Possibilities and challenges of small molecule organic compounds for the treatment of repeat diseases
The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin...
Saved in:
Published in | Proceedings of the Japan Academy, Series B Vol. 98; no. 1; pp. 30 - 48 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Japan
The Japan Academy
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0386-2208 1349-2896 1349-2896 |
DOI | 10.2183/pjab.98.003 |
Cover
Abstract | The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington’s disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases. |
---|---|
AbstractList | The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington's disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases. The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington’s disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo , suggesting the possibilities for small molecules as drugs for treating these neurological diseases. The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington's disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases.The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington's disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases. |
ArticleNumber | PJA9801B-03 |
Author | NAKATANI, Kazuhiko |
Author_xml | – sequence: 1 fullname: NAKATANI, Kazuhiko organization: SANKEN, The Institute of Scientific and Industrial Research, Osaka University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35013029$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1rFTEUxYNU7Gt15V4G3Agyz3zMvEk2Qi3WDwp2oeuQZO68l0cmGZNMwf_eDK8OWnCTcMnvHM7l5AKd-eABoZcEbynh7N10VHor-BZj9gRtCGtETbnYnaENZnxXU4r5ObpI6VgA2nLyDJ2zFhOGqdgguAspWW2dzRZSpXxfmYNyDvy-jGGo0limagwOzOygCnGvvDWVCeMUZt-nagixygeocgSVR_B5UUWYylT1NoFKkJ6jp4NyCV483Jfox83H79ef69tvn75cX93WpmvbXCtQSuiWEtNj1hnQHeuN5p3GghjRDKRhRjW6BQpEcUw1acSg6aB6ZjrRanaJ3p98p1mP0JuSJionp2hHFX_JoKz898Xbg9yHe8mLvGW4GLx5MIjh5wwpy9EmA84pD2FOku4IF7ghHS3o60foMczRl_UKRSkVgrGuUK_-TrRG-dNAAd6eABNLExGGFSFYLv3KpV8puCz1FZo8oo3NKtuwrGPdfzQ3J80xZbWH1V_FbI2DlSXLcff1SnBMPkjMVqB8iCjBs9-GcsTT |
CitedBy_id | crossref_primary_10_1016_j_bmc_2022_117094 crossref_primary_10_1016_j_bmc_2023_117580 crossref_primary_10_1038_s41570_023_00569_9 crossref_primary_10_1016_j_jmb_2022_167914 crossref_primary_10_1021_acs_biochem_2c00344 crossref_primary_10_1002_cmdc_202400351 crossref_primary_10_1039_D4CP03213F crossref_primary_10_1002_tcr_202200194 crossref_primary_10_1016_j_bmcl_2025_130152 crossref_primary_10_1039_D3DD00160A crossref_primary_10_1002_aidi_202400020 |
Cites_doi | 10.1016/0092-8674(93)90585-E 10.1126/science.7688142 10.1021/jacs.5b09266 10.1073/pnas.0905780106 10.1002/anie.200502282 10.1016/0092-8674(91)90397-H 10.1016/j.mcn.2012.12.006 10.1016/j.bbrc.2019.06.061 10.1021/ja00036a079 10.1016/j.neuron.2013.02.004 10.1038/ng0893-387 10.1002/j.1460-2075.1992.tb05245.x 10.1016/S0092-8674(00)81369-0 10.1093/nar/25.12.2245 10.1002/chem.201304683 10.1002/anie.200902449 10.1021/ja00250a051 10.1038/s41467-020-20487-4 10.1002/chem.202001572 10.1093/nar/gkr1148 10.1093/nar/26.3.816 10.1039/D0CS01261K 10.1246/nikkashi.1991.1041 10.1007/s00216-007-1323-y 10.2741/2427 10.1021/ja100089u 10.1093/nar/gkh171 10.1515/hsz-2012-0218 10.1093/hmg/ddt371 10.1016/S1474-4422(10)70245-3 10.1038/83505 10.1002/chem.201804368 10.1021/ja00061a061 10.1074/jbc.271.6.2875 10.1016/j.neuron.2013.10.015 10.1073/pnas.1013343108 10.1073/pnas.0901824106 10.1002/asia.201701293 10.1038/350569a0 10.1016/j.neuron.2011.09.011 10.1002/chem.201103932 10.1038/345458a0 10.1021/ja992956j 10.1002/anie.199521631 10.1038/nchembio.232 10.1039/D0CS00455C 10.1038/nchembio708 10.1002/anie.201100075 10.1016/j.bmcl.2016.05.062 10.1038/nature05977 10.1016/j.ajhg.2009.09.019 10.1002/chem.200601496 10.1039/D0CS00560F 10.1002/asia.201600527 10.1016/0092-8674(91)90125-I 10.1016/j.bmcl.2012.01.030 10.1002/hlca.19970800314 10.1016/j.ymeth.2019.05.006 10.1021/ja981884d 10.1126/science.1067122 10.1016/0092-8674(91)90283-5 10.1016/0040-4020(94)00922-H 10.1016/j.neuron.2016.04.006 10.1021/jo982138u 10.1021/acs.jmedchem.8b00741 10.1073/pnas.85.18.6622 10.1021/ja00202a077 10.1159/000072847 10.1016/0092-8674(92)90154-5 10.1002/cbic.201200266 10.1039/c1cs15062f 10.1021/ja00250a052 10.1007/s004390050432 10.1073/pnas.92.9.3636 10.1021/ja037947w 10.1126/science.1232927 10.1111/bpa.12427 10.1007/978-1-4612-5190-3 10.1126/science.1546326 10.1002/chem.201502913 10.1093/nar/gkt330 10.1021/ja00192a039 10.1246/bcsj.82.1055 10.1073/pnas.1311325110 10.1093/hmg/ddr299 10.1002/(SICI)1521-3765(19990903)5:9<2762::AID-CHEM2762>3.0.CO;2-F 10.1021/ja0109186 10.1021/bi3006913 10.1146/annurev.neuro.29.051605.113042 10.1038/361085a0 10.1021/bi972546c 10.1021/jo960612v 10.1016/j.bmc.2005.04.035 10.1038/384087a0 10.1126/science.1546325 10.1016/0092-8674(93)90300-F 10.1002/cbic.201100260 10.1093/nar/gkz832 10.1016/j.bmc.2013.09.007 10.1038/nature11247 10.1021/ja066341f 10.1002/chem.201602741 10.1038/ng0596-105 10.1016/j.neuron.2017.02.046 10.1016/j.neuron.2011.09.010 10.1021/ja00001a028 10.1021/ja00020a027 10.1093/nar/gkr429 10.1093/nar/gkab650 10.1016/j.bmcl.2004.11.003 10.1038/s41588-019-0575-8 10.1038/nm1066 10.1039/C6CC08947J 10.1021/ja00008a002 10.1021/ja00013a093 10.1038/cddis.2013.276 10.1093/hmg/6.10.1633 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Copyright The Japan Academy Jan 2022 2022 The Author(s). 2022 |
Copyright_xml | – notice: 2022 The Author(s). – notice: Copyright The Japan Academy Jan 2022 – notice: 2022 The Author(s). 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7TK 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI BVBZV CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 5PM |
DOI | 10.2183/pjab.98.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection East & South Asia Database ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Research Library Biological Science Database Engineering Database (subscription) Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) East & South Asia Database Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Challenges of small molecules in the treatment of repeat diseases |
EISSN | 1349-2896 |
EndPage | 48 |
ExternalDocumentID | PMC8795530 35013029 10_2183_pjab_98_003 article_pjab_98_1_98_PJA9801B_03_article_char_en |
Genre | Journal Article |
GroupedDBID | --- -~X .55 29P 2WC 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 ABJCF ABUWG ACIWK ACPRK AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVBZV BVXVI CCPQU DIK DWQXO E3Z EBD EBS EJD EMOBN F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HMCUK HYE I-F IAO IEA ITC JSF JSH KQ8 L6V LK8 M1P M2O M48 M7P M7S O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 RJT RNS RPM RZJ RZL SV3 TN5 TR2 TUS UKHRP WH7 X7M XSB YNT ~02 AAYXX ALIPV CITATION 3V. 53G ADRAZ AFFNX CGR CUY CVF ECM EIF NPM TKC XJT XOL 7QP 7QR 7TK 7XB 8FD 8FK FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c755t-aeaa9b521cd037ceb73dcb87b091c94f143ca4b5e2e1a802b149fb2fad3c795b3 |
IEDL.DBID | M48 |
ISSN | 0386-2208 1349-2896 |
IngestDate | Thu Aug 21 14:08:26 EDT 2025 Fri Sep 05 02:41:39 EDT 2025 Fri Jul 25 12:09:13 EDT 2025 Thu Jan 02 22:54:45 EST 2025 Thu Apr 24 22:59:33 EDT 2025 Tue Jul 01 01:25:16 EDT 2025 Wed Sep 03 06:30:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | hairpin neurological diseases small molecule trinucleotide repeat mismatch expansion |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 Published under the terms of the CC BY-NC license https://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c755t-aeaa9b521cd037ceb73dcb87b091c94f143ca4b5e2e1a802b149fb2fad3c795b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Keisuke SUZUKI, M.J.A. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2183/pjab.98.003 |
PMID | 35013029 |
PQID | 2622299337 |
PQPubID | 1066378 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8795530 proquest_miscellaneous_2618904172 proquest_journals_2622299337 pubmed_primary_35013029 crossref_primary_10_2183_pjab_98_003 crossref_citationtrail_10_2183_pjab_98_003 jstage_primary_article_pjab_98_1_98_PJA9801B_03_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Ueno Park – name: Tokyo, Japan |
PublicationTitle | Proceedings of the Japan Academy, Series B |
PublicationTitleAlternate | Proc. Jpn. Acad., Ser. B |
PublicationYear | 2022 |
Publisher | The Japan Academy |
Publisher_xml | – name: The Japan Academy |
References | 17) Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C. et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506. 14) Gu, U. and Nelson, D.L. (2003) FMR2 function: insight from a mouse knockout model. Cytogenet. Genome Res. 100, 129–139. 70) Mukherjee, S., Błaszczyk, L., Rypniewski, W., Falschlunger, C., Micura, R., Murata, A. et al. (2019) Structural insights into synthetic ligands targeting A-A pairs in disease-related CAG RNA repeats. Nucleic Acids Res. 47, 10906–10913. 94) Goto, Y., Suda, H., Kobori, A. and Nakatani, K. (2007) Analysis of mismatched DNA by mismatch binding ligand (MBL)-Sepharose affinity chromatography. Anal. Bioanal. Chem. 388, 1165–1173. 31) Donnelly, C.J., Zhang, P.W., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S. et al. (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428. 66) Nakatani, K., Sando, S. and Saito, I. (2001) Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance assay. Nat. Biotechnol. 19, 51–55. 55) Peng, T. and Nakatani, K. (2005) Binding of naphthyridine carbamate dimer to the (CGG)n repeat resulted in the disruption of the G-C base pairing. Angew. Chem. Int. Ed. 44, 7280–7283. 20) Ross, C.A. and Tabrizi, S.J. (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98. 23) Fu, Y.H., Pizzuti, A., Fenwick, R.G., King, J. and Rajnarayan, S. (1992) An unstable triplet repeat in a gene related to myotonic muscular-dystrophy. Science 255, 1256–1258. 43) Hagihara, M., He, H. and Nakatani, K. (2011) Small molecule modulates hairpin structures in CAG trinucleotide repeats. ChemBioChem 12, 1686–1689. 102) Zhang, J., Umemoto, S. and Nakatani, K. (2010) Fluorescent indicator-displacement assay for ligand-RNA interactions. J. Am. Chem. Soc. 132, 3660–3661. 28) Mulders, S.A.M., van den Broek, W.J.A.A., Wheeler, T.M., Croes, H.J.E., van Kuik-Romeijn, P., de Kimpe, S.J. et al. (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc. Natl. Acad. Sci. U.S.A. 106, 13915–13920. 39) Pearson, C.E., Wang, Y.H., Griffith, J.D. and Sinden, R.R. (1998) Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n·(CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res. 26, 816–823. 69) Dohno, C., Kohyama, I., Hong, C. and Nakatani, K. (2012) Naphthyridine tetramer with a preorganized structure for 1:1 binding to a CGG/CGG sequence. Nucleic Acids Res. 40, 2771–2781. 88) Corbin, P.S. and Zimmerman, S.C. (1998) Self-association without regard to prototropy. A heterocycle that forms extremely stable quadruply hydrogen-bonded dimers. J. Am. Chem. Soc. 120, 9710–9711. 12) Knight, S.J.L., Flannery, A.V., Hirst, M.C., Campbell, L. and Christodoulou, Z. (1993) Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental-retardation. Cell 74, 127–134. 22) Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G. et al. (1992) Myotonic-dystrophy mutation — an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255. 41) Hagihara, S., Kumasawa, H., Goto, Y., Hayashi, G., Kobori, A., Saito, I. et al. (2004) Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Res. 32, 278–286. 38) Wells, R.D. (1996) Molecular basis of genetic instability of triplet repeats. J. Biol. Chem. 271, 2875–2878. 3) Blackburn, E.H. (1991) Structure and function of telomeres. Nature 350, 569–573. 4) Harley, C.B., Futcher, A.B. and Greider, C.W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460. 13) Gecz, J., Gedeon, A.K., Sutherland, G.R. and Mulley, J.C. (1996) Identification of the gene FMR2, associated with FRAXE mental retardation. Nat. Genet. 13, 105–108. 93) Kobori, A., Horie, S., Suda, H., Saito, I. and Nakatani, K. (2004) The SPR sensor detecting the cytosine-cytosine mismatches. J. Am. Chem. Soc. 126, 557–562. 58) Hong, C., Otabe, T., Matsumoto, S., Dohno, C., Murata, A., Hagihara, M. et al. (2014) Formation of ligand-assisted complex of two RNA hairpin loops. Chemistry 20, 5282–5287. 36) Levinson, G. and Gutman, G.A. (1987) Slipped-strand mispairing — a major mechanism for DNA-sequence evolution. Mol. Biol. Evol. 4, 203–221. 106) Pranata, J., Wierschke, S.G. and Jorgensen, W.L. (1991) OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. J. Am. Chem. Soc. 113, 2810–2819. 21) Brook, J.D., Mccurrach, M.E., Harley, H.G., Buckler, A.J., Church, D., Aburatani, H. et al. (1992) Molecular-basis of myotonic-dystrophy — expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein-kinase family member. Cell 68, 799–808. 