Enhancing Landslide Displacement Prediction Using a Spatio‐Temporal Deep Learning Model With Interpretable Features
Landslides cause significant economic losses and pose severe risks to human safety, making accurate predictions of landslide displacements essential for effective early warning systems. Many prediction models focus primarily on time series forecasting at individual monitoring points. Consequently, c...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.09.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Landslides cause significant economic losses and pose severe risks to human safety, making accurate predictions of landslide displacements essential for effective early warning systems. Many prediction models focus primarily on time series forecasting at individual monitoring points. Consequently, challenges are faced in capturing the spatial correlations of landslide displacements. In addition, the black‐box characteristics of the model limit the interpretability of the decision‐making process, which may make the prediction results difficult to use effectively for decision‐making. This paper proposes a deep learning model with interpretable features, which combines graph neural networks and gated recurrent units (GRUs) to capture the spatio‐temporal characteristics of landslide displacements. Using the Outang landslide in the Three Gorges Reservoir area as a case study, the effectiveness of the proposed model is validated through comparisons with long short‐term memory and GRU models. The results demonstrate that the spatio‐temporal graph neural network model provides accurate predictions of landslide displacement, exhibiting strong robustness and stability. The attention module enhances the interpretability of the model, revealing the influence of factors such as the groundwater table, reservoir water level, and temperature at different monitoring points. This work provides insights into advancing the understanding and forecasting of complex landslide behaviors.
Landslides pose a serious threat to human safety and property. Accurate prediction is crucial for early warning and risk management. However, current methods often focus on individual monitoring points and lack interpretability, making it difficult to understand the rationale behind the predictions. This study proposes a new approach that integrates temporal and spatial information from various monitoring stations to improve prediction accuracy. The model uses an attention mechanism to highlight the relative importance of different environmental drivers, such as water levels and temperature, making the predictions more transparent. By identifying key factors and explaining their impacts, the model improves the understanding of landslide behavior and fosters enhanced community protection.
The spatio‐temporal graph neural network captures spatial and temporal dependencies, improving landslide displacement prediction accuracy Interpretable attention mechanisms quantify the influence of key factors, balancing prediction precision and model transparency Hydrological drivers exhibit time‐lag effects on displacement, underscoring the necessity of lag‐aware models for early warning systems |
---|---|
AbstractList | Landslides cause significant economic losses and pose severe risks to human safety, making accurate predictions of landslide displacements essential for effective early warning systems. Many prediction models focus primarily on time series forecasting at individual monitoring points. Consequently, challenges are faced in capturing the spatial correlations of landslide displacements. In addition, the black‐box characteristics of the model limit the interpretability of the decision‐making process, which may make the prediction results difficult to use effectively for decision‐making. This paper proposes a deep learning model with interpretable features, which combines graph neural networks and gated recurrent units (GRUs) to capture the spatio‐temporal characteristics of landslide displacements. Using the Outang landslide in the Three Gorges Reservoir area as a case study, the effectiveness of the proposed model is validated through comparisons with long short‐term memory and GRU models. The results demonstrate that the spatio‐temporal graph neural network model provides accurate predictions of landslide displacement, exhibiting strong robustness and stability. The attention module enhances the interpretability of the model, revealing the influence of factors such as the groundwater table, reservoir water level, and temperature at different monitoring points. This work provides insights into advancing the understanding and forecasting of complex landslide behaviors.
Landslides pose a serious threat to human safety and property. Accurate prediction is crucial for early warning and risk management. However, current methods often focus on individual monitoring points and lack interpretability, making it difficult to understand the rationale behind the predictions. This study proposes a new approach that integrates temporal and spatial information from various monitoring stations to improve prediction accuracy. The model uses an attention mechanism to highlight the relative importance of different environmental drivers, such as water levels and temperature, making the predictions more transparent. By identifying key factors and explaining their impacts, the model improves the understanding of landslide behavior and fosters enhanced community protection.
The spatio‐temporal graph neural network captures spatial and temporal dependencies, improving landslide displacement prediction accuracy Interpretable attention mechanisms quantify the influence of key factors, balancing prediction precision and model transparency Hydrological drivers exhibit time‐lag effects on displacement, underscoring the necessity of lag‐aware models for early warning systems |
Author | Pasuto, Alessandro Wang, Jia Zhu, Hong‐Hu Zhang, Wei Tan, Dao‐Yuan |
Author_xml | – sequence: 1 givenname: Jia surname: Wang fullname: Wang, Jia organization: School of Earth Sciences and Engineering Nanjing University Nanjing China – sequence: 2 givenname: Hong‐Hu orcidid: 0000-0002-1312-0410 surname: Zhu fullname: Zhu, Hong‐Hu organization: School of Earth Sciences and Engineering Nanjing University Nanjing China, Jiangsu Province Engineering Research Center of Earth Sensing and Disaster Control Nanjing China – sequence: 3 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: School of Earth Sciences and Engineering Nanjing University Nanjing China – sequence: 4 givenname: Dao‐Yuan orcidid: 0000-0001-5334-5916 surname: Tan fullname: Tan, Dao‐Yuan organization: School of Earth Sciences and Engineering Nanjing University Nanjing China – sequence: 5 givenname: Alessandro surname: Pasuto fullname: Pasuto, Alessandro organization: National Research Council‐Research Institute for Geo‐Hydrological Protection (CNR‐IRPI) Padova Italy |
BookMark | eNpNkE1OwzAQRi1UJErpjgP4ABTGdk3qJeoPLQoCiSKW0dSeUKPUiex0wY4jcEZOQipYdDPffNLTSPPOWS_UgRi7FHAtQJobCVI_LAFAG3nC-tIYNdJSQO9oP2PDlD46RikJE8j6bD8PWwzWh3eeY3Cp8o74zKemQks7Ci1_juS8bX0d-Gs6cMhfGuz6z9f3mnZNHbHiM6KG54QxHIjH2lHF33y75avQUmwitbipiC8I232kdMFOS6wSDf9zwNaL-Xq6HOVP96vpXT6ymZbdQMQSJk4YLagcb0gKbYyYKCWcsuA2t2MFKC1pJQUSZQayzKFBY7sfSzVgV39nbaxTilQWTfQ7jJ-FgOIgrTiWpn4B-XFiww |
Cites_doi | 10.1016/j.apenergy.2024.122824 10.1007/s10346‐024‐02272‐2 10.1016/j.enggeo.2024.107630 10.1016/j.knosys.2022.109125 10.1016/j.physa.2022.127627 10.3724/sp.J.1235.2011.00097 10.1007/s10064‐023‐03418‐7 10.1016/j.enggeo.2020.105817 10.1007/s11069‐024‐06487‐3 10.3389/feart.2023.1157881 10.1016/j.scitotenv.2023.167591 10.1016/j.enggeo.2025.107917 10.1016/j.jrmge.2023.09.030 10.6084/m9.figshare.28171343 10.1016/j.asoc.2023.111107 10.1016/j.jhydrol.2023.130588 10.1016/j.gsf.2024.101959 10.1016/S0012‐8252(00)00011‐8 10.1016/j.jhydrol.2009.03.006 10.1016/j.compgeo.2023.106015 10.1038/s43017‐022‐00373‐x 10.1038/s41598‐024‐74329‐0 10.1016/j.jhydrol.2021.126506 10.1029/2022GL098211 10.1029/2021gl092959 10.1111/j.1538‐4632.1996.tb00936.x 10.1029/2024jh000122 10.1007/s11440‐022‐01495‐8 10.1016/j.neucom.2021.03.091 10.5194/nhess‐18‐2161‐2018 10.1016/j.earscirev.2024.104948 10.1016/j.jrmge.2024.02.034 10.1016/j.gr.2024.04.013 10.1007/s10346‐020‐01476‐6 10.1016/j.jrmge.2024.09.038 10.1007/s12559‐023‐10179‐8 10.1130/G33217.1 10.1016/j.rse.2016.11.007 10.1029/2021wr030375 10.1029/WR019i001p00260 10.1007/s10064‐023‐03067‐w 10.1016/j.eswa.2022.117921 10.1016/j.jhydrol.2024.130905 10.1016/j.enggeo.2022.106544 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1029/2025JH000592 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
ExternalDocumentID | 10_1029_2025JH000592 |
GroupedDBID | 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c752-c7aaaf08d1951ef4be2159918331d3c0db6430a2ce5321aee79077da9a9c000f3 |
ISSN | 2993-5210 |
IngestDate | Wed Jul 16 16:48:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c752-c7aaaf08d1951ef4be2159918331d3c0db6430a2ce5321aee79077da9a9c000f3 |
ORCID | 0000-0001-5334-5916 0000-0002-1312-0410 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000592 |
ParticipantIDs | crossref_primary_10_1029_2025JH000592 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
References | e_1_2_10_2_3_1 e_1_2_10_2_2_1 e_1_2_10_2_5_1 e_1_2_10_2_4_1 e_1_2_10_1_27_1 e_1_2_10_1_28_1 e_1_2_10_1_29_1 e_1_2_10_1_23_1 e_1_2_10_1_24_1 e_1_2_10_1_25_1 e_1_2_10_1_26_1 e_1_2_10_1_20_1 e_1_2_10_1_41_1 e_1_2_10_1_21_1 e_1_2_10_1_22_1 e_1_2_10_1_40_1 e_1_2_10_1_9_1 e_1_2_10_1_8_1 e_1_2_10_1_7_1 e_1_2_10_1_16_1 e_1_2_10_1_39_1 e_1_2_10_1_17_1 e_1_2_10_1_38_1 e_1_2_10_1_18_1 e_1_2_10_1_19_1 e_1_2_10_1_2_1 e_1_2_10_1_12_1 e_1_2_10_1_35_1 e_1_2_10_1_13_1 e_1_2_10_1_34_1 e_1_2_10_1_14_1 e_1_2_10_1_37_1 e_1_2_10_1_15_1 e_1_2_10_1_36_1 e_1_2_10_1_6_1 e_1_2_10_1_31_1 e_1_2_10_1_5_1 e_1_2_10_1_30_1 e_1_2_10_1_4_1 e_1_2_10_1_10_1 e_1_2_10_1_33_1 e_1_2_10_1_3_1 e_1_2_10_1_11_1 e_1_2_10_1_32_1 |
References_xml | – ident: e_1_2_10_2_5_1 doi: 10.1016/j.apenergy.2024.122824 – ident: e_1_2_10_1_20_1 doi: 10.1007/s10346‐024‐02272‐2 – ident: e_1_2_10_1_10_1 doi: 10.1016/j.enggeo.2024.107630 – ident: e_1_2_10_1_12_1 doi: 10.1016/j.knosys.2022.109125 – ident: e_1_2_10_1_41_1 doi: 10.1016/j.physa.2022.127627 – ident: e_1_2_10_1_13_1 doi: 10.3724/sp.J.1235.2011.00097 – ident: e_1_2_10_1_40_1 doi: 10.1007/s10064‐023‐03418‐7 – ident: e_1_2_10_1_34_1 doi: 10.1016/j.enggeo.2020.105817 – ident: e_1_2_10_1_7_1 doi: 10.1007/s11069‐024‐06487‐3 – ident: e_1_2_10_1_23_1 doi: 10.3389/feart.2023.1157881 – ident: e_1_2_10_1_29_1 doi: 10.1016/j.scitotenv.2023.167591 – ident: e_1_2_10_1_17_1 doi: 10.1016/j.enggeo.2025.107917 – ident: e_1_2_10_2_4_1 doi: 10.1016/j.jrmge.2023.09.030 – ident: e_1_2_10_1_30_1 doi: 10.6084/m9.figshare.28171343 – ident: e_1_2_10_1_37_1 doi: 10.1016/j.asoc.2023.111107 – ident: e_1_2_10_1_26_1 doi: 10.1016/j.jhydrol.2023.130588 – ident: e_1_2_10_1_33_1 doi: 10.1016/j.gsf.2024.101959 – ident: e_1_2_10_1_5_1 doi: 10.1016/S0012‐8252(00)00011‐8 – ident: e_1_2_10_1_21_1 doi: 10.1016/j.jhydrol.2009.03.006 – ident: e_1_2_10_1_4_1 doi: 10.1016/j.compgeo.2023.106015 – ident: e_1_2_10_1_3_1 doi: 10.1038/s43017‐022‐00373‐x – ident: e_1_2_10_2_3_1 doi: 10.1038/s41598‐024‐74329‐0 – ident: e_1_2_10_2_2_1 doi: 10.1016/j.jhydrol.2021.126506 – ident: e_1_2_10_1_36_1 doi: 10.1029/2022GL098211 – ident: e_1_2_10_1_24_1 doi: 10.1029/2021gl092959 – ident: e_1_2_10_1_2_1 doi: 10.1111/j.1538‐4632.1996.tb00936.x – ident: e_1_2_10_1_19_1 doi: 10.1029/2024jh000122 – ident: e_1_2_10_1_39_1 doi: 10.1007/s11440‐022‐01495‐8 – ident: e_1_2_10_1_22_1 doi: 10.1016/j.neucom.2021.03.091 – ident: e_1_2_10_1_8_1 doi: 10.5194/nhess‐18‐2161‐2018 – ident: e_1_2_10_1_9_1 doi: 10.1016/j.earscirev.2024.104948 – ident: e_1_2_10_1_18_1 doi: 10.1016/j.jrmge.2024.02.034 – ident: e_1_2_10_1_38_1 doi: 10.1016/j.gr.2024.04.013 – ident: e_1_2_10_1_15_1 doi: 10.1007/s10346‐020‐01476‐6 – ident: e_1_2_10_1_32_1 doi: 10.1016/j.jrmge.2024.09.038 – ident: e_1_2_10_1_11_1 doi: 10.1007/s12559‐023‐10179‐8 – ident: e_1_2_10_1_25_1 doi: 10.1130/G33217.1 – ident: e_1_2_10_1_28_1 doi: 10.1016/j.rse.2016.11.007 – ident: e_1_2_10_1_6_1 doi: 10.1029/2021wr030375 – ident: e_1_2_10_1_27_1 doi: 10.1029/WR019i001p00260 – ident: e_1_2_10_1_16_1 doi: 10.1007/s10064‐023‐03067‐w – ident: e_1_2_10_1_14_1 doi: 10.1016/j.eswa.2022.117921 – ident: e_1_2_10_1_35_1 doi: 10.1016/j.jhydrol.2024.130905 – ident: e_1_2_10_1_31_1 doi: 10.1016/j.enggeo.2022.106544 |
SSID | ssj0003320807 |
Score | 2.3020177 |
Snippet | Landslides cause significant economic losses and pose severe risks to human safety, making accurate predictions of landslide displacements essential for... |
SourceID | crossref |
SourceType | Index Database |
Title | Enhancing Landslide Displacement Prediction Using a Spatio‐Temporal Deep Learning Model With Interpretable Features |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF6l6YVLVdRW_BS0h_aEDOtdO46PCAVFkagqEQT0Eu161zhSFKIovnBAPAIP0yfqkzCz3rVNyQG4WJHlbOzM55lvZ7-ZJeSH7kEUjnMeZFGkggg8XiBzwWGWEirJQpMpW1t19qs3vIhGV_FVp_O3pVoqV-owu1tbV_Ieq8I5sCtWyb7BsvWgcAI-g33hCBaG46tsPJgX2C4D65SwYnc21QbbaVqdlV3k_73EdRhr4kobIA_OrYS61jiMq9ZU4PuMWfhuqzd2i7QZuIxVcdDIErHICiljuXTCw5ek9sbcLrzlXR-h4hB3NyqQzc788K6YblE-FwJcuuT1aFoHiz9FaaMjKof9PQ_LF-nuSzNtchCVI5XNQ16X7h1w6Q0e1_ot5wU5CgyBY1SLN2bNOefGeQutYm1wYBx7q-KPjIa2MQ1vgqBf-P8vNtaKRbtWz9NJ-9sfyEcOkxP0rmf3TWZPCM6qOv36Pl3FBQxw1B6gxYVapGb8mXxyhqPHFbQ2ScfMv5CyhhWtYUXbsKINrKiFFZW0gtW_h0cPKIqAoh5Q1AKKIqDoM0BRD6ivZHw6GJ8MA7c7R5AlMbzbiZQyZ30dAkc3eaQMkEeYbPSFCLXImFbAdZnkmYkFD6UxScqSRMtUphk8fS6-ke78dm62CIVAF0U6B-psZNTPe32lUqYyJrUKEy3YNvnp_6bJourBMllnj51XXrdLNhqkfSfd1bI0e0AtV2rfpmT2rT2fAD14eeo |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Landslide+Displacement+Prediction+Using+a+Spatio%E2%80%90Temporal+Deep+Learning+Model+With+Interpretable+Features&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Wang%2C+Jia&rft.au=Zhu%2C+Hong%E2%80%90Hu&rft.au=Zhang%2C+Wei&rft.au=Tan%2C+Dao%E2%80%90Yuan&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000592&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |