Possibilities and challenges of small molecule organic compounds for the treatment of repeat diseases

The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Japan Academy, Series B Vol. 98; no. 1; pp. 30 - 48
Main Author NAKATANI, Kazuhiko
Format Journal Article
LanguageEnglish
Published Japan The Japan Academy 01.01.2022
Subjects
Online AccessGet full text
ISSN0386-2208
1349-2896
1349-2896
DOI10.2183/pjab.98.003

Cover

Abstract The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington’s disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases.
AbstractList The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington's disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases.
The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington’s disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo , suggesting the possibilities for small molecules as drugs for treating these neurological diseases.
The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington's disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases.The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington's disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases.
ArticleNumber PJA9801B-03
Author NAKATANI, Kazuhiko
Author_xml – sequence: 1
  fullname: NAKATANI, Kazuhiko
  organization: SANKEN, The Institute of Scientific and Industrial Research, Osaka University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35013029$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1rFTEUxYNU7Gt15V4G3Agyz3zMvEk2Qi3WDwp2oeuQZO68l0cmGZNMwf_eDK8OWnCTcMnvHM7l5AKd-eABoZcEbynh7N10VHor-BZj9gRtCGtETbnYnaENZnxXU4r5ObpI6VgA2nLyDJ2zFhOGqdgguAspWW2dzRZSpXxfmYNyDvy-jGGo0limagwOzOygCnGvvDWVCeMUZt-nagixygeocgSVR_B5UUWYylT1NoFKkJ6jp4NyCV483Jfox83H79ef69tvn75cX93WpmvbXCtQSuiWEtNj1hnQHeuN5p3GghjRDKRhRjW6BQpEcUw1acSg6aB6ZjrRanaJ3p98p1mP0JuSJionp2hHFX_JoKz898Xbg9yHe8mLvGW4GLx5MIjh5wwpy9EmA84pD2FOku4IF7ghHS3o60foMczRl_UKRSkVgrGuUK_-TrRG-dNAAd6eABNLExGGFSFYLv3KpV8puCz1FZo8oo3NKtuwrGPdfzQ3J80xZbWH1V_FbI2DlSXLcff1SnBMPkjMVqB8iCjBs9-GcsTT
CitedBy_id crossref_primary_10_1016_j_bmc_2022_117094
crossref_primary_10_1016_j_bmc_2023_117580
crossref_primary_10_1038_s41570_023_00569_9
crossref_primary_10_1016_j_jmb_2022_167914
crossref_primary_10_1021_acs_biochem_2c00344
crossref_primary_10_1002_cmdc_202400351
crossref_primary_10_1039_D4CP03213F
crossref_primary_10_1002_tcr_202200194
crossref_primary_10_1016_j_bmcl_2025_130152
crossref_primary_10_1039_D3DD00160A
crossref_primary_10_1002_aidi_202400020
Cites_doi 10.1016/0092-8674(93)90585-E
10.1126/science.7688142
10.1021/jacs.5b09266
10.1073/pnas.0905780106
10.1002/anie.200502282
10.1016/0092-8674(91)90397-H
10.1016/j.mcn.2012.12.006
10.1016/j.bbrc.2019.06.061
10.1021/ja00036a079
10.1016/j.neuron.2013.02.004
10.1038/ng0893-387
10.1002/j.1460-2075.1992.tb05245.x
10.1016/S0092-8674(00)81369-0
10.1093/nar/25.12.2245
10.1002/chem.201304683
10.1002/anie.200902449
10.1021/ja00250a051
10.1038/s41467-020-20487-4
10.1002/chem.202001572
10.1093/nar/gkr1148
10.1093/nar/26.3.816
10.1039/D0CS01261K
10.1246/nikkashi.1991.1041
10.1007/s00216-007-1323-y
10.2741/2427
10.1021/ja100089u
10.1093/nar/gkh171
10.1515/hsz-2012-0218
10.1093/hmg/ddt371
10.1016/S1474-4422(10)70245-3
10.1038/83505
10.1002/chem.201804368
10.1021/ja00061a061
10.1074/jbc.271.6.2875
10.1016/j.neuron.2013.10.015
10.1073/pnas.1013343108
10.1073/pnas.0901824106
10.1002/asia.201701293
10.1038/350569a0
10.1016/j.neuron.2011.09.011
10.1002/chem.201103932
10.1038/345458a0
10.1021/ja992956j
10.1002/anie.199521631
10.1038/nchembio.232
10.1039/D0CS00455C
10.1038/nchembio708
10.1002/anie.201100075
10.1016/j.bmcl.2016.05.062
10.1038/nature05977
10.1016/j.ajhg.2009.09.019
10.1002/chem.200601496
10.1039/D0CS00560F
10.1002/asia.201600527
10.1016/0092-8674(91)90125-I
10.1016/j.bmcl.2012.01.030
10.1002/hlca.19970800314
10.1016/j.ymeth.2019.05.006
10.1021/ja981884d
10.1126/science.1067122
10.1016/0092-8674(91)90283-5
10.1016/0040-4020(94)00922-H
10.1016/j.neuron.2016.04.006
10.1021/jo982138u
10.1021/acs.jmedchem.8b00741
10.1073/pnas.85.18.6622
10.1021/ja00202a077
10.1159/000072847
10.1016/0092-8674(92)90154-5
10.1002/cbic.201200266
10.1039/c1cs15062f
10.1021/ja00250a052
10.1007/s004390050432
10.1073/pnas.92.9.3636
10.1021/ja037947w
10.1126/science.1232927
10.1111/bpa.12427
10.1007/978-1-4612-5190-3
10.1126/science.1546326
10.1002/chem.201502913
10.1093/nar/gkt330
10.1021/ja00192a039
10.1246/bcsj.82.1055
10.1073/pnas.1311325110
10.1093/hmg/ddr299
10.1002/(SICI)1521-3765(19990903)5:9<2762::AID-CHEM2762>3.0.CO;2-F
10.1021/ja0109186
10.1021/bi3006913
10.1146/annurev.neuro.29.051605.113042
10.1038/361085a0
10.1021/bi972546c
10.1021/jo960612v
10.1016/j.bmc.2005.04.035
10.1038/384087a0
10.1126/science.1546325
10.1016/0092-8674(93)90300-F
10.1002/cbic.201100260
10.1093/nar/gkz832
10.1016/j.bmc.2013.09.007
10.1038/nature11247
10.1021/ja066341f
10.1002/chem.201602741
10.1038/ng0596-105
10.1016/j.neuron.2017.02.046
10.1016/j.neuron.2011.09.010
10.1021/ja00001a028
10.1021/ja00020a027
10.1093/nar/gkr429
10.1093/nar/gkab650
10.1016/j.bmcl.2004.11.003
10.1038/s41588-019-0575-8
10.1038/nm1066
10.1039/C6CC08947J
10.1021/ja00008a002
10.1021/ja00013a093
10.1038/cddis.2013.276
10.1093/hmg/6.10.1633
ContentType Journal Article
Copyright 2022 The Author(s).
Copyright The Japan Academy Jan 2022
2022 The Author(s). 2022
Copyright_xml – notice: 2022 The Author(s).
– notice: Copyright The Japan Academy Jan 2022
– notice: 2022 The Author(s). 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TK
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BVBZV
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOI 10.2183/pjab.98.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Research Library
Biological Science Database
Engineering Database (subscription)
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
East & South Asia Database
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Research Library Prep


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Challenges of small molecules in the treatment of repeat diseases
EISSN 1349-2896
EndPage 48
ExternalDocumentID PMC8795530
35013029
10_2183_pjab_98_003
article_pjab_98_1_98_PJA9801B_03_article_char_en
Genre Journal Article
GroupedDBID ---
-~X
.55
29P
2WC
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
ABJCF
ABUWG
ACIWK
ACPRK
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVBZV
BVXVI
CCPQU
DIK
DWQXO
E3Z
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IEA
ITC
JSF
JSH
KQ8
L6V
LK8
M1P
M2O
M48
M7P
M7S
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
RJT
RNS
RPM
RZJ
RZL
SV3
TN5
TR2
TUS
UKHRP
WH7
X7M
XSB
YNT
~02
AAYXX
ALIPV
CITATION
3V.
53G
ADRAZ
AFFNX
CGR
CUY
CVF
ECM
EIF
NPM
TKC
XJT
XOL
7QP
7QR
7TK
7XB
8FD
8FK
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c755t-aeaa9b521cd037ceb73dcb87b091c94f143ca4b5e2e1a802b149fb2fad3c795b3
IEDL.DBID M48
ISSN 0386-2208
1349-2896
IngestDate Thu Aug 21 14:08:26 EDT 2025
Fri Sep 05 02:41:39 EDT 2025
Fri Jul 25 12:09:13 EDT 2025
Thu Jan 02 22:54:45 EST 2025
Thu Apr 24 22:59:33 EDT 2025
Tue Jul 01 01:25:16 EDT 2025
Wed Sep 03 06:30:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords hairpin
neurological diseases
small molecule
trinucleotide repeat
mismatch
expansion
Language English
License https://creativecommons.org/licenses/by-nc/4.0
Published under the terms of the CC BY-NC license https://creativecommons.org/licenses/by-nc/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c755t-aeaa9b521cd037ceb73dcb87b091c94f143ca4b5e2e1a802b149fb2fad3c795b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Keisuke SUZUKI, M.J.A.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2183/pjab.98.003
PMID 35013029
PQID 2622299337
PQPubID 1066378
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8795530
proquest_miscellaneous_2618904172
proquest_journals_2622299337
pubmed_primary_35013029
crossref_primary_10_2183_pjab_98_003
crossref_citationtrail_10_2183_pjab_98_003
jstage_primary_article_pjab_98_1_98_PJA9801B_03_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Ueno Park
– name: Tokyo, Japan
PublicationTitle Proceedings of the Japan Academy, Series B
PublicationTitleAlternate Proc. Jpn. Acad., Ser. B
PublicationYear 2022
Publisher The Japan Academy
Publisher_xml – name: The Japan Academy
References 17) Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C. et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506.
14) Gu, U. and Nelson, D.L. (2003) FMR2 function: insight from a mouse knockout model. Cytogenet. Genome Res. 100, 129–139.
70) Mukherjee, S., Błaszczyk, L., Rypniewski, W., Falschlunger, C., Micura, R., Murata, A. et al. (2019) Structural insights into synthetic ligands targeting A-A pairs in disease-related CAG RNA repeats. Nucleic Acids Res. 47, 10906–10913.
94) Goto, Y., Suda, H., Kobori, A. and Nakatani, K. (2007) Analysis of mismatched DNA by mismatch binding ligand (MBL)-Sepharose affinity chromatography. Anal. Bioanal. Chem. 388, 1165–1173.
31) Donnelly, C.J., Zhang, P.W., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S. et al. (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428.
66) Nakatani, K., Sando, S. and Saito, I. (2001) Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance assay. Nat. Biotechnol. 19, 51–55.
55) Peng, T. and Nakatani, K. (2005) Binding of naphthyridine carbamate dimer to the (CGG)n repeat resulted in the disruption of the G-C base pairing. Angew. Chem. Int. Ed. 44, 7280–7283.
20) Ross, C.A. and Tabrizi, S.J. (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98.
23) Fu, Y.H., Pizzuti, A., Fenwick, R.G., King, J. and Rajnarayan, S. (1992) An unstable triplet repeat in a gene related to myotonic muscular-dystrophy. Science 255, 1256–1258.
43) Hagihara, M., He, H. and Nakatani, K. (2011) Small molecule modulates hairpin structures in CAG trinucleotide repeats. ChemBioChem 12, 1686–1689.
102) Zhang, J., Umemoto, S. and Nakatani, K. (2010) Fluorescent indicator-displacement assay for ligand-RNA interactions. J. Am. Chem. Soc. 132, 3660–3661.
28) Mulders, S.A.M., van den Broek, W.J.A.A., Wheeler, T.M., Croes, H.J.E., van Kuik-Romeijn, P., de Kimpe, S.J. et al. (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc. Natl. Acad. Sci. U.S.A. 106, 13915–13920.
39) Pearson, C.E., Wang, Y.H., Griffith, J.D. and Sinden, R.R. (1998) Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n·(CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res. 26, 816–823.
69) Dohno, C., Kohyama, I., Hong, C. and Nakatani, K. (2012) Naphthyridine tetramer with a preorganized structure for 1:1 binding to a CGG/CGG sequence. Nucleic Acids Res. 40, 2771–2781.
88) Corbin, P.S. and Zimmerman, S.C. (1998) Self-association without regard to prototropy. A heterocycle that forms extremely stable quadruply hydrogen-bonded dimers. J. Am. Chem. Soc. 120, 9710–9711.
12) Knight, S.J.L., Flannery, A.V., Hirst, M.C., Campbell, L. and Christodoulou, Z. (1993) Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental-retardation. Cell 74, 127–134.
22) Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G. et al. (1992) Myotonic-dystrophy mutation — an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255.
41) Hagihara, S., Kumasawa, H., Goto, Y., Hayashi, G., Kobori, A., Saito, I. et al. (2004) Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Res. 32, 278–286.
38) Wells, R.D. (1996) Molecular basis of genetic instability of triplet repeats. J. Biol. Chem. 271, 2875–2878.
3) Blackburn, E.H. (1991) Structure and function of telomeres. Nature 350, 569–573.
4) Harley, C.B., Futcher, A.B. and Greider, C.W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460.
13) Gecz, J., Gedeon, A.K., Sutherland, G.R. and Mulley, J.C. (1996) Identification of the gene FMR2, associated with FRAXE mental retardation. Nat. Genet. 13, 105–108.
93) Kobori, A., Horie, S., Suda, H., Saito, I. and Nakatani, K. (2004) The SPR sensor detecting the cytosine-cytosine mismatches. J. Am. Chem. Soc. 126, 557–562.
58) Hong, C., Otabe, T., Matsumoto, S., Dohno, C., Murata, A., Hagihara, M. et al. (2014) Formation of ligand-assisted complex of two RNA hairpin loops. Chemistry 20, 5282–5287.
36) Levinson, G. and Gutman, G.A. (1987) Slipped-strand mispairing — a major mechanism for DNA-sequence evolution. Mol. Biol. Evol. 4, 203–221.
106) Pranata, J., Wierschke, S.G. and Jorgensen, W.L. (1991) OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. J. Am. Chem. Soc. 113, 2810–2819.
21) Brook, J.D., Mccurrach, M.E., Harley, H.G., Buckler, A.J., Church, D., Aburatani, H. et al. (1992) Molecular-basis of myotonic-dystrophy — expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein-kinase family member. Cell 68, 799–808.
83) Beijer, F.H., Sijbesma, R.P., Vekemans, J.A.J.M., Meijer, E.W., Kooijman, H. and Spek, A.L. (1996) Hydrogen-bonded complexes of diaminopyridines and diaminotriazines: Opposite effect of acylation on complex stabilities. J. Org. Chem. 61, 6371–6380.
100) Nakatani, K., Natsuhara, N., Mori, Y., Mukherjee, S., Das, B. and Murata, A. (2017) Synthesis of naphthyridine dimers with conformational restriction and the binding to DNA and RNA. Chem. Asian J. 12, 3077–3087.
78) Park, T.K., Schroeder, J. and Rebek, J. (1991) New molecular complements to imides — complexation of thymine derivatives. J. Am. Chem. Soc. 113, 5125–5127.
7) Mitas, M. (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Res. 25, 2245–2253.
26) DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J. et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.
75) Rebek, J., Askew, B., Ballester, P., Buhr, C., Jones, S., Nemeth, D. et al. (1987) Molecular recognition: hydrogen bonding and stacking interactions stabilize a model for nucleic acid structure. J. Am. Chem. Soc. 109, 5033–5035.
5) Counter, C.M., Avilion, A.A., Lefeuvre, C.E., Stewart, N.G., Greider, C.W., Harley, C.B. et al. (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929.
50) Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D. et al. (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. U.S.A. 108, 260–265.
85) Inouye, M., Hyodo, Y. and Nakazumi, H. (1999) Nucleobase recognition by artificial receptors possessing a ferrocene skeleton as a novel modular unit for hydrogen bonding and stacking interactions. J. Org. Chem. 64, 2704–2710.
53) Cleary, J.D. and Ranum, L.P.W. (2013) Repeat-associated non-ATG (RAN) translation in neurological disease. Hum. Mol. Genet. 22, R45–R51.
84) Fenniri, H., Hosseini, M.W. and Lehn, J.M. (1997) Molecular recognition of NADP(H) and ATP by macrocyclic polyamines bearing acridine groups. Helv. Chim. Acta 80, 786–803.
115) Meyer, S.M., Williams, C.C., Akahori, Y., Tanaka, T., Aikawa, H., Tong, Y.Q. et al. (2020) Small molecule recognition of disease-relevant RNA structures. Chem. Soc. Rev. 49, 7167–7199.
77) Zimmerman, S.C., Weiming, W. and Zijian, Z. (1991) Complexation of nucleotide bases by molecular tweezers with active site carboxylic acids: effects of microenvironment. J. Am. Chem. Soc. 113, 196–201.
99) Takei, F. and Nakatani, K. (2017) Fluorescence turn-on hairpin-probe PCR. Chem. Commun. (Camb.) 53, 1393–1396.
32) Nalavade, R., Griesche, N., Ryan, D.P., Hildebrand, S. and Krauss, S. (2013) Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis. 4, e752.
44) Li, J., Sakata, A., He, H., Bai, L.-P., Murata, A., Dohno, C. et al. (2016) Naphthyridine-benzoazaquinolone: evaluation of tricyclic system for the binding to (CAG)n repeat DNA and RNA. Chem. Asian J. 11, 1971–1981.
95) Suda, H., Kobori, A., Zhang, J., Hayashi, G. and Nakatani, K. (2005) N,N′-Bis(3-aminopropyl)-2,7-diamino-1,8-naphthyridine stabilized a single pyrimidine bulge in duplex DNA. Bioorg. Med. Chem. 13, 4507–4512.
101) Das, B., Murata, A. and Nakatani, K. (2021) A small-molecule fluorescence probe ANP77 for sensing RNA internal loop of C, U, and A/CC motifs and their binding molecules. Nucleic Acids Res. 49, 8462–8470.
35) Marti, E. (2016) RNA toxicity induced by expanded CAG repeats in Huntington’s disease. Brain Pathol. 26, 779–786.
98) Takei, F., Igarashi, M., Oka, Y., Koga, Y. and Nakatani, K. (2012) Competitive allele-specific hairpin primer PCR for extremely high allele discrimination in typing of single nucleotide polymorphism. ChemBioChem 13, 1409–1412.
63) Li, J., Nakamori, M., Matsumoto, J., Murata, A., Dohno, C., Kiliszek, A. et al. (2018) A dimeric 2,9-diamino-1,10-phenanthroline derivative improves alternative splicing in myotonic dystrophy type 1 cell and mouse models. Chemistry 24, 18115–18122.
6) Mirkin, S.M. (2007) Expandable DNA repeats and human disease. Nature 447, 932–940.
91) Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. and Cech, T.R. (1993) Metal-ion catalysis in the tetrahymena ribozyme reaction. Nature 361, 85–88.
82) Bell, T.W., Hou, Z., Zimmerman, S.C. and Thiessen, P.A. (1995) Highly effective hydrogen-bonding receptors for guanine derivatives. Angew. Chem. Int. Ed. Engl. 34, 2163–2165.
51) Mori, K., Weng, S.M., Arzberger, T., May, S., Rentzsch, K., Kremmer, E. et al. (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338.
76) Zimmerman, S.C. and Weiming, W. (1989) A rigid molecular tweezers with an active site carboxylic acid: exceptionally efficient receptor for adenine in an organic solvent. J. Am. Chem. Soc. 111, 8054–8055.
16) Duyao, M., Ambrose, C., Myers, R., Nov
88
89
Y.H. Fu (10) 1991
110
111
112
113
114
115
116
90
117
118
92
93
94
95
96
97
98
99
12
13
14
15
16
17
18
19
A.E. Renton (27) 2011
C.J. Donnelly (31) 2013
120
1
2
5
6
7
8
20
P.E.A. Ash (52) 2013
22
23
24
25
28
29
30
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
M. Pieretti (11) 1991
50
51
A.J.M.H. Verkerk (9) 1991
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
J.D. Brook (21) 1992
C.B. Harley (4) 1990
70
71
72
73
74
75
76
77
78
79
E.H. Blackburn (3) 1991
100
101
M. DeJesus-Hernandez (26) 2011
102
103
104
105
106
The ENCODE Project Consortium null (119) 2012
80
107
81
108
82
109
83
84
85
J.A. Piccirilli (91) 1993
86
87
References_xml – reference: 96) Takei, F., Suda, H., Hagihara, M., Zhang, J., Kobori, A. and Nakatani, K. (2007) Allele specific C-bulge probes with one unique fluorescent molecule discriminate the single nucleotide polymorphism in DNA. Chemistry 13, 4452–4457.
– reference: 69) Dohno, C., Kohyama, I., Hong, C. and Nakatani, K. (2012) Naphthyridine tetramer with a preorganized structure for 1:1 binding to a CGG/CGG sequence. Nucleic Acids Res. 40, 2771–2781.
– reference: 76) Zimmerman, S.C. and Weiming, W. (1989) A rigid molecular tweezers with an active site carboxylic acid: exceptionally efficient receptor for adenine in an organic solvent. J. Am. Chem. Soc. 111, 8054–8055.
– reference: 71) Saenger, W. (1984) Principles of Nucleic Acids Structure. Springer, New York.
– reference: 85) Inouye, M., Hyodo, Y. and Nakazumi, H. (1999) Nucleobase recognition by artificial receptors possessing a ferrocene skeleton as a novel modular unit for hydrogen bonding and stacking interactions. J. Org. Chem. 64, 2704–2710.
– reference: 54) Peng, T., Murase, T., Goto, Y., Kobori, A. and Nakatani, K. (2005) A new ligand binding to G-G mismatch having improved thermal and alkaline stability. Bioorg. Med. Chem. Lett. 15, 259–262.
– reference: 93) Kobori, A., Horie, S., Suda, H., Saito, I. and Nakatani, K. (2004) The SPR sensor detecting the cytosine-cytosine mismatches. J. Am. Chem. Soc. 126, 557–562.
– reference: 82) Bell, T.W., Hou, Z., Zimmerman, S.C. and Thiessen, P.A. (1995) Highly effective hydrogen-bonding receptors for guanine derivatives. Angew. Chem. Int. Ed. Engl. 34, 2163–2165.
– reference: 29) Wojciechowska, M. and Krzyzosiak, W.J. (2011) Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum. Mol. Genet. 20, 3811–3821.
– reference: 44) Li, J., Sakata, A., He, H., Bai, L.-P., Murata, A., Dohno, C. et al. (2016) Naphthyridine-benzoazaquinolone: evaluation of tricyclic system for the binding to (CAG)n repeat DNA and RNA. Chem. Asian J. 11, 1971–1981.
– reference: 25) Ishiguro, T., Sato, N., Ueyama, M., Fujikake, N., Sellier, C., Kanegami, A. et al. (2017) Regulatory role of rna chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31. Neuron 94, 108–124.e7.
– reference: 68) Nakatani, K., Sando, S. and Saito, I. (2000) Recognition of a single guanine bulge by 2-acylamino-1,8-naphthyridine. J. Am. Chem. Soc. 122, 2172–2177.
– reference: 104) Murata, A., Harada, Y., Fukuzumi, T. and Nakatani, K. (2013) Fluorescent indicator displacement assay of ligands targeting 10 microRNA precursors. Bioorg. Med. Chem. 21, 7101–7106.
– reference: 70) Mukherjee, S., Błaszczyk, L., Rypniewski, W., Falschlunger, C., Micura, R., Murata, A. et al. (2019) Structural insights into synthetic ligands targeting A-A pairs in disease-related CAG RNA repeats. Nucleic Acids Res. 47, 10906–10913.
– reference: 30) Galka-Marciniak, P., Urbanek, M.O. and Krzyzosiak, W.J. (2012) Triplet repeats in transcripts: structural insights into RNA toxicity. Biol. Chem. 393, 1299–1315.
– reference: 45) Nakamori, M., Panigrahi, G.B., Lanni, S., Gall-Duncan, T., Hayakawa, H., Tanaka, H. et al. (2020) Slipped-CAG DNA binding small molecule induces trinucleotide repeat contractions in vivo. Nat. Genet. 52, 146–159.
– reference: 110) Vogt, A.D. and Di Cera, E. (2012) Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 51, 5894–5902.
– reference: 111) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Tunyasuvunakool, K. et al. (2020) AlphaFold2 Presentation given at CASP 14. https://predictioncenter.org/casp14/doc/presentations/2020_12_01_TS_predictor_AlphaFold2.pdf.
– reference: 32) Nalavade, R., Griesche, N., Ryan, D.P., Hildebrand, S. and Krauss, S. (2013) Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis. 4, e752.
– reference: 87) Murray, T.J. and Zimmerman, S.C. (1992) New triply hydrogen bonded complexes with highly variable stabilities. J. Am. Chem. Soc. 114, 4010–4011.
– reference: 99) Takei, F. and Nakatani, K. (2017) Fluorescence turn-on hairpin-probe PCR. Chem. Commun. (Camb.) 53, 1393–1396.
– reference: 21) Brook, J.D., Mccurrach, M.E., Harley, H.G., Buckler, A.J., Church, D., Aburatani, H. et al. (1992) Molecular-basis of myotonic-dystrophy — expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein-kinase family member. Cell 68, 799–808.
– reference: 100) Nakatani, K., Natsuhara, N., Mori, Y., Mukherjee, S., Das, B. and Murata, A. (2017) Synthesis of naphthyridine dimers with conformational restriction and the binding to DNA and RNA. Chem. Asian J. 12, 3077–3087.
– reference: 72) Dohno, C. and Nakatani, K. (2011) Control of DNA hybridization by photoswitchable molecular glue. Chem. Soc. Rev. 40, 5718–5729.
– reference: 117) Falese, J.P., Donlic, A. and Hargrove, A.E. (2021) Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem. Soc. Rev. 50, 2224–2243.
– reference: 8) Orr, H.T. and Zoghbi, H.Y. (2007) Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621.
– reference: 103) Umemoto, S., Im, S., Zhang, J., Hagihara, M., Murata, A., Harada, Y. et al. (2012) Structure-activity studies on the fluorescent indicator in the displacement assay for the screening of small molecules binding to RNA. Chemistry 18, 9999–10008.
– reference: 94) Goto, Y., Suda, H., Kobori, A. and Nakatani, K. (2007) Analysis of mismatched DNA by mismatch binding ligand (MBL)-Sepharose affinity chromatography. Anal. Bioanal. Chem. 388, 1165–1173.
– reference: 115) Meyer, S.M., Williams, C.C., Akahori, Y., Tanaka, T., Aikawa, H., Tong, Y.Q. et al. (2020) Small molecule recognition of disease-relevant RNA structures. Chem. Soc. Rev. 49, 7167–7199.
– reference: 23) Fu, Y.H., Pizzuti, A., Fenwick, R.G., King, J. and Rajnarayan, S. (1992) An unstable triplet repeat in a gene related to myotonic muscular-dystrophy. Science 255, 1256–1258.
– reference: 6) Mirkin, S.M. (2007) Expandable DNA repeats and human disease. Nature 447, 932–940.
– reference: 39) Pearson, C.E., Wang, Y.H., Griffith, J.D. and Sinden, R.R. (1998) Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n·(CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res. 26, 816–823.
– reference: 84) Fenniri, H., Hosseini, M.W. and Lehn, J.M. (1997) Molecular recognition of NADP(H) and ATP by macrocyclic polyamines bearing acridine groups. Helv. Chim. Acta 80, 786–803.
– reference: 88) Corbin, P.S. and Zimmerman, S.C. (1998) Self-association without regard to prototropy. A heterocycle that forms extremely stable quadruply hydrogen-bonded dimers. J. Am. Chem. Soc. 120, 9710–9711.
– reference: 22) Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G. et al. (1992) Myotonic-dystrophy mutation — an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255.
– reference: 118) Murata, A., Nakamori, M. and Nakatani, K. (2019) Modulating RNA secondary and tertiary structures by mismatch binding ligands. Methods 167, 78–91.
– reference: 59) Shibata, T., Nagano, K., Ueyama, M., Ninomiya, K., Hirose, T., Nagai, Y. et al. (2021) Small molecule targeting r(UGGAA)n disrupts RNA foci and alleviates disease phenotype in drosophila model. Nat. Commun. 12, 236.
– reference: 98) Takei, F., Igarashi, M., Oka, Y., Koga, Y. and Nakatani, K. (2012) Competitive allele-specific hairpin primer PCR for extremely high allele discrimination in typing of single nucleotide polymorphism. ChemBioChem 13, 1409–1412.
– reference: 89) Kelly, T.R., Zhao, C. and Bridger, G.J. (1989) A bisubstrate reaction template. J. Am. Chem. Soc. 111, 3744–3745.
– reference: 107) Murray, T.J. and Zimmerman, S.C. (1992) New triply hydrogen bonded complexes with highly variable stabilities. J. Am. Chem. Soc. 114, 4010–4011.
– reference: 13) Gecz, J., Gedeon, A.K., Sutherland, G.R. and Mulley, J.C. (1996) Identification of the gene FMR2, associated with FRAXE mental retardation. Nat. Genet. 13, 105–108.
– reference: 65) Nakatani, K. (2009) Recognition of mismatched base pairs in DNA. Bull. Chem. Soc. Jpn. 82, 1055–1069.
– reference: 83) Beijer, F.H., Sijbesma, R.P., Vekemans, J.A.J.M., Meijer, E.W., Kooijman, H. and Spek, A.L. (1996) Hydrogen-bonded complexes of diaminopyridines and diaminotriazines: Opposite effect of acylation on complex stabilities. J. Org. Chem. 61, 6371–6380.
– reference: 57) Hagihara, M., He, H., Kimura, M. and Nakatani, K. (2012) A small molecule regulates hairpin structures in d(CGG) trinucleotide repeats. Bioorg. Med. Chem. Lett. 22, 2000–2003.
– reference: 58) Hong, C., Otabe, T., Matsumoto, S., Dohno, C., Murata, A., Hagihara, M. et al. (2014) Formation of ligand-assisted complex of two RNA hairpin loops. Chemistry 20, 5282–5287.
– reference: 74) Hamilton, A.D. and Vanengen, D. (1987) Induced fit in synthetic receptors — nucleotide base recognition by a molecular hinge. J. Am. Chem. Soc. 109, 5035–5036.
– reference: 11) Pieretti, M., Zhang, F.P., Fu, Y.H., Warren, S.T. and Oostra, B.A. (1991) Absence of expression of the FMR-1 gene in Fragile-X syndrome. Cell 66, 817–822.
– reference: 86) Baudoin, O., Gonnet, F., Teulade-Fichou, M.P., Vigneron, J.P., Tabet, J.C. and Lehn, J.-M. (1999) Molecular recognition of nucleotide pairs by a cyclo-bis-intercaland-type receptor molecule: A spectrophotometric and electrospray mass spectrometry study. Chemistry 5, 2762–2771.
– reference: 10) Fu, Y.H., Kuhl, D.P.A., Pizzuti, A., Pieretti, M., Sutcliffe, J.S., Fu, Y.H. et al. (1991) Variation of the CGG repeat at the Fragile-X site results in genetic instability — resolution of the sherman paradox. Cell 67, 1047–1058.
– reference: 43) Hagihara, M., He, H. and Nakatani, K. (2011) Small molecule modulates hairpin structures in CAG trinucleotide repeats. ChemBioChem 12, 1686–1689.
– reference: 12) Knight, S.J.L., Flannery, A.V., Hirst, M.C., Campbell, L. and Christodoulou, Z. (1993) Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental-retardation. Cell 74, 127–134.
– reference: 41) Hagihara, S., Kumasawa, H., Goto, Y., Hayashi, G., Kobori, A., Saito, I. et al. (2004) Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Res. 32, 278–286.
– reference: 52) Ash, P.E.A., Bieniek, K.F., Gendron, T.F., Caulfield, T., Lin, W.L., DeJesus-Hernandez, M. et al. (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646.
– reference: 40) Pearson, C.E., Eichler, E.E., Lorenzetti, D., Kramer, S.F. and Zoghbi, H.Y. (1998) Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37, 2701–2708.
– reference: 46) Pluciennik, A., Burdett, V., Baitinger, C., Iyer, R.R., Shi, K. and Modrich, P. (2013) Extrahelical (CAG)/(CTG) triplet repeat elements support proliferating cell nuclear antigen loading and MutLα endonuclease activation. Proc. Natl. Acad. Sci. U.S.A. 110, 12277–12282.
– reference: 80) Shea, K.J., Spivak, D.A. and Sellergren, B. (1993) Polymer complements to nucleotide bases — selective binding of adenine-derivatives to imprinted polymers. J. Am. Chem. Soc. 115, 3368–3369.
– reference: 77) Zimmerman, S.C., Weiming, W. and Zijian, Z. (1991) Complexation of nucleotide bases by molecular tweezers with active site carboxylic acids: effects of microenvironment. J. Am. Chem. Soc. 113, 196–201.
– reference: 7) Mitas, M. (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Res. 25, 2245–2253.
– reference: 9) Verkerk, A.J.M.H., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P.A., Pizzuti, A. et al. (1991) Identification of a gene (FMR1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in Fragile-X syndrome. Cell 65, 905–914.
– reference: 2) Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D. et al. (1988) A highly conserved repetitive DNA-sequence, (TTAGGG)n, present at the telomeres of human-chromosomes. Proc. Natl. Acad. Sci. U.S.A. 85, 6622–6626.
– reference: 31) Donnelly, C.J., Zhang, P.W., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S. et al. (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428.
– reference: 120) Ratni, H., Ebeling, M., Baird, J., Bendels, S., Bylund, J., Chen, K.S. et al. (2018) Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61, 6501–6517.
– reference: 16) Duyao, M., Ambrose, C., Myers, R., Novelletto, A., Persichetti, F., Frontali, M. et al. (1993) Trinucleotide repeat length instability and age-of-onset in huntingtons-disease. Nat. Genet. 4, 387–392.
– reference: 116) Ursu, A., Childs-Disney, J.L., Andrews, R.J., O’Leary, C.A., Meyer, S.M., Angelbello, A.J. et al. (2020) Design of small molecules targeting RNA structure from sequence. Chem. Soc. Rev. 49, 7252–7270.
– reference: 60) Aly, M.K., Ninomiya, K., Adachi, S., Natsume, T. and Hirose, T. (2019) Two distinct nuclear stress bodies containing different sets of RNA-binding proteins are formed with HSATIII architectural noncoding RNAs upon thermal stress exposure. Biochem. Biophys. Res. Commun. 516, 419–423.
– reference: 3) Blackburn, E.H. (1991) Structure and function of telomeres. Nature 350, 569–573.
– reference: 36) Levinson, G. and Gutman, G.A. (1987) Slipped-strand mispairing — a major mechanism for DNA-sequence evolution. Mol. Biol. Evol. 4, 203–221.
– reference: 56) Hong, C., Hagihara, M. and Nakatani, K. (2011) Ligand-Assisted Complex Formation of Two DNA Hairpin Loops. Angew. Chem. Int. Ed. 50, 4390–4393.
– reference: 113) Jahromi, A.H., Honda, M., Zimmerman, S.C. and Spies, M. (2013) Single-molecule study of the CUG repeat-MBNL1 interaction and its inhibition by small molecules. Nucleic Acids Res. 41, 6687–6697.
– reference: 119) The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74.
– reference: 38) Wells, R.D. (1996) Molecular basis of genetic instability of triplet repeats. J. Biol. Chem. 271, 2875–2878.
– reference: 95) Suda, H., Kobori, A., Zhang, J., Hayashi, G. and Nakatani, K. (2005) N,N′-Bis(3-aminopropyl)-2,7-diamino-1,8-naphthyridine stabilized a single pyrimidine bulge in duplex DNA. Bioorg. Med. Chem. 13, 4507–4512.
– reference: 102) Zhang, J., Umemoto, S. and Nakatani, K. (2010) Fluorescent indicator-displacement assay for ligand-RNA interactions. J. Am. Chem. Soc. 132, 3660–3661.
– reference: 108) Quinn, J.R., Zimmerman, S.C., Del Bene, J.E. and Shavitt, I. (2007) Does the A·T or G·C base-pair possess enhanced stability? Quantifying the effects of CH⋯O interactions and secondary interactions on base-pair stability using a phenomenological analysis and ab initio calculations. J. Am. Chem. Soc. 129, 934–941.
– reference: 90) Aoyama, Y. (1991) Molecular recognition of biorelevant molecules via hydrogen bonding. Nippon Kagaku Kaishi 1991, 1041–1049 (in Japanese).
– reference: 67) Nakatani, K., Sando, S., Kumasawa, H., Kikuchi, J. and Saito, I. (2001) Recognition of guanine-guanine mismatch by dimeric form of 2-amino-1,8-naphthyridine. J. Am. Chem. Soc. 123, 12650–12657.
– reference: 61) Matsumoto, J., Li, J., Dohno, C. and Nakatani, K. (2016) Synthesis of 1H-pyrrolo[3,2-h]quinoline-8-amine derivatives that target CTG trinucleotide repeats. Bioorg. Med. Chem. Lett. 26, 3761–3764.
– reference: 49) Salinas-Rios, V., Belotserkovskii, B.P. and Hanawalt, P.C. (2011) DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res. 39, 7444–7454.
– reference: 24) Sato, N., Amino, T., Kobayashi, K., Asakawa, S., Ishiguro, T., Tsunemi, T. et al. (2009) Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am. J. Hum. Genet. 85, 544–557.
– reference: 78) Park, T.K., Schroeder, J. and Rebek, J. (1991) New molecular complements to imides — complexation of thymine derivatives. J. Am. Chem. Soc. 113, 5125–5127.
– reference: 18) Taylor, J.P., Hardy, J. and Fischbeck, K.H. (2002) Biomedicine - Toxic proteins in neurodegenerative disease. Science 296, 1991–1995.
– reference: 55) Peng, T. and Nakatani, K. (2005) Binding of naphthyridine carbamate dimer to the (CGG)n repeat resulted in the disruption of the G-C base pairing. Angew. Chem. Int. Ed. 44, 7280–7283.
– reference: 81) Murray, T.J., Zimmerman, S.C. and Kolotuchin, S.V. (1995) Synthesis of heterocyclic-compounds containing 3 contiguous hydrogen-bonding sites in all possible arrangements. Tetrahedron 51, 635–648.
– reference: 97) Takei, F., Igarashi, M., Hagihara, M., Oka, Y., Soya, Y. and Nakatani, K. (2009) Secondary structure-inducible ligand fluorescence coupled with PCR. Angew. Chem. Int. Ed. 48, 7822–7824.
– reference: 63) Li, J., Nakamori, M., Matsumoto, J., Murata, A., Dohno, C., Kiliszek, A. et al. (2018) A dimeric 2,9-diamino-1,10-phenanthroline derivative improves alternative splicing in myotonic dystrophy type 1 cell and mouse models. Chemistry 24, 18115–18122.
– reference: 105) Fukuzumi, T., Murata, A., Aikawa, H., Harada, Y. and Nakatani, K. (2015) Exploratory study on the RNA-binding structural motifs by library screening targeting pre-miRNA-29a. Chemistry 21, 16859–16867.
– reference: 28) Mulders, S.A.M., van den Broek, W.J.A.A., Wheeler, T.M., Croes, H.J.E., van Kuik-Romeijn, P., de Kimpe, S.J. et al. (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc. Natl. Acad. Sci. U.S.A. 106, 13915–13920.
– reference: 66) Nakatani, K., Sando, S. and Saito, I. (2001) Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance assay. Nat. Biotechnol. 19, 51–55.
– reference: 106) Pranata, J., Wierschke, S.G. and Jorgensen, W.L. (1991) OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. J. Am. Chem. Soc. 113, 2810–2819.
– reference: 5) Counter, C.M., Avilion, A.A., Lefeuvre, C.E., Stewart, N.G., Greider, C.W., Harley, C.B. et al. (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929.
– reference: 35) Marti, E. (2016) RNA toxicity induced by expanded CAG repeats in Huntington’s disease. Brain Pathol. 26, 779–786.
– reference: 48) Bates, G.P., Mangiarini, L., Mahal, A. and Davies, S.W. (1997) Transgenic models of Hungtington’s disease. Hum. Mol. Genet. 6, 1633–1637.
– reference: 51) Mori, K., Weng, S.M., Arzberger, T., May, S., Rentzsch, K., Kremmer, E. et al. (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338.
– reference: 19) Ross, C.A. and Poirier, M.A. (2004) Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10–S17.
– reference: 73) Slupphaug, G., Mol, C.D., Kavli, B., Arvai, A.S., Krokan, H.E. and Tainer, J.A. (1996) A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87–92.
– reference: 75) Rebek, J., Askew, B., Ballester, P., Buhr, C., Jones, S., Nemeth, D. et al. (1987) Molecular recognition: hydrogen bonding and stacking interactions stabilize a model for nucleic acid structure. J. Am. Chem. Soc. 109, 5033–5035.
– reference: 47) Sathasivam, K., Amaechi, I., Mangiarini, L. and Bates, G. (1997) Identification of an HD patient with a (CAG)180 repeat expansion and the propagation of highly expanded CAG repeats in lambda phage. Hum. Genet. 99, 692–695.
– reference: 53) Cleary, J.D. and Ranum, L.P.W. (2013) Repeat-associated non-ATG (RAN) translation in neurological disease. Hum. Mol. Genet. 22, R45–R51.
– reference: 20) Ross, C.A. and Tabrizi, S.J. (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98.
– reference: 37) Sinden, R.R., Pytlos-Sinden, M.J. and Potaman, V.N. (2007) Slipped strand DNA structures. Front. Biosci. (Landmark Ed.) 12, 4788–4799.
– reference: 15) Macdonald, M.E., Ambrose, C.M., Duyao, M.P., Myers, R.H., Lin, C., Srinidhi, L. et al. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on huntingtons-disease chromosomes. Cell 72, 971–983.
– reference: 114) Nguyen, L., Luu, L.M., Peng, S.H., Serrano, J.F., Chan, H.Y.E. and Zimmerman, S.C. (2015) Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1. J. Am. Chem. Soc. 137, 14180–14189.
– reference: 91) Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. and Cech, T.R. (1993) Metal-ion catalysis in the tetrahymena ribozyme reaction. Nature 361, 85–88.
– reference: 1) Sutherland, G.R. and Richards, R.I. (1995) Simple tandem DNA repeats and human genetic-disease. Proc. Natl. Acad. Sci. U.S.A. 92, 3636–3641.
– reference: 92) Pyle, A.M. (1993) Ribozymes — A distinct class of metalloenzymes. Science 261, 709–714.
– reference: 33) Belzil, V.V., Gendron, T.F. and Petrucelli, L. (2013) RNA-mediated toxicity in neurodegenerative disease. Mol. Cell. Neurosci. 56, 406–419.
– reference: 112) Arambula, J.F., Ramisetty, S.R., Baranger, A.M. and Zimmerman, S.C. (2009) A simple ligand that selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding. Proc. Natl. Acad. Sci. U.S.A. 106, 16068–16073.
– reference: 79) Chang, S.K., Vanengen, D., Fan, E. and Hamilton, A.D. (1991) Hydrogen-bonding and molecular recognition — synthetic, complexation, and structural studies on barbiturate binding to an artificial receptor. J. Am. Chem. Soc. 113, 7640–7645.
– reference: 64) Matsumoto, J., Nakamori, M., Okamoto, T., Murata, A., Dohno, C. and Nakatani, K. (2020) The dimeric form of 1,3-diaminoisoquinoline derivative rescued the mis-splicing of Atp2a1 and Clcn1 genes in myotonic dystrophy type 1 mouse model. Chemistry 26, 14305–14309.
– reference: 62) Li, J., Matsumoto, J., Bai, L.-P., Murata, A., Dohno, C. and Nakatani, K. (2016) A Ligand that targets CUG trinucleotide repeats. Chemistry 22, 14881–14889.
– reference: 42) Nakatani, K., Hagihara, S., Goto, Y., Kobori, A., Hagihara, M., Hayashi, G. et al. (2005) Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats. Nat. Chem. Biol. 1, 39–43.
– reference: 27) Renton, A.E., Majounie, E., Waite, A., Simon-Sanchez, J. and Rollinson, S. (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.
– reference: 109) Boehr, D.D., Nussinov, R. and Wright, P.E. (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796.
– reference: 17) Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C. et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506.
– reference: 14) Gu, U. and Nelson, D.L. (2003) FMR2 function: insight from a mouse knockout model. Cytogenet. Genome Res. 100, 129–139.
– reference: 26) DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J. et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.
– reference: 34) Jiang, J., Zhu, Q., Gendron, T.F., Saberi, S., McAlonis-Downes, M., Seelman, A. et al. (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550.
– reference: 101) Das, B., Murata, A. and Nakatani, K. (2021) A small-molecule fluorescence probe ANP77 for sensing RNA internal loop of C, U, and A/CC motifs and their binding molecules. Nucleic Acids Res. 49, 8462–8470.
– reference: 50) Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D. et al. (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. U.S.A. 108, 260–265.
– reference: 4) Harley, C.B., Futcher, A.B. and Greider, C.W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460.
– ident: 15
  doi: 10.1016/0092-8674(93)90585-E
– ident: 92
  doi: 10.1126/science.7688142
– ident: 114
  doi: 10.1021/jacs.5b09266
– ident: 28
  doi: 10.1073/pnas.0905780106
– ident: 55
  doi: 10.1002/anie.200502282
– start-page: 905
  issn: 0092-8674
  year: 1991
  ident: 9
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90397-H
– ident: 33
  doi: 10.1016/j.mcn.2012.12.006
– ident: 60
  doi: 10.1016/j.bbrc.2019.06.061
– ident: 87
  doi: 10.1021/ja00036a079
– start-page: 639
  issn: 0896-6273
  year: 2013
  ident: 52
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.02.004
– ident: 16
  doi: 10.1038/ng0893-387
– ident: 5
  doi: 10.1002/j.1460-2075.1992.tb05245.x
– ident: 17
  doi: 10.1016/S0092-8674(00)81369-0
– ident: 7
  doi: 10.1093/nar/25.12.2245
– ident: 58
  doi: 10.1002/chem.201304683
– ident: 97
  doi: 10.1002/anie.200902449
– ident: 75
  doi: 10.1021/ja00250a051
– ident: 59
  doi: 10.1038/s41467-020-20487-4
– ident: 64
  doi: 10.1002/chem.202001572
– ident: 69
  doi: 10.1093/nar/gkr1148
– ident: 39
  doi: 10.1093/nar/26.3.816
– ident: 117
  doi: 10.1039/D0CS01261K
– ident: 90
  doi: 10.1246/nikkashi.1991.1041
– ident: 94
  doi: 10.1007/s00216-007-1323-y
– ident: 37
  doi: 10.2741/2427
– ident: 102
  doi: 10.1021/ja100089u
– ident: 41
  doi: 10.1093/nar/gkh171
– ident: 30
  doi: 10.1515/hsz-2012-0218
– ident: 53
  doi: 10.1093/hmg/ddt371
– ident: 20
  doi: 10.1016/S1474-4422(10)70245-3
– ident: 66
  doi: 10.1038/83505
– ident: 63
  doi: 10.1002/chem.201804368
– ident: 80
  doi: 10.1021/ja00061a061
– ident: 38
  doi: 10.1074/jbc.271.6.2875
– start-page: 415
  issn: 0896-6273
  year: 2013
  ident: 31
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.015
– ident: 50
  doi: 10.1073/pnas.1013343108
– ident: 112
  doi: 10.1073/pnas.0901824106
– ident: 100
  doi: 10.1002/asia.201701293
– start-page: 569
  issn: 0028-0836
  year: 1991
  ident: 3
  publication-title: ?Nature
  doi: 10.1038/350569a0
– start-page: 245
  issn: 0896-6273
  year: 2011
  ident: 26
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.011
– ident: 103
  doi: 10.1002/chem.201103932
– start-page: 458
  issn: 0028-0836
  year: 1990
  ident: 4
  publication-title: ?Nature
  doi: 10.1038/345458a0
– ident: 68
  doi: 10.1021/ja992956j
– ident: 82
  doi: 10.1002/anie.199521631
– ident: 109
  doi: 10.1038/nchembio.232
– ident: 116
  doi: 10.1039/D0CS00455C
– ident: 42
  doi: 10.1038/nchembio708
– ident: 56
  doi: 10.1002/anie.201100075
– ident: 61
  doi: 10.1016/j.bmcl.2016.05.062
– ident: 6
  doi: 10.1038/nature05977
– ident: 24
  doi: 10.1016/j.ajhg.2009.09.019
– ident: 96
  doi: 10.1002/chem.200601496
– ident: 115
  doi: 10.1039/D0CS00560F
– ident: 44
  doi: 10.1002/asia.201600527
– start-page: 817
  issn: 0092-8674
  year: 1991
  ident: 11
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90125-I
– ident: 57
  doi: 10.1016/j.bmcl.2012.01.030
– ident: 84
  doi: 10.1002/hlca.19970800314
– ident: 118
  doi: 10.1016/j.ymeth.2019.05.006
– ident: 88
  doi: 10.1021/ja981884d
– ident: 111
– ident: 18
  doi: 10.1126/science.1067122
– start-page: 1047
  issn: 0092-8674
  year: 1991
  ident: 10
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90283-5
– ident: 81
  doi: 10.1016/0040-4020(94)00922-H
– ident: 34
  doi: 10.1016/j.neuron.2016.04.006
– ident: 85
  doi: 10.1021/jo982138u
– ident: 120
  doi: 10.1021/acs.jmedchem.8b00741
– ident: 2
  doi: 10.1073/pnas.85.18.6622
– ident: 76
  doi: 10.1021/ja00202a077
– ident: 14
  doi: 10.1159/000072847
– start-page: 799
  issn: 0092-8674
  year: 1992
  ident: 21
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90154-5
– ident: 107
  doi: 10.1021/ja00036a079
– ident: 98
  doi: 10.1002/cbic.201200266
– ident: 72
  doi: 10.1039/c1cs15062f
– ident: 74
  doi: 10.1021/ja00250a052
– ident: 47
  doi: 10.1007/s004390050432
– ident: 1
  doi: 10.1073/pnas.92.9.3636
– ident: 93
  doi: 10.1021/ja037947w
– ident: 51
  doi: 10.1126/science.1232927
– ident: 35
  doi: 10.1111/bpa.12427
– ident: 71
  doi: 10.1007/978-1-4612-5190-3
– ident: 23
  doi: 10.1126/science.1546326
– ident: 105
  doi: 10.1002/chem.201502913
– ident: 113
  doi: 10.1093/nar/gkt330
– ident: 89
  doi: 10.1021/ja00192a039
– ident: 65
  doi: 10.1246/bcsj.82.1055
– ident: 46
  doi: 10.1073/pnas.1311325110
– ident: 29
  doi: 10.1093/hmg/ddr299
– ident: 86
  doi: 10.1002/(SICI)1521-3765(19990903)5:9<2762::AID-CHEM2762>3.0.CO;2-F
– ident: 67
  doi: 10.1021/ja0109186
– ident: 110
  doi: 10.1021/bi3006913
– ident: 8
  doi: 10.1146/annurev.neuro.29.051605.113042
– start-page: 85
  issn: 0028-0836
  year: 1993
  ident: 91
  publication-title: ?Nature
  doi: 10.1038/361085a0
– ident: 40
  doi: 10.1021/bi972546c
– ident: 83
  doi: 10.1021/jo960612v
– ident: 95
  doi: 10.1016/j.bmc.2005.04.035
– ident: 73
  doi: 10.1038/384087a0
– ident: 22
  doi: 10.1126/science.1546325
– ident: 12
  doi: 10.1016/0092-8674(93)90300-F
– ident: 43
  doi: 10.1002/cbic.201100260
– ident: 70
  doi: 10.1093/nar/gkz832
– ident: 104
  doi: 10.1016/j.bmc.2013.09.007
– start-page: 57
  issn: 0028-0836
  year: 2012
  ident: 119
  publication-title: ?Nature
  doi: 10.1038/nature11247
– ident: 108
  doi: 10.1021/ja066341f
– ident: 62
  doi: 10.1002/chem.201602741
– ident: 13
  doi: 10.1038/ng0596-105
– ident: 25
  doi: 10.1016/j.neuron.2017.02.046
– start-page: 257
  issn: 0896-6273
  year: 2011
  ident: 27
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.010
– ident: 77
  doi: 10.1021/ja00001a028
– ident: 79
  doi: 10.1021/ja00020a027
– ident: 36
– ident: 49
  doi: 10.1093/nar/gkr429
– ident: 101
  doi: 10.1093/nar/gkab650
– ident: 54
  doi: 10.1016/j.bmcl.2004.11.003
– ident: 45
  doi: 10.1038/s41588-019-0575-8
– ident: 19
  doi: 10.1038/nm1066
– ident: 99
  doi: 10.1039/C6CC08947J
– ident: 106
  doi: 10.1021/ja00008a002
– ident: 78
  doi: 10.1021/ja00013a093
– ident: 32
  doi: 10.1038/cddis.2013.276
– ident: 48
  doi: 10.1093/hmg/6.10.1633
SSID ssj0032581
Score 2.430769
Snippet The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
SubjectTerms Ataxia
Binding
Biocompatibility
Brain research
Chemists
Deoxyribonucleic acid
DNA
expansion
Fibroblasts
Gene sequencing
Genes
Genomes
hairpin
Humans
Huntington's disease
Huntingtons disease
mismatch
Myotonic dystrophy
Myotonic Dystrophy - genetics
Nervous System Diseases
Neurological diseases
Nucleotide sequence
Organic chemistry
Organic compounds
Polyglutamine
Proteins
Review
Ribonucleic acid
RNA
RNA-binding protein
small molecule
Spinocerebellar Ataxias - genetics
trinucleotide repeat
Trinucleotide repeat diseases
Trinucleotide Repeat Expansion
Trinucleotide repeats
X chromosomes
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEB-0Kngp9XttlQg9CWt3k-xmcyqtWEpB6cHCuy35Wm2xu8_u68H_3pndvOiT4iUQdhZCJsn8JjOZH8B-J3xZm8rkdSibXEpf5o3h2HBP1bdc0JYeOH_-Up9eyLNFtYgXbmNMq1yfidNB7QdHd-QHvCbmaXS_1eHyZ06sURRdjRQa9-HBVLoM17NaJIdL8GoiKS1EU-ecF838Po9AwcHyytgPmvIoxYZFeniFoOxbuAtv_ps2-ZcdOtmB7Qgg2dGs8SdwL_RP4dFMKfnrGYTzYYwZr-gDM9N75tZ8KSMbOjZeY49dz6y4gc2sTo5RajkxLI0MUSxDVMhSCjr9dROW2GMxnDM-h4uTT18_nuaRSiF3qqpWuQnGaIum2vlCKBesEt7ZRlmEC07LDlGTM9JWgYfSNAW36Dh1lnfGC6d0ZcUL2OqHPrwCViplpXHa1MrLUnZac8OFQJzo0bVyMoP36-lsXawzTnQXP1r0N2juW5r7VjdUljSD_SS8nMtr3C12OOslCcV9lYRKas7PjjRa3OO2EEmAHq_hCZDB3lqhbdylY_tnTWXwLn3G_UVBE9OH4ZZkykYXEnFeBi9n_adBUFBWFFxnoDZWRhKg2t2bX_rL71MNb-J4r0Tx-v_D2oXHnJ5bTFc-e7C1urkNbxAErezbaaX_Bp3tCno
  priority: 102
  providerName: ProQuest
Title Possibilities and challenges of small molecule organic compounds for the treatment of repeat diseases
URI https://www.jstage.jst.go.jp/article/pjab/98/1/98_PJA9801B-03/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/35013029
https://www.proquest.com/docview/2622299337
https://www.proquest.com/docview/2618904172
https://pubmed.ncbi.nlm.nih.gov/PMC8795530
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Proceedings of the Japan Academy, Series B, 2022/01/11, Vol.98(1), pp.30-48
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71AagXxKsQKCsj9YSUkthOHB9Q1UKXUtRqhVipt8h2HKBqs8tmK9F_z0xe0GpPXCxZHkuRZ5z5xh7PB7BbiiJOTWLC1MdZKGURh5nh2PCCqm85ry09cD49S4-n8uQ8OV-DnoyzW8B6ZWhHfFLTxeXe7183-7jh31MaM1rku_mFsXuaciLFOmyiS0opCjuVw3WC4EnDVhqJLA05j7L2od7dyVvwgK7ZRNTgzb9e6t4FArXvfhUGvZtK-Y9vGj-Chx2oZAetFTyGNV89gfstzeTNU_CTWd1lwWJczExVMNdzqNRsVrL6CnvsqmXK9axlenKM0s2JdalmiGwZIkU2pKXTrIWfY491Vzz1M5iOj759OA47eoXQqSRZhsYboy26b1dEQjlvlSiczZRFCOG0LBFJOSNt4rmPTRZxi8FUaXlpCuGUTqzYho1qVvkXwGKlrDROm1QVMpal1txwIRA7FhhuORnA2345c9fVHicKjMscYxBSQ05qyHVGpUoD2B2E523JjdVi-61eBqFurw1CMTWTkwONXvgwj8QgQA_a8K8QwE6v0Lw3vJynxHCuhVABvBmGcc_RRYqp_OyaZOJMRxKxXwDPW_0PH9FbUADqlmUMAlTP-_ZI9fNHU9ebeN8TEb3875mvYIvT64zmhGgHNpaLa_8aMdPSjmBdnStss_GnEWweHp1NvmLv4-cvo-YUYtTslz-fRB90
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VLQheEDeBAkYqL0ihie0cfqiqFlptr9UKtVLfUl8BKppdmq1Q_xy_jZnNAYsq3vpiyfIksnzNN_bMfACrpXBxqhMdpj7OQyldHOaaY8EdZd-yXhkKcD4cpcNjuXeSnCzBry4WhtwquzNxflC7iaU78jWeEvM0mt_ZxvRHSKxR9LraUWjollrBrc9TjLWBHfv-6ieacPX67iec73ec72wffRyGLctAaLMkmYXaa60MajHrIpFZbzLhrMkzg5rUKlkioLBamsRzH-s84gZtitLwUjthM5UYgf-9BcuSIlwHsLy1PRp_7nSB4MmcJjUSeRpyHuVNhCDBkrXpmTYfFHlyigWdePsMYeEXfx3i_ddx8y9NuPMA7rcQlm02a-4hLPnqEdxpSC2vHoMfT-rW5xatcKYrx2zH2FKzScnqc6yx84aX17OGV8oycm4njqeaIY5miEtZ7wRPX134KdZY-6BUP4HjGxnmpzCoJpV_DizOMiO1VTrNnIxlqRTXXAhEqg6NOysDeN8NZ2HbTOdEuPG9QIuHxr6gsS9UTolRA1jthadNgo_rxTaaeemF2p3dC8VUjPc2Fer8rSISvQCFz-EZFMBKN6FFe07UxZ9VHcDbvhl3OD3b6MpPLkkmzlUkEWkG8KyZ_74T9CwsIq4CyBZWRi9A2cMXW6pvX-dZxIllPhHRi_936w3cHR4dHhQHu6P9l3CPU_DH_AJqBQazi0v_CiHZzLxu1z2D05vear8B5WFP1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKFhAXxJtAASOVC1LYxHbi-FBVLe2qD1itEJV6S_0KUNHs0myF-hf5VcxsnMCiilsvlixPIsuv-caemY-Q9Yq7NNeZjnOfFrEQLo0LzaBgDrNvWa8MBjh_HOd7R-LgODteIb-6WBh0q-zOxMVB7aYW78iHLEfmaTC_5bAKbhGTndHm7EeMDFL40trRaehAs-A2FunGQpDHob_8CeZcs7G_A3P_hrHR7uf3e3FgHIitzLJ5rL3WyoBGsy7h0nojubOmkAa0qlWiAnBhtTCZZz7VRcIM2BeVYZV23EqVGQ7_vUFWJWhJMSCr27vjyadOL3CWLShTE17kMWNJ0UYLIkQZzk61eafQq5Mv6cebpwARv_ir0O-_Tpx_acXRPXI3wFm61a6_-2TF1w_IrZbg8vIh8ZNpE_xvwSKnunbUduwtDZ1WtDmDGj1rOXo9bTmmLEVHd-R7aihgagoYlfYO8fjVuZ9BjYbHpeYRObqWYX5MBvW09k8JTaU0Qlulc-lEKiqlmGacA2p1YOhZEZG33XCWNmQ9R_KN7yVYPzj2JY59qQpMkhqR9V541ib7uFpss52XXijs8l4oxWJysKVA_2-XCe8FMJQOzqOIrHUTWoYzoyn_rPCIvO6bYbfjE46u_fQCZdJCJQJQZ0SetPPfdwKfiHnCVETk0sroBTCT-HJL_e3rIqM4Ms5nPHn2_269Irdhy5Uf9seHz8kdhnEgi7uoNTKYn1_4F4DO5uZlWPaUnFz3TvsNDHNUAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possibilities+and+challenges+of+small+molecule+organic+compounds+for+the+treatment+of+repeat+diseases&rft.jtitle=Proceedings+of+the+Japan+Academy.+Series+B.+Physical+and+biological+sciences&rft.au=NAKATANI%2C+Kazuhiko&rft.date=2022-01-01&rft.pub=The+Japan+Academy&rft.issn=0386-2208&rft.eissn=1349-2896&rft.volume=98&rft.issue=1&rft.spage=30&rft.epage=48&rft_id=info:doi/10.2183%2Fpjab.98.003&rft_id=info%3Apmid%2F35013029&rft.externalDocID=PMC8795530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-2208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-2208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-2208&client=summon