25, 702–713.
– reference: 20) Inamori, K., Yoshida-Moriguchi, T., Hara, Y., Anderson, M.E., Yu, L. and Campbell, K.P. (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335, 93–96.
– reference: 30) Kaneko, M., Alvarez-Manilla, G., Kamar, M., Lee, I., Lee, J.K., Troupe, K. (2003) A novel β(1,6)-N-acetylglucosaminyltransferase V (GnT-VB). FEBS Lett. 554, 515–519.
– reference: 25) Larsen, I.S.B., Narimatsu, Y., Joshi, H.J., Yang, Z., Harrison, O.J., Brasch, J. (2017) Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. J. Biol. Chem. 292, 11586–11598.
– reference: 24) Manya, H., Chiba, A., Yoshida, A., Wang, X., Chiba, Y., Jigami, Y. (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl. Acad. Sci. U.S.A. 101, 500–505.
– reference: 54) Yang, A.C., Ng, B.G., Moore, S.A., Rush, J., Waechter, C.J., Raymond, K.M. (2013) Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol. Genet. Metab. 110, 345–351.
– reference: 52) Lefeber, D.J., Schonberger, J., Morava, E., Guillard, M., Huyben, K.M., Verrijp, K. (2009) Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am. J. Hum. Genet. 85, 76–86.
– reference: 49) Nishihara, R., Kobayashi, K., Imae, R., Tsumoto, H., Manya, H., Mizuno, M. (2018) Cell endogenous activities of fukutin and FKRP coexist with the ribitol xylosyltransferase, TMEM5. Biochem. Biophys. Res. Commun. 497, 1025–1030.
– reference: 16) Gerin, I., Ury, B., Breloy, I., Bouchet-Seraphin, C., Bolsee, J., Halbout, M. (2016) ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat. Commun. 7, 11534.
– reference: 26) Larsen, I.S.B., Narimatsu, Y., Joshi, H.J., Siukstaite, L., Harrison, O.J., Brasch, J. (2017) Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proc. Natl. Acad. Sci. U.S.A. 114, 11163–11168.
– reference: 57) Bray, S.J. (2016) Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17, 722–735.
– reference: 36) Inamori, K.I., Beedle, A.M., de Bernabe, D.B., Wright, M.E. and Campbell, K.P. (2016) LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans. Glycobiology 26, 1284–1296.
– reference: 37) Praissman, J.L., Live, D.H., Wang, S., Ramiah, A., Chinoy, Z.S., Boons, G.J. (2014) B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. elife 3, e03943.
– reference: 35) Inamori, K., Hara, Y., Willer, T., Anderson, M.E., Zhu, Z., Yoshida-Moriguchi, T. (2013) Xylosyl- and glucuronyltransferase functions of LARGE in α-dystroglycan modification are conserved in LARGE2. Glycobiology 23, 295–302.
– reference: 13) Wen, J., Xiao, J., Rahdar, M., Choudhury, B.P., Cui, J., Taylor, G.S. (2014) Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 111, 15723–15728.
– reference: 3) Endo, T. (2004) Human genetic deficients in glycan formation. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 80, 128–139.
– reference: 60) Mohamed, M., Ashikov, A., Guillard, M., Robben, J.H., Schmidt, S., van den Heuvel, B. (2013) Intellectual disability and bleeding diathesis due to deficient CMP-sialic acid transport. Neurology 81, 681–687.
– reference: 53) Barone, R., Aiello, C., Race, V., Morava, E., Foulquier, F., Riemersma, M. (2012) DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann. Neurol. 72, 550–558.
– reference: 15) Kanagawa, M., Kobayashi, K., Tajiri, M., Manya, H., Kuga, A., Yamaguchi, Y. (2016) Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep. 14, 2209–2223.
– reference: 48) Xiong, H., Kobayashi, K., Tachikawa, M., Manya, H., Takeda, S., Chiyonobu, T. (2006) Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of α-dystroglycan. Biochem. Biophys. Res. Commun. 350, 935–941.
– reference: 11) Braulke, T. and Bonifacino, J.S. (2009) Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614.
– reference: 59) Schneider, M., Al-Shareffi, E. and Haltiwanger, R.S. (2017) Biological functions of fucose in mammals. Glycobiology 27, 601–618.
– reference: 55) Cataldi, M.P., Lu, P., Blaeser, A. and Lu, Q.L. (2018) Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat. Commun. 9, 3448.
– reference: 45) Jae, L.T., Raaben, M., Riemersma, M., van Beusekom, E., Blomen, V.A., Velds, A. (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340, 479–483.
– reference: 1) Endo, T. (2015) Glycobiology of α-dystroglycan and muscular dystrophy. J. Biochem. 157, 1–12.
– reference: 46) Kuwabara, N., Manya, H., Yamada, T., Tateno, H., Kanagawa, M., Kobayashi, K. (2016) Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan. Proc. Natl. Acad. Sci. U.S.A. 113, 9280–9285.
– reference: 21) Ichimiya, T., Manya, H., Ohmae, Y., Yoshida, H., Takahashi, K., Ueda, R. (2004) The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J. Biol. Chem. 279, 42638–42647.
– reference: 27) Yoshida, A., Kobayashi, K., Manya, H., Taniguchi, K., Kano, H., Mizuno, M. (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev. Cell 1, 717–724.
– reference: 61) Riemersma, M., Sandrock, J., Boltje, T.J., Bull, C., Heise, T., Ashikov, A. (2015) Disease mutations in CMP-sialic acid transporter SLC35A1 result in abnormal α-dystroglycan O-mannosylation, independent from sialic acid. Hum. Mol. Genet. 24, 2241–2246.
– reference: 33) Nagae, M., Mishra, S.K., Neyazaki, M., Oi, R., Ikeda, A., Matsugaki, N. (2017) 3D structural analysis of protein O-mannosyl kinase, POMK, a causative gene product of dystroglycanopathy. Genes Cells 22, 348–359.
– reference: 18) Yagi, H., Kuo, C.W., Obayashi, T., Ninagawa, S., Khoo, K.H. and Kato, K. (2016) Direct mapping of additional modifications on phosphorylated O-glycans of α-dystroglycan by mass spectrometry analysis in conjunction with knocking out of causative genes for dystroglycanopathy. Mol. Cell. Proteomics 15, 3424–3434.
– reference: 7) Sasaki, T., Yamada, H., Matsumura, K., Shimizu, T., Kobata, A. and Endo, T. (1998) Detection of O-mannosyl glycans in rabbit skeletal muscle α-dystroglycan. Biochim. Biophys. Acta 1425, 599–606.
– ident: 24
  doi: 10.1073/pnas.0307228101
– ident: 48
  doi: 10.1016/j.bbrc.2006.09.129
– ident: 52
  doi: 10.1016/j.ajhg.2009.06.006
– ident: 12
– ident: 7
  doi: 10.1016/S0304-4165(98)00114-7
– ident: 49
  doi: 10.1016/j.bbrc.2018.02.162
– ident: 27
  doi: 10.1016/S1534-5807(01)00070-3
– ident: 35
  doi: 10.1093/glycob/cws152
– ident: 60
  doi: 10.1212/WNL.0b013e3182a08f53
– ident: 19
  doi: 10.1126/science.1180512
– ident: 1
  doi: 10.1093/jb/mvu066
– ident: 33
  doi: 10.1111/gtc.12480
– ident: 9
  doi: 10.1093/glycob/cwu118
– ident: 57
  doi: 10.1038/nrm.2016.94
– ident: 5
  doi: 10.1038/nchembio.2146
– ident: 8
  doi: 10.1093/glycob/cwt116
– ident: 32
  doi: 10.1126/science.1239951
– ident: 45
  doi: 10.1126/science.1233675
– ident: 55
  doi: 10.1038/s41467-018-05990-z
– ident: 58
– ident: 13
  doi: 10.1073/pnas.1417993111
– ident: 31
  doi: 10.1523/JNEUROSCI.3137-12.2013
– ident: 39
  doi: 10.1056/NEJMoa1006939
– ident: 54
  doi: 10.1016/j.ymgme.2013.06.016
– ident: 22
  doi: 10.1093/glycob/cwq069
– ident: 18
– ident: 44
  doi: 10.1093/brain/awm212
– ident: 34
  doi: 10.1093/glycob/cws153
– ident: 16
  doi: 10.1038/ncomms11534
– ident: 42
  doi: 10.1086/324412
– ident: 23
  doi: 10.1073/pnas.0405899101
– ident: 10
– ident: 26
  doi: 10.1073/pnas.1708319114
– ident: 28
– ident: 51
  doi: 10.1016/j.ajhg.2013.05.009
– ident: 14
  doi: 10.1146/annurev-micro-092412-155620
– ident: 50
  doi: 10.1371/journal.pgen.1002427
– ident: 59
  doi: 10.1093/glycob/cwx034
– ident: 40
  doi: 10.1212/WNL.0000000000001162
– ident: 43
  doi: 10.1093/hmg/10.25.2851
– ident: 53
  doi: 10.1002/ana.23632
– ident: 47
– ident: 41
  doi: 10.1038/28653
– ident: 3
– ident: 20
  doi: 10.1126/science.1214115
– ident: 61
  doi: 10.1093/hmg/ddu742
– ident: 2
  doi: 10.1093/glycob/cwv021
– ident: 38
  doi: 10.7554/eLife.03941
– ident: 37
  doi: 10.7554/eLife.03943
– ident: 4
  doi: 10.1016/S0304-4165(99)00182-8
– ident: 11
  doi: 10.1016/j.bbamcr.2008.10.016
– ident: 29
– ident: 15
  doi: 10.1016/j.celrep.2016.02.017
– ident: 56
– ident: 17
  doi: 10.7554/eLife.14473
– ident: 6
– ident: 46
– ident: 21
– ident: 25
– ident: 30
  doi: 10.1016/S0014-5793(03)01234-1
– ident: 36
  doi: 10.1093/glycob/cww075
SSID ssj0032581
Score 2.4492936
SecondaryResourceType review_article
Snippet Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and...
Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N -glycans and O...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39
SubjectTerms Animals
Biochemistry
Brain
congenital muscular dystrophy
Disease
dystroglycan
Enzymes
Glycan
Glycoproteins
Glycosylation
Gram-positive bacteria
Humans
Mammals
Mannose - chemistry
Muscles
Muscular dystrophy
Musculoskeletal system
Mutation
N-glycans
O-mannosylation
Peptides
Phosphorylation
Polysaccharides
Polysaccharides - biosynthesis
Polysaccharides - chemistry
Polysaccharides - metabolism
Proteins
Researchers
Review
ribitol-5-phosphate
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB210EpcUOkHpIUqlThVckliO3YqVYiiIoRE4QDS3iJ77NCi3WTpLof993iSbOhWqIfk4pcomfHYM2N7HsB-mliRW2dZiK4kEwod05UVrEo5co-Zc0j5jvOf-em1OBvJUZ9wm_XbKpdjYjtQuwYpR35AoQgXNKEfTu8YsUbR6mpPofEc1tvSZaE_q9EQcPFMtiSlCdc5y7JEd-fz6B0H01tjvxSUTxErM9KL2-CU3fin_M1_t03-NQ-dvILN3oGMjzqNb8EzX7-Glx2l5OINfDs3k0mbu4gv2MTUdTNbjOOb8SKIcPY1DjhcUrzFpnZtS0O0xO3zb-H65MfV8SnrKRIYKinnzGk0FiWnGjnWF7zQuvLh0r4yCnmeGG7RKcer8PsV95nJhNeIOhNWCI_8HazVTe13IJbaqqDOYJ_kVSBaq4wuclEp44VSMoLPSzGV2NcPJxqLcRniCJJpSTItC1kGmUawP4CnXdmMp2GHnbwHUG8vAyil2-XZUSGT9HuZiAFAh9KCZUewu1RU2VvfrHzsKxF8GpqDbGkxxNS-uSdMGJmk4EkSwXan1-EjKCrjwfeMQK1ofABQTe7Vlvr3r7Y2d07rnjp9___P-gAbwfEqulTOLqzN_9z7veDczO3Htgc_AHOq_Go
  priority: 102
  providerName: ProQuest
Title Mammalian O-mannosyl glycans: Biochemistry and glycopathology
URI https://www.jstage.jst.go.jp/article/pjab/95/1/95_PJA9501B-04/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/30643095
https://www.proquest.com/docview/2184342183
https://www.proquest.com/docview/2179354300
https://pubmed.ncbi.nlm.nih.gov/PMC6395781
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Proceedings of the Japan Academy, Series B, 2019/01/11, Vol.95(1), pp.39-51
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dT9swED_xsU28oH2xZbAqk3iaFJbEduwgIQQbHWMqQ9Mq9S2yHYcNtSmjRVr_e-7yJUDdQyxFvsTR7-7iu7N9B7AbhYYnJjcBelci4NLmgSoMD4qIWeZsnOeW4h2D8-R0yM9GYrQCbTHOBsDZUteO6kkNb8Z7__4uDlHhD2gbM0rkp-srbfZSio3wVVjHKSkhL2zAu-UEFgsV1YfzHj-wAc_IBmchFZi4NzM9uULj7NItszsfb5-8Nx_1n8NmY0j6RzXnX8CKK1_C07q05OIVHAz0ZFLFMPwfwUSX5XS2GPuX4wVCOdv3kc62pd58XeZVz5TKE1fPv4Zh_-TX59OgKZUQWCnEPMiV1cYKRrlyjEtZqlTh8FKu0NKyJNTM2FzmrIhDVTAX65g7Za2KueHcWbYFa-W0dG_BF8pIZCvqKVkX1hojtUoTXkjtuJTCg48tTJlt8ohTOYtxhv4EwZsRvFkqMoTXg92O-LpOn7Gc7LDGuyNq9KYjiqi5ODtKRRgdZyHvCOhwGmq4Bzsto7JWiGgYzjgN5sGHrhuxpUURXbrpLdHgH0qgAIQevKn52n1EKxkeyAcc7wgoN_fDnvLP7ypHd0Lrnyp69993bsMG2l5pHc3ZgbX5za17j_bN3PRgVY4ktqr_tQfrxyfnFz_x7su3771Kqu8ABE0BNg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLQguiHcDBYJULkimSWwnDtKqaqHV9rFLhVqpt-BXSqvdZGG3Qvvn-G148oJFFbcekovHkTNjj2fGnvkANsJAsVgZRZx3xQlLtCEiV4zkIdXU6sgYjfGO4SgenLKDM362Ar_aXBi8VtnqxEpRm1JjjHwTXRHKcEPfmn4niBqFp6sthIZsoBVMvyox1iR2HNrFT-fCzfr7n5y830bR3u7JxwFpUAaITjifEyO0VJpTLDOjbEpTIXLrHmFzmWgaB5IqbRJD8ygQObWRjJgVWouIKcaspu67t2CVYYZrD1Z3dkfHX9q9gEa8gkkNqIhJ5PrXGYL4F5vTS6nepxjRYUt74u1LZxae2-ss3n8vbv61E-49gPuNCetv13PuIazY4hHcqUEtF4-hP5STSRU98T-TiSyKcrYY--fjhRPi7IPv6HQLMufLwlQtJQIjV_2fwOmNsO8p9IqysGvgc6ESN6GchkC7RmulEinSmOWJtCxJuAfvWjZluqlgjkAa48x5MsjTDHmapTxzPPVgoyOe1oU7rifbqvndETUrtiMK8XV8sJ3yINzJAtYRYFqc0y0erLeCypr1P8v-zFYP3nTNjrd4HCMLW14hjdONnNEg8OBZLdduEOgXUmf9epAsSbwjwKrgyy3FxbeqOniMJ68ifP7_Yb2Gu4OT4VF2tD86fAH3nBmY1oGldejNf1zZl87UmqtXzXz24etNL6HfjlFBwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiZeEJ8jMCBI4wUpWxrbsYNUTRtbtQ9WKsSkvQXbcQZTmxbaCfVf5K_iLl9QNPG2h-TF58i5s-_L9v0ANruh4bHJTIDRlQi4tFmgcsODvMssczbKMkv5jtNBfHjGj8_F-Qr8au7C0LHKRieWijqbWMqRb1MowjgZ9O28PhYx3O_vTL8HhCBFO60NnIauYRayXllurL7kceIWPzGcm_WO9lH2b6Kof_D5_WFQIw4EVgoxDzJltbGCUckZ4xKWKJU7fJTLtbQsDjUzNpMZy6NQ5cxFOuJOWasibjh3luF3b8GqRCvJO7C6dzAYfmrsAotECZkaMhUHEfavbguWfzS91GYroewOX7KPty_RRbxw13m__x7i_Msq9u_Dvdqd9Xer-fcAVlzxEO5UAJeLR9A71eNxmUnxPwZjXRST2WLkX4wWKNDZOx_pbAM45-siK1smBJJc9n8MZzfCvifQKSaFewq-UEbi5EJtQT6OtcZIrZKY51I7LqXw4G3DptTW1cwJVGOUYlRDPE2Jp2kiUuSpB5st8bQq4nE92U7F75aoXr0tUZdew-PdRITdvTTkLQFdkUM948FGI6i01gWz9M_M9eB124y8pa0ZXbjJFdGgnhSchaEH65Vc20FQjMjQE_ZALkm8JaAK4cstxbevZaXwmHZhVffZ_4f1CtZwKaUfjgYnz-EueoRJlWPagM78x5V7gV7X3Lysp7MPX256Bf0GFNlF7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mammalian+O-mannosyl+glycans%3A+Biochemistry+and+glycopathology&rft.jtitle=Proceedings+of+the+Japan+Academy.+Series+B.+Physical+and+biological+sciences&rft.au=Endo%2C+Tamao&rft.date=2019-01-01&rft.eissn=1349-2896&rft.volume=95&rft.issue=1&rft.spage=39&rft_id=info:doi/10.2183%2Fpjab.95.004&rft_id=info%3Apmid%2F30643095&rft.externalDocID=30643095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-2208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-2208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-2208&client=summon