83) Beijer, F.H., Sijbesma, R.P., Vekemans, J.A.J.M., Meijer, E.W., Kooijman, H. and Spek, A.L. (1996) Hydrogen-bonded complexes of diaminopyridines and diaminotriazines: Opposite effect of acylation on complex stabilities. J. Org. Chem. 61, 6371–6380. 100) Nakatani, K., Natsuhara, N., Mori, Y., Mukherjee, S., Das, B. and Murata, A. (2017) Synthesis of naphthyridine dimers with conformational restriction and the binding to DNA and RNA. Chem. Asian J. 12, 3077–3087. 78) Park, T.K., Schroeder, J. and Rebek, J. (1991) New molecular complements to imides — complexation of thymine derivatives. J. Am. Chem. Soc. 113, 5125–5127. 7) Mitas, M. (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Res. 25, 2245–2253. 26) DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J. et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256. 75) Rebek, J., Askew, B., Ballester, P., Buhr, C., Jones, S., Nemeth, D. et al. (1987) Molecular recognition: hydrogen bonding and stacking interactions stabilize a model for nucleic acid structure. J. Am. Chem. Soc. 109, 5033–5035. 5) Counter, C.M., Avilion, A.A., Lefeuvre, C.E., Stewart, N.G., Greider, C.W., Harley, C.B. et al. (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929. 50) Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D. et al. (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. U.S.A. 108, 260–265. 85) Inouye, M., Hyodo, Y. and Nakazumi, H. (1999) Nucleobase recognition by artificial receptors possessing a ferrocene skeleton as a novel modular unit for hydrogen bonding and stacking interactions. J. Org. Chem. 64, 2704–2710. 53) Cleary, J.D. and Ranum, L.P.W. (2013) Repeat-associated non-ATG (RAN) translation in neurological disease. Hum. Mol. Genet. 22, R45–R51. 84) Fenniri, H., Hosseini, M.W. and Lehn, J.M. (1997) Molecular recognition of NADP(H) and ATP by macrocyclic polyamines bearing acridine groups. Helv. Chim. Acta 80, 786–803. 115) Meyer, S.M., Williams, C.C., Akahori, Y., Tanaka, T., Aikawa, H., Tong, Y.Q. et al. (2020) Small molecule recognition of disease-relevant RNA structures. Chem. Soc. Rev. 49, 7167–7199. 77) Zimmerman, S.C., Weiming, W. and Zijian, Z. (1991) Complexation of nucleotide bases by molecular tweezers with active site carboxylic acids: effects of microenvironment. J. Am. Chem. Soc. 113, 196–201. 99) Takei, F. and Nakatani, K. (2017) Fluorescence turn-on hairpin-probe PCR. Chem. Commun. (Camb.) 53, 1393–1396. 32) Nalavade, R., Griesche, N., Ryan, D.P., Hildebrand, S. and Krauss, S. (2013) Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis. 4, e752. 44) Li, J., Sakata, A., He, H., Bai, L.-P., Murata, A., Dohno, C. et al. (2016) Naphthyridine-benzoazaquinolone: evaluation of tricyclic system for the binding to (CAG)n repeat DNA and RNA. Chem. Asian J. 11, 1971–1981. 95) Suda, H., Kobori, A., Zhang, J., Hayashi, G. and Nakatani, K. (2005) N,N′-Bis(3-aminopropyl)-2,7-diamino-1,8-naphthyridine stabilized a single pyrimidine bulge in duplex DNA. Bioorg. Med. Chem. 13, 4507–4512. 101) Das, B., Murata, A. and Nakatani, K. (2021) A small-molecule fluorescence probe ANP77 for sensing RNA internal loop of C, U, and A/CC motifs and their binding molecules. Nucleic Acids Res. 49, 8462–8470. 35) Marti, E. (2016) RNA toxicity induced by expanded CAG repeats in Huntington’s disease. Brain Pathol. 26, 779–786. 98) Takei, F., Igarashi, M., Oka, Y., Koga, Y. and Nakatani, K. (2012) Competitive allele-specific hairpin primer PCR for extremely high allele discrimination in typing of single nucleotide polymorphism. ChemBioChem 13, 1409–1412. 63) Li, J., Nakamori, M., Matsumoto, J., Murata, A., Dohno, C., Kiliszek, A. et al. (2018) A dimeric 2,9-diamino-1,10-phenanthroline derivative improves alternative splicing in myotonic dystrophy type 1 cell and mouse models. Chemistry 24, 18115–18122. 6) Mirkin, S.M. (2007) Expandable DNA repeats and human disease. Nature 447, 932–940. 91) Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. and Cech, T.R. (1993) Metal-ion catalysis in the tetrahymena ribozyme reaction. Nature 361, 85–88. 82) Bell, T.W., Hou, Z., Zimmerman, S.C. and Thiessen, P.A. (1995) Highly effective hydrogen-bonding receptors for guanine derivatives. Angew. Chem. Int. Ed. Engl. 34, 2163–2165. 51) Mori, K., Weng, S.M., Arzberger, T., May, S., Rentzsch, K., Kremmer, E. et al. (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338. 76) Zimmerman, S.C. and Weiming, W. (1989) A rigid molecular tweezers with an active site carboxylic acid: exceptionally efficient receptor for adenine in an organic solvent. J. Am. Chem. Soc. 111, 8054–8055. 16) Duyao, M., Ambrose, C., Myers, R., Nov 88 89 Y.H. Fu (10) 1991 110 111 112 113 114 115 116 90 117 118 92 93 94 95 96 97 98 99 12 13 14 15 16 17 18 19 A.E. Renton (27) 2011 C.J. Donnelly (31) 2013 120 1 2 5 6 7 8 20 P.E.A. Ash (52) 2013 22 23 24 25 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 M. Pieretti (11) 1991 50 51 A.J.M.H. Verkerk (9) 1991 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 J.D. Brook (21) 1992 C.B. Harley (4) 1990 70 71 72 73 74 75 76 77 78 79 E.H. Blackburn (3) 1991 100 101 M. DeJesus-Hernandez (26) 2011 102 103 104 105 106 The ENCODE Project Consortium null (119) 2012 80 107 81 108 82 109 83 84 85 J.A. Piccirilli (91) 1993 86 87 |
References_xml | – reference: 96) Takei, F., Suda, H., Hagihara, M., Zhang, J., Kobori, A. and Nakatani, K. (2007) Allele specific C-bulge probes with one unique fluorescent molecule discriminate the single nucleotide polymorphism in DNA. Chemistry 13, 4452–4457. – reference: 69) Dohno, C., Kohyama, I., Hong, C. and Nakatani, K. (2012) Naphthyridine tetramer with a preorganized structure for 1:1 binding to a CGG/CGG sequence. Nucleic Acids Res. 40, 2771–2781. – reference: 76) Zimmerman, S.C. and Weiming, W. (1989) A rigid molecular tweezers with an active site carboxylic acid: exceptionally efficient receptor for adenine in an organic solvent. J. Am. Chem. Soc. 111, 8054–8055. – reference: 71) Saenger, W. (1984) Principles of Nucleic Acids Structure. Springer, New York. – reference: 85) Inouye, M., Hyodo, Y. and Nakazumi, H. (1999) Nucleobase recognition by artificial receptors possessing a ferrocene skeleton as a novel modular unit for hydrogen bonding and stacking interactions. J. Org. Chem. 64, 2704–2710. – reference: 54) Peng, T., Murase, T., Goto, Y., Kobori, A. and Nakatani, K. (2005) A new ligand binding to G-G mismatch having improved thermal and alkaline stability. Bioorg. Med. Chem. Lett. 15, 259–262. – reference: 93) Kobori, A., Horie, S., Suda, H., Saito, I. and Nakatani, K. (2004) The SPR sensor detecting the cytosine-cytosine mismatches. J. Am. Chem. Soc. 126, 557–562. – reference: 82) Bell, T.W., Hou, Z., Zimmerman, S.C. and Thiessen, P.A. (1995) Highly effective hydrogen-bonding receptors for guanine derivatives. Angew. Chem. Int. Ed. Engl. 34, 2163–2165. – reference: 29) Wojciechowska, M. and Krzyzosiak, W.J. (2011) Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum. Mol. Genet. 20, 3811–3821. – reference: 44) Li, J., Sakata, A., He, H., Bai, L.-P., Murata, A., Dohno, C. et al. (2016) Naphthyridine-benzoazaquinolone: evaluation of tricyclic system for the binding to (CAG)n repeat DNA and RNA. Chem. Asian J. 11, 1971–1981. – reference: 25) Ishiguro, T., Sato, N., Ueyama, M., Fujikake, N., Sellier, C., Kanegami, A. et al. (2017) Regulatory role of rna chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31. Neuron 94, 108–124.e7. – reference: 68) Nakatani, K., Sando, S. and Saito, I. (2000) Recognition of a single guanine bulge by 2-acylamino-1,8-naphthyridine. J. Am. Chem. Soc. 122, 2172–2177. – reference: 104) Murata, A., Harada, Y., Fukuzumi, T. and Nakatani, K. (2013) Fluorescent indicator displacement assay of ligands targeting 10 microRNA precursors. Bioorg. Med. Chem. 21, 7101–7106. – reference: 70) Mukherjee, S., Błaszczyk, L., Rypniewski, W., Falschlunger, C., Micura, R., Murata, A. et al. (2019) Structural insights into synthetic ligands targeting A-A pairs in disease-related CAG RNA repeats. Nucleic Acids Res. 47, 10906–10913. – reference: 30) Galka-Marciniak, P., Urbanek, M.O. and Krzyzosiak, W.J. (2012) Triplet repeats in transcripts: structural insights into RNA toxicity. Biol. Chem. 393, 1299–1315. – reference: 45) Nakamori, M., Panigrahi, G.B., Lanni, S., Gall-Duncan, T., Hayakawa, H., Tanaka, H. et al. (2020) Slipped-CAG DNA binding small molecule induces trinucleotide repeat contractions in vivo. Nat. Genet. 52, 146–159. – reference: 110) Vogt, A.D. and Di Cera, E. (2012) Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 51, 5894–5902. – reference: 111) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Tunyasuvunakool, K. et al. (2020) AlphaFold2 Presentation given at CASP 14. https://predictioncenter.org/casp14/doc/presentations/2020_12_01_TS_predictor_AlphaFold2.pdf. – reference: 32) Nalavade, R., Griesche, N., Ryan, D.P., Hildebrand, S. and Krauss, S. (2013) Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis. 4, e752. – reference: 87) Murray, T.J. and Zimmerman, S.C. (1992) New triply hydrogen bonded complexes with highly variable stabilities. J. Am. Chem. Soc. 114, 4010–4011. – reference: 99) Takei, F. and Nakatani, K. (2017) Fluorescence turn-on hairpin-probe PCR. Chem. Commun. (Camb.) 53, 1393–1396. – reference: 21) Brook, J.D., Mccurrach, M.E., Harley, H.G., Buckler, A.J., Church, D., Aburatani, H. et al. (1992) Molecular-basis of myotonic-dystrophy — expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein-kinase family member. Cell 68, 799–808. – reference: 100) Nakatani, K., Natsuhara, N., Mori, Y., Mukherjee, S., Das, B. and Murata, A. (2017) Synthesis of naphthyridine dimers with conformational restriction and the binding to DNA and RNA. Chem. Asian J. 12, 3077–3087. – reference: 72) Dohno, C. and Nakatani, K. (2011) Control of DNA hybridization by photoswitchable molecular glue. Chem. Soc. Rev. 40, 5718–5729. – reference: 117) Falese, J.P., Donlic, A. and Hargrove, A.E. (2021) Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem. Soc. Rev. 50, 2224–2243. – reference: 8) Orr, H.T. and Zoghbi, H.Y. (2007) Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621. – reference: 103) Umemoto, S., Im, S., Zhang, J., Hagihara, M., Murata, A., Harada, Y. et al. (2012) Structure-activity studies on the fluorescent indicator in the displacement assay for the screening of small molecules binding to RNA. Chemistry 18, 9999–10008. – reference: 94) Goto, Y., Suda, H., Kobori, A. and Nakatani, K. (2007) Analysis of mismatched DNA by mismatch binding ligand (MBL)-Sepharose affinity chromatography. Anal. Bioanal. Chem. 388, 1165–1173. – reference: 115) Meyer, S.M., Williams, C.C., Akahori, Y., Tanaka, T., Aikawa, H., Tong, Y.Q. et al. (2020) Small molecule recognition of disease-relevant RNA structures. Chem. Soc. Rev. 49, 7167–7199. – reference: 23) Fu, Y.H., Pizzuti, A., Fenwick, R.G., King, J. and Rajnarayan, S. (1992) An unstable triplet repeat in a gene related to myotonic muscular-dystrophy. Science 255, 1256–1258. – reference: 6) Mirkin, S.M. (2007) Expandable DNA repeats and human disease. Nature 447, 932–940. – reference: 39) Pearson, C.E., Wang, Y.H., Griffith, J.D. and Sinden, R.R. (1998) Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n·(CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res. 26, 816–823. – reference: 84) Fenniri, H., Hosseini, M.W. and Lehn, J.M. (1997) Molecular recognition of NADP(H) and ATP by macrocyclic polyamines bearing acridine groups. Helv. Chim. Acta 80, 786–803. – reference: 88) Corbin, P.S. and Zimmerman, S.C. (1998) Self-association without regard to prototropy. A heterocycle that forms extremely stable quadruply hydrogen-bonded dimers. J. Am. Chem. Soc. 120, 9710–9711. – reference: 22) Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G. et al. (1992) Myotonic-dystrophy mutation — an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255. – reference: 118) Murata, A., Nakamori, M. and Nakatani, K. (2019) Modulating RNA secondary and tertiary structures by mismatch binding ligands. Methods 167, 78–91. – reference: 59) Shibata, T., Nagano, K., Ueyama, M., Ninomiya, K., Hirose, T., Nagai, Y. et al. (2021) Small molecule targeting r(UGGAA)n disrupts RNA foci and alleviates disease phenotype in drosophila model. Nat. Commun. 12, 236. – reference: 98) Takei, F., Igarashi, M., Oka, Y., Koga, Y. and Nakatani, K. (2012) Competitive allele-specific hairpin primer PCR for extremely high allele discrimination in typing of single nucleotide polymorphism. ChemBioChem 13, 1409–1412. – reference: 89) Kelly, T.R., Zhao, C. and Bridger, G.J. (1989) A bisubstrate reaction template. J. Am. Chem. Soc. 111, 3744–3745. – reference: 107) Murray, T.J. and Zimmerman, S.C. (1992) New triply hydrogen bonded complexes with highly variable stabilities. J. Am. Chem. Soc. 114, 4010–4011. – reference: 13) Gecz, J., Gedeon, A.K., Sutherland, G.R. and Mulley, J.C. (1996) Identification of the gene FMR2, associated with FRAXE mental retardation. Nat. Genet. 13, 105–108. – reference: 65) Nakatani, K. (2009) Recognition of mismatched base pairs in DNA. Bull. Chem. Soc. Jpn. 82, 1055–1069. – reference: 83) Beijer, F.H., Sijbesma, R.P., Vekemans, J.A.J.M., Meijer, E.W., Kooijman, H. and Spek, A.L. (1996) Hydrogen-bonded complexes of diaminopyridines and diaminotriazines: Opposite effect of acylation on complex stabilities. J. Org. Chem. 61, 6371–6380. – reference: 57) Hagihara, M., He, H., Kimura, M. and Nakatani, K. (2012) A small molecule regulates hairpin structures in d(CGG) trinucleotide repeats. Bioorg. Med. Chem. Lett. 22, 2000–2003. – reference: 58) Hong, C., Otabe, T., Matsumoto, S., Dohno, C., Murata, A., Hagihara, M. et al. (2014) Formation of ligand-assisted complex of two RNA hairpin loops. Chemistry 20, 5282–5287. – reference: 74) Hamilton, A.D. and Vanengen, D. (1987) Induced fit in synthetic receptors — nucleotide base recognition by a molecular hinge. J. Am. Chem. Soc. 109, 5035–5036. – reference: 11) Pieretti, M., Zhang, F.P., Fu, Y.H., Warren, S.T. and Oostra, B.A. (1991) Absence of expression of the FMR-1 gene in Fragile-X syndrome. Cell 66, 817–822. – reference: 86) Baudoin, O., Gonnet, F., Teulade-Fichou, M.P., Vigneron, J.P., Tabet, J.C. and Lehn, J.-M. (1999) Molecular recognition of nucleotide pairs by a cyclo-bis-intercaland-type receptor molecule: A spectrophotometric and electrospray mass spectrometry study. Chemistry 5, 2762–2771. – reference: 10) Fu, Y.H., Kuhl, D.P.A., Pizzuti, A., Pieretti, M., Sutcliffe, J.S., Fu, Y.H. et al. (1991) Variation of the CGG repeat at the Fragile-X site results in genetic instability — resolution of the sherman paradox. Cell 67, 1047–1058. – reference: 43) Hagihara, M., He, H. and Nakatani, K. (2011) Small molecule modulates hairpin structures in CAG trinucleotide repeats. ChemBioChem 12, 1686–1689. – reference: 12) Knight, S.J.L., Flannery, A.V., Hirst, M.C., Campbell, L. and Christodoulou, Z. (1993) Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental-retardation. Cell 74, 127–134. – reference: 41) Hagihara, S., Kumasawa, H., Goto, Y., Hayashi, G., Kobori, A., Saito, I. et al. (2004) Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Res. 32, 278–286. – reference: 52) Ash, P.E.A., Bieniek, K.F., Gendron, T.F., Caulfield, T., Lin, W.L., DeJesus-Hernandez, M. et al. (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646. – reference: 40) Pearson, C.E., Eichler, E.E., Lorenzetti, D., Kramer, S.F. and Zoghbi, H.Y. (1998) Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37, 2701–2708. – reference: 46) Pluciennik, A., Burdett, V., Baitinger, C., Iyer, R.R., Shi, K. and Modrich, P. (2013) Extrahelical (CAG)/(CTG) triplet repeat elements support proliferating cell nuclear antigen loading and MutLα endonuclease activation. Proc. Natl. Acad. Sci. U.S.A. 110, 12277–12282. – reference: 80) Shea, K.J., Spivak, D.A. and Sellergren, B. (1993) Polymer complements to nucleotide bases — selective binding of adenine-derivatives to imprinted polymers. J. Am. Chem. Soc. 115, 3368–3369. – reference: 77) Zimmerman, S.C., Weiming, W. and Zijian, Z. (1991) Complexation of nucleotide bases by molecular tweezers with active site carboxylic acids: effects of microenvironment. J. Am. Chem. Soc. 113, 196–201. – reference: 7) Mitas, M. (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Res. 25, 2245–2253. – reference: 9) Verkerk, A.J.M.H., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P.A., Pizzuti, A. et al. (1991) Identification of a gene (FMR1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in Fragile-X syndrome. Cell 65, 905–914. – reference: 2) Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D. et al. (1988) A highly conserved repetitive DNA-sequence, (TTAGGG)n, present at the telomeres of human-chromosomes. Proc. Natl. Acad. Sci. U.S.A. 85, 6622–6626. – reference: 31) Donnelly, C.J., Zhang, P.W., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S. et al. (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428. – reference: 120) Ratni, H., Ebeling, M., Baird, J., Bendels, S., Bylund, J., Chen, K.S. et al. (2018) Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61, 6501–6517. – reference: 16) Duyao, M., Ambrose, C., Myers, R., Novelletto, A., Persichetti, F., Frontali, M. et al. (1993) Trinucleotide repeat length instability and age-of-onset in huntingtons-disease. Nat. Genet. 4, 387–392. – reference: 116) Ursu, A., Childs-Disney, J.L., Andrews, R.J., O’Leary, C.A., Meyer, S.M., Angelbello, A.J. et al. (2020) Design of small molecules targeting RNA structure from sequence. Chem. Soc. Rev. 49, 7252–7270. – reference: 60) Aly, M.K., Ninomiya, K., Adachi, S., Natsume, T. and Hirose, T. (2019) Two distinct nuclear stress bodies containing different sets of RNA-binding proteins are formed with HSATIII architectural noncoding RNAs upon thermal stress exposure. Biochem. Biophys. Res. Commun. 516, 419–423. – reference: 3) Blackburn, E.H. (1991) Structure and function of telomeres. Nature 350, 569–573. – reference: 36) Levinson, G. and Gutman, G.A. (1987) Slipped-strand mispairing — a major mechanism for DNA-sequence evolution. Mol. Biol. Evol. 4, 203–221. – reference: 56) Hong, C., Hagihara, M. and Nakatani, K. (2011) Ligand-Assisted Complex Formation of Two DNA Hairpin Loops. Angew. Chem. Int. Ed. 50, 4390–4393. – reference: 113) Jahromi, A.H., Honda, M., Zimmerman, S.C. and Spies, M. (2013) Single-molecule study of the CUG repeat-MBNL1 interaction and its inhibition by small molecules. Nucleic Acids Res. 41, 6687–6697. – reference: 119) The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74. – reference: 38) Wells, R.D. (1996) Molecular basis of genetic instability of triplet repeats. J. Biol. Chem. 271, 2875–2878. – reference: 95) Suda, H., Kobori, A., Zhang, J., Hayashi, G. and Nakatani, K. (2005) N,N′-Bis(3-aminopropyl)-2,7-diamino-1,8-naphthyridine stabilized a single pyrimidine bulge in duplex DNA. Bioorg. Med. Chem. 13, 4507–4512. – reference: 102) Zhang, J., Umemoto, S. and Nakatani, K. (2010) Fluorescent indicator-displacement assay for ligand-RNA interactions. J. Am. Chem. Soc. 132, 3660–3661. – reference: 108) Quinn, J.R., Zimmerman, S.C., Del Bene, J.E. and Shavitt, I. (2007) Does the A·T or G·C base-pair possess enhanced stability? Quantifying the effects of CH⋯O interactions and secondary interactions on base-pair stability using a phenomenological analysis and ab initio calculations. J. Am. Chem. Soc. 129, 934–941. – reference: 90) Aoyama, Y. (1991) Molecular recognition of biorelevant molecules via hydrogen bonding. Nippon Kagaku Kaishi 1991, 1041–1049 (in Japanese). – reference: 67) Nakatani, K., Sando, S., Kumasawa, H., Kikuchi, J. and Saito, I. (2001) Recognition of guanine-guanine mismatch by dimeric form of 2-amino-1,8-naphthyridine. J. Am. Chem. Soc. 123, 12650–12657. – reference: 61) Matsumoto, J., Li, J., Dohno, C. and Nakatani, K. (2016) Synthesis of 1H-pyrrolo[3,2-h]quinoline-8-amine derivatives that target CTG trinucleotide repeats. Bioorg. Med. Chem. Lett. 26, 3761–3764. – reference: 49) Salinas-Rios, V., Belotserkovskii, B.P. and Hanawalt, P.C. (2011) DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res. 39, 7444–7454. – reference: 24) Sato, N., Amino, T., Kobayashi, K., Asakawa, S., Ishiguro, T., Tsunemi, T. et al. (2009) Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am. J. Hum. Genet. 85, 544–557. – reference: 78) Park, T.K., Schroeder, J. and Rebek, J. (1991) New molecular complements to imides — complexation of thymine derivatives. J. Am. Chem. Soc. 113, 5125–5127. – reference: 18) Taylor, J.P., Hardy, J. and Fischbeck, K.H. (2002) Biomedicine - Toxic proteins in neurodegenerative disease. Science 296, 1991–1995. – reference: 55) Peng, T. and Nakatani, K. (2005) Binding of naphthyridine carbamate dimer to the (CGG)n repeat resulted in the disruption of the G-C base pairing. Angew. Chem. Int. Ed. 44, 7280–7283. – reference: 81) Murray, T.J., Zimmerman, S.C. and Kolotuchin, S.V. (1995) Synthesis of heterocyclic-compounds containing 3 contiguous hydrogen-bonding sites in all possible arrangements. Tetrahedron 51, 635–648. – reference: 97) Takei, F., Igarashi, M., Hagihara, M., Oka, Y., Soya, Y. and Nakatani, K. (2009) Secondary structure-inducible ligand fluorescence coupled with PCR. Angew. Chem. Int. Ed. 48, 7822–7824. – reference: 63) Li, J., Nakamori, M., Matsumoto, J., Murata, A., Dohno, C., Kiliszek, A. et al. (2018) A dimeric 2,9-diamino-1,10-phenanthroline derivative improves alternative splicing in myotonic dystrophy type 1 cell and mouse models. Chemistry 24, 18115–18122. – reference: 105) Fukuzumi, T., Murata, A., Aikawa, H., Harada, Y. and Nakatani, K. (2015) Exploratory study on the RNA-binding structural motifs by library screening targeting pre-miRNA-29a. Chemistry 21, 16859–16867. – reference: 28) Mulders, S.A.M., van den Broek, W.J.A.A., Wheeler, T.M., Croes, H.J.E., van Kuik-Romeijn, P., de Kimpe, S.J. et al. (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc. Natl. Acad. Sci. U.S.A. 106, 13915–13920. – reference: 66) Nakatani, K., Sando, S. and Saito, I. (2001) Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance assay. Nat. Biotechnol. 19, 51–55. – reference: 106) Pranata, J., Wierschke, S.G. and Jorgensen, W.L. (1991) OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. J. Am. Chem. Soc. 113, 2810–2819. – reference: 5) Counter, C.M., Avilion, A.A., Lefeuvre, C.E., Stewart, N.G., Greider, C.W., Harley, C.B. et al. (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929. – reference: 35) Marti, E. (2016) RNA toxicity induced by expanded CAG repeats in Huntington’s disease. Brain Pathol. 26, 779–786. – reference: 48) Bates, G.P., Mangiarini, L., Mahal, A. and Davies, S.W. (1997) Transgenic models of Hungtington’s disease. Hum. Mol. Genet. 6, 1633–1637. – reference: 51) Mori, K., Weng, S.M., Arzberger, T., May, S., Rentzsch, K., Kremmer, E. et al. (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338. – reference: 19) Ross, C.A. and Poirier, M.A. (2004) Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10–S17. – reference: 73) Slupphaug, G., Mol, C.D., Kavli, B., Arvai, A.S., Krokan, H.E. and Tainer, J.A. (1996) A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87–92. – reference: 75) Rebek, J., Askew, B., Ballester, P., Buhr, C., Jones, S., Nemeth, D. et al. (1987) Molecular recognition: hydrogen bonding and stacking interactions stabilize a model for nucleic acid structure. J. Am. Chem. Soc. 109, 5033–5035. – reference: 47) Sathasivam, K., Amaechi, I., Mangiarini, L. and Bates, G. (1997) Identification of an HD patient with a (CAG)180 repeat expansion and the propagation of highly expanded CAG repeats in lambda phage. Hum. Genet. 99, 692–695. – reference: 53) Cleary, J.D. and Ranum, L.P.W. (2013) Repeat-associated non-ATG (RAN) translation in neurological disease. Hum. Mol. Genet. 22, R45–R51. – reference: 20) Ross, C.A. and Tabrizi, S.J. (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98. – reference: 37) Sinden, R.R., Pytlos-Sinden, M.J. and Potaman, V.N. (2007) Slipped strand DNA structures. Front. Biosci. (Landmark Ed.) 12, 4788–4799. – reference: 15) Macdonald, M.E., Ambrose, C.M., Duyao, M.P., Myers, R.H., Lin, C., Srinidhi, L. et al. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on huntingtons-disease chromosomes. Cell 72, 971–983. – reference: 114) Nguyen, L., Luu, L.M., Peng, S.H., Serrano, J.F., Chan, H.Y.E. and Zimmerman, S.C. (2015) Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1. J. Am. Chem. Soc. 137, 14180–14189. – reference: 91) Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. and Cech, T.R. (1993) Metal-ion catalysis in the tetrahymena ribozyme reaction. Nature 361, 85–88. – reference: 1) Sutherland, G.R. and Richards, R.I. (1995) Simple tandem DNA repeats and human genetic-disease. Proc. Natl. Acad. Sci. U.S.A. 92, 3636–3641. – reference: 92) Pyle, A.M. (1993) Ribozymes — A distinct class of metalloenzymes. Science 261, 709–714. – reference: 33) Belzil, V.V., Gendron, T.F. and Petrucelli, L. (2013) RNA-mediated toxicity in neurodegenerative disease. Mol. Cell. Neurosci. 56, 406–419. – reference: 112) Arambula, J.F., Ramisetty, S.R., Baranger, A.M. and Zimmerman, S.C. (2009) A simple ligand that selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding. Proc. Natl. Acad. Sci. U.S.A. 106, 16068–16073. – reference: 79) Chang, S.K., Vanengen, D., Fan, E. and Hamilton, A.D. (1991) Hydrogen-bonding and molecular recognition — synthetic, complexation, and structural studies on barbiturate binding to an artificial receptor. J. Am. Chem. Soc. 113, 7640–7645. – reference: 64) Matsumoto, J., Nakamori, M., Okamoto, T., Murata, A., Dohno, C. and Nakatani, K. (2020) The dimeric form of 1,3-diaminoisoquinoline derivative rescued the mis-splicing of Atp2a1 and Clcn1 genes in myotonic dystrophy type 1 mouse model. Chemistry 26, 14305–14309. – reference: 62) Li, J., Matsumoto, J., Bai, L.-P., Murata, A., Dohno, C. and Nakatani, K. (2016) A Ligand that targets CUG trinucleotide repeats. Chemistry 22, 14881–14889. – reference: 42) Nakatani, K., Hagihara, S., Goto, Y., Kobori, A., Hagihara, M., Hayashi, G. et al. (2005) Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats. Nat. Chem. Biol. 1, 39–43. – reference: 27) Renton, A.E., Majounie, E., Waite, A., Simon-Sanchez, J. and Rollinson, S. (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268. – reference: 109) Boehr, D.D., Nussinov, R. and Wright, P.E. (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796. – reference: 17) Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C. et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506. – reference: 14) Gu, U. and Nelson, D.L. (2003) FMR2 function: insight from a mouse knockout model. Cytogenet. Genome Res. 100, 129–139. – reference: 26) DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J. et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256. – reference: 34) Jiang, J., Zhu, Q., Gendron, T.F., Saberi, S., McAlonis-Downes, M., Seelman, A. et al. (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550. – reference: 101) Das, B., Murata, A. and Nakatani, K. (2021) A small-molecule fluorescence probe ANP77 for sensing RNA internal loop of C, U, and A/CC motifs and their binding molecules. Nucleic Acids Res. 49, 8462–8470. – reference: 50) Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D. et al. (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. U.S.A. 108, 260–265. – reference: 4) Harley, C.B., Futcher, A.B. and Greider, C.W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460. – ident: 15 doi: 10.1016/0092-8674(93)90585-E – ident: 92 doi: 10.1126/science.7688142 – ident: 114 doi: 10.1021/jacs.5b09266 – ident: 28 doi: 10.1073/pnas.0905780106 – ident: 55 doi: 10.1002/anie.200502282 – start-page: 905 issn: 0092-8674 year: 1991 ident: 9 publication-title: Cell doi: 10.1016/0092-8674(91)90397-H – ident: 33 doi: 10.1016/j.mcn.2012.12.006 – ident: 60 doi: 10.1016/j.bbrc.2019.06.061 – ident: 87 doi: 10.1021/ja00036a079 – start-page: 639 issn: 0896-6273 year: 2013 ident: 52 publication-title: Neuron doi: 10.1016/j.neuron.2013.02.004 – ident: 16 doi: 10.1038/ng0893-387 – ident: 5 doi: 10.1002/j.1460-2075.1992.tb05245.x – ident: 17 doi: 10.1016/S0092-8674(00)81369-0 – ident: 7 doi: 10.1093/nar/25.12.2245 – ident: 58 doi: 10.1002/chem.201304683 – ident: 97 doi: 10.1002/anie.200902449 – ident: 75 doi: 10.1021/ja00250a051 – ident: 59 doi: 10.1038/s41467-020-20487-4 – ident: 64 doi: 10.1002/chem.202001572 – ident: 69 doi: 10.1093/nar/gkr1148 – ident: 39 doi: 10.1093/nar/26.3.816 – ident: 117 doi: 10.1039/D0CS01261K – ident: 90 doi: 10.1246/nikkashi.1991.1041 – ident: 94 doi: 10.1007/s00216-007-1323-y – ident: 37 doi: 10.2741/2427 – ident: 102 doi: 10.1021/ja100089u – ident: 41 doi: 10.1093/nar/gkh171 – ident: 30 doi: 10.1515/hsz-2012-0218 – ident: 53 doi: 10.1093/hmg/ddt371 – ident: 20 doi: 10.1016/S1474-4422(10)70245-3 – ident: 66 doi: 10.1038/83505 – ident: 63 doi: 10.1002/chem.201804368 – ident: 80 doi: 10.1021/ja00061a061 – ident: 38 doi: 10.1074/jbc.271.6.2875 – start-page: 415 issn: 0896-6273 year: 2013 ident: 31 publication-title: Neuron doi: 10.1016/j.neuron.2013.10.015 – ident: 50 doi: 10.1073/pnas.1013343108 – ident: 112 doi: 10.1073/pnas.0901824106 – ident: 100 doi: 10.1002/asia.201701293 – start-page: 569 issn: 0028-0836 year: 1991 ident: 3 publication-title: ?Nature doi: 10.1038/350569a0 – start-page: 245 issn: 0896-6273 year: 2011 ident: 26 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.011 – ident: 103 doi: 10.1002/chem.201103932 – start-page: 458 issn: 0028-0836 year: 1990 ident: 4 publication-title: ?Nature doi: 10.1038/345458a0 – ident: 68 doi: 10.1021/ja992956j – ident: 82 doi: 10.1002/anie.199521631 – ident: 109 doi: 10.1038/nchembio.232 – ident: 116 doi: 10.1039/D0CS00455C – ident: 42 doi: 10.1038/nchembio708 – ident: 56 doi: 10.1002/anie.201100075 – ident: 61 doi: 10.1016/j.bmcl.2016.05.062 – ident: 6 doi: 10.1038/nature05977 – ident: 24 doi: 10.1016/j.ajhg.2009.09.019 – ident: 96 doi: 10.1002/chem.200601496 – ident: 115 doi: 10.1039/D0CS00560F – ident: 44 doi: 10.1002/asia.201600527 – start-page: 817 issn: 0092-8674 year: 1991 ident: 11 publication-title: Cell doi: 10.1016/0092-8674(91)90125-I – ident: 57 doi: 10.1016/j.bmcl.2012.01.030 – ident: 84 doi: 10.1002/hlca.19970800314 – ident: 118 doi: 10.1016/j.ymeth.2019.05.006 – ident: 88 doi: 10.1021/ja981884d – ident: 111 – ident: 18 doi: 10.1126/science.1067122 – start-page: 1047 issn: 0092-8674 year: 1991 ident: 10 publication-title: Cell doi: 10.1016/0092-8674(91)90283-5 – ident: 81 doi: 10.1016/0040-4020(94)00922-H – ident: 34 doi: 10.1016/j.neuron.2016.04.006 – ident: 85 doi: 10.1021/jo982138u – ident: 120 doi: 10.1021/acs.jmedchem.8b00741 – ident: 2 doi: 10.1073/pnas.85.18.6622 – ident: 76 doi: 10.1021/ja00202a077 – ident: 14 doi: 10.1159/000072847 – start-page: 799 issn: 0092-8674 year: 1992 ident: 21 publication-title: Cell doi: 10.1016/0092-8674(92)90154-5 – ident: 107 doi: 10.1021/ja00036a079 – ident: 98 doi: 10.1002/cbic.201200266 – ident: 72 doi: 10.1039/c1cs15062f – ident: 74 doi: 10.1021/ja00250a052 – ident: 47 doi: 10.1007/s004390050432 – ident: 1 doi: 10.1073/pnas.92.9.3636 – ident: 93 doi: 10.1021/ja037947w – ident: 51 doi: 10.1126/science.1232927 – ident: 35 doi: 10.1111/bpa.12427 – ident: 71 doi: 10.1007/978-1-4612-5190-3 – ident: 23 doi: 10.1126/science.1546326 – ident: 105 doi: 10.1002/chem.201502913 – ident: 113 doi: 10.1093/nar/gkt330 – ident: 89 doi: 10.1021/ja00192a039 – ident: 65 doi: 10.1246/bcsj.82.1055 – ident: 46 doi: 10.1073/pnas.1311325110 – ident: 29 doi: 10.1093/hmg/ddr299 – ident: 86 doi: 10.1002/(SICI)1521-3765(19990903)5:9<2762::AID-CHEM2762>3.0.CO;2-F – ident: 67 doi: 10.1021/ja0109186 – ident: 110 doi: 10.1021/bi3006913 – ident: 8 doi: 10.1146/annurev.neuro.29.051605.113042 – start-page: 85 issn: 0028-0836 year: 1993 ident: 91 publication-title: ?Nature doi: 10.1038/361085a0 – ident: 40 doi: 10.1021/bi972546c – ident: 83 doi: 10.1021/jo960612v – ident: 95 doi: 10.1016/j.bmc.2005.04.035 – ident: 73 doi: 10.1038/384087a0 – ident: 22 doi: 10.1126/science.1546325 – ident: 12 doi: 10.1016/0092-8674(93)90300-F – ident: 43 doi: 10.1002/cbic.201100260 – ident: 70 doi: 10.1093/nar/gkz832 – ident: 104 doi: 10.1016/j.bmc.2013.09.007 – start-page: 57 issn: 0028-0836 year: 2012 ident: 119 publication-title: ?Nature doi: 10.1038/nature11247 – ident: 108 doi: 10.1021/ja066341f – ident: 62 doi: 10.1002/chem.201602741 – ident: 13 doi: 10.1038/ng0596-105 – ident: 25 doi: 10.1016/j.neuron.2017.02.046 – start-page: 257 issn: 0896-6273 year: 2011 ident: 27 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.010 – ident: 77 doi: 10.1021/ja00001a028 – ident: 79 doi: 10.1021/ja00020a027 – ident: 36 – ident: 49 doi: 10.1093/nar/gkr429 – ident: 101 doi: 10.1093/nar/gkab650 – ident: 54 doi: 10.1016/j.bmcl.2004.11.003 – ident: 45 doi: 10.1038/s41588-019-0575-8 – ident: 19 doi: 10.1038/nm1066 – ident: 99 doi: 10.1039/C6CC08947J – ident: 106 doi: 10.1021/ja00008a002 – ident: 78 doi: 10.1021/ja00013a093 – ident: 32 doi: 10.1038/cddis.2013.276 – ident: 48 doi: 10.1093/hmg/6.10.1633 |
SSID | ssj0032581 |
Score | 2.430769 |
Snippet | The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30 |
SubjectTerms | Ataxia Binding Biocompatibility Brain research Chemists Deoxyribonucleic acid DNA expansion Fibroblasts Gene sequencing Genes Genomes hairpin Humans Huntington's disease Huntingtons disease mismatch Myotonic dystrophy Myotonic Dystrophy - genetics Nervous System Diseases Neurological diseases Nucleotide sequence Organic chemistry Organic compounds Polyglutamine Proteins Review Ribonucleic acid RNA RNA-binding protein small molecule Spinocerebellar Ataxias - genetics trinucleotide repeat Trinucleotide repeat diseases Trinucleotide Repeat Expansion Trinucleotide repeats X chromosomes |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEB-0Kngp9XttlQg9CWt3k-xmcyqtWEpB6cHCuy35Wm2xu8_u68H_3pndvOiT4iUQdhZCJsn8JjOZH8B-J3xZm8rkdSibXEpf5o3h2HBP1bdc0JYeOH_-Up9eyLNFtYgXbmNMq1yfidNB7QdHd-QHvCbmaXS_1eHyZ06sURRdjRQa9-HBVLoM17NaJIdL8GoiKS1EU-ecF838Po9AwcHyytgPmvIoxYZFeniFoOxbuAtv_ps2-ZcdOtmB7Qgg2dGs8SdwL_RP4dFMKfnrGYTzYYwZr-gDM9N75tZ8KSMbOjZeY49dz6y4gc2sTo5RajkxLI0MUSxDVMhSCjr9dROW2GMxnDM-h4uTT18_nuaRSiF3qqpWuQnGaIum2vlCKBesEt7ZRlmEC07LDlGTM9JWgYfSNAW36Dh1lnfGC6d0ZcUL2OqHPrwCViplpXHa1MrLUnZac8OFQJzo0bVyMoP36-lsXawzTnQXP1r0N2juW5r7VjdUljSD_SS8nMtr3C12OOslCcV9lYRKas7PjjRa3OO2EEmAHq_hCZDB3lqhbdylY_tnTWXwLn3G_UVBE9OH4ZZkykYXEnFeBi9n_adBUFBWFFxnoDZWRhKg2t2bX_rL71MNb-J4r0Tx-v_D2oXHnJ5bTFc-e7C1urkNbxAErezbaaX_Bp3tCno priority: 102 providerName: ProQuest |
Title | Possibilities and challenges of small molecule organic compounds for the treatment of repeat diseases |
URI | https://www.jstage.jst.go.jp/article/pjab/98/1/98_PJA9801B-03/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/35013029 https://www.proquest.com/docview/2622299337 https://www.proquest.com/docview/2618904172 https://pubmed.ncbi.nlm.nih.gov/PMC8795530 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Proceedings of the Japan Academy, Series B, 2022/01/11, Vol.98(1), pp.30-48 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71AagXxKsQKCsj9YSUkthOHB9Q1UKXUtRqhVipt8h2HKBqs8tmK9F_z0xe0GpPXCxZHkuRZ5z5xh7PB7BbiiJOTWLC1MdZKGURh5nh2PCCqm85ry09cD49S4-n8uQ8OV-DnoyzW8B6ZWhHfFLTxeXe7183-7jh31MaM1rku_mFsXuaciLFOmyiS0opCjuVw3WC4EnDVhqJLA05j7L2od7dyVvwgK7ZRNTgzb9e6t4FArXvfhUGvZtK-Y9vGj-Chx2oZAetFTyGNV89gfstzeTNU_CTWd1lwWJczExVMNdzqNRsVrL6CnvsqmXK9axlenKM0s2JdalmiGwZIkU2pKXTrIWfY491Vzz1M5iOj759OA47eoXQqSRZhsYboy26b1dEQjlvlSiczZRFCOG0LBFJOSNt4rmPTRZxi8FUaXlpCuGUTqzYho1qVvkXwGKlrDROm1QVMpal1txwIRA7FhhuORnA2345c9fVHicKjMscYxBSQ05qyHVGpUoD2B2E523JjdVi-61eBqFurw1CMTWTkwONXvgwj8QgQA_a8K8QwE6v0Lw3vJynxHCuhVABvBmGcc_RRYqp_OyaZOJMRxKxXwDPW_0PH9FbUADqlmUMAlTP-_ZI9fNHU9ebeN8TEb3875mvYIvT64zmhGgHNpaLa_8aMdPSjmBdnStss_GnEWweHp1NvmLv4-cvo-YUYtTslz-fRB90 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VLQheEDeBAkYqL0ihie0cfqiqFlptr9UKtVLfUl8BKppdmq1Q_xy_jZnNAYsq3vpiyfIksnzNN_bMfACrpXBxqhMdpj7OQyldHOaaY8EdZd-yXhkKcD4cpcNjuXeSnCzBry4WhtwquzNxflC7iaU78jWeEvM0mt_ZxvRHSKxR9LraUWjollrBrc9TjLWBHfv-6ieacPX67iec73ec72wffRyGLctAaLMkmYXaa60MajHrIpFZbzLhrMkzg5rUKlkioLBamsRzH-s84gZtitLwUjthM5UYgf-9BcuSIlwHsLy1PRp_7nSB4MmcJjUSeRpyHuVNhCDBkrXpmTYfFHlyigWdePsMYeEXfx3i_ddx8y9NuPMA7rcQlm02a-4hLPnqEdxpSC2vHoMfT-rW5xatcKYrx2zH2FKzScnqc6yx84aX17OGV8oycm4njqeaIY5miEtZ7wRPX134KdZY-6BUP4HjGxnmpzCoJpV_DizOMiO1VTrNnIxlqRTXXAhEqg6NOysDeN8NZ2HbTOdEuPG9QIuHxr6gsS9UTolRA1jthadNgo_rxTaaeemF2p3dC8VUjPc2Fer8rSISvQCFz-EZFMBKN6FFe07UxZ9VHcDbvhl3OD3b6MpPLkkmzlUkEWkG8KyZ_74T9CwsIq4CyBZWRi9A2cMXW6pvX-dZxIllPhHRi_936w3cHR4dHhQHu6P9l3CPU_DH_AJqBQazi0v_CiHZzLxu1z2D05vear8B5WFP1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKFhAXxJtAASOVC1LYxHbi-FBVLe2qD1itEJV6S_0KUNHs0myF-hf5VcxsnMCiilsvlixPIsuv-caemY-Q9Yq7NNeZjnOfFrEQLo0LzaBgDrNvWa8MBjh_HOd7R-LgODteIb-6WBh0q-zOxMVB7aYW78iHLEfmaTC_5bAKbhGTndHm7EeMDFL40trRaehAs-A2FunGQpDHob_8CeZcs7G_A3P_hrHR7uf3e3FgHIitzLJ5rL3WyoBGsy7h0nojubOmkAa0qlWiAnBhtTCZZz7VRcIM2BeVYZV23EqVGQ7_vUFWJWhJMSCr27vjyadOL3CWLShTE17kMWNJ0UYLIkQZzk61eafQq5Mv6cebpwARv_ir0O-_Tpx_acXRPXI3wFm61a6_-2TF1w_IrZbg8vIh8ZNpE_xvwSKnunbUduwtDZ1WtDmDGj1rOXo9bTmmLEVHd-R7aihgagoYlfYO8fjVuZ9BjYbHpeYRObqWYX5MBvW09k8JTaU0Qlulc-lEKiqlmGacA2p1YOhZEZG33XCWNmQ9R_KN7yVYPzj2JY59qQpMkhqR9V541ib7uFpss52XXijs8l4oxWJysKVA_2-XCe8FMJQOzqOIrHUTWoYzoyn_rPCIvO6bYbfjE46u_fQCZdJCJQJQZ0SetPPfdwKfiHnCVETk0sroBTCT-HJL_e3rIqM4Ms5nPHn2_269Irdhy5Uf9seHz8kdhnEgi7uoNTKYn1_4F4DO5uZlWPaUnFz3TvsNDHNUAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possibilities+and+challenges+of+small+molecule+organic+compounds+for+the+treatment+of+repeat+diseases&rft.jtitle=Proceedings+of+the+Japan+Academy.+Series+B.+Physical+and+biological+sciences&rft.au=NAKATANI%2C+Kazuhiko&rft.date=2022-01-01&rft.pub=The+Japan+Academy&rft.issn=0386-2208&rft.eissn=1349-2896&rft.volume=98&rft.issue=1&rft.spage=30&rft.epage=48&rft_id=info:doi/10.2183%2Fpjab.98.003&rft_id=info%3Apmid%2F35013029&rft.externalDocID=PMC8795530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-2208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-2208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-2208&client=summon |