Accuracy of Diabetic Retinopathy Staging with a Deep Convolutional Neural Network Using Ultra-Wide-Field Fundus Ophthalmoscopy and Optical Coherence Tomography Angiography
Purpose. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images. Method. The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence...
Saved in:
Published in | Journal of ophthalmology Vol. 2021; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Hindawi
2021
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images. Method. The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed. Result. The Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively. Conclusion. The combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results. |
---|---|
AbstractList | Purpose. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images. Method. The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed. Result. The Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively. Conclusion. The combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images. The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed. The Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively. The combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images.PURPOSEThe present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images.The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed.METHODThe study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed.The Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively.RESULTThe Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively.The combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results.CONCLUSIONThe combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results. |
Audience | Academic |
Author | Tabuchi, Hitoshi Ohara, Zaigen Nagasawa, Toshihiko Morita, Shoji Mitamura, Yoshinori Niki, Masanori Yoshizumi, Yuki Masumoto, Hiroki |
AuthorAffiliation | 2 Department of Technology and Design Thinking for Medicine, Hiroshima University, Hiroshima 739-8511, Japan 3 Graduate School of Engineering, University of Hyogo, Kobe 657-0013, Japan 1 Department of Ophthalmology, Saneikai Tsukazaki Hospital, Himeji 671-1227, Japan 4 Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8851, Japan |
AuthorAffiliation_xml | – name: 4 Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8851, Japan – name: 1 Department of Ophthalmology, Saneikai Tsukazaki Hospital, Himeji 671-1227, Japan – name: 3 Graduate School of Engineering, University of Hyogo, Kobe 657-0013, Japan – name: 2 Department of Technology and Design Thinking for Medicine, Hiroshima University, Hiroshima 739-8511, Japan |
Author_xml | – sequence: 1 givenname: Toshihiko surname: Nagasawa fullname: Nagasawa, Toshihiko organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan – sequence: 2 givenname: Hitoshi orcidid: 0000-0002-9098-0430 surname: Tabuchi fullname: Tabuchi, Hitoshi organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan – sequence: 3 givenname: Hiroki surname: Masumoto fullname: Masumoto, Hiroki organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan – sequence: 4 givenname: Shoji surname: Morita fullname: Morita, Shoji organization: Graduate School of EngineeringUniversity of HyogoKobe 657-0013Japanu-hyogo.ac.jp – sequence: 5 givenname: Masanori surname: Niki fullname: Niki, Masanori organization: Department of OphthalmologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima 770-8851Japantokushima-u.ac.jp – sequence: 6 givenname: Zaigen surname: Ohara fullname: Ohara, Zaigen organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan – sequence: 7 givenname: Yuki surname: Yoshizumi fullname: Yoshizumi, Yuki organization: Department of OphthalmologySaneikai Tsukazaki HospitalHimeji 671-1227Japan – sequence: 8 givenname: Yoshinori orcidid: 0000-0002-4813-672X surname: Mitamura fullname: Mitamura, Yoshinori organization: Department of OphthalmologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima 770-8851Japantokushima-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33884202$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk-9r1DAYgItM3Jz75mcJCCLobUmbpOkX4bg5HQwHukO_hTR522b2ktofG_c3-U-a7s55N_SwhSakz_u8TfO-T6M95x1E0XOCjwlh7CTGMTnhnBGSskfRQYwzPMGYib37Of22Hx113TUOV0IoY_hJtJ8kQtAQexD9nGo9tEovkS_QqVU59Fajz-HpfKP6aom-9Kq0rkS3tq-QQqcADZp5d-ProbfeqRp9gmAYh_7Wt9_RvBvxed23avLVGpicWagNOhucGTp02VR9peqF77Rvlkg5E5ZCziCY-QpacBrQlV_4slVNSD91pV3Pn0WPC1V3cLQeD6P52fur2cfJxeWH89n0YqJTRvtJomJQjIkcFznkqUpIauLUQMxTrpkxMadFLlKMRZLTFAM3UDDgJM7DaDQkh9H5ymu8upZNaxeqXUqvrLxb8G0pVRs-uQYJVCWU8gxwbqjSRhRc0yRXSSYKweIsuN6tXM2QLyDYXfgt9ZZ0-42zlSz9jRSYEkbTIHi9FrT-xwBdLxe201DXyoEfOhkzwgUlcSIC-vIBeu2HNpzQHUUJx1ykf6hShQ1YV_iQV49SOeUZz4hIGNlNhdrJmGDj7o7_QoXbwMLqUKqFDetb2v8L2MjwaiOgAlX3VbcuvW7bvBvcML7YPJH7o_jdEwF4uwJ067uuheIeIViOXSfHrpPrrgt4_ADXtldj2rA1W_8r6M0qqLLOqFu7O8UvE7M6Pw |
CitedBy_id | crossref_primary_10_1038_s41598_022_23170_4 crossref_primary_10_1186_s40662_024_00389_y crossref_primary_10_3390_biomedicines10010088 crossref_primary_10_3390_diagnostics15060737 crossref_primary_10_3390_bioengineering10091048 crossref_primary_10_1097_IAE_0000000000003479 crossref_primary_10_3389_fmed_2024_1400137 crossref_primary_10_1001_jamaophthalmol_2022_3131 crossref_primary_10_1007_s00417_023_06101_5 crossref_primary_10_17816_medjrf624868 crossref_primary_10_1007_s00417_022_05741_3 |
Cites_doi | 10.1148/radiology.143.1.7063747 10.1111/j.1464-5491.2009.02870.x 10.1038/s41598-019-47181-w 10.1016/j.ophtha.2017.02.008 10.1016/j.diabres.2013.11.002 10.1007/s10792-019-01074-z 10.1167/iovs.16-20531 10.1097/iae.0000000000000849 10.1364/oe.20.004710 10.1016/j.artmed.2019.07.003 10.1016/S0161-6420(13)38012-9 10.1167/iovs.18-25634 10.1016/j.visres.2016.09.019 10.1001/jama.2017.18152 10.1016/s0893-6080(98)00116-6 10.1097/icu.0000000000000524 10.1155/2018/1875431 10.1111/aos.13613 10.1007/s13300-018-0437-x 10.1093/biomet/26.4.404 10.1016/j.ophtha.2015.07.034 10.1007/s11263-015-0816-y 10.1001/jama.2016.17216 10.1136/bjophthalmol-2018-311942 10.1136/bjophthalmol-2011-301378 10.1167/iovs.16-19964 10.1364/boe.10.003257 10.1007/s13300-019-0652-0 10.7717/peerj.6900.eCollection 10.1007/978-3-642-15825-4_10 10.1016/j.ophtha.2015.01.008 10.1016/s2213-8587(18)30128-1 10.1016/s0140-6736(09)60937-5 10.1016/S0161-6420(13)38011-7 10.1097/iae.0b013e3182278b64 10.1136/bmjopen-2018-027795 10.2337/dc09-0615 10.1111/ceo.12745 10.1016/j.jcjo.2016.05.002 10.1097/iae.0000000000000937 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Toshihiko Nagasawa et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Toshihiko Nagasawa et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Toshihiko Nagasawa et al. 2021 |
Copyright_xml | – notice: Copyright © 2021 Toshihiko Nagasawa et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Toshihiko Nagasawa et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Toshihiko Nagasawa et al. 2021 |
DBID | RHU RHW RHX AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1155/2021/6651175 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2090-0058 |
Editor | El Gendy, Heba A |
Editor_xml | – sequence: 1 givenname: Heba A surname: El Gendy fullname: El Gendy, Heba A |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_e4a34469e0bd4acd8f6c43ba398f8529 PMC8041547 A696918351 A684295859 33884202 10_1155_2021_6651175 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: Glory Corporation – fundername: Hiroshima University – fundername: Topcon Corporation |
GroupedDBID | 188 4.4 53G 5VS 7X7 8FI 8FJ AAFWJ AAJEY AAWTL ABDBF ABUWG ADBBV ADRAZ AENEX AFKRA AFPKN AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU DIK E3Z EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IEA IHR IHW ITC KQ8 M48 M~E O5R OK1 PIMPY RHU RHW RHX RNS RPM TR2 TUS UKHRP 0R~ 24P AAYXX ACCMX ACUHS ALIPV CITATION H13 PGMZT PHGZM PHGZT 2UF CEFSP CNMHZ EJD IL9 NPM O5S UZ5 PMFND 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c754t-3a2ea558b0fbeb7a317d27de2676c5dd264fb870083b470e6def5e612bef5dce3 |
IEDL.DBID | M48 |
ISSN | 2090-004X |
IngestDate | Wed Aug 27 01:20:10 EDT 2025 Thu Aug 21 13:29:43 EDT 2025 Fri Jul 11 13:11:22 EDT 2025 Fri Jul 25 20:49:48 EDT 2025 Tue Jun 17 22:03:01 EDT 2025 Tue Jun 17 22:02:52 EDT 2025 Tue Jun 10 21:03:10 EDT 2025 Tue Jun 10 21:04:08 EDT 2025 Thu May 22 21:27:09 EDT 2025 Thu May 22 21:27:00 EDT 2025 Wed Feb 19 02:25:46 EST 2025 Thu Apr 24 23:06:36 EDT 2025 Tue Jul 01 04:36:32 EDT 2025 Sun Jun 02 18:51:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Toshihiko Nagasawa et al. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c754t-3a2ea558b0fbeb7a317d27de2676c5dd264fb870083b470e6def5e612bef5dce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Heba A El Gendy |
ORCID | 0000-0002-9098-0430 0000-0002-4813-672X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/6651175 |
PMID | 33884202 |
PQID | 2514160687 |
PQPubID | 4727242 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e4a34469e0bd4acd8f6c43ba398f8529 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8041547 proquest_miscellaneous_2516841238 proquest_journals_2514160687 gale_infotracmisc_A696918351 gale_infotracmisc_A684295859 gale_infotracacademiconefile_A696918351 gale_infotracacademiconefile_A684295859 gale_healthsolutions_A696918351 gale_healthsolutions_A684295859 pubmed_primary_33884202 crossref_primary_10_1155_2021_6651175 crossref_citationtrail_10_1155_2021_6651175 hindawi_primary_10_1155_2021_6651175 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of ophthalmology |
PublicationTitleAlternate | J Ophthalmol |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 22 44 23 45 46 47 26 Y. Nesterov (36) 1983; 269 48 27 J. Deng (29) F. Mosteller (24) 1968; 2 31 10 X. Glorot (32) D. Scherer (33) 2010 11 12 13 P. Agrawal (34) 35 37 16 38 17 39 18 Early Treatment Diabetic Retinopathy Study Research Group (4) 1991; 98 19 R. Kohavi (25) W. H. Yang (14) 2019; 10 K. Simonyan (28) 2014 C.-Y. Lee (30) 1 2 3 5 6 7 8 9 40 41 20 Early Treatment Diabetic Retinopathy Study Research Group (42) 1991; 98 J. Sahlsten (15) 2019; 9 21 43 |
References_xml | – ident: 37 doi: 10.1148/radiology.143.1.7063747 – ident: 5 doi: 10.1111/j.1464-5491.2009.02870.x – volume: 9 issue: 1 year: 2019 ident: 15 article-title: Deep learning fundus image analysis for diabetic retinopathy and macular edema grading publication-title: Scientific Reports doi: 10.1038/s41598-019-47181-w – ident: 11 doi: 10.1016/j.ophtha.2017.02.008 – start-page: 562 ident: 30 article-title: Deeply- supervised nets – ident: 6 doi: 10.1016/j.diabres.2013.11.002 – ident: 18 doi: 10.1007/s10792-019-01074-z – start-page: 248 ident: 29 article-title: ImageNet: a large-scale hierarchical image database – ident: 39 doi: 10.1167/iovs.16-20531 – ident: 20 doi: 10.1097/iae.0000000000000849 – ident: 32 article-title: Deep sparse rectifier neural networks – start-page: 329 ident: 34 article-title: Analyzing the performance of multilayer neural networks for object recognition, – ident: 19 doi: 10.1364/oe.20.004710 – ident: 22 doi: 10.1016/j.artmed.2019.07.003 – volume: 2 start-page: 80 year: 1968 ident: 24 article-title: Data analysis, including statistics publication-title: Handbook of Social Psychology – volume: 98 start-page: 786 year: 1991 ident: 42 article-title: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10 publication-title: Ophthalmology doi: 10.1016/S0161-6420(13)38012-9 – ident: 46 doi: 10.1167/iovs.18-25634 – volume: 269 start-page: 543 year: 1983 ident: 36 article-title: A method for unconstrained convex minimization problem with the rate of convergence O (1/k2) publication-title: Proceedings of the USSR Academy of Sciences – ident: 40 doi: 10.1016/j.visres.2016.09.019 – ident: 12 doi: 10.1001/jama.2017.18152 – year: 2014 ident: 28 article-title: Very deep convolutional networks for large-scale image recognition – ident: 35 doi: 10.1016/s0893-6080(98)00116-6 – ident: 45 doi: 10.1097/icu.0000000000000524 – ident: 26 doi: 10.1155/2018/1875431 – ident: 13 doi: 10.1111/aos.13613 – ident: 23 doi: 10.1007/s13300-018-0437-x – ident: 38 doi: 10.1093/biomet/26.4.404 – ident: 44 doi: 10.1016/j.ophtha.2015.07.034 – ident: 31 doi: 10.1007/s11263-015-0816-y – ident: 9 doi: 10.1001/jama.2016.17216 – ident: 41 doi: 10.1136/bjophthalmol-2018-311942 – ident: 8 doi: 10.1136/bjophthalmol-2011-301378 – ident: 10 doi: 10.1167/iovs.16-19964 – ident: 21 doi: 10.1364/boe.10.003257 – volume: 10 start-page: 1811 issue: 5 year: 2019 ident: 14 article-title: An evaluation system of fundus photograph-based intelligent diagnostic technology for diabetic retinopathy and applicability for research publication-title: Diabetes Therapy: Research, Treatment and Education of Diabetes and Related Disorders doi: 10.1007/s13300-019-0652-0 – ident: 27 doi: 10.7717/peerj.6900.eCollection – start-page: 92 volume-title: Artificial Neural Networks-ICANN 2010 year: 2010 ident: 33 article-title: Evaluation of pooling operations in convolutional architectures for object recognition doi: 10.1007/978-3-642-15825-4_10 – ident: 43 doi: 10.1016/j.ophtha.2015.01.008 – ident: 1 doi: 10.1016/s2213-8587(18)30128-1 – ident: 3 doi: 10.1016/s0140-6736(09)60937-5 – volume: 98 start-page: 766 issue: 5 year: 1991 ident: 4 article-title: Early photocoagulation for diabetic retinopathy: ETDRS report number 9 publication-title: Ophthalmology doi: 10.1016/S0161-6420(13)38011-7 – ident: 16 doi: 10.1097/iae.0b013e3182278b64 – ident: 48 doi: 10.1136/bmjopen-2018-027795 – ident: 2 doi: 10.2337/dc09-0615 – start-page: 1137 ident: 25 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection, – ident: 7 doi: 10.1111/ceo.12745 – ident: 47 doi: 10.1016/j.jcjo.2016.05.002 – ident: 17 doi: 10.1097/iae.0000000000000937 |
SSID | ssj0000314550 |
Score | 2.2710502 |
Snippet | Purpose. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two... The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref hindawi |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Angiography Artificial intelligence Automation Clinical medicine Datasets Developing countries Diabetes Diabetic retinopathy FDA approval LDCs Medical imaging Medical personnel Neural networks Retina Tomography |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_kQPBFFL_iVV3hxAcJt012N8ljPS2HoIJcsW9hv2IDvaScrdK_yX_Smc0218hpX3xKyU43uzuT2ZnNzG8IOUlUrlPmGOY6qZgbzWJlWBXbilWFAj-oGGO-88dP8nzGP8zFfK_UF8aEdfDA3cKdOq5ScFkKx7Tlyti8koanWqVFXuUi8al7sOftOVNeB6cegBsry7ECU6f5fBf1LgQ6_ONTKQXCVA72Iw_b3yvn2wt0i3_WNxmff8ZQ7m1K03vkbrAm6aSbxX1yyzUPyK-JMZsrZba0rWgX8VIb-gVzm1ssQLylYGFibSKKh7BU0XfOrehZ2_wIYgg9ImaHv_ggceoDC-hsCWOIv9bWxVMMfKPTDRb-oJ9Xi_VCLS9bTHHZUtVYuOXPyClmf_h8QnrRXgZ0bDppvtXh90Mym76_ODuPQ02G2GSCr-NUJU4JkWtWaaczBeaHTTLrEplJI6wF-6rSoAPAstM8Y05aVwkHZpSGKyxW-ogcNW3jnhAqFLg-UlswGA0XTmltCwMaBFzAJDeGR-TNjjOlCYDlWDdjWXrHRYgS-VgGPkbkVU-96oA6_kL3Fpnc0yC8tr8BQlcGoSsPCV1EXqCIlF2uaq8kygl-1SzAA_sHRSELUKNiHJHXngIVCUzLqJAPAYuDkFyDvg5RXvc5GlCCqjCDjm5svv73SZD4Ays42r0OZVB430swk8G0ZzLPIvKyb8YHYBBf49qNp4GhgKmUR-Rx9_b0D0rTHEbJkohkg_dqwKdhS1MvPBy6R9Di2dP_wdhjcgen2p2xjcjR-mrjnoHVudbPvYL5Da3Qfkk priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJCReEIivQAEjDfGAItzEdpLHMqgqJEBCq-hb5K_QSF1SbS2ofxP_JHeOm5ExGE9p44vj5Ozz75y7nwk5SlSuU-YY5jqpmBvNYmVYFduKVYUCP6gYY77zx09yNucfFmIRSJLO__yED7MduufjN1IKJJU8IAfQwdApny36pRRkYBd-L9aEFZgnzRf7EPdLlw8mH8_R31vim0v0gX_UVyHNywGTv81A0zvkdoCOdNLp-i654Zp75OfEmO2ZMjvaVrQLb6kN_YKJzC3uNryjACdxIyKKK65U0XfOrelx23wPfQ5qRIIOf_AR4dRHEdD5CtoQf62ti6cY5UanW9zlg35eLzdLtTptMZ9lR1Vj4ZRfEKeY6uGTB-lJexqosOmk-VaH3_fJfPr-5HgWhw0YYpMJvolTlTglRK5ZpZ3OFGANm2TWJTKTRlgLYKrSoA-AcZpnzEnrKuEAM2k4wstKH5DDpm3cI0KFAj9Hagvo0HDhlNa2MGAuwN9LcmN4RF7vNVOawE6Om2SsSu-lCFGiHsugx4i87KXXHSvHX-TeopJ7GeTS9iegf5VhaJaOqxSc4sIxbbkyNq-k4alWaZFXuUiKiDzHLlJ2iam9RSgn-AmzAHfrHxKFLMBminFEXnkJtBrwWEaF5Ad4Oci_NajrOsmLOkcDSbALZlDRlcUXVx-FHn_NGxzth0MZrNt5CZgYcDyTeRaRF30x3gAj9hrXbr0MNAVwUR6Rh93o6W-Upjm0kiURyQbjaqCnYUlTLz33uafL4tnj_2v9E3IL_3ZLZiNyuDnbuqcAIjf6mTchvwBS9Gry priority: 102 providerName: Hindawi Publishing – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdgCIkXBOIrUMBIQzygaG5iO8kTKoNqQgIktIq-Rf7KWqlLSteC-jfxT3LnuClBY3tKFV8dx2ef7y53vyPkMFG5TpljmOukYm40i5VhVWwrVhUK7KBiiPnOn7_Ikwn_NBXT4HC7CGGVO5noBbVtDPrIj-AcBt2ByTx7t_wRY9Uo_LoaSmjcJLcQugxDurJp1vlYEJpd-CKtCSswgZpPd7HvQqDZPzySUiBYZe9U8uD9nYi-PUPj-Nf8MhX030jKv46m8T1yN-iUdNQugvvkhqsfkN8jYzYrZba0qWgb9zI39BtmODdYhnhLQc_ECkUUXbFU0Q_OLelxU_8MixF6ROQOf_Gh4tSHF9DJAsYQf59bF48x_I2ON1j-g35dztYztThvMNFlS1Vt4Zb3lFPMAfFZhfS0OQ8Y2XRUn83D74dkMv54enwSh8oMsckEX8epSpwSItes0k5nCpQQm2TWJTKTRlgLWlalQRKAfqd5xpy0rhIOlCkNV5is9BE5qJvaPSFUKDCApLagNhounNLaFgbkCBiCSW4Mj8jbHWdKE2DLsXrGovTmixAl8rEMfIzI64562cJ1_IfuPTK5o0GQbX-jWZ2VYc-WjqsUrOXCMW25MjavpOGpVmmRV7lIioi8xCVSthmrnagoR_htE1ajuIKikAUIUzGMyBtPgeIEXsuokBUBk4PAXL2-rqPc9znoUYLAML2OLm3e__swrPhrZnCw2w5lEHsX5X6TRuRV14wPwFC-2jUbTwNDAYUpj8jjdvd0D0rTHEbJkohkvX3V41O_pZ7PPCi6x9Hi2dOrh_WM3MGXaH1oA3KwXm3cc9Aq1_qFFx1_ADlSdTg priority: 102 providerName: ProQuest |
Title | Accuracy of Diabetic Retinopathy Staging with a Deep Convolutional Neural Network Using Ultra-Wide-Field Fundus Ophthalmoscopy and Optical Coherence Tomography Angiography |
URI | https://dx.doi.org/10.1155/2021/6651175 https://www.ncbi.nlm.nih.gov/pubmed/33884202 https://www.proquest.com/docview/2514160687 https://www.proquest.com/docview/2516841238 https://pubmed.ncbi.nlm.nih.gov/PMC8041547 https://doaj.org/article/e4a34469e0bd4acd8f6c43ba398f8529 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF71EBIvCMTlEsIiFfGADI7t9fGAUFoaIqQWFDXCb9ZebiKldggJkN_En2RmvXFxFSgvdmKP15vdmdlvNnMQcujzRASe9jDWibuhFJ7LpVe4qvCKlIMdlPYw3vn0LBqOw48Zy3bIptqoHcBvW007rCc1Xsxe__y6fgcC_9YIPGNov_feRBHDrJO7ZB_WpBhF9NQCfaOTA5OQGyvNeSmGUofZxgv-WgOt9cmk8W-U9a0Jmsk_ptvA6HWfyj8WqcFdcseiS9qv2eEe2dHlffKrL-VqweWaVgWtPWCmko4w1rnCgsRrCogTaxVR3JSlnL7Xek6Pq_K7ZUtoEXN4mJNxGqfG0YCOZ9AH98tUaXeAjnB0sMJCIPTTfLKc8NllhSEva8pLBZfMnjnFaBATX0jPq0ubLZv2y4up_fyAjAcn58dD19ZocGXMwqUbcF9zxhLhFUKLmAMcUX6stB_FkWRKAd4qBOgEQHoijD0dKV0wDbBKwBkGK3hI9sqq1I8JZRxMoUgoAJAyZJoLoVIJGgVMQj-RMnTIq83M5NImMMc6GrPcGDKM5TiPuZ1Hh7xoqOd14o6_0B3hJDc0mG7bXKgWF7mV3lyHPAC7OdWeUCGXKikiGQaCB2lSJMxPHfIMWSSvY1cbpZH38V_OFCyyf1CkUQpqlfUc8tJQIKvDz5LcxkfA4GCKrlZbN1FetdlpUYLqkK2Gtt6-evrQcvwNI9jZiEO-kd8cYDNAfS9KYoc8b27jC9Cpr9TVytBAVwA6JQ55VEtP86IgSKCXnu-QuCVXrXlq3ymnE5Me3WTUCuOD_2SAJ-Q2fq231Tpkb7lY6acANJeiS3bjLO6S_aOTs8-jrtmugeOHrNc12gWOo2H2Gyg8fmY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguCMTLEOgiteKArDq2148DQukjSmkbUJWI3My-3ERK7ZAmVPlNSPxGZtaOg1FpTz058k7Wa8_425nxPAjZdnkkPEc7mOvEbV8Kx-bSSW2VOmnMwQ6KW5jvfNoLugP_85ANN8jvVS4MhlWuMNEAtcol-sh3YR8G3cEJovDT9IeNXaPw6-qqhUYhFsd6eQUm2-XHowPg747rdg77-1277Cpgy5D5c9vjruaMRcJJhRYhhw1UuaHSbhAGkikFGkIqQIpBNxF-6OhA6ZRpUAQEHJXUHsx7j2z6HpgyDbK5d9j7elZ5dbAYPDNtYV0nxpRtf7iKtmcMHQ2t3SBgWB6ztg-adgHVpnB_hOb41fg6pfff2M2_NsPOY_Ko1GJpuxC7J2RDZ0_Jr7aUixmXS5qntIi0GUt6hjnVOTY-XlLQbLEnEkXnL-X0QOsp3c-zn6X4w4xYK8QcTHA6NQENdDCBNdjfxkrbHQy4o50FNhyhX6aj-YhPLnJMrVlSnik4ZXzzFLNOTB4j7ecXZVVu2s7Ox-XvZ2RwJ1x7ThpZnumXhDIOJlcgFCiq0meaC6FiCcgFpqcbSelb5MOKM4ksC6Vjv45JYgwmxhLkY1Ly0SI7FfW0KBDyH7o9ZHJFg2W9zYl8dp6UKJFon3tgn8faEcrnUkVpIH1PcC-O0oi5sUW2UESSIke2AqekjV9TY7D8bqCIgxjgm7Us8t5QIIDBbUle5mHAw8FSYLW5bqNcz9msUQJEydpE1w6v_71dSvwtT7C5eh2SEmgvkzUsWORdNYwXwODBTOcLQwNLARUtssiL4u2pLuR5EazScS0S1t6rGp_qI9l4ZMqwm8pdfvjq5mVtkQfd_ulJcnLUO35NHuINFR68JmnMZwv9BnTauXhbAgkl3-8au_4AxOe1IQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXBOJlCHSRWnFAVh3b68cBodAQtRQKQo3IzezLTaTUDmlCld_EP-DXMbNeOxiV9tSTLe94vfbsfjszngch2z5PROBpD2OduBtK4blcermrci9POehBaRfjnT8dRfvD8MOIjTbI7zoWBt0qa0w0QK1KiTbyXdiHQXbwoiTeza1bxJf-4O3sh4sVpPBPa11Oo5oih3p1Durb2ZuDPvB6x_cH74_39l1bYcCVMQsXbsB9zRlLhJcLLWIOm6nyY6X9KI4kUwqkhVzAjAY5RYSxpyOlc6ZBKBBwVFIH0O8NcjMOWBfXWDyKG_sOpoVnpkCs76UYvB2Oar97xtDk0N2NIoaJMls7oikc0GwPt8aomJ9PLhJ___Xi_GtbHNwjd608S3vVBLxPNnTxgPzqSbmcc7miZU4rn5uJpF8xurrEEsgrCjIuVkeiaAamnPa1ntG9svhpFwL0iFlDzMG4qVPj2kCHUxiD-22itDtA1zs6WGLpEfp5Nl6M-fS0xCCbFeWFgkvGSk8x_sRENNLj8tTm56a94mRizx-S4bXw7BHZLMpCPyGUcVC-IqFAZJUh01wIlUrAMFBC_UTK0CGva85k0qZMx8od08yoToxlyMfM8tEhOw31rEoV8h-6d8jkhgYTfJsL5fwks3iR6ZAHoKmn2hMq5FIleSTDQPAgTfKE-alDtnCKZFW0bANTWQ__q6agA15CkUYpADnrOuSVoUAog9eS3EZkwMfBpGCtvq6iXPfZaVECWMlWRxc2r-_etjP-ii_YqZdDZiH3LFsDhENeNs34AHQjLHS5NDQwFBDWEoc8rlZP86AgSGCUnu-QuLWuWnxqtxSTsUnIbnJ4hfHTy4e1RW4DYmUfD44On5E7-D6VKa9DNhfzpX4Owu1CvDAoQsn364atPwvJt_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+Diabetic+Retinopathy+Staging+with+a+Deep+Convolutional+Neural+Network+Using+Ultra-Wide-Field+Fundus+Ophthalmoscopy+and+Optical+Coherence+Tomography+Angiography&rft.jtitle=Journal+of+ophthalmology&rft.au=Nagasawa%2C+Toshihiko&rft.au=Tabuchi%2C+Hitoshi&rft.au=Masumoto%2C+Hiroki&rft.au=Morita%2C+Shoji&rft.date=2021&rft.issn=2090-004X&rft.eissn=2090-0058&rft.volume=2021&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2021%2F6651175&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_6651175 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-004X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-004X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-004X&client=summon |