Quantifying the Effects of Volcanic Snow Cover on InSAR Coherence Using a Computationally Inexpensive Neural Network

Interferometric Synthetic Aperture Radar (InSAR) measurements constrain ground movement across volcanic systems where the signal coherence remains high enough to retrieve quality phase information. A common phenomenon that degrades this coherence at volcanoes is snow cover. To study snow cover'...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Bussard, R. C., Dufek, J., Wauthier, C., Townsend, M.
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text
ISSN2993-5210
2993-5210
DOI10.1029/2024JH000553

Cover

Loading…
Abstract Interferometric Synthetic Aperture Radar (InSAR) measurements constrain ground movement across volcanic systems where the signal coherence remains high enough to retrieve quality phase information. A common phenomenon that degrades this coherence at volcanoes is snow cover. To study snow cover's effect on InSAR signal coherence at a volcanic system, we train a computationally inexpensive neural network using an optical image data set composed of 29 Landsat‐8 images spanning 2014–2021 to identify snow cover across the Mount St. Helens region through time. Across the slopes of Mt. St. Helens, snow cover remains high throughout most of the year excluding June through September, while the lower altitude and less vegetated pumice plain emplaced in 1980 only seasonally experienced snow cover. We compare identified snow cover with selected coherence images from a Sentinel‐1 InSAR data set spanning 2014–2020 and find that average coherence can decrease up to 70% when snow cover is present. Forward modeling using an inflating magma reservoir simulated as a point source in an elastic half‐space shows that most centimeter or above scale simulated ground movement is hidden by snow, as commonly present from December to March. This indicates potential difficulties for obtaining enough signal to constrain subsurface processes at Mount St. Helens and other volcanoes that experience consistent snow cover. Satellites are often used to monitor volcanoes in preparation for eruptive events. When snow covers a volcano and the surrounding area, it can become difficult for satellites to image the ground beneath the snow, making these volcanoes harder to monitor. By using a simple neural network to determine the extent of snow cover at Mt. St. Helens during different periods of the year, we can understand which seasons are the most difficult to retrieve signal from Mt. St. Helens and which patches of the volcano and its nearby area experience the most consistent snow cover. Understanding the extent of snow cover at Mt. St. Helens allows us to simulate ground movement related to magmatic activity and observe how much of the ground movement satellites would be able to measure with and without snow present. Snow cover drastically reduces Interferometric Synthetic Aperture Radar coherence values of bare rock areas around Mt. St. Helens from 1.0 to 0.2–0.3, masking deformation Snow cover at Mt. St. Helens can reduce centimeter scale deformation from an inflating point source by 40%–90% Machine learning analysis applicable to the geosciences can be scaled to use minimal computing resources promoting accessibility
AbstractList Interferometric Synthetic Aperture Radar (InSAR) measurements constrain ground movement across volcanic systems where the signal coherence remains high enough to retrieve quality phase information. A common phenomenon that degrades this coherence at volcanoes is snow cover. To study snow cover's effect on InSAR signal coherence at a volcanic system, we train a computationally inexpensive neural network using an optical image data set composed of 29 Landsat‐8 images spanning 2014–2021 to identify snow cover across the Mount St. Helens region through time. Across the slopes of Mt. St. Helens, snow cover remains high throughout most of the year excluding June through September, while the lower altitude and less vegetated pumice plain emplaced in 1980 only seasonally experienced snow cover. We compare identified snow cover with selected coherence images from a Sentinel‐1 InSAR data set spanning 2014–2020 and find that average coherence can decrease up to 70% when snow cover is present. Forward modeling using an inflating magma reservoir simulated as a point source in an elastic half‐space shows that most centimeter or above scale simulated ground movement is hidden by snow, as commonly present from December to March. This indicates potential difficulties for obtaining enough signal to constrain subsurface processes at Mount St. Helens and other volcanoes that experience consistent snow cover. Satellites are often used to monitor volcanoes in preparation for eruptive events. When snow covers a volcano and the surrounding area, it can become difficult for satellites to image the ground beneath the snow, making these volcanoes harder to monitor. By using a simple neural network to determine the extent of snow cover at Mt. St. Helens during different periods of the year, we can understand which seasons are the most difficult to retrieve signal from Mt. St. Helens and which patches of the volcano and its nearby area experience the most consistent snow cover. Understanding the extent of snow cover at Mt. St. Helens allows us to simulate ground movement related to magmatic activity and observe how much of the ground movement satellites would be able to measure with and without snow present. Snow cover drastically reduces Interferometric Synthetic Aperture Radar coherence values of bare rock areas around Mt. St. Helens from 1.0 to 0.2–0.3, masking deformation Snow cover at Mt. St. Helens can reduce centimeter scale deformation from an inflating point source by 40%–90% Machine learning analysis applicable to the geosciences can be scaled to use minimal computing resources promoting accessibility
Author Wauthier, C.
Bussard, R. C.
Townsend, M.
Dufek, J.
Author_xml – sequence: 1
  givenname: R. C.
  orcidid: 0000-0002-8884-531X
  surname: Bussard
  fullname: Bussard, R. C.
  organization: Pennsylvania State University University Park PA USA
– sequence: 2
  givenname: J.
  orcidid: 0000-0001-8658-2643
  surname: Dufek
  fullname: Dufek, J.
  organization: University of Oregon Eugene OR USA
– sequence: 3
  givenname: C.
  orcidid: 0000-0002-3767-8080
  surname: Wauthier
  fullname: Wauthier, C.
  organization: Pennsylvania State University University Park PA USA
– sequence: 4
  givenname: M.
  orcidid: 0000-0001-8846-1466
  surname: Townsend
  fullname: Townsend, M.
  organization: Lehigh University Bethlehem PA USA
BookMark eNpNkM1OwzAQhC1UJErpjQfwAxDwT0ziYxUVWlSBoMA1csIuDaR2ZbsteXtSwaGnb3dmdg9zTgbWWSDkkrNrzoS-EUykDzPGmFLyhAyF1jJRgrPB0XxGxiF89RkpBctZNiTxeWtsbLBr7CeNK6BTRKhjoA7pu2trY5uaLq3b08LtwFNn6dwuJy_9ugIPtgb6Fg63plfWm200sXHWtG3X5-BnAzY0O6CPsPWm7RH3zn9fkFM0bYDxP0dkeTd9LWbJ4ul-XkwWSZ0pmaQIQoLETGUV6JSrHFOVKaaNkGkuJMdKf2Bvm9ykClUlUWe55qaqbgGZHJGrv6-1dyF4wHLjm7XxXclZeaisPK5M_gLdAWCt
Cites_doi 10.1080/17538940903521591
10.3390/W11061223
10.1109/LGRS.2011.2179634
10.3133/pp175018
10.1093/gji/ggu304
10.1126/science.aaz1822
10.17977/um018v2i12019p41‐46
10.1016/j.neunet.2020.01.018
10.1029/1999jd900095
10.1109/5.838084
10.1016/j.gsf.2015.07.003
10.1002/2012WR012713
10.1186/s40623‐021‐01470‐9
10.1002/jgrb.50169
10.1007/s00445‐009‐0296‐4
10.1029/JB092iB10p10237
10.1080/01431161.2018.1433343
10.1029/2020JB019840
10.1007/s00445‐017‐1140‐x
10.1016/j.cageo.2019.104331
10.3390/rs11242971
10.3390/computation11030052
10.1016/j.jvolgeores.2005.07.011
10.1007/s41324‐020‐00352‐8
10.1038/s41598‐021‐89203‐6
10.1126/science.adn2838
10.1007/BF00301482
10.1109/IJCNN.2017.7966185
10.3133/pp175014
10.1109/RADAR.2007.374307
10.1109/36.175330
10.1029/2001JB000970
10.1080/01431160110078467
10.1016/B978-0-12-818082-2.00003-2
10.1038/364138a0
10.1029/2020GC009343
10.1130/G37591.1
10.1029/98jb02410
10.1029/EO081i048p00583
10.1029/2001GL014205
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2024JH000553
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2024JH000553
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c753-4fe23e3f757be94158f457509a2348231fb9dff75a8a45f5b3f97891abb6ef03
ISSN 2993-5210
IngestDate Thu Aug 07 06:49:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c753-4fe23e3f757be94158f457509a2348231fb9dff75a8a45f5b3f97891abb6ef03
ORCID 0000-0002-8884-531X
0000-0001-8658-2643
0000-0002-3767-8080
0000-0001-8846-1466
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024JH000553
ParticipantIDs crossref_primary_10_1029_2024JH000553
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Poland M. P. (e_1_2_9_28_1) 2021
Rosen P. A. (e_1_2_9_31_1) 2012
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Christiansen R. L. (e_1_2_9_6_1) 1981; 1250
e_1_2_9_41_1
e_1_2_9_42_1
Ide H. (e_1_2_9_15_1) 2017
e_1_2_9_20_1
Dunne R. A. (e_1_2_9_9_1) 1997
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Andrei‐Alexandru T. (e_1_2_9_4_1) 2020
Mogi K. (e_1_2_9_26_1) 1958; 36
e_1_2_9_2_1
Zebker H. (e_1_2_9_45_1) 2007
e_1_2_9_25_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Sherrod D. R. (e_1_2_9_34_1) 2008
References_xml – ident: e_1_2_9_19_1
  doi: 10.1080/17538940903521591
– ident: e_1_2_9_47_1
  doi: 10.3390/W11061223
– ident: e_1_2_9_21_1
  doi: 10.1109/LGRS.2011.2179634
– ident: e_1_2_9_30_1
  doi: 10.3133/pp175018
– ident: e_1_2_9_27_1
  doi: 10.1093/gji/ggu304
– ident: e_1_2_9_2_1
  doi: 10.1126/science.aaz1822
– ident: e_1_2_9_16_1
  doi: 10.17977/um018v2i12019p41‐46
– start-page: 730
  volume-title: EUSAR 2012; 9th European Conference on Synthetic Aperture Radar
  year: 2012
  ident: e_1_2_9_31_1
– ident: e_1_2_9_48_1
  doi: 10.1016/j.neunet.2020.01.018
– ident: e_1_2_9_37_1
  doi: 10.1029/1999jd900095
– ident: e_1_2_9_5_1
  doi: 10.1109/5.838084
– ident: e_1_2_9_32_1
  doi: 10.1109/5.838084
– ident: e_1_2_9_20_1
  doi: 10.1016/j.gsf.2015.07.003
– ident: e_1_2_9_43_1
  doi: 10.1002/2012WR012713
– ident: e_1_2_9_33_1
  doi: 10.1186/s40623‐021‐01470‐9
– ident: e_1_2_9_3_1
  doi: 10.1002/jgrb.50169
– ident: e_1_2_9_11_1
  doi: 10.1007/s00445‐009‐0296‐4
– ident: e_1_2_9_7_1
  doi: 10.1029/JB092iB10p10237
– ident: e_1_2_9_25_1
  doi: 10.1080/01431161.2018.1433343
– ident: e_1_2_9_38_1
  doi: 10.1029/2020JB019840
– ident: e_1_2_9_29_1
  doi: 10.1007/s00445‐017‐1140‐x
– ident: e_1_2_9_44_1
  doi: 10.1016/j.cageo.2019.104331
– ident: e_1_2_9_17_1
  doi: 10.3390/rs11242971
– volume-title: 2020 IEEE Conference on Automation, Quality and Testing, Robotics (AQTR). 21–23 May 2020
  year: 2020
  ident: e_1_2_9_4_1
– ident: e_1_2_9_39_1
  doi: 10.3390/computation11030052
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jvolgeores.2005.07.011
– year: 2008
  ident: e_1_2_9_34_1
  article-title: A volcano rekindled: The renewed eruption of Mount St. Helens, 2004‐2006 (No. 1750)
  publication-title: US Geological Survey
– volume: 36
  start-page: 99
  year: 1958
  ident: e_1_2_9_26_1
  article-title: Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them
  publication-title: Bulletin of the Earthquake Research Institute
– ident: e_1_2_9_36_1
  doi: 10.1007/s41324‐020‐00352‐8
– ident: e_1_2_9_40_1
  doi: 10.1038/s41598‐021‐89203‐6
– ident: e_1_2_9_35_1
  doi: 10.1126/science.adn2838
– ident: e_1_2_9_14_1
  doi: 10.1007/BF00301482
– start-page: 2684
  volume-title: 2017 International Joint Conference on Neural Networks (IJCNN)
  year: 2017
  ident: e_1_2_9_15_1
  doi: 10.1109/IJCNN.2017.7966185
– start-page: 185
  volume-title: Proceedings of the 8th Australasian Conference on Neural Networks, Melbourne
  year: 1997
  ident: e_1_2_9_9_1
– ident: e_1_2_9_10_1
  doi: 10.3133/pp175014
– start-page: 717
  volume-title: 2007 IEEE Radar Conference
  year: 2007
  ident: e_1_2_9_45_1
  doi: 10.1109/RADAR.2007.374307
– ident: e_1_2_9_46_1
  doi: 10.1109/36.175330
– ident: e_1_2_9_23_1
  doi: 10.1029/2001JB000970
– ident: e_1_2_9_8_1
  doi: 10.1080/01431160110078467
– volume: 1250
  start-page: 17
  year: 1981
  ident: e_1_2_9_6_1
  article-title: Chronology of the 1980 eruptive activity
  publication-title: US Geologic Survey Professional Paper
– start-page: 75
  volume-title: Forecasting and Planning for Volcanic Hazards, Risks, and Disasters
  year: 2021
  ident: e_1_2_9_28_1
  doi: 10.1016/B978-0-12-818082-2.00003-2
– ident: e_1_2_9_24_1
  doi: 10.1038/364138a0
– ident: e_1_2_9_42_1
  doi: 10.1029/2020GC009343
– ident: e_1_2_9_18_1
  doi: 10.1130/G37591.1
– ident: e_1_2_9_22_1
  doi: 10.1029/98jb02410
– ident: e_1_2_9_13_1
  doi: 10.1029/EO081i048p00583
– ident: e_1_2_9_41_1
  doi: 10.1029/2001GL014205
SSID ssj0003320807
Score 2.3019736
Snippet Interferometric Synthetic Aperture Radar (InSAR) measurements constrain ground movement across volcanic systems where the signal coherence remains high enough...
SourceID crossref
SourceType Index Database
Title Quantifying the Effects of Volcanic Snow Cover on InSAR Coherence Using a Computationally Inexpensive Neural Network
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBTICAweQDO1UJqX-08XGqNpVKncQ6YLfKbmyGVCUTSw7jwN_Cn8p7sZOaqUhjl6hyE6fK99X5_Py9Z0LeC2ULp8UoYZLbRBQF_KWsUQkWEjEGriommCi8OBvPPov5pbwcDH5HrqWmNun65868koegCm2AK2bJ_geyfafQAJ8BXzgCwnC8F8afGo1en9su5elka874Um3goX1fD5eY7DZFoyauC3wsl8fnQ8zJ8NVlvWNAD_3mDiEwuLmF87D0v_e2Y_0OAPLMG8b_oWa_2eq6gzwUELpKcVujK5Sxmy4AE7Lounv1wYDm5kZ7k_15OpymW3ntbDtcz_umr7qpcf_uNsLbt8ZB8kUahzKY7L1aYcRjaCYEPeEXauyOtjBks4iZfOeLIGNYRxVuIuYz1KW-IvHf9bbvvAd7d2K7Ls_UKr76EXnMYCKCQ__i1zaKxznLfE5-_ztDdgV08CHuINI9kYC5eEaeBqzosafRPhnY8jmpIwpRoBANFKKVox2FKFKIthSiVUlbCtGeQrSlENX0DoVoRCHqKUQDhV6Q5enJxXSWhI04kjXMZhPhLOOWu4mcGKtA8eVOSFSammFpJD5yRhUOvta5FtJJw52a5GqkjRlbl_GXZK-sSvuKUCtzDVMCEPE8F5pnWhWZA0E7GkumRJG9JkfdQ1pd-2orq11ovLnneQfkyZZnb8le_aOx70BE1uawDb4ctmj-AW-0c6Y
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+Effects+of+Volcanic+Snow+Cover+on+InSAR+Coherence+Using+a+Computationally+Inexpensive+Neural+Network&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Bussard%2C+R.+C.&rft.au=Dufek%2C+J.&rft.au=Wauthier%2C+C.&rft.au=Townsend%2C+M.&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon