Hybrid Gene Selection Algorithm for Cancer Classification Using Nuclear Reaction Optimization (NRO)

Microarray gene expression data are characterized by high dimensionality and small sample sizes, which complicates cancer classification tasks. To address these challenges, this study proposes a hybrid gene selection approach that integrates a filter-based dimensionality reduction method with a meta...

Full description

Saved in:
Bibliographic Details
Published inCurrent issues in molecular biology Vol. 47; no. 9; p. 683
Main Authors Alkamli, Shahad, Alshamlan, Hala
Format Journal Article
LanguageEnglish
Published 25.08.2025
Online AccessGet full text
ISSN1467-3045
1467-3045
DOI10.3390/cimb47090683

Cover

Abstract Microarray gene expression data are characterized by high dimensionality and small sample sizes, which complicates cancer classification tasks. To address these challenges, this study proposes a hybrid gene selection approach that integrates a filter-based dimensionality reduction method with a metaheuristic optimizer. Specifically, the method applies the F-score statistical filter to rank and reduce gene features, followed by Nuclear Reaction Optimization (NRO) to refine the selection. This combination is referred to as the F-score-based Nuclear Reaction Optimization method or F-NRO. The performance of F-NRO was evaluated on six publicly available microarray cancer datasets (Colon, Leukemia1, Leukemia2, Lung, Lymphoma, and SRBCT) using Support Vector Machines (SVMs) and Leave-One-Out Cross-Validation (LOOCV). Comparative analysis against several existing hybrid gene selection algorithms demonstrates that F-NRO achieves high classification accuracy, including perfect accuracy on five datasets, using compact gene subsets. These results suggest that F-NRO is an effective and interpretable solution for gene selection in cancer classification tasks.
AbstractList Microarray gene expression data are characterized by high dimensionality and small sample sizes, which complicates cancer classification tasks. To address these challenges, this study proposes a hybrid gene selection approach that integrates a filter-based dimensionality reduction method with a metaheuristic optimizer. Specifically, the method applies the F-score statistical filter to rank and reduce gene features, followed by Nuclear Reaction Optimization (NRO) to refine the selection. This combination is referred to as the F-score-based Nuclear Reaction Optimization method or F-NRO. The performance of F-NRO was evaluated on six publicly available microarray cancer datasets (Colon, Leukemia1, Leukemia2, Lung, Lymphoma, and SRBCT) using Support Vector Machines (SVMs) and Leave-One-Out Cross-Validation (LOOCV). Comparative analysis against several existing hybrid gene selection algorithms demonstrates that F-NRO achieves high classification accuracy, including perfect accuracy on five datasets, using compact gene subsets. These results suggest that F-NRO is an effective and interpretable solution for gene selection in cancer classification tasks.
Author Alkamli, Shahad
Alshamlan, Hala
Author_xml – sequence: 1
  givenname: Shahad
  orcidid: 0009-0007-0239-3513
  surname: Alkamli
  fullname: Alkamli, Shahad
– sequence: 2
  givenname: Hala
  orcidid: 0000-0002-8427-5292
  surname: Alshamlan
  fullname: Alshamlan, Hala
BookMark eNpNkDFPwzAUhC1UJNrCxg_wCBIBGzuxM1YRbZGqRipljmznuRglTmWHofx6AmHo8PS94e6kuxma-M4DQreUPDKWkyfjWs0FyUkm2QWaUp6JhBGeTs7-KzSL8ZOQVEhBp8isTzq4Gq_AA36DBkzvOo8XzaELrv9ose0CLpQ3MKBRMTrrjPrTvEfnD3j7ZRpQAe9Ajdby2LvWfY-au-2uvL9Gl1Y1EW7-OUf75cu-WCebcvVaLDaJESlLWEaMlM9CMMioZVxZbnVNZU7FACFkrrJU8JppMpyW1BJKiaEGqB7aczZHD2OsCV2MAWx1DK5V4VRRUv3uU53vw34A7Itanw
Cites_doi 10.1155/2012/320698
10.11648/j.ajtas.20241305.13
10.1109/ACCESS.2024.3402652
10.1016/j.sjbs.2017.12.012
10.1007/s10462-023-10675-1
10.1109/ACCESS.2022.3170038
10.1142/S2339547818300020
10.1073/pnas.96.12.6745
10.1038/ng765
10.1007/978-3-540-35488-8
10.32604/cmc.2024.048146
10.34172/bi.30340
10.3844/jcssp.2018.868.880
10.1109/ACCESS.2025.3556816
10.1109/TPAMI.2005.159
10.3390/ijms26157587
10.1016/B978-0-12-381479-1.00009-5
10.1109/ACCESS.2019.2942413
10.1155/2015/604910
10.1038/s41591-022-01746-x
10.1109/ACCESS.2019.2918406
10.1109/AICCSA.2009.5069306
10.1038/35000501
10.1007/3-540-57868-4
10.1016/S0306-4379(02)00072-8
10.1038/nm733
10.1038/89044
10.1126/science.286.5439.531
10.3390/diagnostics15070927
10.1109/TKDE.2005.66
10.21629/JSEE.2018.02.19
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3390/cimb47090683
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1467-3045
ExternalDocumentID 10_3390_cimb47090683
GroupedDBID ---
36B
53G
5GY
A8Z
AAYXX
AENEX
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
DIK
E3Z
EMB
EMOBN
F5P
FRP
GROUPED_DOAJ
GX1
IAO
IGS
IHR
INH
ITC
MM.
MODMG
OK1
PGMZT
RNS
RPM
SV3
TR2
ID FETCH-LOGICAL-c753-360c882773e61f34af4fbd18917bd17789a6574d3b0d3bb81f0110c1ce1b33943
ISSN 1467-3045
IngestDate Wed Aug 27 16:39:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c753-360c882773e61f34af4fbd18917bd17789a6574d3b0d3bb81f0110c1ce1b33943
ORCID 0009-0007-0239-3513
0000-0002-8427-5292
OpenAccessLink https://www.mdpi.com/1467-3045/47/9/683/pdf?version=1756111660
ParticipantIDs crossref_primary_10_3390_cimb47090683
PublicationCentury 2000
PublicationDate 2025-08-25
PublicationDateYYYYMMDD 2025-08-25
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-25
  day: 25
PublicationDecade 2020
PublicationTitle Current issues in molecular biology
PublicationYear 2025
References Khan (ref_7) 2001; 7
Beer (ref_10) 2002; 8
Peng (ref_17) 2005; 27
Hameed (ref_30) 2018; 14
ref_14
ref_13
ref_31
Fitzgerald (ref_1) 2022; 28
AlShamlan (ref_19) 2024; 79
ref_16
Li (ref_22) 2024; 12
Abdi (ref_26) 2012; 2012
Alkamli (ref_4) 2025; 13
Zhuoran (ref_18) 2018; 29
Alizadeh (ref_8) 2000; 403
Krzyszczyk (ref_2) 2018; 6
Lumumba (ref_21) 2024; 13
Alon (ref_11) 1999; 96
Golub (ref_12) 1999; 286
Liu (ref_15) 2005; 17
Almugren (ref_23) 2019; 7
Alshamlan (ref_28) 2018; 25
ref_25
Lu (ref_3) 2003; 28
Wei (ref_5) 2019; 7
Parhi (ref_24) 2022; 10
Nssibi (ref_20) 2024; 57
ref_29
ref_27
Armstrong (ref_9) 2002; 30
ref_6
References_xml – volume: 2012
  start-page: 320698
  year: 2012
  ident: ref_26
  article-title: A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/320698
– volume: 13
  start-page: 127
  year: 2024
  ident: ref_21
  article-title: Kavita Comparative Analysis of Cross-Validation Techniques: LOOCV, K-folds Cross-Validation, and Repeated K-folds Cross-Validation in Machine Learning Models
  publication-title: Am. J. Theor. Appl. Stat.
  doi: 10.11648/j.ajtas.20241305.13
– volume: 12
  start-page: 72688
  year: 2024
  ident: ref_22
  article-title: Feature Selection of Gene Expression Data Using a Modified Artificial Fish Swarm Algorithm With Population Variation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3402652
– volume: 25
  start-page: 895
  year: 2018
  ident: ref_28
  article-title: Co-ABC: Correlation artificial bee colony algorithm for biomarker gene discovery using gene expression profile
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2017.12.012
– volume: 57
  start-page: 51
  year: 2024
  ident: ref_20
  article-title: Gene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimization
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10675-1
– volume: 10
  start-page: 49219
  year: 2022
  ident: ref_24
  article-title: Influential Gene Selection From High-Dimensional Genomic Data Using a Bio-Inspired Algorithm Wrapped Broad Learning System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3170038
– volume: 6
  start-page: 79
  year: 2018
  ident: ref_2
  article-title: The growing role of precision and personalized medicine for cancer treatment
  publication-title: Technology
  doi: 10.1142/S2339547818300020
– volume: 96
  start-page: 6745
  year: 1999
  ident: ref_11
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.12.6745
– volume: 30
  start-page: 41
  year: 2002
  ident: ref_9
  article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
  publication-title: Nat. Genet.
  doi: 10.1038/ng765
– ident: ref_14
  doi: 10.1007/978-3-540-35488-8
– volume: 79
  start-page: 675
  year: 2024
  ident: ref_19
  article-title: Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection
  publication-title: CMC
  doi: 10.32604/cmc.2024.048146
– ident: ref_29
  doi: 10.34172/bi.30340
– volume: 14
  start-page: 868
  year: 2018
  ident: ref_30
  article-title: Gene Selection and Classification in Microarray Datasets using a Hybrid Approach of PCC-BPSO/GA with Multi Classifiers
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2018.868.880
– volume: 13
  start-page: 59977
  year: 2025
  ident: ref_4
  article-title: Performance Evaluation of Hybrid Bio-Inspired and Deep Learning Algorithms in Gene Selection and Cancer Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3556816
– volume: 27
  start-page: 1226
  year: 2005
  ident: ref_17
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– ident: ref_31
  doi: 10.3390/ijms26157587
– ident: ref_13
  doi: 10.1016/B978-0-12-381479-1.00009-5
– volume: 7
  start-page: 136907
  year: 2019
  ident: ref_23
  article-title: New Bio-Marker Gene Discovery Algorithms for Cancer Gene Expression Profile
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2942413
– ident: ref_25
  doi: 10.1155/2015/604910
– volume: 28
  start-page: 666
  year: 2022
  ident: ref_1
  article-title: The future of early cancer detection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01746-x
– volume: 7
  start-page: 66084
  year: 2019
  ident: ref_5
  article-title: Nuclear Reaction Optimization: A Novel and Powerful Physics-Based Algorithm for Global Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918406
– ident: ref_27
  doi: 10.1109/AICCSA.2009.5069306
– volume: 403
  start-page: 503
  year: 2000
  ident: ref_8
  article-title: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
  publication-title: Nature
  doi: 10.1038/35000501
– ident: ref_16
  doi: 10.1007/3-540-57868-4
– volume: 28
  start-page: 243
  year: 2003
  ident: ref_3
  article-title: Cancer classification using gene expression data
  publication-title: Inf. Syst.
  doi: 10.1016/S0306-4379(02)00072-8
– volume: 8
  start-page: 816
  year: 2002
  ident: ref_10
  article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma
  publication-title: Nat. Med.
  doi: 10.1038/nm733
– volume: 7
  start-page: 673
  year: 2001
  ident: ref_7
  article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
  publication-title: Nat. Med.
  doi: 10.1038/89044
– volume: 286
  start-page: 531
  year: 1999
  ident: ref_12
  article-title: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– ident: ref_6
  doi: 10.3390/diagnostics15070927
– volume: 17
  start-page: 491
  year: 2005
  ident: ref_15
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.66
– volume: 29
  start-page: 386
  year: 2018
  ident: ref_18
  article-title: An optimization method: Hummingbirds optimization algorithm
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2018.02.19
SSID ssj0057871
Score 2.3910367
Snippet Microarray gene expression data are characterized by high dimensionality and small sample sizes, which complicates cancer classification tasks. To address...
SourceID crossref
SourceType Index Database
StartPage 683
Title Hybrid Gene Selection Algorithm for Cancer Classification Using Nuclear Reaction Optimization (NRO)
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYY0yReEBtM_JYfhgRC2ZrGteNHhDZVewAJisRbZTvOOmhaVMoD_PXc-dyQVn1ge2haOXFV5ft69l3uvmPsWyF9Wxjtk6JITSJ0qRKrlEx8u8hknpeu40OC7IXs3ojft53bheqSqf3uXpbWlfwPqjAGuGKV7D8gW38pDMBnwBeOgDAc34Vx9xnrrYJ0NPzph57afp8N_4zB5R9UIYXwHGGdUPNLTAsiwClT4ALFjM0EM-lp6iUYkCpWZoY-PVeXs1DB3bxKacAr5NJWswa7p1HQqebQ8N5UVH19PTADU7ydeBzAGQq9ds3QNEMP7Q7GUqlMOVpLtLL4qJUWkyVj0cSSqGakkm7YS0ldbBbteJZpTHx0fysrVEu34mXzctkLy1idXAhuDc7vN2d_YB_bSoXn-CGcQ0s1WquUys_oN1NlBM7-0Zzd2LM0Nh-9DbYevQZ-RhT4zFb86Av7RH1EnzeZIyJwJAKvicBrInAgAici8Hki8EAEHonAZ0TgTSLwY6DByRbr_frZO-8msXtG4sAFTTLZcuA9KZV5mZaZMKUobZHm4J7Dm1K5NrKjRJHZFrxsnpa4E3Sp86mFGyCyr2x1NB75bcZRXF7b3KE4oRCojmRSrT04m7LAJPYddjS7Pf0H0kjpLwNh953X7bG1N7bts9Xp5MkfwNZvag9DyOQwgPgKGztauA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Gene+Selection+Algorithm+for+Cancer+Classification+Using+Nuclear+Reaction+Optimization+%28NRO%29&rft.jtitle=Current+issues+in+molecular+biology&rft.au=Alkamli%2C+Shahad&rft.au=Alshamlan%2C+Hala&rft.date=2025-08-25&rft.issn=1467-3045&rft.eissn=1467-3045&rft.volume=47&rft.issue=9&rft.spage=683&rft_id=info:doi/10.3390%2Fcimb47090683&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cimb47090683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-3045&client=summon