Towards a multidimensional root trait framework: a tree root review

The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 211; no. 4; pp. 1159 - 1169
Main Authors Weemstra, Monique, Mommer, Liesje, Visser, Eric J. W., Ruijven, Jasper, Kuyper, Thomas W., Mohren, Godefridus M. J., Sterck, Frank J.
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.09.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework.
AbstractList Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait‐based plant ecology. By analogy with the one‐dimensional leaf economics spectrum (LES), fine‐root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta‐level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above‐ and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade‐offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework.
The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework.
Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 Summary The search for a root economics spectrum (RES) has been sparked by recent interest in trait‐based plant ecology. By analogy with the one‐dimensional leaf economics spectrum (LES), fine‐root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta‐level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above‐ and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade‐offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework.
1159 I. I. Introduction One of the basic principles of trait-based plant ecology is the trade-off between plant growth and survival (Grime, ; Kobe et al., ; Craine, ). This trade-off implies that plants invest in trait attributes that allow either fast resource acquisition and therefore fast growth, or defence and conservation of acquired resources such as carbon (C), nitrogen (N) and phosphorus (P) which allow survival under adverse conditions. The growth-survival trade-off has been demonstrated clearly in leaf traits that span a continuum from acquisitive to conservative leaves (Reich et al., ; Wright et al., ). On the one hand, the former are characterised by a high specific leaf area (leaf area per leaf mass, SLA), high assimilation and respiration rates, and high nutrient concentrations, which enhance both light interception and C fixation (Fig. ). These acquisitive traits come at the expense of large resource losses due to high metabolic rates, increased susceptibility to herbivory and short lifespan. On the other hand, conservative leaves are equipped for long-term resource retention by having high tissue densities and low respiration rates. These traits enhance their lifespan, but decrease their light interception efficiency and photosynthetic rates (Reich et al., , ; Wright et al., ). This so-called leaf economics spectrum (LES, Wright et al., ) has been successfully linked to plant performance (Reich et al., ; Poorter & Bongers, ), species distribution and interactions (Sterck et al., ), and ecosystem processes (Reich et al., ; Díaz et al., , ; Grigulis et al., ). Currently, research efforts are directed to test whether the fine-root traits of trees can be positioned within a similar framework, that is, the root economics spectrum (RES) (e.g. Comas & Eissenstat, , ; Withington et al., ; McCormack et al., ; Chen et al., ; Kong et al., ; Liu et al., ; Valverde-Barrantes et al., ). Based on assumed trait coordination between above- and belowground organs, it has been hypothesised that root functional traits can also be grouped in trait syndromes associated with fast resource acquisition or enhanced resource conservation. This search for an RES similar to the LES builds on the premise that acquisitive leaves with high evaporative demand and photosynthetic rates require acquisitive roots to ensure sufficient water and nutrient supply to maintain these processes, and ultimately to achieve fast plant growth (Eissenstat, ; Reich, ). Conversely, plants that have conservative leaves with lower water and nutrient requirements, but also lower photosynthetic rates, should retain resources longer. They may thus require long-lived roots with lower respiration and uptake rates, resulting in slow plant growth. It is therefore hypothesised that leaf traits are matched by parallel root traits along the acquisitive-conservative resource spectrum (Grime et al., ; Reich et al., ; Freschet et al., ; Liu et al., ; Reich, ; Valverde-Barrantes et al., ). As already demonstrated for leaves in the LES, an RES could offer a relevant framework to provide further insights into plant, vegetation and ecosystem processes, and responses to the soil environment and global change. For example, the grouping of species along an RES could help to understand their performance (growth and survival) or distribution across soil resource gradients. However, the existence of an RES analogous to the LES is currently debated, because of contradictory results within and among studies (e.g. Withington et al., ; McCormack et al., ; Mommer & Weemstra, ; Chen et al., ; Kong et al., ). This study aims to clarify the uncertainty concerning the existence of an RES by reviewing the available evidence for the RES hypothesis within individual studies and by performing a meta-level analysis (Smith et al., ) to test the RES hypothesis across those studies. In addition to root trait relationships, we also reviewed the literature on correlations between the leaf and root traits of the LES and of the RES. This study focuses on the fine-root traits of trees. This is important as recent papers show that for herbaceous species, root trait correlations provide a better match with the RES than for woody species (Roumet et al., ). This suggests that root trait correlations may be fundamentally different for woody species. Our literature review is based on 18 studies that compared the root traits expected to play a role in an RES across more than two tree species (Supporting Information Table S1). Our meta-level analysis was carried out on a subset of 14 studies (Table S1), because not all studies provided root trait data at the individual species level, and one study already comprised a meta-analysis. This meta-level analysis was based on raw data and did not include calculating effect sizes, and therefore does not comply with the standards of a meta-analysis (Vetter et al., ; Koricheva & Gurevitch, ). 1159 II. II. The root economics spectrum The root traits expected to feature in the RES are based on a parallel with the key leaf traits in the LES: SLA, leaf N content, maximum photosynthetic rate, respiration rate and leaf lifespan (Fig. ). These traits are related to three leaf processes involved in plant growth and survival. First, SLA relates to leaf resource interception at a given biomass investment. Second, leaf N content, photosynthetic rate and respiration rate are related to leaf C gain. Third, leaf lifespan refers to the conservation of biomass. Assuming functional similarity between leaves and fine roots, the critical fine-root traits in the RES are therefore expected to be: specific root length (root length per root mass, SRL), root N content, root water and nutrient uptake rate, root respiration rate and root lifespan (Fig. ). Similar to leaf traits in the LES, it is expected that SRL reflects the root uptake area at a given biomass cost; root N content, uptake rate and respiration rate are expected to be associated with net soil resource acquisition rate; and root lifespan reflects the degree of biomass conservation. In both the LES and RES it is expected that most traits (SLA/SRL, N content, photosynthetic/resource uptake rates and respiration rates) will decrease from an acquisitive to a conservative strategy, whereas lifespan will increase (Fig. ). Several studies have assessed the support for the RES hypothesis across tree species. In addition to the five key traits, most of these studies measured root diameter and root C : N ratios, and calculated tissue density (from root length, diameter and mass), although their aboveground parallels (leaf thickness, C : N ratio and tissue density) are less explicitly incorporated in the LES. These additional root traits are expected to increase from the acquisitive to the conservative side of the RES (Fig. ), because they have been found to contribute to root lifespan and thus to resource conservation (Wahl & Ryser, ; Gu et al., ): thick roots are sometimes assumed to be long-lived due to their relatively large stele cross-sectional area that protects them from mechanical, herbivore and drought stress, and to have low N content and therefore slow metabolism due to their relatively small cortex area (Eissenstat & Achor, ; Wahl & Ryser, ; Guo et al., ). However, the exact mechanisms underlying these correlations between these root traits and root lifespan are not fully clear yet: for example, Kong et al. demonstrate that thicker roots have a relatively large cortex area, and other anatomical features such as a well-developed exodermis may also drive the longer lifespan of thicker roots (Withington et al., ). In turn, other traits in the RES (e.g. nutrient and water uptake rates, respiration rates, and root lifespan) are measured far less frequently than their aboveground counterparts (i.e. photosynthetic and respiration rates and leaf lifespan). In order to maintain the functional parallel with leaves, RES studies have examined absorptive rather than transporting roots. These functional groups were initially separated on the basis of their diameter (e.g. all roots < 1 or 2 mm diameter were considered absorptive), but although both traits may be partially correlated, root order rather than diameter has since proved to be a better proxy for root functioning (Pregitzer et al., ; McCormack et al., ). We therefore focus mainly on studies that compared all or some of these RES traits (Table S1) on first- to third-order roots (first-order roots being the most distal). Because data on root uptake and respiration rate across species are scarce, especially in relation to other root traits, our analysis was restricted to three RES traits: SRL, root N content and root lifespan. As only one study measured both root N content and root lifespan (Valverde-Barrantes et al., ), we related root lifespan to root C : N ratios - for which more data were available - instead. We also tested for relationships between these RES traits and root diameter, root tissue density and root C : N ratios. 1. Correlations between root traits are inconsistent In terms of correlations between root lifespan and other root traits, the RES is little supported by data. As expected from the RES hypothesis, within the individual studies reviewed, the trait most consistently and positively correlated with root lifespan across species is root diameter (Gu et al., ; McCormack et al., ; Adams et al., ; Hansson et al., ), although not in the study by Withington et al. (Table ). Withington et al. attributed their failure to find significant correlations to the limited variation in root diameter across their study species (in their study it ranged between 0.36 and 0.62 mm across 11 tree species, but in, for example, the study by McCormack et al. , it ranged between 0.22 and 0.64 mm across 12 tree species). Our meta-level analysis also demonstrated that root diameter was the trait most strongly correlated to root lifespan (Fig. S1d; Table S2). In line with the RES h
The search for a root economics spectrum ( RES ) has been sparked by recent interest in trait‐based plant ecology. By analogy with the one‐dimensional leaf economics spectrum ( LES ), fine‐root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta‐level analysis reveal no consistent evidence of an RES mirroring an LES . Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above‐ and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES . Understanding and explaining the belowground mechanisms and trade‐offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework. Contents Summary 1159 I. Introduction 1159 II. The root economics spectrum 1161 III. Why the one‐dimensional resource economics spectrum does not work for tree roots 1164 IV. Outlook 1166 Acknowledgements 1167 References 1167
Author Thomas W. Kuyper4
Frank J. Sterck
Eric J. W. Visser
Jasper van Ruijven
Liesje Mommer
Godefridus M. J. Mohren
Monique Weemstra
Author_xml – sequence: 1
  givenname: Monique
  surname: Weemstra
  fullname: Weemstra, Monique
  organization: Wageningen University
– sequence: 2
  givenname: Liesje
  surname: Mommer
  fullname: Mommer, Liesje
  organization: Wageningen University
– sequence: 3
  givenname: Eric J. W.
  surname: Visser
  fullname: Visser, Eric J. W.
  organization: Radboud University Nijmegen
– sequence: 4
  givenname: Jasper
  surname: Ruijven
  fullname: Ruijven, Jasper
  organization: Wageningen University
– sequence: 5
  givenname: Thomas W.
  surname: Kuyper
  fullname: Kuyper, Thomas W.
  organization: Wageningen University
– sequence: 6
  givenname: Godefridus M. J.
  surname: Mohren
  fullname: Mohren, Godefridus M. J.
  organization: Wageningen University
– sequence: 7
  givenname: Frank J.
  surname: Sterck
  fullname: Sterck, Frank J.
  organization: Wageningen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27174359$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAURi1URKeFBS-AIrGBRab-TezuqhFQpApYFImd5SRO68Gxg-0QzdvjaWZYVCDwwo6Ucz75-t4zcOK80wC8RHCN8rpw4_0aUQjJE7BCtBIlR6Q-ASsIMS8rWn07BWcxbiGEglX4GTjFNaopYWIFNrd-VqGLhSqGySbTmUG7aLxTtgjepyIFZVLRBzXo2YfvlxlMQevlZ9A_jZ6fg6e9slG_OJzn4Ov7d7eb6_Lm84ePm6ubsq0ZJKVQWuQvQfpWkarGndIV4xrBDlcd7UQL65YpylpUq0rQvqmx5vmiFWswF0KQc3C55M7qTjvj8iadCq2J0isjrWmCCjs5T0E6uz_GqYmSQQoJzfKbRR6D_zHpmORgYqutVU77KUqcXwdxzNG_UcQR4gIRxP8DhQJSxiHK6OtH6NZPIb_zQyDhvOaYZerVgZqaQXdyDGbYF3XsWAYuFqANPsage9mapFLu2L5TViIo9zMh80zIh5nIxttHxjH0T-whfTZW7_4Oyk9fro_GejG2Mfnw23B6Hu93yVt_Z3KpOMs0Z-QCfgHTDNTr
CitedBy_id crossref_primary_10_1111_nph_19762
crossref_primary_10_1111_nph_19521
crossref_primary_10_1093_aob_mcac108
crossref_primary_10_3389_fpls_2024_1410372
crossref_primary_10_1007_s10342_020_01284_6
crossref_primary_10_1111_pce_14428
crossref_primary_10_1111_nph_16370
crossref_primary_10_1038_s41598_024_84162_0
crossref_primary_10_1126_sciadv_abe9256
crossref_primary_10_1186_s12862_024_02275_6
crossref_primary_10_1007_s00442_019_04546_2
crossref_primary_10_3389_fpls_2024_1481323
crossref_primary_10_1111_nph_19529
crossref_primary_10_1016_j_foreco_2019_05_032
crossref_primary_10_1093_aob_mcaa175
crossref_primary_10_1111_oik_09213
crossref_primary_10_3390_ijms241210262
crossref_primary_10_1016_j_apsoil_2023_105198
crossref_primary_10_1007_s11104_021_05182_7
crossref_primary_10_1111_nph_17572
crossref_primary_10_3390_f15071226
crossref_primary_10_1016_j_ecolind_2024_111572
crossref_primary_10_1111_1442_1984_12305
crossref_primary_10_1016_j_advwatres_2021_103896
crossref_primary_10_1007_s11104_020_04701_2
crossref_primary_10_1016_j_scitotenv_2022_157155
crossref_primary_10_3732_ajb_1700051
crossref_primary_10_1007_s11104_017_3428_1
crossref_primary_10_1016_j_gecco_2024_e03399
crossref_primary_10_3390_f11040364
crossref_primary_10_1093_jpe_rtad045
crossref_primary_10_1038_s41559_021_01471_7
crossref_primary_10_1007_s11104_022_05714_9
crossref_primary_10_1111_nph_17561
crossref_primary_10_1007_s11104_019_04309_1
crossref_primary_10_3389_fpls_2021_690235
crossref_primary_10_1111_1365_2745_13368
crossref_primary_10_1111_1365_2745_14213
crossref_primary_10_1111_oik_10219
crossref_primary_10_1111_pce_14898
crossref_primary_10_1002_ece3_3447
crossref_primary_10_1111_1365_2745_13125
crossref_primary_10_2139_ssrn_4059804
crossref_primary_10_1111_ejss_13303
crossref_primary_10_1111_oik_09354
crossref_primary_10_1111_nph_17326
crossref_primary_10_1007_s11104_024_06717_4
crossref_primary_10_1111_nph_17435
crossref_primary_10_1111_oik_08491
crossref_primary_10_3390_plants8070199
crossref_primary_10_1016_j_scitotenv_2024_175352
crossref_primary_10_1016_j_fcr_2025_109737
crossref_primary_10_3389_fpls_2018_00852
crossref_primary_10_3389_fpls_2020_00013
crossref_primary_10_3390_f13010093
crossref_primary_10_1111_oik_09465
crossref_primary_10_59717_j_xinn_life_2024_100106
crossref_primary_10_1111_gcb_13514
crossref_primary_10_3390_plants14050825
crossref_primary_10_1007_s10342_024_01689_7
crossref_primary_10_1016_j_foreco_2016_08_043
crossref_primary_10_1016_j_rhisph_2022_100504
crossref_primary_10_1093_aob_mcac146
crossref_primary_10_1007_s11104_019_04395_1
crossref_primary_10_1007_s13595_020_00977_7
crossref_primary_10_1038_s41598_021_02206_1
crossref_primary_10_1111_nph_19561
crossref_primary_10_1016_j_scitotenv_2023_161956
crossref_primary_10_1007_s10021_018_0280_y
crossref_primary_10_1016_j_foreco_2023_121316
crossref_primary_10_1038_s41467_024_47295_4
crossref_primary_10_1038_s41586_021_03871_y
crossref_primary_10_1111_1365_2435_14495
crossref_primary_10_1002_ecy_4295
crossref_primary_10_1093_aob_mcae212
crossref_primary_10_1111_oik_08284
crossref_primary_10_1007_s10530_018_1664_9
crossref_primary_10_1016_j_envpol_2018_11_074
crossref_primary_10_3389_fpls_2021_734167
crossref_primary_10_1016_j_tree_2023_09_002
crossref_primary_10_1111_nph_17136
crossref_primary_10_1111_nph_19678
crossref_primary_10_3389_fpls_2024_1461893
crossref_primary_10_1016_j_envpol_2024_124503
crossref_primary_10_1016_j_scitotenv_2024_176386
crossref_primary_10_1139_cjb_2018_0065
crossref_primary_10_1007_s11258_025_01499_w
crossref_primary_10_1111_1365_2745_14464
crossref_primary_10_1016_j_scitotenv_2022_157111
crossref_primary_10_1111_1365_2435_14381
crossref_primary_10_3390_plants11192495
crossref_primary_10_1038_s41598_018_23518_9
crossref_primary_10_1016_j_sajb_2019_09_018
crossref_primary_10_3897_neobiota_92_110985
crossref_primary_10_3389_fpls_2022_982478
crossref_primary_10_1111_oik_03967
crossref_primary_10_1016_j_scitotenv_2017_08_283
crossref_primary_10_1111_1365_2745_14379
crossref_primary_10_1111_1365_2435_14390
crossref_primary_10_3389_fpls_2017_01196
crossref_primary_10_1111_1365_2435_14394
crossref_primary_10_1111_1365_2745_13160
crossref_primary_10_1093_aob_mcac052
crossref_primary_10_1038_s41467_019_10245_6
crossref_primary_10_1111_gcb_15945
crossref_primary_10_1016_j_agee_2019_106614
crossref_primary_10_1093_aob_mcad009
crossref_primary_10_1111_nph_16027
crossref_primary_10_1111_nph_18203
crossref_primary_10_1111_1365_2745_70018
crossref_primary_10_1111_nph_17590
crossref_primary_10_1007_s11104_020_04515_2
crossref_primary_10_1098_rspb_2018_0647
crossref_primary_10_1111_btp_70021
crossref_primary_10_1007_s00442_021_04937_4
crossref_primary_10_1111_1365_2745_13276
crossref_primary_10_1111_1365_2745_13393
crossref_primary_10_1111_nph_18327
crossref_primary_10_1002_ppp3_10534
crossref_primary_10_1016_j_rhisph_2023_100705
crossref_primary_10_1007_s10021_020_00546_z
crossref_primary_10_1016_j_ecolind_2021_108031
crossref_primary_10_1111_nph_20118
crossref_primary_10_3389_fpls_2020_588098
crossref_primary_10_1007_s11104_025_07300_1
crossref_primary_10_1111_1365_2745_14035
crossref_primary_10_3117_rootres_31_61
crossref_primary_10_1016_j_foreco_2018_10_055
crossref_primary_10_1111_1365_2435_14330
crossref_primary_10_1111_1365_2435_14452
crossref_primary_10_1111_1365_2745_14151
crossref_primary_10_1007_s00468_023_02418_0
crossref_primary_10_3389_fpls_2023_1145709
crossref_primary_10_1007_s11104_018_3815_2
crossref_primary_10_1007_s11104_021_05208_0
crossref_primary_10_3389_fpls_2022_1077090
crossref_primary_10_1111_ele_13248
crossref_primary_10_1111_nph_18386
crossref_primary_10_1111_mec_15749
crossref_primary_10_1126_sciadv_aba3756
crossref_primary_10_3389_ffgc_2021_704469
crossref_primary_10_3389_fpls_2022_993127
crossref_primary_10_1002_ecy_4389
crossref_primary_10_1029_2022JG007268
crossref_primary_10_1017_S0266467424000129
crossref_primary_10_1111_1365_2435_14345
crossref_primary_10_3390_ijms23147710
crossref_primary_10_1111_1365_2435_13145
crossref_primary_10_1007_s11104_025_07358_x
crossref_primary_10_1002_ajb2_1659
crossref_primary_10_3389_ffgc_2023_1206225
crossref_primary_10_3389_fpls_2024_1488383
crossref_primary_10_1098_rsos_180890
crossref_primary_10_1093_icb_icaf003
crossref_primary_10_3389_fpls_2018_01682
crossref_primary_10_1016_j_foreco_2021_119457
crossref_primary_10_1093_jpe_rtae064
crossref_primary_10_1111_1365_2745_14297
crossref_primary_10_3390_f11050528
crossref_primary_10_1111_1365_2435_70025
crossref_primary_10_3390_f14010114
crossref_primary_10_1038_s42003_020_1112_0
crossref_primary_10_1007_s11104_018_3816_1
crossref_primary_10_3390_f10110953
crossref_primary_10_1002_ece3_10908
crossref_primary_10_3390_agriculture12030423
crossref_primary_10_1111_nph_17279
crossref_primary_10_1007_s00468_021_02113_y
crossref_primary_10_1016_j_agwat_2021_107341
crossref_primary_10_1111_1365_2745_14286
crossref_primary_10_1007_s10021_020_00544_1
crossref_primary_10_1007_s11104_025_07379_6
crossref_primary_10_1007_s00468_023_02394_5
crossref_primary_10_1111_1365_2435_70013
crossref_primary_10_1007_s11104_020_04624_y
crossref_primary_10_1111_1365_2664_14556
crossref_primary_10_1111_2041_210X_12771
crossref_primary_10_1007_s00572_023_01126_4
crossref_primary_10_1111_gcb_15344
crossref_primary_10_3389_fpls_2019_01412
crossref_primary_10_1007_s42832_021_0098_y
crossref_primary_10_1007_s11104_017_3230_0
crossref_primary_10_1093_jpe_rtae072
crossref_primary_10_1016_j_pld_2023_01_007
crossref_primary_10_1038_s41598_025_93787_8
crossref_primary_10_1016_j_pedobi_2021_150708
crossref_primary_10_1111_jvs_13194
crossref_primary_10_1007_s00442_023_05353_6
crossref_primary_10_1007_s11104_018_3618_5
crossref_primary_10_1111_nph_18070
crossref_primary_10_1002_ece3_2895
crossref_primary_10_1016_j_fecs_2024_100211
crossref_primary_10_1007_s11104_019_04161_3
crossref_primary_10_1093_jpe_rtae043
crossref_primary_10_1007_s00374_024_01832_x
crossref_primary_10_1016_j_scitotenv_2023_165003
crossref_primary_10_1002_eap_3082
crossref_primary_10_1111_1365_2435_13562
crossref_primary_10_1002_ecs2_4437
crossref_primary_10_1002_ecs2_4794
crossref_primary_10_1111_1365_2435_14654
crossref_primary_10_1111_1365_2745_14070
crossref_primary_10_1016_j_jhazmat_2023_130947
crossref_primary_10_1111_nph_19279
crossref_primary_10_1111_nph_18066
crossref_primary_10_1016_j_foreco_2021_119372
crossref_primary_10_1111_plb_13562
crossref_primary_10_1016_j_ecoenv_2023_115458
crossref_primary_10_1016_j_foreco_2019_117851
crossref_primary_10_1111_oik_04751
crossref_primary_10_1093_conphys_coac061
crossref_primary_10_1111_1365_2745_14067
crossref_primary_10_1016_j_actao_2024_103996
crossref_primary_10_1111_1365_2745_13092
crossref_primary_10_1186_s13717_023_00475_4
crossref_primary_10_1111_1365_2435_14679
crossref_primary_10_1016_j_catena_2022_106857
crossref_primary_10_3390_plants13172472
crossref_primary_10_1016_j_rhisph_2022_100489
crossref_primary_10_1111_nph_19261
crossref_primary_10_1016_j_soilbio_2022_108715
crossref_primary_10_1111_ele_13651
crossref_primary_10_1111_jac_12360
crossref_primary_10_1111_1365_2435_14554
crossref_primary_10_1139_cjfr_2022_0216
crossref_primary_10_1093_aob_mcx172
crossref_primary_10_1007_s00442_023_05388_9
crossref_primary_10_1111_gcb_15668
crossref_primary_10_3390_f15050806
crossref_primary_10_3390_plants13070978
crossref_primary_10_1016_j_fecs_2024_100249
crossref_primary_10_3389_ffgc_2019_00081
crossref_primary_10_1007_s11104_016_3040_9
crossref_primary_10_1007_s11104_022_05516_z
crossref_primary_10_1111_nph_17072
crossref_primary_10_3389_fpls_2021_734775
crossref_primary_10_1007_s11104_020_04788_7
crossref_primary_10_1007_s11104_021_04970_5
crossref_primary_10_1007_s11104_019_03934_0
crossref_primary_10_1093_jpe_rtae036
crossref_primary_10_3389_frwa_2022_950346
crossref_primary_10_1111_1365_2435_14682
crossref_primary_10_3389_fpls_2019_01215
crossref_primary_10_1093_aob_mcad095
crossref_primary_10_1016_j_soilbio_2023_109093
crossref_primary_10_1111_1365_2435_13402
crossref_primary_10_1111_1365_2435_13520
crossref_primary_10_1111_1758_2229_13120
crossref_primary_10_3390_f15091500
crossref_primary_10_1016_j_soilbio_2020_108019
crossref_primary_10_1371_journal_pone_0309321
crossref_primary_10_1007_s00468_021_02235_3
crossref_primary_10_3117_rootres_33_84
crossref_primary_10_3390_f15030476
crossref_primary_10_1111_nph_17906
crossref_primary_10_1093_aob_mcae099
crossref_primary_10_1016_j_geoderma_2023_116759
crossref_primary_10_1111_1365_2435_13656
crossref_primary_10_1016_j_scitotenv_2024_172424
crossref_primary_10_1111_1365_2745_12806
crossref_primary_10_1038_s42003_023_04626_3
crossref_primary_10_3390_f16010046
crossref_primary_10_1002_eap_2863
crossref_primary_10_1111_oik_08908
crossref_primary_10_1111_oik_05517
crossref_primary_10_1111_oik_08907
crossref_primary_10_1111_nph_16807
crossref_primary_10_1007_s00468_023_02391_8
crossref_primary_10_1111_nph_16920
crossref_primary_10_1111_ppl_14253
crossref_primary_10_1111_nph_15830
crossref_primary_10_1111_nph_15833
crossref_primary_10_3389_fevo_2022_841824
crossref_primary_10_2139_ssrn_4160293
crossref_primary_10_1111_nph_14748
crossref_primary_10_1111_1365_2435_14514
crossref_primary_10_1111_1365_2435_13420
crossref_primary_10_1111_nph_20178
crossref_primary_10_1016_j_soilbio_2020_108038
crossref_primary_10_1002_ldr_3954
crossref_primary_10_1002_ece3_11398
crossref_primary_10_1111_1365_2745_12953
crossref_primary_10_1016_j_rhisph_2024_100890
crossref_primary_10_3389_fpls_2024_1358367
crossref_primary_10_1002_ajb2_16366
crossref_primary_10_1094_PBIOMES_04_19_0021_R
crossref_primary_10_1111_oik_08827
crossref_primary_10_1016_j_soilbio_2021_108310
crossref_primary_10_1016_j_soilbio_2021_108431
crossref_primary_10_1007_s11104_019_04117_7
crossref_primary_10_1007_s11104_023_06069_5
crossref_primary_10_1111_nph_14853
crossref_primary_10_1111_oik_07970
crossref_primary_10_3389_fpls_2022_897256
crossref_primary_10_1007_s10021_017_0163_7
crossref_primary_10_1111_nph_20166
crossref_primary_10_3390_plants13131736
crossref_primary_10_1002_ecy_3318
crossref_primary_10_1002_ecy_2588
crossref_primary_10_1007_s11104_020_04532_1
crossref_primary_10_1111_gcb_17127
crossref_primary_10_3390_plants13172378
crossref_primary_10_1093_aob_mcz166
crossref_primary_10_1111_1365_2435_14524
crossref_primary_10_3390_d13020097
crossref_primary_10_1002_ecs2_4702
crossref_primary_10_1007_s11104_019_04203_w
crossref_primary_10_1002_ecy_2437
crossref_primary_10_1093_treephys_tpad047
crossref_primary_10_1111_1365_2745_12977
crossref_primary_10_3389_ffgc_2021_698191
crossref_primary_10_3389_fpls_2017_00315
crossref_primary_10_1111_oik_07874
crossref_primary_10_1016_j_scitotenv_2022_161048
crossref_primary_10_1111_oik_08606
crossref_primary_10_3389_fevo_2022_955663
crossref_primary_10_1111_nph_17707
crossref_primary_10_1007_s11104_023_06350_7
crossref_primary_10_3390_f15020336
crossref_primary_10_1111_nph_18915
crossref_primary_10_3389_fpls_2021_773118
crossref_primary_10_1111_nph_16841
crossref_primary_10_1111_1365_2745_13934
crossref_primary_10_1016_j_fecs_2022_100066
crossref_primary_10_3389_fpls_2021_785589
crossref_primary_10_1371_journal_pone_0309510
crossref_primary_10_1111_1365_2435_12888
crossref_primary_10_3390_f13010112
crossref_primary_10_1007_s11104_024_06701_y
crossref_primary_10_1007_s11104_019_03989_z
crossref_primary_10_1007_s11104_023_06473_x
crossref_primary_10_1016_j_geoderma_2023_116414
crossref_primary_10_1021_acs_est_1c07575
crossref_primary_10_1111_1365_2745_13729
crossref_primary_10_1111_1365_2745_13845
crossref_primary_10_1016_j_scitotenv_2024_172670
crossref_primary_10_1093_treephys_tpae038
crossref_primary_10_1016_j_fecs_2023_100113
crossref_primary_10_1007_s11356_022_19503_5
crossref_primary_10_1016_j_fmre_2023_12_002
crossref_primary_10_1016_j_scitotenv_2021_146748
crossref_primary_10_1007_s11104_023_06408_6
crossref_primary_10_1111_oik_08987
crossref_primary_10_1111_ppl_14105
crossref_primary_10_3389_ffgc_2022_867912
crossref_primary_10_1007_s00442_018_4156_9
crossref_primary_10_1111_gcb_15391
crossref_primary_10_3390_f12121797
crossref_primary_10_7717_peerj_6513
crossref_primary_10_1139_er_2023_0130
crossref_primary_10_1111_1365_2435_13877
crossref_primary_10_1111_geb_13205
crossref_primary_10_1016_j_foreco_2025_122544
crossref_primary_10_3390_plants12112140
crossref_primary_10_1073_pnas_2107541118
crossref_primary_10_3389_ffgc_2024_1488389
crossref_primary_10_1007_s11104_017_3499_z
crossref_primary_10_3389_ffgc_2020_535117
crossref_primary_10_1002_ajb2_1451
crossref_primary_10_1016_j_soilbio_2025_109736
crossref_primary_10_1094_PBIOMES_4_1
crossref_primary_10_1111_oik_08975
crossref_primary_10_1007_s11104_022_05522_1
crossref_primary_10_1111_oik_06797
crossref_primary_10_3389_fpls_2022_965576
crossref_primary_10_3390_f12121680
crossref_primary_10_3389_fpls_2021_680379
crossref_primary_10_1111_nph_14522
crossref_primary_10_1111_nph_14643
crossref_primary_10_1093_treephys_tpx159
crossref_primary_10_1016_j_envexpbot_2023_105318
crossref_primary_10_1002_agg2_20190
crossref_primary_10_1186_s13717_024_00554_0
crossref_primary_10_1093_jpe_rtw111
crossref_primary_10_1038_nature25783
crossref_primary_10_1111_btp_13262
crossref_primary_10_1016_j_pedobi_2023_150875
crossref_primary_10_1016_j_foreco_2018_08_005
crossref_primary_10_1111_1365_2745_13862
crossref_primary_10_1038_s41467_022_30888_2
crossref_primary_10_3390_land10040363
crossref_primary_10_1007_s11104_019_03981_7
crossref_primary_10_3390_agronomy14123006
crossref_primary_10_1111_1365_2435_13934
crossref_primary_10_1016_j_apsoil_2022_104441
crossref_primary_10_3390_agronomy14112584
crossref_primary_10_1002_ecs2_2716
crossref_primary_10_1111_nph_16522
crossref_primary_10_1111_nph_14344
crossref_primary_10_1111_1365_2745_12769
crossref_primary_10_1111_1365_2745_13612
crossref_primary_10_1016_j_geoderma_2021_115011
crossref_primary_10_1111_gcb_13827
crossref_primary_10_1016_j_ecolind_2021_107979
crossref_primary_10_1111_oik_08877
crossref_primary_10_1098_rstb_2021_0067
crossref_primary_10_1111_nph_14466
crossref_primary_10_1111_nph_17978
crossref_primary_10_1111_nph_17854
crossref_primary_10_1111_geb_13384
crossref_primary_10_1111_oik_08995
crossref_primary_10_1111_btp_13125
crossref_primary_10_1002_ecs2_2944
crossref_primary_10_1111_nph_14571
crossref_primary_10_1093_jpe_rtaa015
crossref_primary_10_3389_fpls_2022_1089720
crossref_primary_10_1111_1365_2745_13407
crossref_primary_10_1016_j_pld_2023_05_002
crossref_primary_10_1007_s10342_020_01312_5
crossref_primary_10_1111_nph_14459
crossref_primary_10_1016_j_envexpbot_2019_103865
crossref_primary_10_1002_eap_2486
crossref_primary_10_1111_1365_2435_12983
crossref_primary_10_1007_s11104_018_3854_8
crossref_primary_10_1016_j_still_2021_104969
crossref_primary_10_3389_fpls_2022_769551
crossref_primary_10_3389_fpls_2024_1485542
crossref_primary_10_1007_s11104_021_05149_8
crossref_primary_10_1093_treephys_tpae120
crossref_primary_10_1111_oik_08898
crossref_primary_10_3390_f11111227
crossref_primary_10_1111_1440_1703_12224
crossref_primary_10_1111_nph_16865
crossref_primary_10_1007_s13595_018_0758_y
crossref_primary_10_1111_nph_18870
crossref_primary_10_1007_s11104_020_04584_3
crossref_primary_10_1111_nph_19962
crossref_primary_10_1007_s11676_021_01397_7
crossref_primary_10_1080_13416979_2022_2102752
crossref_primary_10_1111_oik_10763
crossref_primary_10_1007_s11104_022_05672_2
crossref_primary_10_1111_1365_2745_13786
crossref_primary_10_3389_fpls_2021_692715
crossref_primary_10_24326_asphc_2023_5050
crossref_primary_10_1093_biolinnean_blaa181
crossref_primary_10_1007_s11104_017_3433_4
crossref_primary_10_1016_j_foreco_2024_121799
crossref_primary_10_1111_nph_17546
crossref_primary_10_1002_ecm_1634
crossref_primary_10_1111_oik_08203
crossref_primary_10_3389_fpls_2022_998169
crossref_primary_10_12677_AEP_2024_141011
crossref_primary_10_1111_nph_17896
crossref_primary_10_1016_j_tree_2022_05_007
crossref_primary_10_1007_s10533_017_0302_4
crossref_primary_10_1111_1365_2745_13894
crossref_primary_10_1007_s11104_025_07351_4
crossref_primary_10_1111_1365_2745_13774
crossref_primary_10_1111_brv_13107
crossref_primary_10_1007_s11104_024_06740_5
crossref_primary_10_1016_j_scitotenv_2024_171404
crossref_primary_10_1111_oik_08794
crossref_primary_10_1007_s11104_017_3323_9
crossref_primary_10_3389_fmicb_2024_1447999
crossref_primary_10_1093_aobpla_plab073
crossref_primary_10_1016_j_heliyon_2019_e02210
crossref_primary_10_1111_1365_2435_13906
crossref_primary_10_1016_j_jplph_2020_153297
crossref_primary_10_3389_frsc_2022_1064525
crossref_primary_10_1007_s11104_020_04485_5
crossref_primary_10_1111_oik_10412
crossref_primary_10_1002_ajb2_70011
crossref_primary_10_1111_nph_18736
crossref_primary_10_1029_2019MS001846
crossref_primary_10_1038_s41586_023_06149_7
crossref_primary_10_3389_fpls_2023_1104632
crossref_primary_10_1007_s11104_016_3148_y
crossref_primary_10_1016_j_envexpbot_2024_105925
crossref_primary_10_1007_s11104_019_04232_5
crossref_primary_10_1007_s11104_023_06381_0
crossref_primary_10_1111_nph_14486
crossref_primary_10_1111_nph_16302
crossref_primary_10_1093_treephys_tpad118
crossref_primary_10_3389_fpls_2023_1150832
crossref_primary_10_3389_ffgc_2023_1187127
crossref_primary_10_5424_fs_2022312_18793
crossref_primary_10_1016_j_foreco_2021_119941
crossref_primary_10_1111_1365_2745_13675
crossref_primary_10_1016_j_ecolind_2021_107838
crossref_primary_10_1086_728188
crossref_primary_10_1016_j_foreco_2020_118439
crossref_primary_10_3390_d14100823
crossref_primary_10_1007_s11104_019_04058_1
crossref_primary_10_1111_nph_14247
Cites_doi 10.1046/j.1469-8137.2002.00397.x
10.1111/nph.12538
10.1139/X09-093
10.1007/s00442-002-0922-8
10.1111/j.1469-8137.2006.01712.x
10.1093/treephys/18.10.665
10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2
10.1007/s004420100746
10.1111/j.1469-8137.2012.04198.x
10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
10.1111/1365-2435.12384
10.1890/ES13-00062.1
10.1046/j.1469-8137.2002.00393.x
10.1073/pnas.0704716104
10.1046/j.1469-8137.2000.00781.x
10.1111/1365-2745.12014
10.3389/fpls.2015.00064
10.1111/j.1469-8137.2005.01428.x
10.1126/science.1151382
10.1007/s11104-012-1464-4
10.1016/j.still.2010.07.008
10.1111/nph.13434
10.1093/treephys/tpt067
10.1002/ece3.1147
10.1515/9781400830640
10.1111/nph.13451
10.1007/s11284-011-0833-4
10.1007/978-1-4020-8435-5_5
10.1080/17550874.2014.992488
10.1007/s004420100752
10.1111/j.1469-8137.2008.02573.x
10.1093/treephys/27.11.1627
10.1016/j.soilbio.2012.08.027
10.1016/j.envexpbot.2012.01.004
10.1034/j.1600-0706.2003.10638.x
10.1111/j.1469-8137.2010.03388.x
10.1111/1365-2745.12224
10.1007/s005720100108
10.1111/nph.13363
10.1007/s00442-015-3230-9
10.1086/503056
10.1046/j.1469-8137.1999.00342.x
10.1111/j.1365-2311.2004.00572.x
10.2307/1942040
10.1111/nph.12927
10.1016/j.foreco.2013.01.022
10.1071/FP08195
10.1139/x90-134
10.1111/j.1365-2745.2011.01821.x
10.1007/s11104-006-9168-2
10.1093/treephys/15.5.281
10.1007/BF01972080
10.1023/A:1026140122848
10.1111/j.1469-8137.2005.01349.x
10.1111/nph.13828
10.1111/j.1469-8137.2009.02799.x
10.1007/s00468-007-0160-0
10.1111/1365-2745.12211
10.1007/s11104-012-1313-5
10.1046/j.1469-8137.2000.00775.x
10.1086/507879
10.1093/treephys/tps008
10.1111/j.1461-0248.2008.01185.x
10.1111/j.1469-8137.2007.02242.x
10.1890/04-1075
10.1111/j.1469-8137.2012.04247.x
10.1016/j.fbr.2015.03.001
10.1086/665823
10.1046/j.0028-646x.2001.00199.x
10.1111/geb.12048
10.1139/cjfr-29-2-260
10.1139/x85-007
10.1093/aob/mcl114
10.1111/j.0269-8463.2004.00835.x
10.1086/283244
10.1007/s00344-003-0011-1
10.1007/3-540-27998-9_17
10.1111/j.1365-2745.2009.01615.x
10.1007/s11104-016-2820-6
10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
10.1111/nph.13289
10.1111/nph.12842
10.1007/BF02257530
10.2307/2937116
10.1046/j.1365-2435.1998.00209.x
10.1111/j.1469-8137.2012.04297.x
10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
10.1111/j.1654-1103.2004.tb02266.x
10.1016/S0269-7491(98)00058-X
10.1007/s11104-013-1630-3
ContentType Journal Article
Copyright 2016 New Phytologist Trust
2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust
2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust.
Copyright © 2016 New Phytologist Trust
Wageningen University & Research
Copyright_xml – notice: 2016 New Phytologist Trust
– notice: 2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust
– notice: 2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust.
– notice: Copyright © 2016 New Phytologist Trust
– notice: Wageningen University & Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
QVL
DOI 10.1111/nph.14003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic


Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
CrossRef
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Economics
EISSN 1469-8137
EndPage 1169
ExternalDocumentID oai_library_wur_nl_wurpubs_504034
4158149571
27174359
10_1111_nph_14003
NPH14003
newphytologist.211.4.1159
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: NWO‐VIDI
  funderid: 864.14.006
– fundername: Netherlands Organisation for Scientific Research (NWO)
– fundername: Graduate School Production Ecology and Resource Conservation (PE&RC)
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
-
02
08R
0R
31
3N
8RP
AAPBV
ABFLS
ABHUG
ABPTK
ABUFD
ABWRO
ACXME
ADACO
ADAWD
ADDAD
ADZLD
AESBF
AFMIJ
AGJLS
AS
CWIXF
DWIUU
F20
GA
HZ
IA
KM
LW7
NF
P4A
QVL
UNR
WT
X
XHC
Y3
ZY4
ID FETCH-LOGICAL-c7503-9ae9c7593fca3672dae658e10d26d4d9c07c5a45c17a694fb72e871765b289993
IEDL.DBID DR2
ISSN 0028-646X
IngestDate Fri Feb 05 18:08:23 EST 2021
Fri Jul 11 18:33:33 EDT 2025
Fri Jul 11 09:20:34 EDT 2025
Thu Jul 10 18:52:32 EDT 2025
Fri Jul 25 10:33:02 EDT 2025
Wed Feb 19 02:43:40 EST 2025
Tue Jul 01 03:09:24 EDT 2025
Thu Apr 24 22:59:56 EDT 2025
Wed Jan 22 16:24:45 EST 2025
Thu Jul 03 22:44:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords resource acquisition
trait syndromes
mycorrhizal symbiosis
functional traits
root economics spectrum (RES)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7503-9ae9c7593fca3672dae658e10d26d4d9c07c5a45c17a694fb72e871765b289993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F504034
PMID 27174359
PQID 1813887825
PQPubID 2026848
PageCount 11
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_504034
proquest_miscellaneous_2000182814
proquest_miscellaneous_1811891318
proquest_miscellaneous_1809045801
proquest_journals_1813887825
pubmed_primary_27174359
crossref_citationtrail_10_1111_nph_14003
crossref_primary_10_1111_nph_14003
wiley_primary_10_1111_nph_14003_NPH14003
jstor_primary_newphytologist_211_4_1159
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2016
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2007; 104
2010; 98
2012; 362
2013; 4
2013; 22
2002; 154
2006; 76
2010; 188
2011; 99
2013; 367
2013; 366
2013; 201
1996; 185
1999; 80
2012; 173
2014; 204
1998; 18
2014; 4
1997; 94
1991; 47
2006; 67
2013; 57
2015; 177
2008; 319
2010; 110
2002; 148
2011; 26
2001; 11
2007; 21
1998; 12
1985; 15
2006; 167
2014; 203
2006; 168
2007; 27
2015; 6
2012
2002; 132
1995; 15
2013; 309
2006; 98
2002; 72
1999; 29
2009; 182
2016; 404
2009
2013; 101
2008
2005; 86
1999; 141
2015; 208
2015; 207
2008; 11
2007; 290
2015; 205
2004; 428
2012; 79
2001; 129
2015; 8
2003; 255
2012; 32
1995; 5
2012; 195
2009; 36
2012; 196
1990; 20
2008b; 180
2001; 151
2008a; 177
2015; 29
2013; 33
2004; 18
2006; 87
2005; 167
2000; 148
2004; 15
1997; 79
2016; 210
1977; 111
2003; 103
1998; 101
2003; 21
1992; 62
2014; 102
2009; 39
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_92_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_21_1
Smith SE (e_1_2_6_79_1) 2008
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 79
  start-page: 49
  year: 2012
  end-page: 57
  article-title: Linking root traits to plant physiology and growth in Vahl. seedlings under soil compaction conditions
  publication-title: Environmental and Experimental Botany
– volume: 18
  start-page: 388
  year: 2004
  end-page: 397
  article-title: Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species
  publication-title: Functional Ecology
– volume: 177
  start-page: 935
  year: 2015
  end-page: 947
  article-title: Global environmental change and the nature of aboveground net primary productivity responses: insights from long‐term experiments
  publication-title: Oecologia
– year: 2009
– volume: 6
  start-page: 64
  year: 2015
  article-title: Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order‐related fine root morphology and biomass?
  publication-title: Frontiers in Plant Science
– volume: 39
  start-page: 1787
  year: 2009
  end-page: 1796
  article-title: Does a fungal species drive ectomycorrhizal root traits in spp.?
  publication-title: Canadian Journal of Forest Research
– volume: 21
  start-page: 593
  year: 2007
  end-page: 603
  article-title: Estimating nutrient uptake by mature tree roots under field conditions: challenges and opportunities
  publication-title: Trees
– volume: 76
  start-page: 381
  year: 2006
  end-page: 397
  article-title: Comparisons of structure and life span in roots and leaves among temperate trees
  publication-title: Ecological Monographs
– volume: 180
  start-page: 673
  year: 2008b
  end-page: 683
  article-title: Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species
  publication-title: New Phytologist
– volume: 182
  start-page: 919
  year: 2009
  end-page: 928
  article-title: Patterns in root trait variation among 25 co‐existing North American forest species
  publication-title: New Phytologist
– volume: 167
  start-page: 758
  year: 2006
  end-page: 765
  article-title: Leaf traits determine the growth‐survival trade‐off across rain forest tree species
  publication-title: American Naturalist
– volume: 255
  start-page: 93
  year: 2003
  end-page: 104
  article-title: How do roots penetrate strong soil?
  publication-title: Plant and Soil
– volume: 18
  start-page: 665
  year: 1998
  end-page: 670
  article-title: Variation in sugar maple root respiration with root diameter and soil depth
  publication-title: Tree Physiology
– volume: 4
  start-page: 1
  year: 2013
  end-page: 24
  article-title: Meta‐analysis: a need for well‐defined usage in ecology and conservation biology
  publication-title: Ecosphere
– volume: 309
  start-page: 58
  year: 2013
  end-page: 65
  article-title: Fine root production and turnover of tree and understorey vegetation in Scots pine, silver birch and Norway spruce stands in SW Sweden
  publication-title: Forest Ecology and Management
– volume: 32
  start-page: 303
  year: 2012
  end-page: 312
  article-title: Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest
  publication-title: Tree Physiology
– volume: 319
  start-page: 456
  year: 2008
  end-page: 458
  article-title: Irreconcilable differences: fine‐root life spans and soil carbon persistence
  publication-title: Science
– volume: 15
  start-page: 29
  year: 1985
  end-page: 33
  article-title: Response of red spruce and balsam fir seedlings to aluminum toxicity in nutrient solutions
  publication-title: Canadian Journal of Forest Research
– volume: 154
  start-page: 275
  year: 2002
  end-page: 304
  article-title: Coevolution of roots and mycorrhizas of land plants
  publication-title: New Phytologist
– volume: 208
  start-page: 125
  year: 2015
  end-page: 136
  article-title: Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species
  publication-title: New Phytologist
– volume: 201
  start-page: 433
  year: 2013
  end-page: 439
  article-title: Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function
  publication-title: New Phytologist
– volume: 26
  start-page: 755
  year: 2011
  end-page: 762
  article-title: Influence of root structure on root survivorship: an analysis of 18 tree species using a minirhizotron method
  publication-title: Ecological Research
– volume: 94
  start-page: 13730
  year: 1997
  end-page: 13734
  article-title: From tropics to tundra: global convergence in plant functioning
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 203
  start-page: 863
  year: 2014
  end-page: 872
  article-title: Leading dimensions in absorptive root trait variation across 96 subtropical forest species
  publication-title: New Phytologist
– volume: 33
  start-page: 940
  year: 2013
  end-page: 948
  article-title: Foraging strategies in trees of different root morphology: the role of root lifespan
  publication-title: Tree Physiology
– volume: 195
  start-page: 823
  year: 2012
  end-page: 831
  article-title: Predicting fine root lifespan from plant functional traits in temperate trees
  publication-title: New Phytologist
– volume: 12
  start-page: 395
  year: 1998
  end-page: 405
  article-title: Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate
  publication-title: Functional Ecology
– volume: 104
  start-page: 20684
  year: 2007
  end-page: 20689
  article-title: Incorporating plant functional diversity effects in ecosystem service assessments
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 103
  start-page: 668
  year: 2003
  end-page: 680
  article-title: Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement
  publication-title: Oikos
– volume: 11
  start-page: 107
  year: 2001
  end-page: 114
  article-title: Exploration types of ectomycorrhizae. a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance
  publication-title: Mycorrhiza
– volume: 98
  start-page: 693
  year: 2006
  end-page: 713
  article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits
  publication-title: Annals of Botany
– year: 2008
– volume: 188
  start-page: 543
  year: 2010
  end-page: 553
  article-title: Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi‐arid and arid ecosystems
  publication-title: New Phytologist
– volume: 87
  start-page: 1733
  year: 2006
  end-page: 1743
  article-title: Leaf traits are good predictors of plant performance across 53 rain forest species
  publication-title: Ecology
– volume: 177
  start-page: 443
  year: 2008a
  end-page: 456
  article-title: Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods
  publication-title: New Phytologist
– volume: 8
  start-page: 387
  year: 2015
  end-page: 399
  article-title: Arbuscular mycorrhiza and water and nutrient supply differently impact seedling performance of dry woodland species with different acquisition strategies
  publication-title: Plant Ecology & Diversity
– volume: 185
  start-page: 255
  year: 1996
  end-page: 258
  article-title: Root sampling methods – applications and limitations of the minirhizotron technique
  publication-title: Plant and Soil
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast‐slow’ plant economics spectrum: a traits manifesto
  publication-title: Journal of Ecology
– volume: 207
  start-page: 505
  year: 2015
  end-page: 518
  article-title: Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes
  publication-title: New Phytologist
– volume: 62
  start-page: 365
  year: 1992
  end-page: 392
  article-title: Leaf life‐span in relation to leaf, plant, and stand characteristics among diverse ecosystems
  publication-title: Ecological Monographs
– volume: 195
  start-page: 725
  year: 2012
  end-page: 727
  article-title: The role of roots in the resource economics spectrum
  publication-title: New Phytologist
– volume: 102
  start-page: 828
  year: 2014
  end-page: 844
  article-title: Uses and misuses of meta‐analysis in plant ecology
  publication-title: Journal of Ecology
– volume: 80
  start-page: 1955
  year: 1999
  end-page: 1969
  article-title: Generality of leaf trait relationships: a test across six biomes
  publication-title: Ecology
– volume: 210
  start-page: 815
  year: 2016
  end-page: 826
  article-title: Root structure–function relationships in 74 species : evidence of a root economics spectrum related to carbon economy
  publication-title: New Phytologist
– volume: 366
  start-page: 1
  year: 2013
  end-page: 27
  article-title: The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling
  publication-title: Plant and Soil
– volume: 29
  start-page: 34
  year: 2015
  end-page: 41
  article-title: Branching out: towards a trait‐based understanding of fungal ecology
  publication-title: Fungal Biology Reviews
– volume: 173
  start-page: 584
  year: 2012
  end-page: 595
  article-title: Evolutionary patterns and biogeochemical significance of angiosperm root traits
  publication-title: International Journal of Plant Sciences
– volume: 15
  start-page: 295
  year: 2004
  article-title: The plant traits that drive ecosystems: evidence from three continents
  publication-title: Journal of Vegetation Science
– volume: 101
  start-page: 339
  year: 1998
  end-page: 347
  article-title: Effects of low pH and aluminum on root morphology of Japanese red cedar saplings
  publication-title: Environmental Pollution
– volume: 404
  start-page: 1
  year: 2016
  article-title: Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms
  publication-title: Plant and Soil
– volume: 11
  start-page: 793
  year: 2008
  end-page: 801
  article-title: Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants
  publication-title: Ecology Letters
– volume: 5
  start-page: 517
  year: 1995
  end-page: 532
  article-title: Juvenile tree survivorship as a component of shade tolerance
  publication-title: Ecological Applications
– volume: 110
  start-page: 108
  year: 2010
  end-page: 114
  article-title: Effects of soil compaction and light on growth of Willd. (Fagaceae) seedlings
  publication-title: Soil and Tillage Research
– volume: 86
  start-page: 12
  year: 2005
  end-page: 19
  article-title: Environmental constraints on a global relationship among leaf and root traits of grasses
  publication-title: Ecology
– volume: 196
  start-page: 845
  year: 2012
  end-page: 852
  article-title: No globally consistent effect of ectomycorrhizal status on foliar traits
  publication-title: New Phytologist
– volume: 21
  start-page: 324
  year: 2003
  end-page: 334
  article-title: Beyond the roots of young seedlings: the influence of age and order on fine root physiology
  publication-title: Journal of Plant Growth Regulation
– volume: 148
  start-page: 353
  year: 2002
  end-page: 354
  article-title: Root structure and function in an ecological context
  publication-title: New Phytologist
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 22
  start-page: 846
  year: 2013
  end-page: 856
  article-title: Variation of first‐order root traits across climatic gradients and evolutionary trends in geological time
  publication-title: Global Ecology and Biogeography
– year: 2012
– volume: 27
  start-page: 1627
  year: 2007
  end-page: 1634
  article-title: Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests
  publication-title: Tree Physiology
– volume: 47
  start-page: 376
  year: 1991
  end-page: 391
  article-title: Mycorrhizas in ecosystems
  publication-title: Experientia
– volume: 111
  start-page: 1169
  year: 1977
  end-page: 1194
  article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory
  publication-title: American Naturalist
– volume: 205
  start-page: 1378
  year: 2015
  end-page: 1380
  article-title: Moving beyond the black‐box: fungal traits, community structure, and carbon sequestration in forest soils
  publication-title: New Phytologist
– volume: 204
  start-page: 192
  year: 2014
  end-page: 200
  article-title: Is there an association between root architecture and mycorrhizal growth response?
  publication-title: New Phytologist
– start-page: 83
  year: 2008
  end-page: 116
– volume: 290
  start-page: 357
  year: 2007
  end-page: 370
  article-title: Fine‐root mass, growth and nitrogen content for six tropical tree species
  publication-title: Plant and Soil
– volume: 132
  start-page: 34
  year: 2002
  end-page: 43
  article-title: Linking root traits to potential growth rate in six temperate tree species
  publication-title: Oecologia
– volume: 4
  start-page: 2979
  year: 2014
  end-page: 2990
  article-title: Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies
  publication-title: Ecology and Evolution
– volume: 168
  start-page: E103
  year: 2006
  end-page: E122
  article-title: Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants
  publication-title: American Naturalist
– volume: 79
  start-page: 259
  year: 1997
  end-page: 281
  article-title: Integrated screening validates primary axes of specialisation in plants
  publication-title: Oikos
– volume: 101
  start-page: 47
  year: 2013
  end-page: 57
  article-title: Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services
  publication-title: Journal of Ecology
– volume: 141
  start-page: 309
  year: 1999
  end-page: 321
  article-title: Anatomical characteristics of roots of citrus rootstocks that vary in specific root length
  publication-title: New Phytologist
– volume: 129
  start-page: 611
  year: 2001
  end-page: 619
  article-title: Carbon cycling traits of plant species are linked with mycorrhizal strategy
  publication-title: Oecologia
– volume: 148
  start-page: 459
  year: 2000
  end-page: 471
  article-title: Root tissue structure is linked to ecological strategies of grasses
  publication-title: New Phytologist
– volume: 57
  start-page: 1034
  year: 2013
  end-page: 1047
  article-title: Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – a review
  publication-title: Soil Biology and Biochemistry
– volume: 72
  start-page: 293
  year: 2002
  end-page: 309
  article-title: Fine root architecture of nine North American trees
  publication-title: Ecological Monographs
– volume: 208
  start-page: 114
  year: 2015
  end-page: 124
  article-title: Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest
  publication-title: New Phytologist
– volume: 20
  start-page: 1001
  year: 1990
  end-page: 1011
  article-title: Response of red spruce seedlings to aluminum toxicity in nutrient solution: alterations in root anatomy
  publication-title: Canadian Journal of Forest Research
– volume: 15
  start-page: 281
  year: 1995
  end-page: 293
  article-title: Arbuscular mycorrhizal induced changes to plant growth and root system morphology in
  publication-title: Tree Physiology
– volume: 67
  start-page: 385
  year: 2006
  end-page: 419
  article-title: Structural determinants of leaf light‐harvesting capacity and photosynthetic potentials
  publication-title: Progress in Botany
– volume: 99
  start-page: 954
  year: 2011
  end-page: 963
  article-title: Species‐ and community‐level patterns in fine root traits along a 120 000‐year soil chronosequence in temperate rain forest
  publication-title: Journal of Ecology
– volume: 29
  start-page: 796
  year: 2015
  end-page: 807
  article-title: Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees
  publication-title: Functional Ecology
– volume: 36
  start-page: 11
  year: 2009
  end-page: 19
  article-title: Estimating fine root longevity in a temperate Norway spruce forest using three independent methods
  publication-title: Functional Plant Biology
– volume: 362
  start-page: 357
  year: 2012
  end-page: 372
  article-title: Fine‐root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores
  publication-title: Plant and Soil
– volume: 167
  start-page: 493
  year: 2005
  end-page: 508
  article-title: Linking leaf and root trait syndromes among 39 grassland and savannah species
  publication-title: New Phytologist
– volume: 29
  start-page: 260
  year: 1999
  end-page: 273
  article-title: Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada
  publication-title: Canadian Journal of Forest Research
– volume: 154
  start-page: 389
  year: 2002
  end-page: 398
  article-title: Below‐ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine
  publication-title: New Phytologist
– volume: 129
  start-page: 420
  year: 2001
  end-page: 429
  article-title: The age of fine‐root carbon in three forests of the eastern United States measured by radiocarbon
  publication-title: Oecologia
– volume: 367
  start-page: 313
  year: 2013
  end-page: 326
  article-title: Insights into root growth, function, and mycorrhizal abundance from chemical and isotopic data across root orders
  publication-title: Plant and Soil
– volume: 151
  start-page: 753
  year: 2001
  end-page: 760
  article-title: Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field
  publication-title: New Phytologist
– volume: 98
  start-page: 362
  year: 2010
  end-page: 373
  article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora
  publication-title: Journal of Ecology
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1469-8137.2002.00397.x
– ident: e_1_2_6_46_1
  doi: 10.1111/nph.12538
– ident: e_1_2_6_64_1
  doi: 10.1139/X09-093
– ident: e_1_2_6_14_1
  doi: 10.1007/s00442-002-0922-8
– ident: e_1_2_6_74_1
  doi: 10.1111/j.1469-8137.2006.01712.x
– ident: e_1_2_6_68_1
  doi: 10.1093/treephys/18.10.665
– ident: e_1_2_6_92_1
  doi: 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2
– ident: e_1_2_6_30_1
  doi: 10.1007/s004420100746
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1469-8137.2012.04198.x
– ident: e_1_2_6_66_1
  doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
– ident: e_1_2_6_85_1
  doi: 10.1111/1365-2435.12384
– ident: e_1_2_6_87_1
  doi: 10.1890/ES13-00062.1
– ident: e_1_2_6_43_1
  doi: 10.1046/j.1469-8137.2002.00393.x
– ident: e_1_2_6_23_1
  doi: 10.1073/pnas.0704716104
– ident: e_1_2_6_24_1
  doi: 10.1046/j.1469-8137.2000.00781.x
– ident: e_1_2_6_32_1
  doi: 10.1111/1365-2745.12014
– volume-title: Mycorrhizal symbiosis
  year: 2008
  ident: e_1_2_6_79_1
– ident: e_1_2_6_49_1
  doi: 10.3389/fpls.2015.00064
– ident: e_1_2_6_82_1
  doi: 10.1111/j.1469-8137.2005.01428.x
– ident: e_1_2_6_81_1
  doi: 10.1126/science.1151382
– ident: e_1_2_6_65_1
  doi: 10.1007/s11104-012-1464-4
– ident: e_1_2_6_7_1
  doi: 10.1016/j.still.2010.07.008
– ident: e_1_2_6_51_1
  doi: 10.1111/nph.13434
– ident: e_1_2_6_2_1
  doi: 10.1093/treephys/tpt067
– ident: e_1_2_6_15_1
  doi: 10.1002/ece3.1147
– ident: e_1_2_6_20_1
  doi: 10.1515/9781400830640
– ident: e_1_2_6_26_1
  doi: 10.1111/nph.13451
– ident: e_1_2_6_35_1
  doi: 10.1007/s11284-011-0833-4
– ident: e_1_2_6_54_1
  doi: 10.1007/978-1-4020-8435-5_5
– ident: e_1_2_6_9_1
  doi: 10.1080/17550874.2014.992488
– ident: e_1_2_6_19_1
  doi: 10.1007/s004420100752
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1469-8137.2008.02573.x
– ident: e_1_2_6_63_1
  doi: 10.1093/treephys/27.11.1627
– ident: e_1_2_6_89_1
  doi: 10.1016/j.soilbio.2012.08.027
– ident: e_1_2_6_5_1
  doi: 10.1016/j.envexpbot.2012.01.004
– ident: e_1_2_6_86_1
  doi: 10.1034/j.1600-0706.2003.10638.x
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1469-8137.2010.03388.x
– ident: e_1_2_6_48_1
  doi: 10.1111/1365-2745.12224
– ident: e_1_2_6_3_1
  doi: 10.1007/s005720100108
– ident: e_1_2_6_59_1
  doi: 10.1111/nph.13363
– ident: e_1_2_6_78_1
  doi: 10.1007/s00442-015-3230-9
– ident: e_1_2_6_80_1
  doi: 10.1086/503056
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1469-8137.1999.00342.x
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1365-2311.2004.00572.x
– ident: e_1_2_6_44_1
  doi: 10.2307/1942040
– ident: e_1_2_6_55_1
  doi: 10.1111/nph.12927
– ident: e_1_2_6_38_1
  doi: 10.1016/j.foreco.2013.01.022
– ident: e_1_2_6_31_1
  doi: 10.1071/FP08195
– ident: e_1_2_6_60_1
  doi: 10.1139/x90-134
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1365-2745.2011.01821.x
– ident: e_1_2_6_84_1
  doi: 10.1007/s11104-006-9168-2
– ident: e_1_2_6_8_1
  doi: 10.1093/treephys/15.5.281
– ident: e_1_2_6_69_1
  doi: 10.1007/BF01972080
– ident: e_1_2_6_13_1
  doi: 10.1023/A:1026140122848
– ident: e_1_2_6_93_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_6_76_1
  doi: 10.1111/nph.13828
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1469-8137.2009.02799.x
– ident: e_1_2_6_53_1
  doi: 10.1007/s00468-007-0160-0
– ident: e_1_2_6_70_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_6_11_1
  doi: 10.1007/s11104-012-1313-5
– ident: e_1_2_6_88_1
  doi: 10.1046/j.1469-8137.2000.00775.x
– ident: e_1_2_6_41_1
– ident: e_1_2_6_42_1
  doi: 10.1086/507879
– ident: e_1_2_6_57_1
  doi: 10.1093/treephys/tps008
– ident: e_1_2_6_72_1
  doi: 10.1111/j.1461-0248.2008.01185.x
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1469-8137.2007.02242.x
– ident: e_1_2_6_21_1
  doi: 10.1890/04-1075
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1469-8137.2012.04247.x
– ident: e_1_2_6_4_1
  doi: 10.1016/j.fbr.2015.03.001
– ident: e_1_2_6_18_1
  doi: 10.1086/665823
– ident: e_1_2_6_90_1
  doi: 10.1046/j.0028-646x.2001.00199.x
– ident: e_1_2_6_12_1
  doi: 10.1111/geb.12048
– ident: e_1_2_6_6_1
  doi: 10.1139/cjfr-29-2-260
– ident: e_1_2_6_77_1
  doi: 10.1139/x85-007
– ident: e_1_2_6_50_1
  doi: 10.1093/aob/mcl114
– ident: e_1_2_6_16_1
  doi: 10.1111/j.0269-8463.2004.00835.x
– ident: e_1_2_6_33_1
  doi: 10.1086/283244
– ident: e_1_2_6_91_1
  doi: 10.1007/s00344-003-0011-1
– ident: e_1_2_6_62_1
  doi: 10.1007/3-540-27998-9_17
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1365-2745.2009.01615.x
– ident: e_1_2_6_83_1
  doi: 10.1007/s11104-016-2820-6
– ident: e_1_2_6_71_1
  doi: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
– ident: e_1_2_6_28_1
  doi: 10.1111/nph.13289
– ident: e_1_2_6_47_1
  doi: 10.1111/nph.12842
– ident: e_1_2_6_56_1
  doi: 10.1007/BF02257530
– ident: e_1_2_6_73_1
  doi: 10.2307/2937116
– ident: e_1_2_6_75_1
  doi: 10.1046/j.1365-2435.1998.00209.x
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1469-8137.2012.04297.x
– ident: e_1_2_6_67_1
  doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1654-1103.2004.tb02266.x
– ident: e_1_2_6_39_1
  doi: 10.1016/S0269-7491(98)00058-X
– ident: e_1_2_6_27_1
  doi: 10.1007/s11104-013-1630-3
SSID ssj0009562
Score 2.6554239
SecondaryResourceType review_article
Snippet The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf...
Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 Summary The search for a root economics spectrum (RES) has been sparked by recent...
The search for a root economics spectrum ( RES ) has been sparked by recent interest in trait‐based plant ecology. By analogy with the one‐dimensional leaf...
Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent...
1159 I. I. Introduction One of the basic principles of trait-based plant ecology is the trade-off between plant growth and survival (Grime, ; Kobe et al., ;...
SourceID wageningen
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1159
SubjectTerms Aluminum
Bosecologie en Bosbeheer
Carbon dioxide
Carboxylic acids
Climate effects
Conservation
Drought
Economics
Ecosystems
edaphic factors
fine roots
Forest Ecology and Forest Management
functional traits
Graduate schools
Herbivores
Herbivory
Leaves
Leerstoelgroep Bosecologie en bosbeheer
Life span
Mycorrhizae - physiology
mycorrhizal symbiosis
Nature Conservation and Plant Ecology
Natuurbeheer en Plantenecologie
Nutrient requirements
PE&RC
Photosynthesis
Physiology
Plant ecology
Plant Ecology and Nature Conservation
Plant growth
Plant Leaves - physiology
Plant resources
Plant Roots - physiology
Plant species
Plant tissues
Plantenecologie en Natuurbeheer
Plants
Quantitative Trait, Heritable
resource acquisition
Resource conservation
Respiration
root economics spectrum (RES)
soil
Soil pH
Tansley reviews
trait syndromes
trees
Trees - physiology
uptake mechanisms
Title Towards a multidimensional root trait framework: a tree root review
URI https://www.jstor.org/stable/newphytologist.211.4.1159
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14003
https://www.ncbi.nlm.nih.gov/pubmed/27174359
https://www.proquest.com/docview/1813887825
https://www.proquest.com/docview/1809045801
https://www.proquest.com/docview/1811891318
https://www.proquest.com/docview/2000182814
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F504034
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFD6I7ME97If71c1JHYP5UmnTNDXb0xTlIkzGULgPg5CkCYNJr9heZPvrd07SVh06hk8t9LSkyTnJ9yUnXwDe4yDmvGtcxmppM84tTTTJKvOIjSpP6jCW5iG_HIvZKT-aV_MV-DTuhYn6ENOEG0VG6K8pwLXprgV5e_4DwzwqfVKuFgGib-ya4K5gowKz4GI-qApRFs_05o2xKKYj3gY0H8LaJQZ3G3Y73QSxYRQ6fAzfx_LH5JOfO8ve7Njff0k73vMHn8CjAZ2mn6M7PYUV167Dg70FIshfz2D_JOTYdqlOQx5iQycDRFWPFAF4n9J5E33qx3yvj2hIi97xYdwk8xxODw9O9mfZcAhDZmmJMyPxbryTpbe6FDVrtEPQ4oq8YaLhjbR5bSvNK1vUWkjuTc0ckrBaVIa4nCxfwGq7aN0rSPNdLWqZe6cNR15mkBtr45n1jhmfO5fA9tgcyg4K5VTwMzUyFawSFaokgXeT6XmU5bjN6ENo08kCiQr6bjgXGGNIIfdVHN-pZAIbY6urIYY7hdinxC4YKXQCW9NjjD5aUtGtWyzJJpe01JwX_7JBEicL7DzvtqENU8j0dguewMvodVOpWU2skQpZXrmhaumoqU6ROvjgTOpyeaHaM7rgFzpVYf9c4ve2g5PdXU3q-Oss3Lz-f9M3sIbIUcRkuw1Y7S-W7i2is95shjD8A_yoNtM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtRAFD4haCJc-C9WUavRyE1JO51OtyZeKEgWgY0xS7J3YzudCQmkS2g3G3gmXsV38pyZtoIB4w0XXm2Tnm2mnfP3zZz5DsBbDGLa6FIHLM1UwLmihaYsCQzmRokhdhhF65B7IzHc518nyWQBzruzMI4fol9wI8uw_poMnBakL1h5dXyAdo5a2ZZU7ujTOQK2-uP2Js7uO8a2vow3hkHbUyBQtGMXEBc1XmWxUXksUlbmGmOwjsKSiZKXmQpTleQ8UVGai4ybImUaMUUqkoKgCVEvocO_RR3Eial_8zu7QPErWMf5LLiYtDxGVDfUD_VS9HMFkFeltsuwNEd3UtnzVZfTZhv3tu7Bz-6LuXKXw_VZU6yrsz_IJP-XT3of7rYJuP_JWcwDWNDVQ7j9eYpJ8ukj2BjbMuLaz31ballS8wNHXOIjxmh8aqnR-KYrafuAgrSv7266c0CPYf9GXuAJLFbTSj8FPxzkIs1Co_OCI_QsEP7nhWHKaFaYUGsP1rr5l6olYaeBH8kOjOEUSDsFHrzpRY8d88hVQu-tEvUSiMXQPG3rY3QTEuG95PifJPNgtVMz2bqpWmJ6F2OUGbDEg9f9bXQwtGuUV3o6I5kwo930MPqbDOLULML4cL0MnQlDMDuIuAcrTs37UbOUgDENMv6t97Kiblq1JAL0VnvlfHYiqyP6wSfUMsEQFOPz1qxWX_-Z5Ojb0F48-3fRV3BnON7blbvbo53nsISJsnC1hauw2JzM9AtMRpvipfUBPvy4aQv5BZotk2U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBaFy4B8aKBAQiF5SZb22s0HiAF1WWwqrCrXS3tzEsYXUKrtqslqVV-JVeChm7CS0qEVceuC0kTIbOfH8ffb4G4BXGMSMNYWJWJLqiHNNC02piCzmRsISO4ymdcgvEzk-4J-mYroCP9qzMJ4foltwI8tw_poMfF7YM0Zezr-hmaNSNhWVu-Z0iXiterczxMl9zdjo4_72OGpaCkSaNuwioqLGq7RvddaXCSsygyHY9OKCyYIXqY4TLTIudC_JZMptnjCDkCKRIidkQsxL6O-vcRmn1Cdi-JWdYfiVrKV8llxOGxojKhvqhnou-Pn6x4sy25uwtkRvUrrjVeezZhf2RrfhZ_vBfLXL0daizrf09z-4JP-TL3oHbjXpd_je28tdWDHlPbj-YYYp8ul92N53RcRVmIWu0LKg1geetiREhFGH1FCjDm1b0PYWBWlX39_0p4AewMGVvMBDWC1npVmHMB5kMklja7KcI_DMEfxnuWXaGpbb2JgANtvpV7qhYKeBH6sWiuEUKDcFAbzsROeed-QioTdOhzoJRGJonK7xMToJheBecfyPSAPYaLVMNU6qUpjc9THGDJgI4EV3G90L7RllpZktSAY1nQvMY_4mgyg17WF0uFyGToQhlB30eACPvJZ3o2YJwWIaZP-32quSemlViujPG-VVy8WJKo_pB59QKYEBqI_P23RKfflnUpO9sbt4_O-iz-HG3nCkPu9Mdp_AGmbJ0hcWbsBqfbIwTzETrfNnzgOEcHjVBvILQKiSFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+multidimensional+root+trait+framework%3A+a+tree+root+review&rft.jtitle=The+New+phytologist&rft.au=Weemstra%2C+Monique&rft.au=Mommer%2C+Liesje&rft.au=Visser%2C+Eric+J+W&rft.au=Ruijven%2C+Jasper&rft.date=2016-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=211&rft.issue=4&rft.spage=1159&rft_id=info:doi/10.1111%2Fnph.14003&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4158149571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon