Simultaneous Emulation and Downscaling With Physically Consistent Deep Learning‐Based Regional Ocean Emulators

Building upon recent advancements in AI‐driven atmospheric emulation, we present a novel framework for AI‐based ocean emulation, downscaling, and bias correction, with a specific focus on high‐resolution modeling of the regional ocean in the Gulf of Mexico. Emulating regional ocean dynamics poses di...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Lupin‐Jimenez, Leonard, Darman, Moein, Hazarika, Subhashis, Wu, Tianning, Gray, Michael, He, Ruyoing, Wong, Anthony, Chattopadhyay, Ashesh
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text

Cover

Loading…
Abstract Building upon recent advancements in AI‐driven atmospheric emulation, we present a novel framework for AI‐based ocean emulation, downscaling, and bias correction, with a specific focus on high‐resolution modeling of the regional ocean in the Gulf of Mexico. Emulating regional ocean dynamics poses distinct challenges due to intricate bathymetry, complex lateral boundary conditions, and inherent limitations of deep learning models, including instability and the potential for hallucinations. In this study, we introduce a deep learning framework that autoregressively integrates ocean surface variables at 8 km spatial resolution over the Gulf of Mexico, maintaining physical consistency over decadal time scales. Simultaneously, the framework downscales and bias‐corrects the outputs to 4 km resolution using a physics‐informed generative model. Our approach demonstrates short‐term predictive skill comparable to high‐resolution physics‐based simulations, while also accurately capturing long‐term statistical properties, including temporal mean and variability. Recent advances in artificial intelligence (AI) have shown that deep learning models can effectively reproduce complex atmospheric behavior. In this study, we apply similar techniques to simulate ocean dynamics in the Gulf of Mexico, a region that is especially difficult to model due to its complex seafloor topography (bathymetry) and the influence of surrounding land and open ocean boundaries. We developed an AI‐based method that predicts how ocean surface conditions change over time at high spatial resolution (8 km) while also correcting for biases and enhancing resolution to 4 km using physics‐informed techniques. Unlike many AI models that can become unstable or produce unrealistic outputs over time, our approach remains physically consistent even over decades. It achieves short‐term accuracy comparable to traditional high‐resolution simulations and also captures long‐term patterns such as average conditions and variability, offering a more efficient way to study regional ocean systems. An AI‐based physically consistent long‐term regional emulator has been developed for the Gulf of Mexico region A deterministic and stochastic downscaling model has been developed to super‐resolve and bias‐correct the low‐resolution predictions to high resolution The performance of the framework has been compared with AI‐based and high‐resolution physics‐based baselines on short‐ and long‐term metrics
AbstractList Building upon recent advancements in AI‐driven atmospheric emulation, we present a novel framework for AI‐based ocean emulation, downscaling, and bias correction, with a specific focus on high‐resolution modeling of the regional ocean in the Gulf of Mexico. Emulating regional ocean dynamics poses distinct challenges due to intricate bathymetry, complex lateral boundary conditions, and inherent limitations of deep learning models, including instability and the potential for hallucinations. In this study, we introduce a deep learning framework that autoregressively integrates ocean surface variables at 8 km spatial resolution over the Gulf of Mexico, maintaining physical consistency over decadal time scales. Simultaneously, the framework downscales and bias‐corrects the outputs to 4 km resolution using a physics‐informed generative model. Our approach demonstrates short‐term predictive skill comparable to high‐resolution physics‐based simulations, while also accurately capturing long‐term statistical properties, including temporal mean and variability. Recent advances in artificial intelligence (AI) have shown that deep learning models can effectively reproduce complex atmospheric behavior. In this study, we apply similar techniques to simulate ocean dynamics in the Gulf of Mexico, a region that is especially difficult to model due to its complex seafloor topography (bathymetry) and the influence of surrounding land and open ocean boundaries. We developed an AI‐based method that predicts how ocean surface conditions change over time at high spatial resolution (8 km) while also correcting for biases and enhancing resolution to 4 km using physics‐informed techniques. Unlike many AI models that can become unstable or produce unrealistic outputs over time, our approach remains physically consistent even over decades. It achieves short‐term accuracy comparable to traditional high‐resolution simulations and also captures long‐term patterns such as average conditions and variability, offering a more efficient way to study regional ocean systems. An AI‐based physically consistent long‐term regional emulator has been developed for the Gulf of Mexico region A deterministic and stochastic downscaling model has been developed to super‐resolve and bias‐correct the low‐resolution predictions to high resolution The performance of the framework has been compared with AI‐based and high‐resolution physics‐based baselines on short‐ and long‐term metrics
Author Wong, Anthony
Lupin‐Jimenez, Leonard
Wu, Tianning
Darman, Moein
Gray, Michael
Chattopadhyay, Ashesh
Hazarika, Subhashis
He, Ruyoing
Author_xml – sequence: 1
  givenname: Leonard
  surname: Lupin‐Jimenez
  fullname: Lupin‐Jimenez, Leonard
  organization: Department of Applied Mathematics University of California, Santa Cruz Santa Cruz CA USA
– sequence: 2
  givenname: Moein
  surname: Darman
  fullname: Darman, Moein
  organization: Department of Applied Mathematics University of California, Santa Cruz Santa Cruz CA USA
– sequence: 3
  givenname: Subhashis
  surname: Hazarika
  fullname: Hazarika, Subhashis
  organization: Converging Technologies Laboratory Fujitsu Research of America Santa Clara CA USA
– sequence: 4
  givenname: Tianning
  surname: Wu
  fullname: Wu, Tianning
  organization: North Carolina State University Marine, Earth, and Atmospheric Sciences Raleigh NC USA
– sequence: 5
  givenname: Michael
  surname: Gray
  fullname: Gray, Michael
  organization: North Carolina State University Marine, Earth, and Atmospheric Sciences Raleigh NC USA
– sequence: 6
  givenname: Ruyoing
  orcidid: 0000-0001-6158-2292
  surname: He
  fullname: He, Ruyoing
  organization: North Carolina State University Marine, Earth, and Atmospheric Sciences Raleigh NC USA
– sequence: 7
  givenname: Anthony
  surname: Wong
  fullname: Wong, Anthony
  organization: Converging Technologies Laboratory Fujitsu Research of America Santa Clara CA USA
– sequence: 8
  givenname: Ashesh
  orcidid: 0000-0002-2590-1230
  surname: Chattopadhyay
  fullname: Chattopadhyay, Ashesh
  organization: Department of Applied Mathematics University of California, Santa Cruz Santa Cruz CA USA
BookMark eNpNkE1OwzAUhC0EEqV0xwF8AAL-SeJ4CW2hoEpFUIll9Jw8t0apXcWpUHccgTNyEoLooqsZjT59i7kgpz54JOSKsxvOhL4VTGTPM8ZYkfETMhBayyQTnJ0e9XMyivGjZ6QUrGBqQLZvbrNrOvAYdpFO-w6dC56Cr-kkfPpYQeP8ir67bk1f1vvo-qHZ03Hw0cUOfUcniFs6R2h9D_58fd9DxJq-4qr3QEMXFYI_mEMbL8mZhSbi6JBDsnyYLsezZL54fBrfzZNKZTzhuVLaZqm1ttY5gtGVSHmaszxXgimb1sqgAdBQpNIYC1gUBTO5QYWZkUYOyfW_tmpDjC3actu6DbT7krPy76_y-C_5C0tPYhg
Cites_doi 10.1038/s41598-024-72145-0
10.1038/s41586-023-06185-3
10.1029/2022ms003120
10.1016/j.ocemod.2016.05.008
10.21203/rs.3.rs-3673869/v1
10.1029/177gm05
10.1029/2025ms005063
10.1029/2019jc015172
10.1038/s41612-025-01090-0
10.1029/2024GL114318
10.1029/2021ms002537
10.5194/egusphere-egu25-20616
10.1175/1520-0485(1993)023<2182:tpogss>2.0.co;2
10.1038/s41586-025-08897-0
10.1126/science.adi2336
10.1175/aies-d-24-0039.1
10.5281/zenodo.14607130
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2025JH000851
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2025JH000851
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c751-16779f54fffd96eab9c241460667207f4d7bebaa9a843bbfae8880b6be7e5b3b3
ISSN 2993-5210
IngestDate Wed Aug 27 16:26:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c751-16779f54fffd96eab9c241460667207f4d7bebaa9a843bbfae8880b6be7e5b3b3
ORCID 0000-0001-6158-2292
0000-0002-2590-1230
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000851
ParticipantIDs crossref_primary_10_1029_2025JH000851
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Garric G. (e_1_2_8_14_1) 2018
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
Gray M. A. (e_1_2_8_15_1) 2024; 2024
References_xml – ident: e_1_2_8_7_1
  doi: 10.1038/s41598-024-72145-0
– ident: e_1_2_8_4_1
  doi: 10.1038/s41586-023-06185-3
– ident: e_1_2_8_17_1
  doi: 10.1029/2022ms003120
– ident: e_1_2_8_20_1
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ocemod.2016.05.008
– ident: e_1_2_8_23_1
  doi: 10.21203/rs.3.rs-3673869/v1
– ident: e_1_2_8_6_1
  doi: 10.1029/177gm05
– ident: e_1_2_8_24_1
  doi: 10.1029/2025ms005063
– ident: e_1_2_8_26_1
  doi: 10.1029/2019jc015172
– ident: e_1_2_8_25_1
– ident: e_1_2_8_28_1
  doi: 10.1038/s41612-025-01090-0
– ident: e_1_2_8_11_1
  doi: 10.1029/2024GL114318
– ident: e_1_2_8_2_1
  doi: 10.1029/2021ms002537
– volume: 2024
  start-page: 1
  year: 2024
  ident: e_1_2_8_15_1
  article-title: Long‐term prediction of the Gulf Stream meander using OceanNet: A principled neural operator‐based digital twin
  publication-title: EGUsphere
– ident: e_1_2_8_16_1
  doi: 10.5194/egusphere-egu25-20616
– ident: e_1_2_8_21_1
– ident: e_1_2_8_10_1
  doi: 10.1175/1520-0485(1993)023<2182:tpogss>2.0.co;2
– ident: e_1_2_8_5_1
– ident: e_1_2_8_27_1
– ident: e_1_2_8_3_1
  doi: 10.1038/s41586-025-08897-0
– ident: e_1_2_8_19_1
  doi: 10.1126/science.adi2336
– start-page: 215
  volume-title: Proceedings of the Eight EuroGOOS International Conference, 3–5 October 2017, Bergen, Norway
  year: 2018
  ident: e_1_2_8_14_1
– ident: e_1_2_8_18_1
– ident: e_1_2_8_22_1
  doi: 10.1175/aies-d-24-0039.1
– ident: e_1_2_8_12_1
– ident: e_1_2_8_8_1
  doi: 10.5281/zenodo.14607130
– ident: e_1_2_8_9_1
SSID ssj0003320807
Score 2.3016603
Snippet Building upon recent advancements in AI‐driven atmospheric emulation, we present a novel framework for AI‐based ocean emulation, downscaling, and bias...
SourceID crossref
SourceType Index Database
Title Simultaneous Emulation and Downscaling With Physically Consistent Deep Learning‐Based Regional Ocean Emulators
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFLVCu2GDQBTxrLyA5ZSp7XktARVFUVMqNajdRbbHk0SUyajKbLpAfAI_xM_wJdw79njckkXpZpRYE2c058i-Pj7Xl5C3LNdVzrmOUq5VJESpInlo4GteVjyOZSoF5g5PT9LxVzG5SC5Go9-Ba6ndqAN9vTWv5D6oQhvgilmy_4Gs7xQa4DPgC1dAGK53wvhshX5AWRv0sR59d5W4rLsYVWN4_6gEnKPWeuoAweOM0RQL6NYbGG5M05-xuvDGh48wtWHa4sLqhF80yvW2_7Xb_fk3nl2YddOD7o4QWh5gYaMlBrKXvQTj8uia9qYH4LhtVrV_gAnWHLDa9rGBZ7gqA0XdabbTtVnVwwB6DYv-b9IajdQSS0T51cJ5a1lpyzOFOgdLvJHLDYcMnYYQbNhdHLOlzY3nLKAt3zpLxAwPWcU_mYxt0DnMhr0D4NYk6a2L3aY9K-bhrx-QXQarFBxmpz8GiY9zFtuEff-cLvUCOngfdhAERUF0M3tMHjkY6QfLsSdkZOqnpAn5RT2_KEBIA35R5Bcd-EUHflHkF-359efnr45ZtGcW7ZhFPbP2yOzz0ezTOHIVOiKdJVhgPMuKKhFVVZVFaqQqNASEAtfEGYuzSpSZMkrKQuaCK1VJk8N0oVJlMpMorvgzslOva_OcUJ0fcrg7xxMNhcyY0jIWvFRJLpVMy-QFede_oXljz2GZb4Pi5R3ve0UeDiR7TXY2V615A-HlRu13ssx-B-VfxceAhw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Emulation+and+Downscaling+With+Physically+Consistent+Deep+Learning%E2%80%90Based+Regional+Ocean+Emulators&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Lupin%E2%80%90Jimenez%2C+Leonard&rft.au=Darman%2C+Moein&rft.au=Hazarika%2C+Subhashis&rft.au=Wu%2C+Tianning&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon