Quantifying the Effects of Volcanic Snow Cover on InSAR Coherence Using a Computationally Inexpensive Neural Network
Interferometric Synthetic Aperture Radar (InSAR) measurements constrain ground movement across volcanic systems where the signal coherence remains high enough to retrieve quality phase information. A common phenomenon that degrades this coherence at volcanoes is snow cover. To study snow cover'...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.09.2025
|
Online Access | Get full text |
ISSN | 2993-5210 2993-5210 |
DOI | 10.1029/2024JH000553 |
Cover
Loading…
Abstract | Interferometric Synthetic Aperture Radar (InSAR) measurements constrain ground movement across volcanic systems where the signal coherence remains high enough to retrieve quality phase information. A common phenomenon that degrades this coherence at volcanoes is snow cover. To study snow cover's effect on InSAR signal coherence at a volcanic system, we train a computationally inexpensive neural network using an optical image data set composed of 29 Landsat‐8 images spanning 2014–2021 to identify snow cover across the Mount St. Helens region through time. Across the slopes of Mt. St. Helens, snow cover remains high throughout most of the year excluding June through September, while the lower altitude and less vegetated pumice plain emplaced in 1980 only seasonally experienced snow cover. We compare identified snow cover with selected coherence images from a Sentinel‐1 InSAR data set spanning 2014–2020 and find that average coherence can decrease up to 70% when snow cover is present. Forward modeling using an inflating magma reservoir simulated as a point source in an elastic half‐space shows that most centimeter or above scale simulated ground movement is hidden by snow, as commonly present from December to March. This indicates potential difficulties for obtaining enough signal to constrain subsurface processes at Mount St. Helens and other volcanoes that experience consistent snow cover.
Satellites are often used to monitor volcanoes in preparation for eruptive events. When snow covers a volcano and the surrounding area, it can become difficult for satellites to image the ground beneath the snow, making these volcanoes harder to monitor. By using a simple neural network to determine the extent of snow cover at Mt. St. Helens during different periods of the year, we can understand which seasons are the most difficult to retrieve signal from Mt. St. Helens and which patches of the volcano and its nearby area experience the most consistent snow cover. Understanding the extent of snow cover at Mt. St. Helens allows us to simulate ground movement related to magmatic activity and observe how much of the ground movement satellites would be able to measure with and without snow present.
Snow cover drastically reduces Interferometric Synthetic Aperture Radar coherence values of bare rock areas around Mt. St. Helens from 1.0 to 0.2–0.3, masking deformation Snow cover at Mt. St. Helens can reduce centimeter scale deformation from an inflating point source by 40%–90% Machine learning analysis applicable to the geosciences can be scaled to use minimal computing resources promoting accessibility |
---|---|
AbstractList | Interferometric Synthetic Aperture Radar (InSAR) measurements constrain ground movement across volcanic systems where the signal coherence remains high enough to retrieve quality phase information. A common phenomenon that degrades this coherence at volcanoes is snow cover. To study snow cover's effect on InSAR signal coherence at a volcanic system, we train a computationally inexpensive neural network using an optical image data set composed of 29 Landsat‐8 images spanning 2014–2021 to identify snow cover across the Mount St. Helens region through time. Across the slopes of Mt. St. Helens, snow cover remains high throughout most of the year excluding June through September, while the lower altitude and less vegetated pumice plain emplaced in 1980 only seasonally experienced snow cover. We compare identified snow cover with selected coherence images from a Sentinel‐1 InSAR data set spanning 2014–2020 and find that average coherence can decrease up to 70% when snow cover is present. Forward modeling using an inflating magma reservoir simulated as a point source in an elastic half‐space shows that most centimeter or above scale simulated ground movement is hidden by snow, as commonly present from December to March. This indicates potential difficulties for obtaining enough signal to constrain subsurface processes at Mount St. Helens and other volcanoes that experience consistent snow cover.
Satellites are often used to monitor volcanoes in preparation for eruptive events. When snow covers a volcano and the surrounding area, it can become difficult for satellites to image the ground beneath the snow, making these volcanoes harder to monitor. By using a simple neural network to determine the extent of snow cover at Mt. St. Helens during different periods of the year, we can understand which seasons are the most difficult to retrieve signal from Mt. St. Helens and which patches of the volcano and its nearby area experience the most consistent snow cover. Understanding the extent of snow cover at Mt. St. Helens allows us to simulate ground movement related to magmatic activity and observe how much of the ground movement satellites would be able to measure with and without snow present.
Snow cover drastically reduces Interferometric Synthetic Aperture Radar coherence values of bare rock areas around Mt. St. Helens from 1.0 to 0.2–0.3, masking deformation Snow cover at Mt. St. Helens can reduce centimeter scale deformation from an inflating point source by 40%–90% Machine learning analysis applicable to the geosciences can be scaled to use minimal computing resources promoting accessibility |
Author | Wauthier, C. Bussard, R. C. Townsend, M. Dufek, J. |
Author_xml | – sequence: 1 givenname: R. C. orcidid: 0000-0002-8884-531X surname: Bussard fullname: Bussard, R. C. organization: Pennsylvania State University University Park PA USA – sequence: 2 givenname: J. orcidid: 0000-0001-8658-2643 surname: Dufek fullname: Dufek, J. organization: University of Oregon Eugene OR USA – sequence: 3 givenname: C. orcidid: 0000-0002-3767-8080 surname: Wauthier fullname: Wauthier, C. organization: Pennsylvania State University University Park PA USA – sequence: 4 givenname: M. orcidid: 0000-0001-8846-1466 surname: Townsend fullname: Townsend, M. organization: Lehigh University Bethlehem PA USA |
BookMark | eNpNkM1OwzAQhC1UJErpjQfwAxDwT0ziYxUVWlSBoMA1csIuDaR2ZbsteXtSwaGnb3dmdg9zTgbWWSDkkrNrzoS-EUykDzPGmFLyhAyF1jJRgrPB0XxGxiF89RkpBctZNiTxeWtsbLBr7CeNK6BTRKhjoA7pu2trY5uaLq3b08LtwFNn6dwuJy_9ugIPtgb6Fg63plfWm200sXHWtG3X5-BnAzY0O6CPsPWm7RH3zn9fkFM0bYDxP0dkeTd9LWbJ4ul-XkwWSZ0pmaQIQoLETGUV6JSrHFOVKaaNkGkuJMdKf2Bvm9ykClUlUWe55qaqbgGZHJGrv6-1dyF4wHLjm7XxXclZeaisPK5M_gLdAWCt |
Cites_doi | 10.1080/17538940903521591 10.3390/W11061223 10.1109/LGRS.2011.2179634 10.3133/pp175018 10.1093/gji/ggu304 10.1126/science.aaz1822 10.17977/um018v2i12019p41‐46 10.1016/j.neunet.2020.01.018 10.1029/1999jd900095 10.1109/5.838084 10.1016/j.gsf.2015.07.003 10.1002/2012WR012713 10.1186/s40623‐021‐01470‐9 10.1002/jgrb.50169 10.1007/s00445‐009‐0296‐4 10.1029/JB092iB10p10237 10.1080/01431161.2018.1433343 10.1029/2020JB019840 10.1007/s00445‐017‐1140‐x 10.1016/j.cageo.2019.104331 10.3390/rs11242971 10.3390/computation11030052 10.1016/j.jvolgeores.2005.07.011 10.1007/s41324‐020‐00352‐8 10.1038/s41598‐021‐89203‐6 10.1126/science.adn2838 10.1007/BF00301482 10.1109/IJCNN.2017.7966185 10.3133/pp175014 10.1109/RADAR.2007.374307 10.1109/36.175330 10.1029/2001JB000970 10.1080/01431160110078467 10.1016/B978-0-12-818082-2.00003-2 10.1038/364138a0 10.1029/2020GC009343 10.1130/G37591.1 10.1029/98jb02410 10.1029/EO081i048p00583 10.1029/2001GL014205 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1029/2024JH000553 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
ExternalDocumentID | 10_1029_2024JH000553 |
GroupedDBID | 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E WIN |
ID | FETCH-LOGICAL-c753-4fe23e3f757be94158f457509a2348231fb9dff75a8a45f5b3f97891abb6ef03 |
ISSN | 2993-5210 |
IngestDate | Thu Aug 07 06:49:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c753-4fe23e3f757be94158f457509a2348231fb9dff75a8a45f5b3f97891abb6ef03 |
ORCID | 0000-0002-8884-531X 0000-0001-8658-2643 0000-0002-3767-8080 0000-0001-8846-1466 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024JH000553 |
ParticipantIDs | crossref_primary_10_1029_2024JH000553 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
References | e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Poland M. P. (e_1_2_9_28_1) 2021 Rosen P. A. (e_1_2_9_31_1) 2012 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Christiansen R. L. (e_1_2_9_6_1) 1981; 1250 e_1_2_9_41_1 e_1_2_9_42_1 Ide H. (e_1_2_9_15_1) 2017 e_1_2_9_20_1 Dunne R. A. (e_1_2_9_9_1) 1997 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Andrei‐Alexandru T. (e_1_2_9_4_1) 2020 Mogi K. (e_1_2_9_26_1) 1958; 36 e_1_2_9_2_1 Zebker H. (e_1_2_9_45_1) 2007 e_1_2_9_25_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Sherrod D. R. (e_1_2_9_34_1) 2008 |
References_xml | – ident: e_1_2_9_19_1 doi: 10.1080/17538940903521591 – ident: e_1_2_9_47_1 doi: 10.3390/W11061223 – ident: e_1_2_9_21_1 doi: 10.1109/LGRS.2011.2179634 – ident: e_1_2_9_30_1 doi: 10.3133/pp175018 – ident: e_1_2_9_27_1 doi: 10.1093/gji/ggu304 – ident: e_1_2_9_2_1 doi: 10.1126/science.aaz1822 – ident: e_1_2_9_16_1 doi: 10.17977/um018v2i12019p41‐46 – start-page: 730 volume-title: EUSAR 2012; 9th European Conference on Synthetic Aperture Radar year: 2012 ident: e_1_2_9_31_1 – ident: e_1_2_9_48_1 doi: 10.1016/j.neunet.2020.01.018 – ident: e_1_2_9_37_1 doi: 10.1029/1999jd900095 – ident: e_1_2_9_5_1 doi: 10.1109/5.838084 – ident: e_1_2_9_32_1 doi: 10.1109/5.838084 – ident: e_1_2_9_20_1 doi: 10.1016/j.gsf.2015.07.003 – ident: e_1_2_9_43_1 doi: 10.1002/2012WR012713 – ident: e_1_2_9_33_1 doi: 10.1186/s40623‐021‐01470‐9 – ident: e_1_2_9_3_1 doi: 10.1002/jgrb.50169 – ident: e_1_2_9_11_1 doi: 10.1007/s00445‐009‐0296‐4 – ident: e_1_2_9_7_1 doi: 10.1029/JB092iB10p10237 – ident: e_1_2_9_25_1 doi: 10.1080/01431161.2018.1433343 – ident: e_1_2_9_38_1 doi: 10.1029/2020JB019840 – ident: e_1_2_9_29_1 doi: 10.1007/s00445‐017‐1140‐x – ident: e_1_2_9_44_1 doi: 10.1016/j.cageo.2019.104331 – ident: e_1_2_9_17_1 doi: 10.3390/rs11242971 – volume-title: 2020 IEEE Conference on Automation, Quality and Testing, Robotics (AQTR). 21–23 May 2020 year: 2020 ident: e_1_2_9_4_1 – ident: e_1_2_9_39_1 doi: 10.3390/computation11030052 – ident: e_1_2_9_12_1 doi: 10.1016/j.jvolgeores.2005.07.011 – year: 2008 ident: e_1_2_9_34_1 article-title: A volcano rekindled: The renewed eruption of Mount St. Helens, 2004‐2006 (No. 1750) publication-title: US Geological Survey – volume: 36 start-page: 99 year: 1958 ident: e_1_2_9_26_1 article-title: Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them publication-title: Bulletin of the Earthquake Research Institute – ident: e_1_2_9_36_1 doi: 10.1007/s41324‐020‐00352‐8 – ident: e_1_2_9_40_1 doi: 10.1038/s41598‐021‐89203‐6 – ident: e_1_2_9_35_1 doi: 10.1126/science.adn2838 – ident: e_1_2_9_14_1 doi: 10.1007/BF00301482 – start-page: 2684 volume-title: 2017 International Joint Conference on Neural Networks (IJCNN) year: 2017 ident: e_1_2_9_15_1 doi: 10.1109/IJCNN.2017.7966185 – start-page: 185 volume-title: Proceedings of the 8th Australasian Conference on Neural Networks, Melbourne year: 1997 ident: e_1_2_9_9_1 – ident: e_1_2_9_10_1 doi: 10.3133/pp175014 – start-page: 717 volume-title: 2007 IEEE Radar Conference year: 2007 ident: e_1_2_9_45_1 doi: 10.1109/RADAR.2007.374307 – ident: e_1_2_9_46_1 doi: 10.1109/36.175330 – ident: e_1_2_9_23_1 doi: 10.1029/2001JB000970 – ident: e_1_2_9_8_1 doi: 10.1080/01431160110078467 – volume: 1250 start-page: 17 year: 1981 ident: e_1_2_9_6_1 article-title: Chronology of the 1980 eruptive activity publication-title: US Geologic Survey Professional Paper – start-page: 75 volume-title: Forecasting and Planning for Volcanic Hazards, Risks, and Disasters year: 2021 ident: e_1_2_9_28_1 doi: 10.1016/B978-0-12-818082-2.00003-2 – ident: e_1_2_9_24_1 doi: 10.1038/364138a0 – ident: e_1_2_9_42_1 doi: 10.1029/2020GC009343 – ident: e_1_2_9_18_1 doi: 10.1130/G37591.1 – ident: e_1_2_9_22_1 doi: 10.1029/98jb02410 – ident: e_1_2_9_13_1 doi: 10.1029/EO081i048p00583 – ident: e_1_2_9_41_1 doi: 10.1029/2001GL014205 |
SSID | ssj0003320807 |
Score | 2.3019736 |
Snippet | Interferometric Synthetic Aperture Radar (InSAR) measurements constrain ground movement across volcanic systems where the signal coherence remains high enough... |
SourceID | crossref |
SourceType | Index Database |
Title | Quantifying the Effects of Volcanic Snow Cover on InSAR Coherence Using a Computationally Inexpensive Neural Network |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBTICAweQDO1UJqX-08XGqNpVKncQ6YLfKbmyGVCUTSw7jwN_Cn8p7sZOaqUhjl6hyE6fK99X5_Py9Z0LeC2ULp8UoYZLbRBQF_KWsUQkWEjEGriommCi8OBvPPov5pbwcDH5HrqWmNun65868koegCm2AK2bJ_geyfafQAJ8BXzgCwnC8F8afGo1en9su5elka874Um3goX1fD5eY7DZFoyauC3wsl8fnQ8zJ8NVlvWNAD_3mDiEwuLmF87D0v_e2Y_0OAPLMG8b_oWa_2eq6gzwUELpKcVujK5Sxmy4AE7Lounv1wYDm5kZ7k_15OpymW3ntbDtcz_umr7qpcf_uNsLbt8ZB8kUahzKY7L1aYcRjaCYEPeEXauyOtjBks4iZfOeLIGNYRxVuIuYz1KW-IvHf9bbvvAd7d2K7Ls_UKr76EXnMYCKCQ__i1zaKxznLfE5-_ztDdgV08CHuINI9kYC5eEaeBqzosafRPhnY8jmpIwpRoBANFKKVox2FKFKIthSiVUlbCtGeQrSlENX0DoVoRCHqKUQDhV6Q5enJxXSWhI04kjXMZhPhLOOWu4mcGKtA8eVOSFSammFpJD5yRhUOvta5FtJJw52a5GqkjRlbl_GXZK-sSvuKUCtzDVMCEPE8F5pnWhWZA0E7GkumRJG9JkfdQ1pd-2orq11ovLnneQfkyZZnb8le_aOx70BE1uawDb4ctmj-AW-0c6Y |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+Effects+of+Volcanic+Snow+Cover+on+InSAR+Coherence+Using+a+Computationally+Inexpensive+Neural+Network&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Bussard%2C+R.+C.&rft.au=Dufek%2C+J.&rft.au=Wauthier%2C+C.&rft.au=Townsend%2C+M.&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |