Mammalian O-mannosyl glycans: Biochemistry and glycopathology
Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle...
Saved in:
Published in | Proceedings of the Japan Academy, Series B Vol. 95; no. 1; pp. 39 - 51 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Japan
The Japan Academy
01.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0386-2208 1349-2896 1349-2896 |
DOI | 10.2183/pjab.95.004 |
Cover
Abstract | Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies. |
---|---|
AbstractList | Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies. Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N -glycans and O -glycans, according to their glycan-peptide linkage regions. Recently, O -mannosyl glycan, an O -glycan, has been shown to be important in muscle and brain development. A clear relationship between O -mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies. Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies.Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies. |
Author | ENDO, Tamao |
Author_xml | – sequence: 1 fullname: ENDO, Tamao organization: Tokyo Metropolitan Institute of Gerontology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30643095$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc9rFDEUx4NU7LZ68i4LXgSZNZkkM4mg0BbrDyr1oOfwJpPZzZJJ1iQrzH9vxm0XLR7ycnif9-X7vu8MnfjgDULPCV7VRNA3uy10K8lXGLNHaEEok1UtZHOCFpiKpqprLE7RWUpbjGnNBXmCTiluGMWSL9C7rzCO4Cz45W01gvchTW65dpMGn94uL23QGzPalOO0BN__6YQd5E1wYT09RY8HcMk8u_vP0Y_rD9-vPlU3tx8_X13cVLrlPFe90NBpThlmtDOSSiEGU54wA7SaNhhop_u2p0PxOlBTQ82M0FrUrGPMaHqO3h90d_tuNL02PkdwahftCHFSAaz6t-PtRq3DL9VQyVtBisCrO4EYfu5NyqrspI1z4E3YJ1WTVlJeMsEFffkA3YZ99GW9QglG2Rx6oV787eho5T7ZApADoGNIKZpBaZsh2zAbtE4RPMtRNV9PSa7K9crM6wcz97L_p68P9DZlWJsjCzFb7cyRJXP59uVCckwuFWZHQG8gKuPpb4iOtaU |
CitedBy_id | crossref_primary_10_1093_glycob_cwad067 crossref_primary_10_1021_acs_jproteome_1c00219 crossref_primary_10_1038_s41598_022_22758_0 crossref_primary_10_1093_glycob_cwab084 crossref_primary_10_1371_journal_pone_0278713 crossref_primary_10_3389_fmolb_2024_1371551 crossref_primary_10_1093_jb_mvab069 crossref_primary_10_1016_j_biopha_2022_112685 crossref_primary_10_1186_s12935_022_02812_7 crossref_primary_10_3389_fgene_2021_737094 crossref_primary_10_1016_j_bbagen_2020_129812 crossref_primary_10_4052_tigg_2404_2J crossref_primary_10_4052_tigg_2404_2E crossref_primary_10_3390_ijms23126685 crossref_primary_10_3390_molecules25235755 crossref_primary_10_1007_s13760_020_01527_8 crossref_primary_10_1016_j_bbrc_2021_09_043 crossref_primary_10_1016_j_jbc_2021_100433 crossref_primary_10_1021_acs_jproteome_0c00435 crossref_primary_10_3389_fmolb_2021_656439 crossref_primary_10_1021_acs_biomac_1c00476 crossref_primary_10_1002_cbic_202200783 crossref_primary_10_1021_acschembio_2c00181 crossref_primary_10_3233_JND_230205 crossref_primary_10_1111_gtc_12853 crossref_primary_10_3390_molecules29051072 crossref_primary_10_3389_fgene_2023_1055372 crossref_primary_10_1016_j_mcpro_2024_100796 crossref_primary_10_1098_rsob_210104 crossref_primary_10_3390_molecules26216675 crossref_primary_10_3390_molecules26185471 crossref_primary_10_1111_hel_12867 crossref_primary_10_1016_j_nmd_2021_08_002 crossref_primary_10_17650_2222_8721_2020_10_2_12_21 crossref_primary_10_1021_jacs_9b08964 crossref_primary_10_3390_genes14091764 crossref_primary_10_1007_s12031_025_02320_z |
Cites_doi | 10.1073/pnas.0307228101 10.1016/j.bbrc.2006.09.129 10.1016/j.ajhg.2009.06.006 10.1016/S0304-4165(98)00114-7 10.1016/j.bbrc.2018.02.162 10.1016/S1534-5807(01)00070-3 10.1093/glycob/cws152 10.1212/WNL.0b013e3182a08f53 10.1126/science.1180512 10.1093/jb/mvu066 10.1111/gtc.12480 10.1093/glycob/cwu118 10.1038/nrm.2016.94 10.1038/nchembio.2146 10.1093/glycob/cwt116 10.1126/science.1239951 10.1126/science.1233675 10.1038/s41467-018-05990-z 10.1073/pnas.1417993111 10.1523/JNEUROSCI.3137-12.2013 10.1056/NEJMoa1006939 10.1016/j.ymgme.2013.06.016 10.1093/glycob/cwq069 10.1093/brain/awm212 10.1093/glycob/cws153 10.1038/ncomms11534 10.1086/324412 10.1073/pnas.0405899101 10.1073/pnas.1708319114 10.1016/j.ajhg.2013.05.009 10.1146/annurev-micro-092412-155620 10.1371/journal.pgen.1002427 10.1093/glycob/cwx034 10.1212/WNL.0000000000001162 10.1093/hmg/10.25.2851 10.1002/ana.23632 10.1038/28653 10.1126/science.1214115 10.1093/hmg/ddu742 10.1093/glycob/cwv021 10.7554/eLife.03941 10.7554/eLife.03943 10.1016/S0304-4165(99)00182-8 10.1016/j.bbamcr.2008.10.016 10.1016/j.celrep.2016.02.017 10.7554/eLife.14473 10.1016/S0014-5793(03)01234-1 10.1093/glycob/cww075 |
ContentType | Journal Article |
Copyright | 2019 The Japan Academy Copyright The Japan Academy Jan 2019 2019 The Japan Academy 2019 |
Copyright_xml | – notice: 2019 The Japan Academy – notice: Copyright The Japan Academy Jan 2019 – notice: 2019 The Japan Academy 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7TK 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI BVBZV CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 5PM |
DOI | 10.2183/pjab.95.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection East & South Asia Database ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Proquest Research Library Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) East & South Asia Database Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Mammalian O-mannosyl glycans |
EISSN | 1349-2896 |
EndPage | 51 |
ExternalDocumentID | PMC6395781 30643095 10_2183_pjab_95_004 article_pjab_95_1_95_PJA9501B_04_article_char_en |
Genre | Journal Article |
GroupedDBID | --- -~X .55 29P 2WC 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 ABJCF ABUWG ACIWK ACPRK AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVBZV BVXVI CCPQU DIK DWQXO E3Z EBD EBS EJD EMOBN F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HMCUK HYE I-F IAO IEA ITC JSF JSH KQ8 L6V LK8 M1P M2O M48 M7P M7S O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 RJT RNS RPM RZJ RZL SV3 TN5 TR2 TUS UKHRP WH7 X7M XSB YNT ~02 AAYXX ALIPV CITATION 53G ADRAZ AFFNX CGR CUY CVF ECM EIF NPM TKC XJT XOL 3V. 7QP 7QR 7TK 7XB 8FD 8FK FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c755t-d8cabc534043be93988fe88f8efa7c360a3bcd7d3f208f3e2a24e8cc824b44ec3 |
IEDL.DBID | M48 |
ISSN | 0386-2208 1349-2896 |
IngestDate | Thu Aug 21 14:11:50 EDT 2025 Fri Sep 05 03:28:28 EDT 2025 Fri Jul 25 12:19:48 EDT 2025 Thu Apr 03 07:03:12 EDT 2025 Tue Jul 01 01:25:16 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Wed Sep 03 06:29:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | O-mannosylation congenital muscular dystrophy dystroglycan ribitol-5-phosphate |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c755t-d8cabc534043be93988fe88f8efa7c360a3bcd7d3f208f3e2a24e8cc824b44ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicated by Kunihiko SUZUKI, M.J.A. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2183/pjab.95.004 |
PMID | 30643095 |
PQID | 2184342183 |
PQPubID | 1066378 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6395781 proquest_miscellaneous_2179354300 proquest_journals_2184342183 pubmed_primary_30643095 crossref_citationtrail_10_2183_pjab_95_004 crossref_primary_10_2183_pjab_95_004 jstage_primary_article_pjab_95_1_95_PJA9501B_04_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Ueno Park – name: Tokyo, Japan |
PublicationTitle | Proceedings of the Japan Academy, Series B |
PublicationTitleAlternate | Proc. Jpn. Acad., Ser. B |
PublicationYear | 2019 |
Publisher | The Japan Academy |
Publisher_xml | – name: The Japan Academy |
References | 23) Willer, T., Prados, B., Falcon-Perez, J.M., Renner-Muller, I., Przemeck, G.K., Lommel, M. (2004) Targeted disruption of the Walker–Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc. Natl. Acad. Sci. U.S.A. 101, 14126–14131. 56) Imae, R., Manya, H., Tsumoto, H., Osumi, K., Tanaka, T., Mizuno, M. (2018) CDP-glycerol inhibits the synthesis of the functional O-mannosyl glycan of α-dystroglycan. J. Biol. Chem. 293, 12186–12198. 1) Endo, T. (2015) Glycobiology of α-dystroglycan and muscular dystrophy. J. Biochem. 157, 1–12. 29) Inamori, K., Endo, T., Ide, Y., Fujii, S., Gu, J., Honke, K. (2003) Molecular cloning and characterization of human GnT-IX, a novel β1,6-N-acetylglucosaminyltransferase that is specifically expressed in the brain. J. Biol. Chem. 278, 43102–43109. 11) Braulke, T. and Bonifacino, J.S. (2009) Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614. 10) Manya, H., Yamaguchi, Y., Kanagawa, M., Kobayashi, K., Tajiri, M., Akasaka-Manya, K. (2016) The muscular dystrophy gene TMEM5 encodes a ribitol β1,4-xylosyltransferase required for the functional glycosylation of dystroglycan. J. Biol. Chem. 291, 24618–24627. 17) Praissman, J.L., Willer, T., Sheikh, M.O., Toi, A., Chitayat, D., Lin, Y.Y. (2016) The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. elife 5, e14473. 43) Brockington, M., Yuva, Y., Prandini, P., Brown, S.C., Torelli, S., Benson, M.A. (2001) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 10, 2851–2859. 50) Lefeber, D.J., de Brouwer, A.P., Morava, E., Riemersma, M., Schuurs-Hoeijmakers, J.H., Absmanner, B. (2011) Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 7, e1002427. 14) Brown, S., Santa Maria, J.P. and Walker, S. (2013) Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336. 48) Xiong, H., Kobayashi, K., Tachikawa, M., Manya, H., Takeda, S., Chiyonobu, T. (2006) Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of α-dystroglycan. Biochem. Biophys. Res. Commun. 350, 935–941. 53) Barone, R., Aiello, C., Race, V., Morava, E., Foulquier, F., Riemersma, M. (2012) DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann. Neurol. 72, 550–558. 12) Izumikawa, T., Sato, B., Mikami, T., Tamura, J., Igarashi, M. and Kitagawa, H. (2015) GlcUAβ1-3Galβ1-3Galβ1-4Xyl(2-O-phosphate) is the preferred substrate for chondroitin N-acetylgalactosaminyltransferase-1. J. Biol. Chem. 290, 5438–5448. 31) Kanekiyo, K., Inamori, K., Kitazume, S., Sato, K., Maeda, J., Higuchi, M. (2013) Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination. J. Neurosci. 33, 10037–10047. 40) Dong, M., Noguchi, S., Endo, Y., Hayashi, Y.K., Yoshida, S., Nonaka, I. (2015) DAG1 mutations associated with asymptomatic hyperCKemia and hypoglycosylation of α-dystroglycan. Neurology 84, 273–279. 22) Avsar-Ban, E., Ishikawa, H., Manya, H., Watanabe, M., Akiyama, S., Miyake, H. (2010) Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20, 1089–1102. 24) Manya, H., Chiba, A., Yoshida, A., Wang, X., Chiba, Y., Jigami, Y. (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl. Acad. Sci. U.S.A. 101, 500–505. 16) Gerin, I., Ury, B., Breloy, I., Bouchet-Seraphin, C., Bolsee, J., Halbout, M. (2016) ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat. Commun. 7, 11534. 41) Kobayashi, K., Nakahori, Y., Miyake, M., Matsumura, K., Kondo-Iida, E., Nomura, Y. (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392. 28) Inamori, K., Endo, T., Gu, J., Matsuo, I., Ito, Y., Fujii, S. (2004) N-Acetylglucosaminyltransferase IX acts on the GlcNAcβ1,2-Manα1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. J. Biol. Chem. 279, 2337–2340. 30) Kaneko, M., Alvarez-Manilla, G., Kamar, M., Lee, I., Lee, J.K., Troupe, K. (2003) A novel β(1,6)-N-acetylglucosaminyltransferase V (GnT-VB). FEBS Lett. 554, 515–519. 60) Mohamed, M., Ashikov, A., Guillard, M., Robben, J.H., Schmidt, S., van den Heuvel, B. (2013) Intellectual disability and bleeding diathesis due to deficient CMP-sialic acid transport. Neurology 81, 681–687. 46) Kuwabara, N., Manya, H., Yamada, T., Tateno, H., Kanagawa, M., Kobayashi, K. (2016) Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan. Proc. Natl. Acad. Sci. U.S.A. 113, 9280–9285. 47) Akasaka-Manya, K., Manya, H., Kobayashi, K., Toda, T. and Endo, T. (2004) Structure-function analysis of human protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1, POMGnT1. Biochem. Biophys. Res. Commun. 320, 39–44. 9) Yaji, S., Manya, H., Nakagawa, N., Takematsu, H., Endo, T., Kannagi, R. (2015) Major glycan structure underlying expression of the Lewis X epitope in the developing brain is O-mannose-linked glycans on phosphacan/RPTPβ. Glycobiology 25, 376–385. 32) Yoshida-Moriguchi, T., Willer, T., Anderson, M.E., Venzke, D., Whyte, T., Muntoni, F. (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341, 896–899. 44) Godfrey, C., Clement, E., Mein, R., Brockington, M., Smith, J., Talim, B. (2007) Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130, 2725–2735. 13) Wen, J., Xiao, J., Rahdar, M., Choudhury, B.P., Cui, J., Taylor, G.S. (2014) Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 111, 15723–15728. 4) Endo, T. (1999) O-Mannosyl glycans in mammals. Biochim. Biophys. Acta 1473, 237–246. 33) Nagae, M., Mishra, S.K., Neyazaki, M., Oi, R., Ikeda, A., Matsugaki, N. (2017) 3D structural analysis of protein O-mannosyl kinase, POMK, a causative gene product of dystroglycanopathy. Genes Cells 22, 348–359. 39) Hara, Y., Balci-Hayta, B., Yoshida-Moriguchi, T., Kanagawa, M., Beltran-Valero de Bernabe, D., Gundesli, H. (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N. Engl. J. Med. 364, 939–946. 52) Lefeber, D.J., Schonberger, J., Morava, E., Guillard, M., Huyben, K.M., Verrijp, K. (2009) Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am. J. Hum. Genet. 85, 76–86. 19) Yoshida-Moriguchi, T., Yu, L., Stalnaker, S.H., Davis, S., Kunz, S., Madson, M. (2010) O-Mannosyl phosphorylation of α-dystroglycan is required for laminin binding. Science 327, 88–92. 3) Endo, T. (2004) Human genetic deficients in glycan formation. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 80, 128–139. 6) Chiba, A., Matsumura, K., Yamada, H., Inazu, T., Shimizu, T., Kusunoki, S. (1997) Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve α-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of α-dystroglycan with laminin. J. Biol. Chem. 272, 2156–2162. 57) Bray, S.J. (2016) Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17, 722–735. 59) Schneider, M., Al-Shareffi, E. and Haltiwanger, R.S. (2017) Biological functions of fucose in mammals. Glycobiology 27, 601–618. 37) Praissman, J.L., Live, D.H., Wang, S., Ramiah, A., Chinoy, Z.S., Boons, G.J. (2014) B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. elife 3, e03943. 42) Brockington, M., Blake, D.J., Prandini, P., Brown, S.C., Torelli, S., Benson, M.A. (2001) Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan. Am. J. Hum. Genet. 69, 1198–1209. 55) Cataldi, M.P., Lu, P., Blaeser, A. and Lu, Q.L. (2018) Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat. Commun. 9, 3448. 26) Larsen, I.S.B., Narimatsu, Y., Joshi, H.J., Siukstaite, L., Harrison, O.J., Brasch, J. (2017) Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proc. Natl. Acad. Sci. U.S.A. 114, 11163–11168. 51) Carss, K.J., Stevens, E., Foley, A.R., Cirak, S., Riemersma, M., Torelli, S. (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am. J. Hum. Genet. 93, 29–41. 61) Riemersma, M., Sandrock, J., Boltje, T.J., Bull, C., Heise, T., Ashikov, A. (2015) Disease mutations in CMP-sialic acid transporter SLC35A1 result in abnormal α-dystroglycan O-mannosylation, independent from sialic acid. Hum. Mol. Genet. 24, 2241–2246. 21) Ichimiya, T., Manya, H., Ohmae, Y., Yoshida, H., Takahashi, K., Ueda, R. (2004) The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J. Biol. Chem. 279, 42638–42647. 8) Morise, J., Kizuka, Y., Yabuno, K., Tonoyama, Y., Hashii, N., Kawasaki, N. (2014) Structural and biochemical characterization of O-mannose-linked human natural killer-1 glycan expressed on phosphacan in developing mouse brains. Glycobiology 24, 314–324. 15) Kanagawa, M., Kobayashi, K., Tajiri, M., Manya, H., Kuga, A., Yamaguchi, Y. (2016) Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep. 14, 2209–2223. 45) Jae, L.T., Raaben, M., Riemersma, M., van Beusekom, E., Blomen, V.A., Velds, A. (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 51) Carss, K.J., Stevens, E., Foley, A.R., Cirak, S., Riemersma, M., Torelli, S. (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am. J. Hum. Genet. 93, 29–41. – reference: 22) Avsar-Ban, E., Ishikawa, H., Manya, H., Watanabe, M., Akiyama, S., Miyake, H. (2010) Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20, 1089–1102. – reference: 43) Brockington, M., Yuva, Y., Prandini, P., Brown, S.C., Torelli, S., Benson, M.A. (2001) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 10, 2851–2859. – reference: 56) Imae, R., Manya, H., Tsumoto, H., Osumi, K., Tanaka, T., Mizuno, M. (2018) CDP-glycerol inhibits the synthesis of the functional O-mannosyl glycan of α-dystroglycan. J. Biol. Chem. 293, 12186–12198. – reference: 17) Praissman, J.L., Willer, T., Sheikh, M.O., Toi, A., Chitayat, D., Lin, Y.Y. (2016) The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. elife 5, e14473. – reference: 10) Manya, H., Yamaguchi, Y., Kanagawa, M., Kobayashi, K., Tajiri, M., Akasaka-Manya, K. (2016) The muscular dystrophy gene TMEM5 encodes a ribitol β1,4-xylosyltransferase required for the functional glycosylation of dystroglycan. J. Biol. Chem. 291, 24618–24627. – reference: 19) Yoshida-Moriguchi, T., Yu, L., Stalnaker, S.H., Davis, S., Kunz, S., Madson, M. (2010) O-Mannosyl phosphorylation of α-dystroglycan is required for laminin binding. Science 327, 88–92. – reference: 14) Brown, S., Santa Maria, J.P. and Walker, S. (2013) Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336. – reference: 9) Yaji, S., Manya, H., Nakagawa, N., Takematsu, H., Endo, T., Kannagi, R. (2015) Major glycan structure underlying expression of the Lewis X epitope in the developing brain is O-mannose-linked glycans on phosphacan/RPTPβ. Glycobiology 25, 376–385. – reference: 28) Inamori, K., Endo, T., Gu, J., Matsuo, I., Ito, Y., Fujii, S. (2004) N-Acetylglucosaminyltransferase IX acts on the GlcNAcβ1,2-Manα1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. J. Biol. Chem. 279, 2337–2340. – reference: 50) Lefeber, D.J., de Brouwer, A.P., Morava, E., Riemersma, M., Schuurs-Hoeijmakers, J.H., Absmanner, B. (2011) Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 7, e1002427. – reference: 12) Izumikawa, T., Sato, B., Mikami, T., Tamura, J., Igarashi, M. and Kitagawa, H. (2015) GlcUAβ1-3Galβ1-3Galβ1-4Xyl(2-O-phosphate) is the preferred substrate for chondroitin N-acetylgalactosaminyltransferase-1. J. Biol. Chem. 290, 5438–5448. – reference: 34) Ashikov, A., Buettner, F.F., Tiemann, B., Gerardy-Schahn, R. and Bakker, H. (2013) LARGE2 generates the same xylose- and glucuronic acid-containing glycan structures as LARGE. Glycobiology 23, 303–309. – reference: 4) Endo, T. (1999) O-Mannosyl glycans in mammals. Biochim. Biophys. Acta 1473, 237–246. – reference: 31) Kanekiyo, K., Inamori, K., Kitazume, S., Sato, K., Maeda, J., Higuchi, M. (2013) Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination. J. Neurosci. 33, 10037–10047. – reference: 6) Chiba, A., Matsumura, K., Yamada, H., Inazu, T., Shimizu, T., Kusunoki, S. (1997) Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve α-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of α-dystroglycan with laminin. J. Biol. Chem. 272, 2156–2162. – reference: 58) Servian-Morilla, E., Takeuchi, H., Lee, T.V., Clarimon, J., Mavillard, F., Area-Gomez, E. (2016) A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol. Med. 8, 1289–1309. – reference: 32) Yoshida-Moriguchi, T., Willer, T., Anderson, M.E., Venzke, D., Whyte, T., Muntoni, F. (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341, 896–899. – reference: 40) Dong, M., Noguchi, S., Endo, Y., Hayashi, Y.K., Yoshida, S., Nonaka, I. (2015) DAG1 mutations associated with asymptomatic hyperCKemia and hypoglycosylation of α-dystroglycan. Neurology 84, 273–279. – reference: 47) Akasaka-Manya, K., Manya, H., Kobayashi, K., Toda, T. and Endo, T. (2004) Structure-function analysis of human protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1, POMGnT1. Biochem. Biophys. Res. Commun. 320, 39–44. – reference: 23) Willer, T., Prados, B., Falcon-Perez, J.M., Renner-Muller, I., Przemeck, G.K., Lommel, M. (2004) Targeted disruption of the Walker–Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc. Natl. Acad. Sci. U.S.A. 101, 14126–14131. – reference: 8) Morise, J., Kizuka, Y., Yabuno, K., Tonoyama, Y., Hashii, N., Kawasaki, N. (2014) Structural and biochemical characterization of O-mannose-linked human natural killer-1 glycan expressed on phosphacan in developing mouse brains. Glycobiology 24, 314–324. – reference: 42) Brockington, M., Blake, D.J., Prandini, P., Brown, S.C., Torelli, S., Benson, M.A. (2001) Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan. Am. J. Hum. Genet. 69, 1198–1209. – reference: 39) Hara, Y., Balci-Hayta, B., Yoshida-Moriguchi, T., Kanagawa, M., Beltran-Valero de Bernabe, D., Gundesli, H. (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N. Engl. J. Med. 364, 939–946. – reference: 41) Kobayashi, K., Nakahori, Y., Miyake, M., Matsumura, K., Kondo-Iida, E., Nomura, Y. (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392. – reference: 44) Godfrey, C., Clement, E., Mein, R., Brockington, M., Smith, J., Talim, B. (2007) Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130, 2725–2735. – reference: 38) Willer, T., Inamori, K., Venzke, D., Harvey, C., Morgensen, G., Hara, Y. (2014) The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. elife 3, e03941. – reference: 5) Briggs, D.C., Yoshida-Moriguchi, T., Zheng, T., Venzke, D., Anderson, M.E., Strazzulli, A. (2016) Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat. Chem. Biol. 12, 810–814. – reference: 29) Inamori, K., Endo, T., Ide, Y., Fujii, S., Gu, J., Honke, K. (2003) Molecular cloning and characterization of human GnT-IX, a novel β1,6-N-acetylglucosaminyltransferase that is specifically expressed in the brain. J. Biol. Chem. 278, 43102–43109. – reference: 2) Yoshida-Moriguchi, T. and Campbell, K.P. (2015) Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 25, 702–713. – reference: 20) Inamori, K., Yoshida-Moriguchi, T., Hara, Y., Anderson, M.E., Yu, L. and Campbell, K.P. (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335, 93–96. – reference: 30) Kaneko, M., Alvarez-Manilla, G., Kamar, M., Lee, I., Lee, J.K., Troupe, K. (2003) A novel β(1,6)-N-acetylglucosaminyltransferase V (GnT-VB). FEBS Lett. 554, 515–519. – reference: 25) Larsen, I.S.B., Narimatsu, Y., Joshi, H.J., Yang, Z., Harrison, O.J., Brasch, J. (2017) Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. J. Biol. Chem. 292, 11586–11598. – reference: 24) Manya, H., Chiba, A., Yoshida, A., Wang, X., Chiba, Y., Jigami, Y. (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl. Acad. Sci. U.S.A. 101, 500–505. – reference: 54) Yang, A.C., Ng, B.G., Moore, S.A., Rush, J., Waechter, C.J., Raymond, K.M. (2013) Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol. Genet. Metab. 110, 345–351. – reference: 52) Lefeber, D.J., Schonberger, J., Morava, E., Guillard, M., Huyben, K.M., Verrijp, K. (2009) Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am. J. Hum. Genet. 85, 76–86. – reference: 49) Nishihara, R., Kobayashi, K., Imae, R., Tsumoto, H., Manya, H., Mizuno, M. (2018) Cell endogenous activities of fukutin and FKRP coexist with the ribitol xylosyltransferase, TMEM5. Biochem. Biophys. Res. Commun. 497, 1025–1030. – reference: 16) Gerin, I., Ury, B., Breloy, I., Bouchet-Seraphin, C., Bolsee, J., Halbout, M. (2016) ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat. Commun. 7, 11534. – reference: 26) Larsen, I.S.B., Narimatsu, Y., Joshi, H.J., Siukstaite, L., Harrison, O.J., Brasch, J. (2017) Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proc. Natl. Acad. Sci. U.S.A. 114, 11163–11168. – reference: 57) Bray, S.J. (2016) Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17, 722–735. – reference: 36) Inamori, K.I., Beedle, A.M., de Bernabe, D.B., Wright, M.E. and Campbell, K.P. (2016) LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans. Glycobiology 26, 1284–1296. – reference: 37) Praissman, J.L., Live, D.H., Wang, S., Ramiah, A., Chinoy, Z.S., Boons, G.J. (2014) B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. elife 3, e03943. – reference: 35) Inamori, K., Hara, Y., Willer, T., Anderson, M.E., Zhu, Z., Yoshida-Moriguchi, T. (2013) Xylosyl- and glucuronyltransferase functions of LARGE in α-dystroglycan modification are conserved in LARGE2. Glycobiology 23, 295–302. – reference: 13) Wen, J., Xiao, J., Rahdar, M., Choudhury, B.P., Cui, J., Taylor, G.S. (2014) Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 111, 15723–15728. – reference: 3) Endo, T. (2004) Human genetic deficients in glycan formation. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 80, 128–139. – reference: 60) Mohamed, M., Ashikov, A., Guillard, M., Robben, J.H., Schmidt, S., van den Heuvel, B. (2013) Intellectual disability and bleeding diathesis due to deficient CMP-sialic acid transport. Neurology 81, 681–687. – reference: 53) Barone, R., Aiello, C., Race, V., Morava, E., Foulquier, F., Riemersma, M. (2012) DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann. Neurol. 72, 550–558. – reference: 15) Kanagawa, M., Kobayashi, K., Tajiri, M., Manya, H., Kuga, A., Yamaguchi, Y. (2016) Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep. 14, 2209–2223. – reference: 48) Xiong, H., Kobayashi, K., Tachikawa, M., Manya, H., Takeda, S., Chiyonobu, T. (2006) Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of α-dystroglycan. Biochem. Biophys. Res. Commun. 350, 935–941. – reference: 11) Braulke, T. and Bonifacino, J.S. (2009) Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614. – reference: 59) Schneider, M., Al-Shareffi, E. and Haltiwanger, R.S. (2017) Biological functions of fucose in mammals. Glycobiology 27, 601–618. – reference: 55) Cataldi, M.P., Lu, P., Blaeser, A. and Lu, Q.L. (2018) Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat. Commun. 9, 3448. – reference: 45) Jae, L.T., Raaben, M., Riemersma, M., van Beusekom, E., Blomen, V.A., Velds, A. (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340, 479–483. – reference: 1) Endo, T. (2015) Glycobiology of α-dystroglycan and muscular dystrophy. J. Biochem. 157, 1–12. – reference: 46) Kuwabara, N., Manya, H., Yamada, T., Tateno, H., Kanagawa, M., Kobayashi, K. (2016) Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan. Proc. Natl. Acad. Sci. U.S.A. 113, 9280–9285. – reference: 21) Ichimiya, T., Manya, H., Ohmae, Y., Yoshida, H., Takahashi, K., Ueda, R. (2004) The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J. Biol. Chem. 279, 42638–42647. – reference: 27) Yoshida, A., Kobayashi, K., Manya, H., Taniguchi, K., Kano, H., Mizuno, M. (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev. Cell 1, 717–724. – reference: 61) Riemersma, M., Sandrock, J., Boltje, T.J., Bull, C., Heise, T., Ashikov, A. (2015) Disease mutations in CMP-sialic acid transporter SLC35A1 result in abnormal α-dystroglycan O-mannosylation, independent from sialic acid. Hum. Mol. Genet. 24, 2241–2246. – reference: 33) Nagae, M., Mishra, S.K., Neyazaki, M., Oi, R., Ikeda, A., Matsugaki, N. (2017) 3D structural analysis of protein O-mannosyl kinase, POMK, a causative gene product of dystroglycanopathy. Genes Cells 22, 348–359. – reference: 18) Yagi, H., Kuo, C.W., Obayashi, T., Ninagawa, S., Khoo, K.H. and Kato, K. (2016) Direct mapping of additional modifications on phosphorylated O-glycans of α-dystroglycan by mass spectrometry analysis in conjunction with knocking out of causative genes for dystroglycanopathy. Mol. Cell. Proteomics 15, 3424–3434. – reference: 7) Sasaki, T., Yamada, H., Matsumura, K., Shimizu, T., Kobata, A. and Endo, T. (1998) Detection of O-mannosyl glycans in rabbit skeletal muscle α-dystroglycan. Biochim. Biophys. Acta 1425, 599–606. – ident: 24 doi: 10.1073/pnas.0307228101 – ident: 48 doi: 10.1016/j.bbrc.2006.09.129 – ident: 52 doi: 10.1016/j.ajhg.2009.06.006 – ident: 12 – ident: 7 doi: 10.1016/S0304-4165(98)00114-7 – ident: 49 doi: 10.1016/j.bbrc.2018.02.162 – ident: 27 doi: 10.1016/S1534-5807(01)00070-3 – ident: 35 doi: 10.1093/glycob/cws152 – ident: 60 doi: 10.1212/WNL.0b013e3182a08f53 – ident: 19 doi: 10.1126/science.1180512 – ident: 1 doi: 10.1093/jb/mvu066 – ident: 33 doi: 10.1111/gtc.12480 – ident: 9 doi: 10.1093/glycob/cwu118 – ident: 57 doi: 10.1038/nrm.2016.94 – ident: 5 doi: 10.1038/nchembio.2146 – ident: 8 doi: 10.1093/glycob/cwt116 – ident: 32 doi: 10.1126/science.1239951 – ident: 45 doi: 10.1126/science.1233675 – ident: 55 doi: 10.1038/s41467-018-05990-z – ident: 58 – ident: 13 doi: 10.1073/pnas.1417993111 – ident: 31 doi: 10.1523/JNEUROSCI.3137-12.2013 – ident: 39 doi: 10.1056/NEJMoa1006939 – ident: 54 doi: 10.1016/j.ymgme.2013.06.016 – ident: 22 doi: 10.1093/glycob/cwq069 – ident: 18 – ident: 44 doi: 10.1093/brain/awm212 – ident: 34 doi: 10.1093/glycob/cws153 – ident: 16 doi: 10.1038/ncomms11534 – ident: 42 doi: 10.1086/324412 – ident: 23 doi: 10.1073/pnas.0405899101 – ident: 10 – ident: 26 doi: 10.1073/pnas.1708319114 – ident: 28 – ident: 51 doi: 10.1016/j.ajhg.2013.05.009 – ident: 14 doi: 10.1146/annurev-micro-092412-155620 – ident: 50 doi: 10.1371/journal.pgen.1002427 – ident: 59 doi: 10.1093/glycob/cwx034 – ident: 40 doi: 10.1212/WNL.0000000000001162 – ident: 43 doi: 10.1093/hmg/10.25.2851 – ident: 53 doi: 10.1002/ana.23632 – ident: 47 – ident: 41 doi: 10.1038/28653 – ident: 3 – ident: 20 doi: 10.1126/science.1214115 – ident: 61 doi: 10.1093/hmg/ddu742 – ident: 2 doi: 10.1093/glycob/cwv021 – ident: 38 doi: 10.7554/eLife.03941 – ident: 37 doi: 10.7554/eLife.03943 – ident: 4 doi: 10.1016/S0304-4165(99)00182-8 – ident: 11 doi: 10.1016/j.bbamcr.2008.10.016 – ident: 29 – ident: 15 doi: 10.1016/j.celrep.2016.02.017 – ident: 56 – ident: 17 doi: 10.7554/eLife.14473 – ident: 6 – ident: 46 – ident: 21 – ident: 25 – ident: 30 doi: 10.1016/S0014-5793(03)01234-1 – ident: 36 doi: 10.1093/glycob/cww075 |
SSID | ssj0032581 |
Score | 2.4492936 |
SecondaryResourceType | review_article |
Snippet | Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and... Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N -glycans and O... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 39 |
SubjectTerms | Animals Biochemistry Brain congenital muscular dystrophy Disease dystroglycan Enzymes Glycan Glycoproteins Glycosylation Gram-positive bacteria Humans Mammals Mannose - chemistry Muscles Muscular dystrophy Musculoskeletal system Mutation N-glycans O-mannosylation Peptides Phosphorylation Polysaccharides Polysaccharides - biosynthesis Polysaccharides - chemistry Polysaccharides - metabolism Proteins Researchers Review ribitol-5-phosphate |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB210EpcUOkHpIUqlThVckliO3YqVYiiIoRE4QDS3iJ77NCi3WTpLof993iSbOhWqIfk4pcomfHYM2N7HsB-mliRW2dZiK4kEwod05UVrEo5co-Zc0j5jvOf-em1OBvJUZ9wm_XbKpdjYjtQuwYpR35AoQgXNKEfTu8YsUbR6mpPofEc1tvSZaE_q9EQcPFMtiSlCdc5y7JEd-fz6B0H01tjvxSUTxErM9KL2-CU3fin_M1_t03-NQ-dvILN3oGMjzqNb8EzX7-Glx2l5OINfDs3k0mbu4gv2MTUdTNbjOOb8SKIcPY1DjhcUrzFpnZtS0O0xO3zb-H65MfV8SnrKRIYKinnzGk0FiWnGjnWF7zQuvLh0r4yCnmeGG7RKcer8PsV95nJhNeIOhNWCI_8HazVTe13IJbaqqDOYJ_kVSBaq4wuclEp44VSMoLPSzGV2NcPJxqLcRniCJJpSTItC1kGmUawP4CnXdmMp2GHnbwHUG8vAyil2-XZUSGT9HuZiAFAh9KCZUewu1RU2VvfrHzsKxF8GpqDbGkxxNS-uSdMGJmk4EkSwXan1-EjKCrjwfeMQK1ofABQTe7Vlvr3r7Y2d07rnjp9___P-gAbwfEqulTOLqzN_9z7veDczO3Htgc_AHOq_Go priority: 102 providerName: ProQuest |
Title | Mammalian O-mannosyl glycans: Biochemistry and glycopathology |
URI | https://www.jstage.jst.go.jp/article/pjab/95/1/95_PJA9501B-04/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/30643095 https://www.proquest.com/docview/2184342183 https://www.proquest.com/docview/2179354300 https://pubmed.ncbi.nlm.nih.gov/PMC6395781 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Proceedings of the Japan Academy, Series B, 2019/01/11, Vol.95(1), pp.39-51 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dT9swED_xsU28oH2xZbAqk3iaFJbEduwgIQQbHWMqQ9Mq9S2yHYcNtSmjRVr_e-7yJUDdQyxFvsTR7-7iu7N9B7AbhYYnJjcBelci4NLmgSoMD4qIWeZsnOeW4h2D8-R0yM9GYrQCbTHOBsDZUteO6kkNb8Z7__4uDlHhD2gbM0rkp-srbfZSio3wVVjHKSkhL2zAu-UEFgsV1YfzHj-wAc_IBmchFZi4NzM9uULj7NItszsfb5-8Nx_1n8NmY0j6RzXnX8CKK1_C07q05OIVHAz0ZFLFMPwfwUSX5XS2GPuX4wVCOdv3kc62pd58XeZVz5TKE1fPv4Zh_-TX59OgKZUQWCnEPMiV1cYKRrlyjEtZqlTh8FKu0NKyJNTM2FzmrIhDVTAX65g7Za2KueHcWbYFa-W0dG_BF8pIZCvqKVkX1hojtUoTXkjtuJTCg48tTJlt8ohTOYtxhv4EwZsRvFkqMoTXg92O-LpOn7Gc7LDGuyNq9KYjiqi5ODtKRRgdZyHvCOhwGmq4Bzsto7JWiGgYzjgN5sGHrhuxpUURXbrpLdHgH0qgAIQevKn52n1EKxkeyAcc7wgoN_fDnvLP7ypHd0Lrnyp69993bsMG2l5pHc3ZgbX5za17j_bN3PRgVY4ktqr_tQfrxyfnFz_x7su3771Kqu8ABE0BNg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLQguiHcDBYJULkimSWwnDtKqaqHV9rFLhVqpt-BXSqvdZGG3Qvvn-G148oJFFbcekovHkTNjj2fGnvkANsJAsVgZRZx3xQlLtCEiV4zkIdXU6sgYjfGO4SgenLKDM362Ar_aXBi8VtnqxEpRm1JjjHwTXRHKcEPfmn4niBqFp6sthIZsoBVMvyox1iR2HNrFT-fCzfr7n5y830bR3u7JxwFpUAaITjifEyO0VJpTLDOjbEpTIXLrHmFzmWgaB5IqbRJD8ygQObWRjJgVWouIKcaspu67t2CVYYZrD1Z3dkfHX9q9gEa8gkkNqIhJ5PrXGYL4F5vTS6nepxjRYUt74u1LZxae2-ss3n8vbv61E-49gPuNCetv13PuIazY4hHcqUEtF4-hP5STSRU98T-TiSyKcrYY--fjhRPi7IPv6HQLMufLwlQtJQIjV_2fwOmNsO8p9IqysGvgc6ESN6GchkC7RmulEinSmOWJtCxJuAfvWjZluqlgjkAa48x5MsjTDHmapTxzPPVgoyOe1oU7rifbqvndETUrtiMK8XV8sJ3yINzJAtYRYFqc0y0erLeCypr1P8v-zFYP3nTNjrd4HCMLW14hjdONnNEg8OBZLdduEOgXUmf9epAsSbwjwKrgyy3FxbeqOniMJ68ifP7_Yb2Gu4OT4VF2tD86fAH3nBmY1oGldejNf1zZl87UmqtXzXz24etNL6HfjlFBwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiZeEJ8jMCBI4wUpWxrbsYNUTRtbtQ9WKsSkvQXbcQZTmxbaCfVf5K_iLl9QNPG2h-TF58i5s-_L9v0ANruh4bHJTIDRlQi4tFmgcsODvMssczbKMkv5jtNBfHjGj8_F-Qr8au7C0LHKRieWijqbWMqRb1MowjgZ9O28PhYx3O_vTL8HhCBFO60NnIauYRayXllurL7kceIWPzGcm_WO9lH2b6Kof_D5_WFQIw4EVgoxDzJltbGCUckZ4xKWKJU7fJTLtbQsDjUzNpMZy6NQ5cxFOuJOWasibjh3luF3b8GqRCvJO7C6dzAYfmrsAotECZkaMhUHEfavbguWfzS91GYroewOX7KPty_RRbxw13m__x7i_Msq9u_Dvdqd9Xer-fcAVlzxEO5UAJeLR9A71eNxmUnxPwZjXRST2WLkX4wWKNDZOx_pbAM45-siK1smBJJc9n8MZzfCvifQKSaFewq-UEbi5EJtQT6OtcZIrZKY51I7LqXw4G3DptTW1cwJVGOUYlRDPE2Jp2kiUuSpB5st8bQq4nE92U7F75aoXr0tUZdew-PdRITdvTTkLQFdkUM948FGI6i01gWz9M_M9eB124y8pa0ZXbjJFdGgnhSchaEH65Vc20FQjMjQE_ZALkm8JaAK4cstxbevZaXwmHZhVffZ_4f1CtZwKaUfjgYnz-EueoRJlWPagM78x5V7gV7X3Lysp7MPX256Bf0GFNlF7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mammalian+O-mannosyl+glycans%3A+Biochemistry+and+glycopathology&rft.jtitle=Proceedings+of+the+Japan+Academy.+Series+B.+Physical+and+biological+sciences&rft.au=Endo%2C+Tamao&rft.date=2019-01-01&rft.eissn=1349-2896&rft.volume=95&rft.issue=1&rft.spage=39&rft_id=info:doi/10.2183%2Fpjab.95.004&rft_id=info%3Apmid%2F30643095&rft.externalDocID=30643095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-2208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-2208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-2208&client=summon |