Enhancing Landslide Displacement Prediction Using a Spatio‐Temporal Deep Learning Model With Interpretable Features

Landslides cause significant economic losses and pose severe risks to human safety, making accurate predictions of landslide displacements essential for effective early warning systems. Many prediction models focus primarily on time series forecasting at individual monitoring points. Consequently, c...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Wang, Jia, Zhu, Hong‐Hu, Zhang, Wei, Tan, Dao‐Yuan, Pasuto, Alessandro
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text

Cover

Loading…
Abstract Landslides cause significant economic losses and pose severe risks to human safety, making accurate predictions of landslide displacements essential for effective early warning systems. Many prediction models focus primarily on time series forecasting at individual monitoring points. Consequently, challenges are faced in capturing the spatial correlations of landslide displacements. In addition, the black‐box characteristics of the model limit the interpretability of the decision‐making process, which may make the prediction results difficult to use effectively for decision‐making. This paper proposes a deep learning model with interpretable features, which combines graph neural networks and gated recurrent units (GRUs) to capture the spatio‐temporal characteristics of landslide displacements. Using the Outang landslide in the Three Gorges Reservoir area as a case study, the effectiveness of the proposed model is validated through comparisons with long short‐term memory and GRU models. The results demonstrate that the spatio‐temporal graph neural network model provides accurate predictions of landslide displacement, exhibiting strong robustness and stability. The attention module enhances the interpretability of the model, revealing the influence of factors such as the groundwater table, reservoir water level, and temperature at different monitoring points. This work provides insights into advancing the understanding and forecasting of complex landslide behaviors. Landslides pose a serious threat to human safety and property. Accurate prediction is crucial for early warning and risk management. However, current methods often focus on individual monitoring points and lack interpretability, making it difficult to understand the rationale behind the predictions. This study proposes a new approach that integrates temporal and spatial information from various monitoring stations to improve prediction accuracy. The model uses an attention mechanism to highlight the relative importance of different environmental drivers, such as water levels and temperature, making the predictions more transparent. By identifying key factors and explaining their impacts, the model improves the understanding of landslide behavior and fosters enhanced community protection. The spatio‐temporal graph neural network captures spatial and temporal dependencies, improving landslide displacement prediction accuracy Interpretable attention mechanisms quantify the influence of key factors, balancing prediction precision and model transparency Hydrological drivers exhibit time‐lag effects on displacement, underscoring the necessity of lag‐aware models for early warning systems
AbstractList Landslides cause significant economic losses and pose severe risks to human safety, making accurate predictions of landslide displacements essential for effective early warning systems. Many prediction models focus primarily on time series forecasting at individual monitoring points. Consequently, challenges are faced in capturing the spatial correlations of landslide displacements. In addition, the black‐box characteristics of the model limit the interpretability of the decision‐making process, which may make the prediction results difficult to use effectively for decision‐making. This paper proposes a deep learning model with interpretable features, which combines graph neural networks and gated recurrent units (GRUs) to capture the spatio‐temporal characteristics of landslide displacements. Using the Outang landslide in the Three Gorges Reservoir area as a case study, the effectiveness of the proposed model is validated through comparisons with long short‐term memory and GRU models. The results demonstrate that the spatio‐temporal graph neural network model provides accurate predictions of landslide displacement, exhibiting strong robustness and stability. The attention module enhances the interpretability of the model, revealing the influence of factors such as the groundwater table, reservoir water level, and temperature at different monitoring points. This work provides insights into advancing the understanding and forecasting of complex landslide behaviors. Landslides pose a serious threat to human safety and property. Accurate prediction is crucial for early warning and risk management. However, current methods often focus on individual monitoring points and lack interpretability, making it difficult to understand the rationale behind the predictions. This study proposes a new approach that integrates temporal and spatial information from various monitoring stations to improve prediction accuracy. The model uses an attention mechanism to highlight the relative importance of different environmental drivers, such as water levels and temperature, making the predictions more transparent. By identifying key factors and explaining their impacts, the model improves the understanding of landslide behavior and fosters enhanced community protection. The spatio‐temporal graph neural network captures spatial and temporal dependencies, improving landslide displacement prediction accuracy Interpretable attention mechanisms quantify the influence of key factors, balancing prediction precision and model transparency Hydrological drivers exhibit time‐lag effects on displacement, underscoring the necessity of lag‐aware models for early warning systems
Author Pasuto, Alessandro
Wang, Jia
Zhu, Hong‐Hu
Zhang, Wei
Tan, Dao‐Yuan
Author_xml – sequence: 1
  givenname: Jia
  surname: Wang
  fullname: Wang, Jia
  organization: School of Earth Sciences and Engineering Nanjing University Nanjing China
– sequence: 2
  givenname: Hong‐Hu
  orcidid: 0000-0002-1312-0410
  surname: Zhu
  fullname: Zhu, Hong‐Hu
  organization: School of Earth Sciences and Engineering Nanjing University Nanjing China, Jiangsu Province Engineering Research Center of Earth Sensing and Disaster Control Nanjing China
– sequence: 3
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: School of Earth Sciences and Engineering Nanjing University Nanjing China
– sequence: 4
  givenname: Dao‐Yuan
  orcidid: 0000-0001-5334-5916
  surname: Tan
  fullname: Tan, Dao‐Yuan
  organization: School of Earth Sciences and Engineering Nanjing University Nanjing China
– sequence: 5
  givenname: Alessandro
  surname: Pasuto
  fullname: Pasuto, Alessandro
  organization: National Research Council‐Research Institute for Geo‐Hydrological Protection (CNR‐IRPI) Padova Italy
BookMark eNpNkE1OwzAQRi1UJErpjgP4ABTGdk3qJeoPLQoCiSKW0dSeUKPUiex0wY4jcEZOQipYdDPffNLTSPPOWS_UgRi7FHAtQJobCVI_LAFAG3nC-tIYNdJSQO9oP2PDlD46RikJE8j6bD8PWwzWh3eeY3Cp8o74zKemQks7Ci1_juS8bX0d-Gs6cMhfGuz6z9f3mnZNHbHiM6KG54QxHIjH2lHF33y75avQUmwitbipiC8I232kdMFOS6wSDf9zwNaL-Xq6HOVP96vpXT6ymZbdQMQSJk4YLagcb0gKbYyYKCWcsuA2t2MFKC1pJQUSZQayzKFBY7sfSzVgV39nbaxTilQWTfQ7jJ-FgOIgrTiWpn4B-XFiww
Cites_doi 10.1016/j.apenergy.2024.122824
10.1007/s10346‐024‐02272‐2
10.1016/j.enggeo.2024.107630
10.1016/j.knosys.2022.109125
10.1016/j.physa.2022.127627
10.3724/sp.J.1235.2011.00097
10.1007/s10064‐023‐03418‐7
10.1016/j.enggeo.2020.105817
10.1007/s11069‐024‐06487‐3
10.3389/feart.2023.1157881
10.1016/j.scitotenv.2023.167591
10.1016/j.enggeo.2025.107917
10.1016/j.jrmge.2023.09.030
10.6084/m9.figshare.28171343
10.1016/j.asoc.2023.111107
10.1016/j.jhydrol.2023.130588
10.1016/j.gsf.2024.101959
10.1016/S0012‐8252(00)00011‐8
10.1016/j.jhydrol.2009.03.006
10.1016/j.compgeo.2023.106015
10.1038/s43017‐022‐00373‐x
10.1038/s41598‐024‐74329‐0
10.1016/j.jhydrol.2021.126506
10.1029/2022GL098211
10.1029/2021gl092959
10.1111/j.1538‐4632.1996.tb00936.x
10.1029/2024jh000122
10.1007/s11440‐022‐01495‐8
10.1016/j.neucom.2021.03.091
10.5194/nhess‐18‐2161‐2018
10.1016/j.earscirev.2024.104948
10.1016/j.jrmge.2024.02.034
10.1016/j.gr.2024.04.013
10.1007/s10346‐020‐01476‐6
10.1016/j.jrmge.2024.09.038
10.1007/s12559‐023‐10179‐8
10.1130/G33217.1
10.1016/j.rse.2016.11.007
10.1029/2021wr030375
10.1029/WR019i001p00260
10.1007/s10064‐023‐03067‐w
10.1016/j.eswa.2022.117921
10.1016/j.jhydrol.2024.130905
10.1016/j.enggeo.2022.106544
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2025JH000592
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2025JH000592
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c752-c7aaaf08d1951ef4be2159918331d3c0db6430a2ce5321aee79077da9a9c000f3
ISSN 2993-5210
IngestDate Wed Jul 16 16:48:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c752-c7aaaf08d1951ef4be2159918331d3c0db6430a2ce5321aee79077da9a9c000f3
ORCID 0000-0001-5334-5916
0000-0002-1312-0410
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000592
ParticipantIDs crossref_primary_10_1029_2025JH000592
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_10_2_3_1
e_1_2_10_2_2_1
e_1_2_10_2_5_1
e_1_2_10_2_4_1
e_1_2_10_1_27_1
e_1_2_10_1_28_1
e_1_2_10_1_29_1
e_1_2_10_1_23_1
e_1_2_10_1_24_1
e_1_2_10_1_25_1
e_1_2_10_1_26_1
e_1_2_10_1_20_1
e_1_2_10_1_41_1
e_1_2_10_1_21_1
e_1_2_10_1_22_1
e_1_2_10_1_40_1
e_1_2_10_1_9_1
e_1_2_10_1_8_1
e_1_2_10_1_7_1
e_1_2_10_1_16_1
e_1_2_10_1_39_1
e_1_2_10_1_17_1
e_1_2_10_1_38_1
e_1_2_10_1_18_1
e_1_2_10_1_19_1
e_1_2_10_1_2_1
e_1_2_10_1_12_1
e_1_2_10_1_35_1
e_1_2_10_1_13_1
e_1_2_10_1_34_1
e_1_2_10_1_14_1
e_1_2_10_1_37_1
e_1_2_10_1_15_1
e_1_2_10_1_36_1
e_1_2_10_1_6_1
e_1_2_10_1_31_1
e_1_2_10_1_5_1
e_1_2_10_1_30_1
e_1_2_10_1_4_1
e_1_2_10_1_10_1
e_1_2_10_1_33_1
e_1_2_10_1_3_1
e_1_2_10_1_11_1
e_1_2_10_1_32_1
References_xml – ident: e_1_2_10_2_5_1
  doi: 10.1016/j.apenergy.2024.122824
– ident: e_1_2_10_1_20_1
  doi: 10.1007/s10346‐024‐02272‐2
– ident: e_1_2_10_1_10_1
  doi: 10.1016/j.enggeo.2024.107630
– ident: e_1_2_10_1_12_1
  doi: 10.1016/j.knosys.2022.109125
– ident: e_1_2_10_1_41_1
  doi: 10.1016/j.physa.2022.127627
– ident: e_1_2_10_1_13_1
  doi: 10.3724/sp.J.1235.2011.00097
– ident: e_1_2_10_1_40_1
  doi: 10.1007/s10064‐023‐03418‐7
– ident: e_1_2_10_1_34_1
  doi: 10.1016/j.enggeo.2020.105817
– ident: e_1_2_10_1_7_1
  doi: 10.1007/s11069‐024‐06487‐3
– ident: e_1_2_10_1_23_1
  doi: 10.3389/feart.2023.1157881
– ident: e_1_2_10_1_29_1
  doi: 10.1016/j.scitotenv.2023.167591
– ident: e_1_2_10_1_17_1
  doi: 10.1016/j.enggeo.2025.107917
– ident: e_1_2_10_2_4_1
  doi: 10.1016/j.jrmge.2023.09.030
– ident: e_1_2_10_1_30_1
  doi: 10.6084/m9.figshare.28171343
– ident: e_1_2_10_1_37_1
  doi: 10.1016/j.asoc.2023.111107
– ident: e_1_2_10_1_26_1
  doi: 10.1016/j.jhydrol.2023.130588
– ident: e_1_2_10_1_33_1
  doi: 10.1016/j.gsf.2024.101959
– ident: e_1_2_10_1_5_1
  doi: 10.1016/S0012‐8252(00)00011‐8
– ident: e_1_2_10_1_21_1
  doi: 10.1016/j.jhydrol.2009.03.006
– ident: e_1_2_10_1_4_1
  doi: 10.1016/j.compgeo.2023.106015
– ident: e_1_2_10_1_3_1
  doi: 10.1038/s43017‐022‐00373‐x
– ident: e_1_2_10_2_3_1
  doi: 10.1038/s41598‐024‐74329‐0
– ident: e_1_2_10_2_2_1
  doi: 10.1016/j.jhydrol.2021.126506
– ident: e_1_2_10_1_36_1
  doi: 10.1029/2022GL098211
– ident: e_1_2_10_1_24_1
  doi: 10.1029/2021gl092959
– ident: e_1_2_10_1_2_1
  doi: 10.1111/j.1538‐4632.1996.tb00936.x
– ident: e_1_2_10_1_19_1
  doi: 10.1029/2024jh000122
– ident: e_1_2_10_1_39_1
  doi: 10.1007/s11440‐022‐01495‐8
– ident: e_1_2_10_1_22_1
  doi: 10.1016/j.neucom.2021.03.091
– ident: e_1_2_10_1_8_1
  doi: 10.5194/nhess‐18‐2161‐2018
– ident: e_1_2_10_1_9_1
  doi: 10.1016/j.earscirev.2024.104948
– ident: e_1_2_10_1_18_1
  doi: 10.1016/j.jrmge.2024.02.034
– ident: e_1_2_10_1_38_1
  doi: 10.1016/j.gr.2024.04.013
– ident: e_1_2_10_1_15_1
  doi: 10.1007/s10346‐020‐01476‐6
– ident: e_1_2_10_1_32_1
  doi: 10.1016/j.jrmge.2024.09.038
– ident: e_1_2_10_1_11_1
  doi: 10.1007/s12559‐023‐10179‐8
– ident: e_1_2_10_1_25_1
  doi: 10.1130/G33217.1
– ident: e_1_2_10_1_28_1
  doi: 10.1016/j.rse.2016.11.007
– ident: e_1_2_10_1_6_1
  doi: 10.1029/2021wr030375
– ident: e_1_2_10_1_27_1
  doi: 10.1029/WR019i001p00260
– ident: e_1_2_10_1_16_1
  doi: 10.1007/s10064‐023‐03067‐w
– ident: e_1_2_10_1_14_1
  doi: 10.1016/j.eswa.2022.117921
– ident: e_1_2_10_1_35_1
  doi: 10.1016/j.jhydrol.2024.130905
– ident: e_1_2_10_1_31_1
  doi: 10.1016/j.enggeo.2022.106544
SSID ssj0003320807
Score 2.3020177
Snippet Landslides cause significant economic losses and pose severe risks to human safety, making accurate predictions of landslide displacements essential for...
SourceID crossref
SourceType Index Database
Title Enhancing Landslide Displacement Prediction Using a Spatio‐Temporal Deep Learning Model With Interpretable Features
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF6l6YVLVdRW_BS0h_aEDOtdO46PCAVFkagqEQT0Eu161zhSFKIovnBAPAIP0yfqkzCz3rVNyQG4WJHlbOzM55lvZ7-ZJeSH7kEUjnMeZFGkggg8XiBzwWGWEirJQpMpW1t19qs3vIhGV_FVp_O3pVoqV-owu1tbV_Ieq8I5sCtWyb7BsvWgcAI-g33hCBaG46tsPJgX2C4D65SwYnc21QbbaVqdlV3k_73EdRhr4kobIA_OrYS61jiMq9ZU4PuMWfhuqzd2i7QZuIxVcdDIErHICiljuXTCw5ek9sbcLrzlXR-h4hB3NyqQzc788K6YblE-FwJcuuT1aFoHiz9FaaMjKof9PQ_LF-nuSzNtchCVI5XNQ16X7h1w6Q0e1_ot5wU5CgyBY1SLN2bNOefGeQutYm1wYBx7q-KPjIa2MQ1vgqBf-P8vNtaKRbtWz9NJ-9sfyEcOkxP0rmf3TWZPCM6qOv36Pl3FBQxw1B6gxYVapGb8mXxyhqPHFbQ2ScfMv5CyhhWtYUXbsKINrKiFFZW0gtW_h0cPKIqAoh5Q1AKKIqDoM0BRD6ivZHw6GJ8MA7c7R5AlMbzbiZQyZ30dAkc3eaQMkEeYbPSFCLXImFbAdZnkmYkFD6UxScqSRMtUphk8fS6-ke78dm62CIVAF0U6B-psZNTPe32lUqYyJrUKEy3YNvnp_6bJourBMllnj51XXrdLNhqkfSfd1bI0e0AtV2rfpmT2rT2fAD14eeo
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Landslide+Displacement+Prediction+Using+a+Spatio%E2%80%90Temporal+Deep+Learning+Model+With+Interpretable+Features&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Wang%2C+Jia&rft.au=Zhu%2C+Hong%E2%80%90Hu&rft.au=Zhang%2C+Wei&rft.au=Tan%2C+Dao%E2%80%90Yuan&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000592&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon