Machine Learning‐Based Denoising of Surface Solar Irradiance Simulated With Monte Carlo Ray Tracing
Simulating radiative transfer in the atmosphere with Monte Carlo ray tracing provides realistic surface irradiance in cloud‐resolving models. However, Monte Carlo methods are computationally expensive because large sampling budgets are required to obtain sufficient convergence. Here, we explore the...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.09.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Simulating radiative transfer in the atmosphere with Monte Carlo ray tracing provides realistic surface irradiance in cloud‐resolving models. However, Monte Carlo methods are computationally expensive because large sampling budgets are required to obtain sufficient convergence. Here, we explore the use of machine learning for denoising direct and diffuse surface solar irradiance fields. We use Monte Carlo ray tracing to compute pairs of noisy and well‐converged surface irradiance fields for an ensemble of cumulus cloud fields and solar angles, and train a denoising autoencoder to predict the well‐converged irradiance fields from the noisy input. We demonstrate that denoising diffuse irradiance from 1 sample per pixel (per spectral quadrature point) is an order of magnitude faster and twice as accurate as ray tracing with 128 samples per pixel, illustrating the advantage of denoising over larger sampling budgets. Denoising of direct irradiance is effective in sunlit areas, while errors persist on the edges of cloud shadows. For diffuse irradiance, providing additional atmospheric information such as liquid water paths and solar angles to train the denoising algorithm reduces errors by approximately a factor of two. Our results open up possibilities for coupled Monte Carlo ray tracing with computational costs approaching those of two‐stream‐based radiative transfer solvers, although future work is needed to improve generalization across resolutions and cloud types.
As atmospheric models move toward higher resolutions and the demand for solar energy forecasts increases, there is an urgent need for accurate modeling of solar radiation. One of the most accurate techniques to simulate the transfer of radiation through the atmosphere is Monte Carlo ray tracing. However, this technique requires many computational resources, limiting its application in operational contexts. This problem has been extensively researched in the movie and gaming industry, where state‐of‐the‐art solutions use machine learning algorithms to approximate illumination in artificial scenes. Here, we explore the use of these algorithms in the context of atmospheric modeling, with a focus on incoming solar radiation under broken clouds. Using this approach, we are able to deliver close approximations of realistic surface irradiance at a fraction of the original computational cost.
We train a denoising autoencoder for Monte Carlo ray tracing estimates of surface solar irradiance fields below cumulus clouds Denoising diffuse irradiance exceeds accuracy of higher sampling budgets that require over tenfold the computational cost Denoising direct irradiance is effective in sunlit areas but significant noise remains near cloud shadow edges |
---|---|
AbstractList | Simulating radiative transfer in the atmosphere with Monte Carlo ray tracing provides realistic surface irradiance in cloud‐resolving models. However, Monte Carlo methods are computationally expensive because large sampling budgets are required to obtain sufficient convergence. Here, we explore the use of machine learning for denoising direct and diffuse surface solar irradiance fields. We use Monte Carlo ray tracing to compute pairs of noisy and well‐converged surface irradiance fields for an ensemble of cumulus cloud fields and solar angles, and train a denoising autoencoder to predict the well‐converged irradiance fields from the noisy input. We demonstrate that denoising diffuse irradiance from 1 sample per pixel (per spectral quadrature point) is an order of magnitude faster and twice as accurate as ray tracing with 128 samples per pixel, illustrating the advantage of denoising over larger sampling budgets. Denoising of direct irradiance is effective in sunlit areas, while errors persist on the edges of cloud shadows. For diffuse irradiance, providing additional atmospheric information such as liquid water paths and solar angles to train the denoising algorithm reduces errors by approximately a factor of two. Our results open up possibilities for coupled Monte Carlo ray tracing with computational costs approaching those of two‐stream‐based radiative transfer solvers, although future work is needed to improve generalization across resolutions and cloud types.
As atmospheric models move toward higher resolutions and the demand for solar energy forecasts increases, there is an urgent need for accurate modeling of solar radiation. One of the most accurate techniques to simulate the transfer of radiation through the atmosphere is Monte Carlo ray tracing. However, this technique requires many computational resources, limiting its application in operational contexts. This problem has been extensively researched in the movie and gaming industry, where state‐of‐the‐art solutions use machine learning algorithms to approximate illumination in artificial scenes. Here, we explore the use of these algorithms in the context of atmospheric modeling, with a focus on incoming solar radiation under broken clouds. Using this approach, we are able to deliver close approximations of realistic surface irradiance at a fraction of the original computational cost.
We train a denoising autoencoder for Monte Carlo ray tracing estimates of surface solar irradiance fields below cumulus clouds Denoising diffuse irradiance exceeds accuracy of higher sampling budgets that require over tenfold the computational cost Denoising direct irradiance is effective in sunlit areas but significant noise remains near cloud shadow edges |
Author | Reeze, M. van Heerwaarden, C. C. Veerman, M. A. |
Author_xml | – sequence: 1 givenname: M. surname: Reeze fullname: Reeze, M. organization: Meteorology and Air Quality Group Wageningen University & Research Wageningen The Netherlands – sequence: 2 givenname: M. A. orcidid: 0000-0002-4869-3948 surname: Veerman fullname: Veerman, M. A. organization: Meteorology and Air Quality Group Wageningen University & Research Wageningen The Netherlands – sequence: 3 givenname: C. C. orcidid: 0000-0001-7202-3525 surname: van Heerwaarden fullname: van Heerwaarden, C. C. organization: Meteorology and Air Quality Group Wageningen University & Research Wageningen The Netherlands |
BookMark | eNpNkEtOwzAURS1UJErpjAV4AQT8qeN4COXTolZItBLD6MV-oUGpjex00BlLYI2shFQw6OheHV2dwT0nAx88EnLJ2TVnwtwIJibPM8aY4uqEDIUxMlOCs8FRPyPjlD76jZSCFUwPCS7BbhqPdIEQfePff76-7yCho_foQ5N6QkNNV7tYg0W6Ci1EOo8RXAP-AJrtroWu37813YYug--QTiG2gb7Cnq4j2F5xQU5raBOO_3NE1o8P6-ksW7w8zae3i8xqpTINmEOVC1cbkLl1WlvuuC5QGKUkt3ICGqUxylWY164q6kJYzZ0GXSknUY7I1Z_WxpBSxLr8jM0W4r7krDycVB6fJH8BswRcoQ |
Cites_doi | 10.1002/2016JD024875 10.1029/98JD00080 10.1029/2018MS001602 10.1029/2022MS003262 10.1029/2021MS002550 10.1186/s42492‐019‐0016‐7 10.3894/JAMES.2009.1.1 10.1109/ICCV.1998.710815 10.1029/2019MS001621 10.1029/2023MS003674 10.1002/qj.4712 10.1175/1520‐0469(1999)056<4206:EOCHOS>2.0.CO;2 10.1109/TIP.2003.819861 10.1109/tip.2017.2662206 10.1029/2020GL090152 10.1175/1520‐0469(1996)053<0858:SRTMFC>2.0.CO;2 10.1103/PhysRevLett.126.098302 10.1029/2022GL098274 10.1111/cgf.13473 10.1145/3072959.3073601 10.1145/3450626.3459793 10.1029/2022GL100808 10.1109/CVPR.2016.90 10.1145/3072959.3073708 10.18174/634325 10.3390/rs11171962 10.1016/j.neunet.2020.07.025 10.1109/83.862633 10.1175/JAMC‐D‐14‐0288.1 10.1029/2022JD036822 10.1029/2010JD014593 10.1175/JAMC‐D‐12‐0227.1 10.1175/JAS‐D‐19‐0261.1 10.5194/acp‐24‐10567‐2024 10.1016/0167‐2789(92)90242‐F 10.1145/3306307.3328150 10.5281/zenodo.15649286 10.1175/BAMS‐86‐9‐1275 10.1175/2008JAMC1842.1 10.1007/s41095‐021‐0209‐9 10.1029/95JD02895 10.5194/acp‐24‐11391‐2024 10.5194/gmd‐10‐3145‐2017 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1029/2024JH000515 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
ExternalDocumentID | 10_1029_2024JH000515 |
GroupedDBID | 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E WIN |
ID | FETCH-LOGICAL-c755-7ae6ab62df9a36cd77c1d178e295531c34a7e3995dbe6fdb8f82c71d7a7b5d3e3 |
ISSN | 2993-5210 |
IngestDate | Thu Jul 31 00:07:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c755-7ae6ab62df9a36cd77c1d178e295531c34a7e3995dbe6fdb8f82c71d7a7b5d3e3 |
ORCID | 0000-0002-4869-3948 0000-0001-7202-3525 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024JH000515 |
ParticipantIDs | crossref_primary_10_1029_2024JH000515 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
References | e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 Buades A. (e_1_2_7_5_1) 2005 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 He K. (e_1_2_7_16_1) 2016 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 Veerman M. A. (e_1_2_7_40_1) 2023 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Dahlberg H. (e_1_2_7_10_1) 2019 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – ident: e_1_2_7_18_1 doi: 10.1002/2016JD024875 – ident: e_1_2_7_49_1 doi: 10.1029/98JD00080 – ident: e_1_2_7_43_1 doi: 10.1029/2018MS001602 – ident: e_1_2_7_35_1 doi: 10.1029/2022MS003262 – ident: e_1_2_7_28_1 doi: 10.1029/2021MS002550 – ident: e_1_2_7_11_1 doi: 10.1186/s42492‐019‐0016‐7 – ident: e_1_2_7_31_1 doi: 10.3894/JAMES.2009.1.1 – ident: e_1_2_7_37_1 doi: 10.1109/ICCV.1998.710815 – ident: e_1_2_7_30_1 doi: 10.1029/2019MS001621 – ident: e_1_2_7_42_1 doi: 10.1029/2023MS003674 – ident: e_1_2_7_29_1 doi: 10.1002/qj.4712 – ident: e_1_2_7_39_1 doi: 10.1175/1520‐0469(1999)056<4206:EOCHOS>2.0.CO;2 – ident: e_1_2_7_44_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_7_48_1 doi: 10.1109/tip.2017.2662206 – ident: e_1_2_7_25_1 – ident: e_1_2_7_13_1 doi: 10.1029/2020GL090152 – ident: e_1_2_7_22_1 – ident: e_1_2_7_12_1 doi: 10.1175/1520‐0469(1996)053<0858:SRTMFC>2.0.CO;2 – ident: e_1_2_7_4_1 doi: 10.1103/PhysRevLett.126.098302 – ident: e_1_2_7_47_1 doi: 10.1029/2022GL098274 – ident: e_1_2_7_23_1 doi: 10.1111/cgf.13473 – ident: e_1_2_7_8_1 doi: 10.1145/3072959.3073601 – ident: e_1_2_7_20_1 doi: 10.1145/3450626.3459793 – ident: e_1_2_7_41_1 doi: 10.1029/2022GL100808 – start-page: 770 volume-title: 2016 IEEE conference on computer vision and pattern recognition (CVPR) year: 2016 ident: e_1_2_7_16_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_7_2_1 doi: 10.1145/3072959.3073708 – volume-title: Simulating sunshine on cloudy days year: 2023 ident: e_1_2_7_40_1 doi: 10.18174/634325 – ident: e_1_2_7_27_1 doi: 10.3390/rs11171962 – ident: e_1_2_7_34_1 doi: 10.1016/j.neunet.2020.07.025 – ident: e_1_2_7_9_1 doi: 10.1109/83.862633 – ident: e_1_2_7_6_1 doi: 10.1175/JAMC‐D‐14‐0288.1 – ident: e_1_2_7_15_1 doi: 10.1029/2022JD036822 – ident: e_1_2_7_3_1 doi: 10.1029/2010JD014593 – ident: e_1_2_7_46_1 doi: 10.1175/JAMC‐D‐12‐0227.1 – ident: e_1_2_7_14_1 doi: 10.1175/JAS‐D‐19‐0261.1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_36_1 doi: 10.5194/acp‐24‐10567‐2024 – ident: e_1_2_7_33_1 doi: 10.1016/0167‐2789(92)90242‐F – volume-title: Machine‐learning denoising in feature film production year: 2019 ident: e_1_2_7_10_1 doi: 10.1145/3306307.3328150 – ident: e_1_2_7_32_1 doi: 10.5281/zenodo.15649286 – ident: e_1_2_7_7_1 doi: 10.1175/BAMS‐86‐9‐1275 – ident: e_1_2_7_45_1 doi: 10.1175/2008JAMC1842.1 – start-page: 60 volume-title: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) year: 2005 ident: e_1_2_7_5_1 – ident: e_1_2_7_19_1 doi: 10.1007/s41095‐021‐0209‐9 – ident: e_1_2_7_26_1 doi: 10.1029/95JD02895 – ident: e_1_2_7_17_1 doi: 10.5194/acp‐24‐11391‐2024 – ident: e_1_2_7_38_1 doi: 10.5194/gmd‐10‐3145‐2017 |
SSID | ssj0003320807 |
Score | 2.3018517 |
Snippet | Simulating radiative transfer in the atmosphere with Monte Carlo ray tracing provides realistic surface irradiance in cloud‐resolving models. However, Monte... |
SourceID | crossref |
SourceType | Index Database |
Title | Machine Learning‐Based Denoising of Surface Solar Irradiance Simulated With Monte Carlo Ray Tracing |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcuGCQID4XPkApyohsZM4PS4rUFmpHJYCe6scZ7ystDRVaIW0B7T3vfAb-SXMOHYaoIcFqYqqSeJEmZeZ8fjNhLHnONuyRa1khL4WoqzQNtIW36sqkabKAGSiHdviXTH9kB2d5Cej0dWAtbRZV7G52FlX8j9aRRnqlapk_0Gz_aAowP-oX9yihnF7LR3PHBMSQpPU05658Ap9EzGMl83ZV09rfr9praa2mzSXHb9tW9eUgARnX-gTXnj8J8rJzqhdFfFAzpvxMdWItNoE9_Z3EHsKzSpo2vcN-hyPw32dh7yLL55bbX5f-D8GuOgy43EQfQRyFR3BOB4f9HIqs5rivm9at95UHsb4G2YtRN7TsrxxE8QbxNChW5OBHTJvncUAhHKnzU8EtUzFi2RHUxeS5lvfFtbz_3B5PRHRLcGLyWJ49g12U-Ccg4zm7Ps2YSelSLry-_4-fSEFDvByOMAgxBnEKvM77LbXDz_oEHOXjWB5j4HXCg9o-Xn5w-GE9zjhjeUeJ9zhhG9xwnuccMIJdzjhDiccccI9Tu6z-ZvX88Np5D-yERmV55HSUOiqELWdaFmYWimT1qkqQUxyNM9GZloBlT_XFRS2rkpbCqPSWmlV5bUE-YDtLZslPGQ8LY1N80JTFV9WTfAlL0uQ0lpIhC6NfsRehMeyWHWtVBa7nv_jax73hN3aIusp21u3G3iGEeK62neZlX2nv18aX2Y4 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning%E2%80%90Based+Denoising+of+Surface+Solar+Irradiance+Simulated+With+Monte+Carlo+Ray+Tracing&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Reeze%2C+M.&rft.au=Veerman%2C+M.+A.&rft.au=van+Heerwaarden%2C+C.+C.&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000515 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |