Machine Learning‐Based Denoising of Surface Solar Irradiance Simulated With Monte Carlo Ray Tracing

Simulating radiative transfer in the atmosphere with Monte Carlo ray tracing provides realistic surface irradiance in cloud‐resolving models. However, Monte Carlo methods are computationally expensive because large sampling budgets are required to obtain sufficient convergence. Here, we explore the...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Reeze, M., Veerman, M. A., van Heerwaarden, C. C.
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text

Cover

Loading…
Abstract Simulating radiative transfer in the atmosphere with Monte Carlo ray tracing provides realistic surface irradiance in cloud‐resolving models. However, Monte Carlo methods are computationally expensive because large sampling budgets are required to obtain sufficient convergence. Here, we explore the use of machine learning for denoising direct and diffuse surface solar irradiance fields. We use Monte Carlo ray tracing to compute pairs of noisy and well‐converged surface irradiance fields for an ensemble of cumulus cloud fields and solar angles, and train a denoising autoencoder to predict the well‐converged irradiance fields from the noisy input. We demonstrate that denoising diffuse irradiance from 1 sample per pixel (per spectral quadrature point) is an order of magnitude faster and twice as accurate as ray tracing with 128 samples per pixel, illustrating the advantage of denoising over larger sampling budgets. Denoising of direct irradiance is effective in sunlit areas, while errors persist on the edges of cloud shadows. For diffuse irradiance, providing additional atmospheric information such as liquid water paths and solar angles to train the denoising algorithm reduces errors by approximately a factor of two. Our results open up possibilities for coupled Monte Carlo ray tracing with computational costs approaching those of two‐stream‐based radiative transfer solvers, although future work is needed to improve generalization across resolutions and cloud types. As atmospheric models move toward higher resolutions and the demand for solar energy forecasts increases, there is an urgent need for accurate modeling of solar radiation. One of the most accurate techniques to simulate the transfer of radiation through the atmosphere is Monte Carlo ray tracing. However, this technique requires many computational resources, limiting its application in operational contexts. This problem has been extensively researched in the movie and gaming industry, where state‐of‐the‐art solutions use machine learning algorithms to approximate illumination in artificial scenes. Here, we explore the use of these algorithms in the context of atmospheric modeling, with a focus on incoming solar radiation under broken clouds. Using this approach, we are able to deliver close approximations of realistic surface irradiance at a fraction of the original computational cost. We train a denoising autoencoder for Monte Carlo ray tracing estimates of surface solar irradiance fields below cumulus clouds Denoising diffuse irradiance exceeds accuracy of higher sampling budgets that require over tenfold the computational cost Denoising direct irradiance is effective in sunlit areas but significant noise remains near cloud shadow edges
AbstractList Simulating radiative transfer in the atmosphere with Monte Carlo ray tracing provides realistic surface irradiance in cloud‐resolving models. However, Monte Carlo methods are computationally expensive because large sampling budgets are required to obtain sufficient convergence. Here, we explore the use of machine learning for denoising direct and diffuse surface solar irradiance fields. We use Monte Carlo ray tracing to compute pairs of noisy and well‐converged surface irradiance fields for an ensemble of cumulus cloud fields and solar angles, and train a denoising autoencoder to predict the well‐converged irradiance fields from the noisy input. We demonstrate that denoising diffuse irradiance from 1 sample per pixel (per spectral quadrature point) is an order of magnitude faster and twice as accurate as ray tracing with 128 samples per pixel, illustrating the advantage of denoising over larger sampling budgets. Denoising of direct irradiance is effective in sunlit areas, while errors persist on the edges of cloud shadows. For diffuse irradiance, providing additional atmospheric information such as liquid water paths and solar angles to train the denoising algorithm reduces errors by approximately a factor of two. Our results open up possibilities for coupled Monte Carlo ray tracing with computational costs approaching those of two‐stream‐based radiative transfer solvers, although future work is needed to improve generalization across resolutions and cloud types. As atmospheric models move toward higher resolutions and the demand for solar energy forecasts increases, there is an urgent need for accurate modeling of solar radiation. One of the most accurate techniques to simulate the transfer of radiation through the atmosphere is Monte Carlo ray tracing. However, this technique requires many computational resources, limiting its application in operational contexts. This problem has been extensively researched in the movie and gaming industry, where state‐of‐the‐art solutions use machine learning algorithms to approximate illumination in artificial scenes. Here, we explore the use of these algorithms in the context of atmospheric modeling, with a focus on incoming solar radiation under broken clouds. Using this approach, we are able to deliver close approximations of realistic surface irradiance at a fraction of the original computational cost. We train a denoising autoencoder for Monte Carlo ray tracing estimates of surface solar irradiance fields below cumulus clouds Denoising diffuse irradiance exceeds accuracy of higher sampling budgets that require over tenfold the computational cost Denoising direct irradiance is effective in sunlit areas but significant noise remains near cloud shadow edges
Author Reeze, M.
van Heerwaarden, C. C.
Veerman, M. A.
Author_xml – sequence: 1
  givenname: M.
  surname: Reeze
  fullname: Reeze, M.
  organization: Meteorology and Air Quality Group Wageningen University & Research Wageningen The Netherlands
– sequence: 2
  givenname: M. A.
  orcidid: 0000-0002-4869-3948
  surname: Veerman
  fullname: Veerman, M. A.
  organization: Meteorology and Air Quality Group Wageningen University & Research Wageningen The Netherlands
– sequence: 3
  givenname: C. C.
  orcidid: 0000-0001-7202-3525
  surname: van Heerwaarden
  fullname: van Heerwaarden, C. C.
  organization: Meteorology and Air Quality Group Wageningen University & Research Wageningen The Netherlands
BookMark eNpNkEtOwzAURS1UJErpjAV4AQT8qeN4COXTolZItBLD6MV-oUGpjex00BlLYI2shFQw6OheHV2dwT0nAx88EnLJ2TVnwtwIJibPM8aY4uqEDIUxMlOCs8FRPyPjlD76jZSCFUwPCS7BbhqPdIEQfePff76-7yCho_foQ5N6QkNNV7tYg0W6Ci1EOo8RXAP-AJrtroWu37813YYug--QTiG2gb7Cnq4j2F5xQU5raBOO_3NE1o8P6-ksW7w8zae3i8xqpTINmEOVC1cbkLl1WlvuuC5QGKUkt3ICGqUxylWY164q6kJYzZ0GXSknUY7I1Z_WxpBSxLr8jM0W4r7krDycVB6fJH8BswRcoQ
Cites_doi 10.1002/2016JD024875
10.1029/98JD00080
10.1029/2018MS001602
10.1029/2022MS003262
10.1029/2021MS002550
10.1186/s42492‐019‐0016‐7
10.3894/JAMES.2009.1.1
10.1109/ICCV.1998.710815
10.1029/2019MS001621
10.1029/2023MS003674
10.1002/qj.4712
10.1175/1520‐0469(1999)056<4206:EOCHOS>2.0.CO;2
10.1109/TIP.2003.819861
10.1109/tip.2017.2662206
10.1029/2020GL090152
10.1175/1520‐0469(1996)053<0858:SRTMFC>2.0.CO;2
10.1103/PhysRevLett.126.098302
10.1029/2022GL098274
10.1111/cgf.13473
10.1145/3072959.3073601
10.1145/3450626.3459793
10.1029/2022GL100808
10.1109/CVPR.2016.90
10.1145/3072959.3073708
10.18174/634325
10.3390/rs11171962
10.1016/j.neunet.2020.07.025
10.1109/83.862633
10.1175/JAMC‐D‐14‐0288.1
10.1029/2022JD036822
10.1029/2010JD014593
10.1175/JAMC‐D‐12‐0227.1
10.1175/JAS‐D‐19‐0261.1
10.5194/acp‐24‐10567‐2024
10.1016/0167‐2789(92)90242‐F
10.1145/3306307.3328150
10.5281/zenodo.15649286
10.1175/BAMS‐86‐9‐1275
10.1175/2008JAMC1842.1
10.1007/s41095‐021‐0209‐9
10.1029/95JD02895
10.5194/acp‐24‐11391‐2024
10.5194/gmd‐10‐3145‐2017
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2024JH000515
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2024JH000515
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c755-7ae6ab62df9a36cd77c1d178e295531c34a7e3995dbe6fdb8f82c71d7a7b5d3e3
ISSN 2993-5210
IngestDate Thu Jul 31 00:07:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c755-7ae6ab62df9a36cd77c1d178e295531c34a7e3995dbe6fdb8f82c71d7a7b5d3e3
ORCID 0000-0002-4869-3948
0000-0001-7202-3525
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024JH000515
ParticipantIDs crossref_primary_10_1029_2024JH000515
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
Buades A. (e_1_2_7_5_1) 2005
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
He K. (e_1_2_7_16_1) 2016
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
Veerman M. A. (e_1_2_7_40_1) 2023
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Dahlberg H. (e_1_2_7_10_1) 2019
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – ident: e_1_2_7_18_1
  doi: 10.1002/2016JD024875
– ident: e_1_2_7_49_1
  doi: 10.1029/98JD00080
– ident: e_1_2_7_43_1
  doi: 10.1029/2018MS001602
– ident: e_1_2_7_35_1
  doi: 10.1029/2022MS003262
– ident: e_1_2_7_28_1
  doi: 10.1029/2021MS002550
– ident: e_1_2_7_11_1
  doi: 10.1186/s42492‐019‐0016‐7
– ident: e_1_2_7_31_1
  doi: 10.3894/JAMES.2009.1.1
– ident: e_1_2_7_37_1
  doi: 10.1109/ICCV.1998.710815
– ident: e_1_2_7_30_1
  doi: 10.1029/2019MS001621
– ident: e_1_2_7_42_1
  doi: 10.1029/2023MS003674
– ident: e_1_2_7_29_1
  doi: 10.1002/qj.4712
– ident: e_1_2_7_39_1
  doi: 10.1175/1520‐0469(1999)056<4206:EOCHOS>2.0.CO;2
– ident: e_1_2_7_44_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_7_48_1
  doi: 10.1109/tip.2017.2662206
– ident: e_1_2_7_25_1
– ident: e_1_2_7_13_1
  doi: 10.1029/2020GL090152
– ident: e_1_2_7_22_1
– ident: e_1_2_7_12_1
  doi: 10.1175/1520‐0469(1996)053<0858:SRTMFC>2.0.CO;2
– ident: e_1_2_7_4_1
  doi: 10.1103/PhysRevLett.126.098302
– ident: e_1_2_7_47_1
  doi: 10.1029/2022GL098274
– ident: e_1_2_7_23_1
  doi: 10.1111/cgf.13473
– ident: e_1_2_7_8_1
  doi: 10.1145/3072959.3073601
– ident: e_1_2_7_20_1
  doi: 10.1145/3450626.3459793
– ident: e_1_2_7_41_1
  doi: 10.1029/2022GL100808
– start-page: 770
  volume-title: 2016 IEEE conference on computer vision and pattern recognition (CVPR)
  year: 2016
  ident: e_1_2_7_16_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_2_1
  doi: 10.1145/3072959.3073708
– volume-title: Simulating sunshine on cloudy days
  year: 2023
  ident: e_1_2_7_40_1
  doi: 10.18174/634325
– ident: e_1_2_7_27_1
  doi: 10.3390/rs11171962
– ident: e_1_2_7_34_1
  doi: 10.1016/j.neunet.2020.07.025
– ident: e_1_2_7_9_1
  doi: 10.1109/83.862633
– ident: e_1_2_7_6_1
  doi: 10.1175/JAMC‐D‐14‐0288.1
– ident: e_1_2_7_15_1
  doi: 10.1029/2022JD036822
– ident: e_1_2_7_3_1
  doi: 10.1029/2010JD014593
– ident: e_1_2_7_46_1
  doi: 10.1175/JAMC‐D‐12‐0227.1
– ident: e_1_2_7_14_1
  doi: 10.1175/JAS‐D‐19‐0261.1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_24_1
– ident: e_1_2_7_36_1
  doi: 10.5194/acp‐24‐10567‐2024
– ident: e_1_2_7_33_1
  doi: 10.1016/0167‐2789(92)90242‐F
– volume-title: Machine‐learning denoising in feature film production
  year: 2019
  ident: e_1_2_7_10_1
  doi: 10.1145/3306307.3328150
– ident: e_1_2_7_32_1
  doi: 10.5281/zenodo.15649286
– ident: e_1_2_7_7_1
  doi: 10.1175/BAMS‐86‐9‐1275
– ident: e_1_2_7_45_1
  doi: 10.1175/2008JAMC1842.1
– start-page: 60
  volume-title: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05)
  year: 2005
  ident: e_1_2_7_5_1
– ident: e_1_2_7_19_1
  doi: 10.1007/s41095‐021‐0209‐9
– ident: e_1_2_7_26_1
  doi: 10.1029/95JD02895
– ident: e_1_2_7_17_1
  doi: 10.5194/acp‐24‐11391‐2024
– ident: e_1_2_7_38_1
  doi: 10.5194/gmd‐10‐3145‐2017
SSID ssj0003320807
Score 2.3018517
Snippet Simulating radiative transfer in the atmosphere with Monte Carlo ray tracing provides realistic surface irradiance in cloud‐resolving models. However, Monte...
SourceID crossref
SourceType Index Database
Title Machine Learning‐Based Denoising of Surface Solar Irradiance Simulated With Monte Carlo Ray Tracing
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcuGCQID4XPkApyohsZM4PS4rUFmpHJYCe6scZ7ystDRVaIW0B7T3vfAb-SXMOHYaoIcFqYqqSeJEmZeZ8fjNhLHnONuyRa1khL4WoqzQNtIW36sqkabKAGSiHdviXTH9kB2d5Cej0dWAtbRZV7G52FlX8j9aRRnqlapk_0Gz_aAowP-oX9yihnF7LR3PHBMSQpPU05658Ap9EzGMl83ZV09rfr9praa2mzSXHb9tW9eUgARnX-gTXnj8J8rJzqhdFfFAzpvxMdWItNoE9_Z3EHsKzSpo2vcN-hyPw32dh7yLL55bbX5f-D8GuOgy43EQfQRyFR3BOB4f9HIqs5rivm9at95UHsb4G2YtRN7TsrxxE8QbxNChW5OBHTJvncUAhHKnzU8EtUzFi2RHUxeS5lvfFtbz_3B5PRHRLcGLyWJ49g12U-Ccg4zm7Ps2YSelSLry-_4-fSEFDvByOMAgxBnEKvM77LbXDz_oEHOXjWB5j4HXCg9o-Xn5w-GE9zjhjeUeJ9zhhG9xwnuccMIJdzjhDiccccI9Tu6z-ZvX88Np5D-yERmV55HSUOiqELWdaFmYWimT1qkqQUxyNM9GZloBlT_XFRS2rkpbCqPSWmlV5bUE-YDtLZslPGQ8LY1N80JTFV9WTfAlL0uQ0lpIhC6NfsRehMeyWHWtVBa7nv_jax73hN3aIusp21u3G3iGEeK62neZlX2nv18aX2Y4
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning%E2%80%90Based+Denoising+of+Surface+Solar+Irradiance+Simulated+With+Monte+Carlo+Ray+Tracing&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Reeze%2C+M.&rft.au=Veerman%2C+M.+A.&rft.au=van+Heerwaarden%2C+C.+C.&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon