Hybrid Gene Selection Algorithm for Cancer Classification Using Nuclear Reaction Optimization (NRO)
Microarray gene expression data are characterized by high dimensionality and small sample sizes, which complicates cancer classification tasks. To address these challenges, this study proposes a hybrid gene selection approach that integrates a filter-based dimensionality reduction method with a meta...
Saved in:
Published in | Current issues in molecular biology Vol. 47; no. 9; p. 683 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
25.08.2025
|
Online Access | Get full text |
ISSN | 1467-3045 1467-3045 |
DOI | 10.3390/cimb47090683 |
Cover
Abstract | Microarray gene expression data are characterized by high dimensionality and small sample sizes, which complicates cancer classification tasks. To address these challenges, this study proposes a hybrid gene selection approach that integrates a filter-based dimensionality reduction method with a metaheuristic optimizer. Specifically, the method applies the F-score statistical filter to rank and reduce gene features, followed by Nuclear Reaction Optimization (NRO) to refine the selection. This combination is referred to as the F-score-based Nuclear Reaction Optimization method or F-NRO. The performance of F-NRO was evaluated on six publicly available microarray cancer datasets (Colon, Leukemia1, Leukemia2, Lung, Lymphoma, and SRBCT) using Support Vector Machines (SVMs) and Leave-One-Out Cross-Validation (LOOCV). Comparative analysis against several existing hybrid gene selection algorithms demonstrates that F-NRO achieves high classification accuracy, including perfect accuracy on five datasets, using compact gene subsets. These results suggest that F-NRO is an effective and interpretable solution for gene selection in cancer classification tasks. |
---|---|
AbstractList | Microarray gene expression data are characterized by high dimensionality and small sample sizes, which complicates cancer classification tasks. To address these challenges, this study proposes a hybrid gene selection approach that integrates a filter-based dimensionality reduction method with a metaheuristic optimizer. Specifically, the method applies the F-score statistical filter to rank and reduce gene features, followed by Nuclear Reaction Optimization (NRO) to refine the selection. This combination is referred to as the F-score-based Nuclear Reaction Optimization method or F-NRO. The performance of F-NRO was evaluated on six publicly available microarray cancer datasets (Colon, Leukemia1, Leukemia2, Lung, Lymphoma, and SRBCT) using Support Vector Machines (SVMs) and Leave-One-Out Cross-Validation (LOOCV). Comparative analysis against several existing hybrid gene selection algorithms demonstrates that F-NRO achieves high classification accuracy, including perfect accuracy on five datasets, using compact gene subsets. These results suggest that F-NRO is an effective and interpretable solution for gene selection in cancer classification tasks. |
Author | Alkamli, Shahad Alshamlan, Hala |
Author_xml | – sequence: 1 givenname: Shahad orcidid: 0009-0007-0239-3513 surname: Alkamli fullname: Alkamli, Shahad – sequence: 2 givenname: Hala orcidid: 0000-0002-8427-5292 surname: Alshamlan fullname: Alshamlan, Hala |
BookMark | eNpNkDFPwzAUhC1UJNrCxg_wCBIBGzuxM1YRbZGqRipljmznuRglTmWHofx6AmHo8PS94e6kuxma-M4DQreUPDKWkyfjWs0FyUkm2QWaUp6JhBGeTs7-KzSL8ZOQVEhBp8isTzq4Gq_AA36DBkzvOo8XzaELrv9ose0CLpQ3MKBRMTrrjPrTvEfnD3j7ZRpQAe9Ajdby2LvWfY-au-2uvL9Gl1Y1EW7-OUf75cu-WCebcvVaLDaJESlLWEaMlM9CMMioZVxZbnVNZU7FACFkrrJU8JppMpyW1BJKiaEGqB7aczZHD2OsCV2MAWx1DK5V4VRRUv3uU53vw34A7Itanw |
Cites_doi | 10.1155/2012/320698 10.11648/j.ajtas.20241305.13 10.1109/ACCESS.2024.3402652 10.1016/j.sjbs.2017.12.012 10.1007/s10462-023-10675-1 10.1109/ACCESS.2022.3170038 10.1142/S2339547818300020 10.1073/pnas.96.12.6745 10.1038/ng765 10.1007/978-3-540-35488-8 10.32604/cmc.2024.048146 10.34172/bi.30340 10.3844/jcssp.2018.868.880 10.1109/ACCESS.2025.3556816 10.1109/TPAMI.2005.159 10.3390/ijms26157587 10.1016/B978-0-12-381479-1.00009-5 10.1109/ACCESS.2019.2942413 10.1155/2015/604910 10.1038/s41591-022-01746-x 10.1109/ACCESS.2019.2918406 10.1109/AICCSA.2009.5069306 10.1038/35000501 10.1007/3-540-57868-4 10.1016/S0306-4379(02)00072-8 10.1038/nm733 10.1038/89044 10.1126/science.286.5439.531 10.3390/diagnostics15070927 10.1109/TKDE.2005.66 10.21629/JSEE.2018.02.19 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.3390/cimb47090683 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1467-3045 |
ExternalDocumentID | 10_3390_cimb47090683 |
GroupedDBID | --- 36B 53G 5GY A8Z AAYXX AENEX AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION DIK E3Z EMB EMOBN F5P FRP GROUPED_DOAJ GX1 IAO IGS IHR INH ITC MM. MODMG OK1 PGMZT RNS RPM SV3 TR2 |
ID | FETCH-LOGICAL-c753-360c882773e61f34af4fbd18917bd17789a6574d3b0d3bb81f0110c1ce1b33943 |
ISSN | 1467-3045 |
IngestDate | Wed Aug 27 16:39:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c753-360c882773e61f34af4fbd18917bd17789a6574d3b0d3bb81f0110c1ce1b33943 |
ORCID | 0009-0007-0239-3513 0000-0002-8427-5292 |
OpenAccessLink | https://www.mdpi.com/1467-3045/47/9/683/pdf?version=1756111660 |
ParticipantIDs | crossref_primary_10_3390_cimb47090683 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-25 |
PublicationDateYYYYMMDD | 2025-08-25 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Current issues in molecular biology |
PublicationYear | 2025 |
References | Khan (ref_7) 2001; 7 Beer (ref_10) 2002; 8 Peng (ref_17) 2005; 27 Hameed (ref_30) 2018; 14 ref_14 ref_13 ref_31 Fitzgerald (ref_1) 2022; 28 AlShamlan (ref_19) 2024; 79 ref_16 Li (ref_22) 2024; 12 Abdi (ref_26) 2012; 2012 Alkamli (ref_4) 2025; 13 Zhuoran (ref_18) 2018; 29 Alizadeh (ref_8) 2000; 403 Krzyszczyk (ref_2) 2018; 6 Lumumba (ref_21) 2024; 13 Alon (ref_11) 1999; 96 Golub (ref_12) 1999; 286 Liu (ref_15) 2005; 17 Almugren (ref_23) 2019; 7 Alshamlan (ref_28) 2018; 25 ref_25 Lu (ref_3) 2003; 28 Wei (ref_5) 2019; 7 Parhi (ref_24) 2022; 10 Nssibi (ref_20) 2024; 57 ref_29 ref_27 Armstrong (ref_9) 2002; 30 ref_6 |
References_xml | – volume: 2012 start-page: 320698 year: 2012 ident: ref_26 article-title: A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification publication-title: Comput. Math. Methods Med. doi: 10.1155/2012/320698 – volume: 13 start-page: 127 year: 2024 ident: ref_21 article-title: Kavita Comparative Analysis of Cross-Validation Techniques: LOOCV, K-folds Cross-Validation, and Repeated K-folds Cross-Validation in Machine Learning Models publication-title: Am. J. Theor. Appl. Stat. doi: 10.11648/j.ajtas.20241305.13 – volume: 12 start-page: 72688 year: 2024 ident: ref_22 article-title: Feature Selection of Gene Expression Data Using a Modified Artificial Fish Swarm Algorithm With Population Variation publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3402652 – volume: 25 start-page: 895 year: 2018 ident: ref_28 article-title: Co-ABC: Correlation artificial bee colony algorithm for biomarker gene discovery using gene expression profile publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2017.12.012 – volume: 57 start-page: 51 year: 2024 ident: ref_20 article-title: Gene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimization publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10675-1 – volume: 10 start-page: 49219 year: 2022 ident: ref_24 article-title: Influential Gene Selection From High-Dimensional Genomic Data Using a Bio-Inspired Algorithm Wrapped Broad Learning System publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3170038 – volume: 6 start-page: 79 year: 2018 ident: ref_2 article-title: The growing role of precision and personalized medicine for cancer treatment publication-title: Technology doi: 10.1142/S2339547818300020 – volume: 96 start-page: 6745 year: 1999 ident: ref_11 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.12.6745 – volume: 30 start-page: 41 year: 2002 ident: ref_9 article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia publication-title: Nat. Genet. doi: 10.1038/ng765 – ident: ref_14 doi: 10.1007/978-3-540-35488-8 – volume: 79 start-page: 675 year: 2024 ident: ref_19 article-title: Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection publication-title: CMC doi: 10.32604/cmc.2024.048146 – ident: ref_29 doi: 10.34172/bi.30340 – volume: 14 start-page: 868 year: 2018 ident: ref_30 article-title: Gene Selection and Classification in Microarray Datasets using a Hybrid Approach of PCC-BPSO/GA with Multi Classifiers publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2018.868.880 – volume: 13 start-page: 59977 year: 2025 ident: ref_4 article-title: Performance Evaluation of Hybrid Bio-Inspired and Deep Learning Algorithms in Gene Selection and Cancer Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3556816 – volume: 27 start-page: 1226 year: 2005 ident: ref_17 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – ident: ref_31 doi: 10.3390/ijms26157587 – ident: ref_13 doi: 10.1016/B978-0-12-381479-1.00009-5 – volume: 7 start-page: 136907 year: 2019 ident: ref_23 article-title: New Bio-Marker Gene Discovery Algorithms for Cancer Gene Expression Profile publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942413 – ident: ref_25 doi: 10.1155/2015/604910 – volume: 28 start-page: 666 year: 2022 ident: ref_1 article-title: The future of early cancer detection publication-title: Nat. Med. doi: 10.1038/s41591-022-01746-x – volume: 7 start-page: 66084 year: 2019 ident: ref_5 article-title: Nuclear Reaction Optimization: A Novel and Powerful Physics-Based Algorithm for Global Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918406 – ident: ref_27 doi: 10.1109/AICCSA.2009.5069306 – volume: 403 start-page: 503 year: 2000 ident: ref_8 article-title: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling publication-title: Nature doi: 10.1038/35000501 – ident: ref_16 doi: 10.1007/3-540-57868-4 – volume: 28 start-page: 243 year: 2003 ident: ref_3 article-title: Cancer classification using gene expression data publication-title: Inf. Syst. doi: 10.1016/S0306-4379(02)00072-8 – volume: 8 start-page: 816 year: 2002 ident: ref_10 article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma publication-title: Nat. Med. doi: 10.1038/nm733 – volume: 7 start-page: 673 year: 2001 ident: ref_7 article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks publication-title: Nat. Med. doi: 10.1038/89044 – volume: 286 start-page: 531 year: 1999 ident: ref_12 article-title: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – ident: ref_6 doi: 10.3390/diagnostics15070927 – volume: 17 start-page: 491 year: 2005 ident: ref_15 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.66 – volume: 29 start-page: 386 year: 2018 ident: ref_18 article-title: An optimization method: Hummingbirds optimization algorithm publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2018.02.19 |
SSID | ssj0057871 |
Score | 2.3910367 |
Snippet | Microarray gene expression data are characterized by high dimensionality and small sample sizes, which complicates cancer classification tasks. To address... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 683 |
Title | Hybrid Gene Selection Algorithm for Cancer Classification Using Nuclear Reaction Optimization (NRO) |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYY0yReEBtM_JYfhgRC2ZrGteNHhDZVewAJisRbZTvOOmhaVMoD_PXc-dyQVn1ge2haOXFV5ft69l3uvmPsWyF9Wxjtk6JITSJ0qRKrlEx8u8hknpeu40OC7IXs3ojft53bheqSqf3uXpbWlfwPqjAGuGKV7D8gW38pDMBnwBeOgDAc34Vx9xnrrYJ0NPzph57afp8N_4zB5R9UIYXwHGGdUPNLTAsiwClT4ALFjM0EM-lp6iUYkCpWZoY-PVeXs1DB3bxKacAr5NJWswa7p1HQqebQ8N5UVH19PTADU7ydeBzAGQq9ds3QNEMP7Q7GUqlMOVpLtLL4qJUWkyVj0cSSqGakkm7YS0ldbBbteJZpTHx0fysrVEu34mXzctkLy1idXAhuDc7vN2d_YB_bSoXn-CGcQ0s1WquUys_oN1NlBM7-0Zzd2LM0Nh-9DbYevQZ-RhT4zFb86Av7RH1EnzeZIyJwJAKvicBrInAgAici8Hki8EAEHonAZ0TgTSLwY6DByRbr_frZO-8msXtG4sAFTTLZcuA9KZV5mZaZMKUobZHm4J7Dm1K5NrKjRJHZFrxsnpa4E3Sp86mFGyCyr2x1NB75bcZRXF7b3KE4oRCojmRSrT04m7LAJPYddjS7Pf0H0kjpLwNh953X7bG1N7bts9Xp5MkfwNZvag9DyOQwgPgKGztauA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Gene+Selection+Algorithm+for+Cancer+Classification+Using+Nuclear+Reaction+Optimization+%28NRO%29&rft.jtitle=Current+issues+in+molecular+biology&rft.au=Alkamli%2C+Shahad&rft.au=Alshamlan%2C+Hala&rft.date=2025-08-25&rft.issn=1467-3045&rft.eissn=1467-3045&rft.volume=47&rft.issue=9&rft.spage=683&rft_id=info:doi/10.3390%2Fcimb47090683&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cimb47090683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-3045&client=summon |