Accuracy of Diabetic Retinopathy Staging with a Deep Convolutional Neural Network Using Ultra-Wide-Field Fundus Ophthalmoscopy and Optical Coherence Tomography Angiography

Purpose. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images. Method. The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence...

Full description

Saved in:
Bibliographic Details
Published inJournal of ophthalmology Vol. 2021; pp. 1 - 10
Main Authors Nagasawa, Toshihiko, Tabuchi, Hitoshi, Masumoto, Hiroki, Morita, Shoji, Niki, Masanori, Ohara, Zaigen, Yoshizumi, Yuki, Mitamura, Yoshinori
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images. Method. The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed. Result. The Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively. Conclusion. The combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results.
AbstractList Purpose. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images. Method. The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed. Result. The Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively. Conclusion. The combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results.
The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images. The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed. The Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively. The combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results.
The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images.PURPOSEThe present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images.The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed.METHODThe study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed.The Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively.RESULTThe Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively.The combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results.CONCLUSIONThe combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results.
Audience Academic
Author Tabuchi, Hitoshi
Ohara, Zaigen
Nagasawa, Toshihiko
Morita, Shoji
Mitamura, Yoshinori
Niki, Masanori
Yoshizumi, Yuki
Masumoto, Hiroki
AuthorAffiliation 2 Department of Technology and Design Thinking for Medicine, Hiroshima University, Hiroshima 739-8511, Japan
3 Graduate School of Engineering, University of Hyogo, Kobe 657-0013, Japan
1 Department of Ophthalmology, Saneikai Tsukazaki Hospital, Himeji 671-1227, Japan
4 Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8851, Japan
AuthorAffiliation_xml – name: 4 Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8851, Japan
– name: 1 Department of Ophthalmology, Saneikai Tsukazaki Hospital, Himeji 671-1227, Japan
– name: 3 Graduate School of Engineering, University of Hyogo, Kobe 657-0013, Japan
– name: 2 Department of Technology and Design Thinking for Medicine, Hiroshima University, Hiroshima 739-8511, Japan
Author_xml – sequence: 1
  givenname: Toshihiko
  surname: Nagasawa
  fullname: Nagasawa, Toshihiko
  organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan
– sequence: 2
  givenname: Hitoshi
  orcidid: 0000-0002-9098-0430
  surname: Tabuchi
  fullname: Tabuchi, Hitoshi
  organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan
– sequence: 3
  givenname: Hiroki
  surname: Masumoto
  fullname: Masumoto, Hiroki
  organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan
– sequence: 4
  givenname: Shoji
  surname: Morita
  fullname: Morita, Shoji
  organization: Graduate School of EngineeringUniversity of HyogoKobe 657-0013Japanu-hyogo.ac.jp
– sequence: 5
  givenname: Masanori
  surname: Niki
  fullname: Niki, Masanori
  organization: Department of OphthalmologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima 770-8851Japantokushima-u.ac.jp
– sequence: 6
  givenname: Zaigen
  surname: Ohara
  fullname: Ohara, Zaigen
  organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan
– sequence: 7
  givenname: Yuki
  surname: Yoshizumi
  fullname: Yoshizumi, Yuki
  organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan
– sequence: 8
  givenname: Yoshinori
  orcidid: 0000-0002-4813-672X
  surname: Mitamura
  fullname: Mitamura, Yoshinori
  organization: Department of OphthalmologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima 770-8851Japantokushima-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33884202$$D View this record in MEDLINE/PubMed
BookMark eNqNk-9r1DAYgItM3Jz75mcJCCLobUmbpOkX4bg5HQwHukO_hTR522b2ktofG_c3-U-a7s55N_SwhSakz_u8TfO-T6M95x1E0XOCjwlh7CTGMTnhnBGSskfRQYwzPMGYib37Of22Hx113TUOV0IoY_hJtJ8kQtAQexD9nGo9tEovkS_QqVU59Fajz-HpfKP6aom-9Kq0rkS3tq-QQqcADZp5d-ProbfeqRp9gmAYh_7Wt9_RvBvxed23avLVGpicWagNOhucGTp02VR9peqF77Rvlkg5E5ZCziCY-QpacBrQlV_4slVNSD91pV3Pn0WPC1V3cLQeD6P52fur2cfJxeWH89n0YqJTRvtJomJQjIkcFznkqUpIauLUQMxTrpkxMadFLlKMRZLTFAM3UDDgJM7DaDQkh9H5ymu8upZNaxeqXUqvrLxb8G0pVRs-uQYJVCWU8gxwbqjSRhRc0yRXSSYKweIsuN6tXM2QLyDYXfgt9ZZ0-42zlSz9jRSYEkbTIHi9FrT-xwBdLxe201DXyoEfOhkzwgUlcSIC-vIBeu2HNpzQHUUJx1ykf6hShQ1YV_iQV49SOeUZz4hIGNlNhdrJmGDj7o7_QoXbwMLqUKqFDetb2v8L2MjwaiOgAlX3VbcuvW7bvBvcML7YPJH7o_jdEwF4uwJ067uuheIeIViOXSfHrpPrrgt4_ADXtldj2rA1W_8r6M0qqLLOqFu7O8UvE7M6Pw
CitedBy_id crossref_primary_10_1038_s41598_022_23170_4
crossref_primary_10_1186_s40662_024_00389_y
crossref_primary_10_3390_biomedicines10010088
crossref_primary_10_3390_diagnostics15060737
crossref_primary_10_3390_bioengineering10091048
crossref_primary_10_1097_IAE_0000000000003479
crossref_primary_10_3389_fmed_2024_1400137
crossref_primary_10_1001_jamaophthalmol_2022_3131
crossref_primary_10_1007_s00417_023_06101_5
crossref_primary_10_17816_medjrf624868
crossref_primary_10_1007_s00417_022_05741_3
Cites_doi 10.1148/radiology.143.1.7063747
10.1111/j.1464-5491.2009.02870.x
10.1038/s41598-019-47181-w
10.1016/j.ophtha.2017.02.008
10.1016/j.diabres.2013.11.002
10.1007/s10792-019-01074-z
10.1167/iovs.16-20531
10.1097/iae.0000000000000849
10.1364/oe.20.004710
10.1016/j.artmed.2019.07.003
10.1016/S0161-6420(13)38012-9
10.1167/iovs.18-25634
10.1016/j.visres.2016.09.019
10.1001/jama.2017.18152
10.1016/s0893-6080(98)00116-6
10.1097/icu.0000000000000524
10.1155/2018/1875431
10.1111/aos.13613
10.1007/s13300-018-0437-x
10.1093/biomet/26.4.404
10.1016/j.ophtha.2015.07.034
10.1007/s11263-015-0816-y
10.1001/jama.2016.17216
10.1136/bjophthalmol-2018-311942
10.1136/bjophthalmol-2011-301378
10.1167/iovs.16-19964
10.1364/boe.10.003257
10.1007/s13300-019-0652-0
10.7717/peerj.6900.eCollection
10.1007/978-3-642-15825-4_10
10.1016/j.ophtha.2015.01.008
10.1016/s2213-8587(18)30128-1
10.1016/s0140-6736(09)60937-5
10.1016/S0161-6420(13)38011-7
10.1097/iae.0b013e3182278b64
10.1136/bmjopen-2018-027795
10.2337/dc09-0615
10.1111/ceo.12745
10.1016/j.jcjo.2016.05.002
10.1097/iae.0000000000000937
ContentType Journal Article
Copyright Copyright © 2021 Toshihiko Nagasawa et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Toshihiko Nagasawa et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Toshihiko Nagasawa et al. 2021
Copyright_xml – notice: Copyright © 2021 Toshihiko Nagasawa et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Toshihiko Nagasawa et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Toshihiko Nagasawa et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1155/2021/6651175
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database




PubMed


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2090-0058
Editor El Gendy, Heba A
Editor_xml – sequence: 1
  givenname: Heba A
  surname: El Gendy
  fullname: El Gendy, Heba A
EndPage 10
ExternalDocumentID oai_doaj_org_article_e4a34469e0bd4acd8f6c43ba398f8529
PMC8041547
A696918351
A684295859
33884202
10_1155_2021_6651175
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: Glory Corporation
– fundername: Hiroshima University
– fundername: Topcon Corporation
GroupedDBID 188
4.4
53G
5VS
7X7
8FI
8FJ
AAFWJ
AAJEY
AAWTL
ABDBF
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
DIK
E3Z
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
M48
M~E
O5R
OK1
PIMPY
RHU
RHW
RHX
RNS
RPM
TR2
TUS
UKHRP
0R~
24P
AAYXX
ACCMX
ACUHS
ALIPV
CITATION
H13
PGMZT
PHGZM
PHGZT
2UF
CEFSP
CNMHZ
EJD
IL9
NPM
O5S
UZ5
PMFND
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c754t-3a2ea558b0fbeb7a317d27de2676c5dd264fb870083b470e6def5e612bef5dce3
IEDL.DBID M48
ISSN 2090-004X
IngestDate Wed Aug 27 01:20:10 EDT 2025
Thu Aug 21 13:29:43 EDT 2025
Fri Jul 11 13:11:22 EDT 2025
Fri Jul 25 20:49:48 EDT 2025
Tue Jun 17 22:03:01 EDT 2025
Tue Jun 17 22:02:52 EDT 2025
Tue Jun 10 21:03:10 EDT 2025
Tue Jun 10 21:04:08 EDT 2025
Thu May 22 21:27:09 EDT 2025
Thu May 22 21:27:00 EDT 2025
Wed Feb 19 02:25:46 EST 2025
Thu Apr 24 23:06:36 EDT 2025
Tue Jul 01 04:36:32 EDT 2025
Sun Jun 02 18:51:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Toshihiko Nagasawa et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c754t-3a2ea558b0fbeb7a317d27de2676c5dd264fb870083b470e6def5e612bef5dce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Heba A El Gendy
ORCID 0000-0002-9098-0430
0000-0002-4813-672X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/6651175
PMID 33884202
PQID 2514160687
PQPubID 4727242
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_e4a34469e0bd4acd8f6c43ba398f8529
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8041547
proquest_miscellaneous_2516841238
proquest_journals_2514160687
gale_infotracmisc_A696918351
gale_infotracmisc_A684295859
gale_infotracacademiconefile_A696918351
gale_infotracacademiconefile_A684295859
gale_healthsolutions_A696918351
gale_healthsolutions_A684295859
pubmed_primary_33884202
crossref_primary_10_1155_2021_6651175
crossref_citationtrail_10_1155_2021_6651175
hindawi_primary_10_1155_2021_6651175
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of ophthalmology
PublicationTitleAlternate J Ophthalmol
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 22
44
23
45
46
47
26
Y. Nesterov (36) 1983; 269
48
27
J. Deng (29)
F. Mosteller (24) 1968; 2
31
10
X. Glorot (32)
D. Scherer (33) 2010
11
12
13
P. Agrawal (34)
35
37
16
38
17
39
18
Early Treatment Diabetic Retinopathy Study Research Group (4) 1991; 98
19
R. Kohavi (25)
W. H. Yang (14) 2019; 10
K. Simonyan (28) 2014
C.-Y. Lee (30)
1
2
3
5
6
7
8
9
40
41
20
Early Treatment Diabetic Retinopathy Study Research Group (42) 1991; 98
J. Sahlsten (15) 2019; 9
21
43
References_xml – ident: 37
  doi: 10.1148/radiology.143.1.7063747
– ident: 5
  doi: 10.1111/j.1464-5491.2009.02870.x
– volume: 9
  issue: 1
  year: 2019
  ident: 15
  article-title: Deep learning fundus image analysis for diabetic retinopathy and macular edema grading
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-47181-w
– ident: 11
  doi: 10.1016/j.ophtha.2017.02.008
– start-page: 562
  ident: 30
  article-title: Deeply- supervised nets
– ident: 6
  doi: 10.1016/j.diabres.2013.11.002
– ident: 18
  doi: 10.1007/s10792-019-01074-z
– start-page: 248
  ident: 29
  article-title: ImageNet: a large-scale hierarchical image database
– ident: 39
  doi: 10.1167/iovs.16-20531
– ident: 20
  doi: 10.1097/iae.0000000000000849
– ident: 32
  article-title: Deep sparse rectifier neural networks
– start-page: 329
  ident: 34
  article-title: Analyzing the performance of multilayer neural networks for object recognition,
– ident: 19
  doi: 10.1364/oe.20.004710
– ident: 22
  doi: 10.1016/j.artmed.2019.07.003
– volume: 2
  start-page: 80
  year: 1968
  ident: 24
  article-title: Data analysis, including statistics
  publication-title: Handbook of Social Psychology
– volume: 98
  start-page: 786
  year: 1991
  ident: 42
  article-title: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(13)38012-9
– ident: 46
  doi: 10.1167/iovs.18-25634
– volume: 269
  start-page: 543
  year: 1983
  ident: 36
  article-title: A method for unconstrained convex minimization problem with the rate of convergence O (1/k2)
  publication-title: Proceedings of the USSR Academy of Sciences
– ident: 40
  doi: 10.1016/j.visres.2016.09.019
– ident: 12
  doi: 10.1001/jama.2017.18152
– year: 2014
  ident: 28
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: 35
  doi: 10.1016/s0893-6080(98)00116-6
– ident: 45
  doi: 10.1097/icu.0000000000000524
– ident: 26
  doi: 10.1155/2018/1875431
– ident: 13
  doi: 10.1111/aos.13613
– ident: 23
  doi: 10.1007/s13300-018-0437-x
– ident: 38
  doi: 10.1093/biomet/26.4.404
– ident: 44
  doi: 10.1016/j.ophtha.2015.07.034
– ident: 31
  doi: 10.1007/s11263-015-0816-y
– ident: 9
  doi: 10.1001/jama.2016.17216
– ident: 41
  doi: 10.1136/bjophthalmol-2018-311942
– ident: 8
  doi: 10.1136/bjophthalmol-2011-301378
– ident: 10
  doi: 10.1167/iovs.16-19964
– ident: 21
  doi: 10.1364/boe.10.003257
– volume: 10
  start-page: 1811
  issue: 5
  year: 2019
  ident: 14
  article-title: An evaluation system of fundus photograph-based intelligent diagnostic technology for diabetic retinopathy and applicability for research
  publication-title: Diabetes Therapy: Research, Treatment and Education of Diabetes and Related Disorders
  doi: 10.1007/s13300-019-0652-0
– ident: 27
  doi: 10.7717/peerj.6900.eCollection
– start-page: 92
  volume-title: Artificial Neural Networks-ICANN 2010
  year: 2010
  ident: 33
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
  doi: 10.1007/978-3-642-15825-4_10
– ident: 43
  doi: 10.1016/j.ophtha.2015.01.008
– ident: 1
  doi: 10.1016/s2213-8587(18)30128-1
– ident: 3
  doi: 10.1016/s0140-6736(09)60937-5
– volume: 98
  start-page: 766
  issue: 5
  year: 1991
  ident: 4
  article-title: Early photocoagulation for diabetic retinopathy: ETDRS report number 9
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(13)38011-7
– ident: 16
  doi: 10.1097/iae.0b013e3182278b64
– ident: 48
  doi: 10.1136/bmjopen-2018-027795
– ident: 2
  doi: 10.2337/dc09-0615
– start-page: 1137
  ident: 25
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection,
– ident: 7
  doi: 10.1111/ceo.12745
– ident: 47
  doi: 10.1016/j.jcjo.2016.05.002
– ident: 17
  doi: 10.1097/iae.0000000000000937
SSID ssj0000314550
Score 2.2710502
Snippet Purpose. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two...
The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Accuracy
Angiography
Artificial intelligence
Automation
Clinical medicine
Datasets
Developing countries
Diabetes
Diabetic retinopathy
FDA approval
LDCs
Medical imaging
Medical personnel
Neural networks
Retina
Tomography
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_kQPBFFL_iVV3hxAcJt012N8ljPS2HoIJcsW9hv2IDvaScrdK_yX_Smc0218hpX3xKyU43uzuT2ZnNzG8IOUlUrlPmGOY6qZgbzWJlWBXbilWFAj-oGGO-88dP8nzGP8zFfK_UF8aEdfDA3cKdOq5ScFkKx7Tlyti8koanWqVFXuUi8al7sOftOVNeB6cegBsry7ECU6f5fBf1LgQ6_ONTKQXCVA72Iw_b3yvn2wt0i3_WNxmff8ZQ7m1K03vkbrAm6aSbxX1yyzUPyK-JMZsrZba0rWgX8VIb-gVzm1ssQLylYGFibSKKh7BU0XfOrehZ2_wIYgg9ImaHv_ggceoDC-hsCWOIv9bWxVMMfKPTDRb-oJ9Xi_VCLS9bTHHZUtVYuOXPyClmf_h8QnrRXgZ0bDppvtXh90Mym76_ODuPQ02G2GSCr-NUJU4JkWtWaaczBeaHTTLrEplJI6wF-6rSoAPAstM8Y05aVwkHZpSGKyxW-ogcNW3jnhAqFLg-UlswGA0XTmltCwMaBFzAJDeGR-TNjjOlCYDlWDdjWXrHRYgS-VgGPkbkVU-96oA6_kL3Fpnc0yC8tr8BQlcGoSsPCV1EXqCIlF2uaq8kygl-1SzAA_sHRSELUKNiHJHXngIVCUzLqJAPAYuDkFyDvg5RXvc5GlCCqjCDjm5svv73SZD4Ays42r0OZVB430swk8G0ZzLPIvKyb8YHYBBf49qNp4GhgKmUR-Rx9_b0D0rTHEbJkohkg_dqwKdhS1MvPBy6R9Di2dP_wdhjcgen2p2xjcjR-mrjnoHVudbPvYL5Da3Qfkk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJCReEIivQAEjDfGAItzEdpLHMqgqJEBCq-hb5K_QSF1SbS2ofxP_JHeOm5ExGE9p44vj5Ozz75y7nwk5SlSuU-YY5jqpmBvNYmVYFduKVYUCP6gYY77zx09yNucfFmIRSJLO__yED7MduufjN1IKJJU8IAfQwdApny36pRRkYBd-L9aEFZgnzRf7EPdLlw8mH8_R31vim0v0gX_UVyHNywGTv81A0zvkdoCOdNLp-i654Zp75OfEmO2ZMjvaVrQLb6kN_YKJzC3uNryjACdxIyKKK65U0XfOrelx23wPfQ5qRIIOf_AR4dRHEdD5CtoQf62ti6cY5UanW9zlg35eLzdLtTptMZ9lR1Vj4ZRfEKeY6uGTB-lJexqosOmk-VaH3_fJfPr-5HgWhw0YYpMJvolTlTglRK5ZpZ3OFGANm2TWJTKTRlgLYKrSoA-AcZpnzEnrKuEAM2k4wstKH5DDpm3cI0KFAj9Hagvo0HDhlNa2MGAuwN9LcmN4RF7vNVOawE6Om2SsSu-lCFGiHsugx4i87KXXHSvHX-TeopJ7GeTS9iegf5VhaJaOqxSc4sIxbbkyNq-k4alWaZFXuUiKiDzHLlJ2iam9RSgn-AmzAHfrHxKFLMBminFEXnkJtBrwWEaF5Ad4Oci_NajrOsmLOkcDSbALZlDRlcUXVx-FHn_NGxzth0MZrNt5CZgYcDyTeRaRF30x3gAj9hrXbr0MNAVwUR6Rh93o6W-Upjm0kiURyQbjaqCnYUlTLz33uafL4tnj_2v9E3IL_3ZLZiNyuDnbuqcAIjf6mTchvwBS9Gry
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdgCIkXBOIrUMBIQzygaG5iO8kTKoNqQgIktIq-Rf7KWqlLSteC-jfxT3LnuClBY3tKFV8dx2ef7y53vyPkMFG5TpljmOukYm40i5VhVWwrVhUK7KBiiPnOn7_Ikwn_NBXT4HC7CGGVO5noBbVtDPrIj-AcBt2ByTx7t_wRY9Uo_LoaSmjcJLcQugxDurJp1vlYEJpd-CKtCSswgZpPd7HvQqDZPzySUiBYZe9U8uD9nYi-PUPj-Nf8MhX030jKv46m8T1yN-iUdNQugvvkhqsfkN8jYzYrZba0qWgb9zI39BtmODdYhnhLQc_ECkUUXbFU0Q_OLelxU_8MixF6ROQOf_Gh4tSHF9DJAsYQf59bF48x_I2ON1j-g35dztYztThvMNFlS1Vt4Zb3lFPMAfFZhfS0OQ8Y2XRUn83D74dkMv54enwSh8oMsckEX8epSpwSItes0k5nCpQQm2TWJTKTRlgLWlalQRKAfqd5xpy0rhIOlCkNV5is9BE5qJvaPSFUKDCApLagNhounNLaFgbkCBiCSW4Mj8jbHWdKE2DLsXrGovTmixAl8rEMfIzI64562cJ1_IfuPTK5o0GQbX-jWZ2VYc-WjqsUrOXCMW25MjavpOGpVmmRV7lIioi8xCVSthmrnagoR_htE1ajuIKikAUIUzGMyBtPgeIEXsuokBUBk4PAXL2-rqPc9znoUYLAML2OLm3e__swrPhrZnCw2w5lEHsX5X6TRuRV14wPwFC-2jUbTwNDAYUpj8jjdvd0D0rTHEbJkohkvX3V41O_pZ7PPCi6x9Hi2dOrh_WM3MGXaH1oA3KwXm3cc9Aq1_qFFx1_ADlSdTg
  priority: 102
  providerName: ProQuest
Title Accuracy of Diabetic Retinopathy Staging with a Deep Convolutional Neural Network Using Ultra-Wide-Field Fundus Ophthalmoscopy and Optical Coherence Tomography Angiography
URI https://dx.doi.org/10.1155/2021/6651175
https://www.ncbi.nlm.nih.gov/pubmed/33884202
https://www.proquest.com/docview/2514160687
https://www.proquest.com/docview/2516841238
https://pubmed.ncbi.nlm.nih.gov/PMC8041547
https://doaj.org/article/e4a34469e0bd4acd8f6c43ba398f8529
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF71EBIvCMTlEsIiFfGADI7t9fGAUFoaIqQWFDXCb9ZebiKldggJkN_En2RmvXFxFSgvdmKP15vdmdlvNnMQcujzRASe9jDWibuhFJ7LpVe4qvCKlIMdlPYw3vn0LBqOw48Zy3bIptqoHcBvW007rCc1Xsxe__y6fgcC_9YIPGNov_feRBHDrJO7ZB_WpBhF9NQCfaOTA5OQGyvNeSmGUofZxgv-WgOt9cmk8W-U9a0Jmsk_ptvA6HWfyj8WqcFdcseiS9qv2eEe2dHlffKrL-VqweWaVgWtPWCmko4w1rnCgsRrCogTaxVR3JSlnL7Xek6Pq_K7ZUtoEXN4mJNxGqfG0YCOZ9AH98tUaXeAjnB0sMJCIPTTfLKc8NllhSEva8pLBZfMnjnFaBATX0jPq0ubLZv2y4up_fyAjAcn58dD19ZocGXMwqUbcF9zxhLhFUKLmAMcUX6stB_FkWRKAd4qBOgEQHoijD0dKV0wDbBKwBkGK3hI9sqq1I8JZRxMoUgoAJAyZJoLoVIJGgVMQj-RMnTIq83M5NImMMc6GrPcGDKM5TiPuZ1Hh7xoqOd14o6_0B3hJDc0mG7bXKgWF7mV3lyHPAC7OdWeUCGXKikiGQaCB2lSJMxPHfIMWSSvY1cbpZH38V_OFCyyf1CkUQpqlfUc8tJQIKvDz5LcxkfA4GCKrlZbN1FetdlpUYLqkK2Gtt6-evrQcvwNI9jZiEO-kd8cYDNAfS9KYoc8b27jC9Cpr9TVytBAVwA6JQ55VEtP86IgSKCXnu-QuCVXrXlq3ymnE5Me3WTUCuOD_2SAJ-Q2fq231Tpkb7lY6acANJeiS3bjLO6S_aOTs8-jrtmugeOHrNc12gWOo2H2Gyg8fmY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguCMTLEOgiteKArDq2148DQukjSmkbUJWI3My-3ERK7ZAmVPlNSPxGZtaOg1FpTz058k7Wa8_425nxPAjZdnkkPEc7mOvEbV8Kx-bSSW2VOmnMwQ6KW5jvfNoLugP_85ANN8jvVS4MhlWuMNEAtcol-sh3YR8G3cEJovDT9IeNXaPw6-qqhUYhFsd6eQUm2-XHowPg747rdg77-1277Cpgy5D5c9vjruaMRcJJhRYhhw1UuaHSbhAGkikFGkIqQIpBNxF-6OhA6ZRpUAQEHJXUHsx7j2z6HpgyDbK5d9j7elZ5dbAYPDNtYV0nxpRtf7iKtmcMHQ2t3SBgWB6ztg-adgHVpnB_hOb41fg6pfff2M2_NsPOY_Ko1GJpuxC7J2RDZ0_Jr7aUixmXS5qntIi0GUt6hjnVOTY-XlLQbLEnEkXnL-X0QOsp3c-zn6X4w4xYK8QcTHA6NQENdDCBNdjfxkrbHQy4o50FNhyhX6aj-YhPLnJMrVlSnik4ZXzzFLNOTB4j7ecXZVVu2s7Ox-XvZ2RwJ1x7ThpZnumXhDIOJlcgFCiq0meaC6FiCcgFpqcbSelb5MOKM4ksC6Vjv45JYgwmxhLkY1Ly0SI7FfW0KBDyH7o9ZHJFg2W9zYl8dp6UKJFon3tgn8faEcrnUkVpIH1PcC-O0oi5sUW2UESSIke2AqekjV9TY7D8bqCIgxjgm7Us8t5QIIDBbUle5mHAw8FSYLW5bqNcz9msUQJEydpE1w6v_71dSvwtT7C5eh2SEmgvkzUsWORdNYwXwODBTOcLQwNLARUtssiL4u2pLuR5EazScS0S1t6rGp_qI9l4ZMqwm8pdfvjq5mVtkQfd_ulJcnLUO35NHuINFR68JmnMZwv9BnTauXhbAgkl3-8au_4AxOe1IQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXBOJlCHSRWnFAVh3b68cBodAQtRQKQo3IzezLTaTUDmlCld_EP-DXMbNeOxiV9tSTLe94vfbsfjszngch2z5PROBpD2OduBtK4blcermrci9POehBaRfjnT8dRfvD8MOIjTbI7zoWBt0qa0w0QK1KiTbyXdiHQXbwoiTeza1bxJf-4O3sh4sVpPBPa11Oo5oih3p1Durb2ZuDPvB6x_cH74_39l1bYcCVMQsXbsB9zRlLhJcLLWIOm6nyY6X9KI4kUwqkhVzAjAY5RYSxpyOlc6ZBKBBwVFIH0O8NcjMOWBfXWDyKG_sOpoVnpkCs76UYvB2Oar97xtDk0N2NIoaJMls7oikc0GwPt8aomJ9PLhJ___Xi_GtbHNwjd608S3vVBLxPNnTxgPzqSbmcc7miZU4rn5uJpF8xurrEEsgrCjIuVkeiaAamnPa1ntG9svhpFwL0iFlDzMG4qVPj2kCHUxiD-22itDtA1zs6WGLpEfp5Nl6M-fS0xCCbFeWFgkvGSk8x_sRENNLj8tTm56a94mRizx-S4bXw7BHZLMpCPyGUcVC-IqFAZJUh01wIlUrAMFBC_UTK0CGva85k0qZMx8od08yoToxlyMfM8tEhOw31rEoV8h-6d8jkhgYTfJsL5fwks3iR6ZAHoKmn2hMq5FIleSTDQPAgTfKE-alDtnCKZFW0bANTWQ__q6agA15CkUYpADnrOuSVoUAog9eS3EZkwMfBpGCtvq6iXPfZaVECWMlWRxc2r-_etjP-ii_YqZdDZiH3LFsDhENeNs34AHQjLHS5NDQwFBDWEoc8rlZP86AgSGCUnu-QuLWuWnxqtxSTsUnIbnJ4hfHTy4e1RW4DYmUfD44On5E7-D6VKa9DNhfzpX4Owu1CvDAoQsn364atPwvJt_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+Diabetic+Retinopathy+Staging+with+a+Deep+Convolutional+Neural+Network+Using+Ultra-Wide-Field+Fundus+Ophthalmoscopy+and+Optical+Coherence+Tomography+Angiography&rft.jtitle=Journal+of+ophthalmology&rft.au=Nagasawa%2C+Toshihiko&rft.au=Tabuchi%2C+Hitoshi&rft.au=Masumoto%2C+Hiroki&rft.au=Morita%2C+Shoji&rft.date=2021&rft.issn=2090-004X&rft.eissn=2090-0058&rft.volume=2021&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2021%2F6651175&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_6651175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-004X&client=summon