Towards a multidimensional root trait framework: a tree root review
The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to...
Saved in:
Published in | The New phytologist Vol. 211; no. 4; pp. 1159 - 1169 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.09.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework. |
---|---|
AbstractList | Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait‐based plant ecology. By analogy with the one‐dimensional leaf economics spectrum (LES), fine‐root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta‐level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above‐ and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade‐offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework. The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework. Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 Summary The search for a root economics spectrum (RES) has been sparked by recent interest in trait‐based plant ecology. By analogy with the one‐dimensional leaf economics spectrum (LES), fine‐root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta‐level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above‐ and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade‐offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework. 1159 I. I. Introduction One of the basic principles of trait-based plant ecology is the trade-off between plant growth and survival (Grime, ; Kobe et al., ; Craine, ). This trade-off implies that plants invest in trait attributes that allow either fast resource acquisition and therefore fast growth, or defence and conservation of acquired resources such as carbon (C), nitrogen (N) and phosphorus (P) which allow survival under adverse conditions. The growth-survival trade-off has been demonstrated clearly in leaf traits that span a continuum from acquisitive to conservative leaves (Reich et al., ; Wright et al., ). On the one hand, the former are characterised by a high specific leaf area (leaf area per leaf mass, SLA), high assimilation and respiration rates, and high nutrient concentrations, which enhance both light interception and C fixation (Fig. ). These acquisitive traits come at the expense of large resource losses due to high metabolic rates, increased susceptibility to herbivory and short lifespan. On the other hand, conservative leaves are equipped for long-term resource retention by having high tissue densities and low respiration rates. These traits enhance their lifespan, but decrease their light interception efficiency and photosynthetic rates (Reich et al., , ; Wright et al., ). This so-called leaf economics spectrum (LES, Wright et al., ) has been successfully linked to plant performance (Reich et al., ; Poorter & Bongers, ), species distribution and interactions (Sterck et al., ), and ecosystem processes (Reich et al., ; Díaz et al., , ; Grigulis et al., ). Currently, research efforts are directed to test whether the fine-root traits of trees can be positioned within a similar framework, that is, the root economics spectrum (RES) (e.g. Comas & Eissenstat, , ; Withington et al., ; McCormack et al., ; Chen et al., ; Kong et al., ; Liu et al., ; Valverde-Barrantes et al., ). Based on assumed trait coordination between above- and belowground organs, it has been hypothesised that root functional traits can also be grouped in trait syndromes associated with fast resource acquisition or enhanced resource conservation. This search for an RES similar to the LES builds on the premise that acquisitive leaves with high evaporative demand and photosynthetic rates require acquisitive roots to ensure sufficient water and nutrient supply to maintain these processes, and ultimately to achieve fast plant growth (Eissenstat, ; Reich, ). Conversely, plants that have conservative leaves with lower water and nutrient requirements, but also lower photosynthetic rates, should retain resources longer. They may thus require long-lived roots with lower respiration and uptake rates, resulting in slow plant growth. It is therefore hypothesised that leaf traits are matched by parallel root traits along the acquisitive-conservative resource spectrum (Grime et al., ; Reich et al., ; Freschet et al., ; Liu et al., ; Reich, ; Valverde-Barrantes et al., ). As already demonstrated for leaves in the LES, an RES could offer a relevant framework to provide further insights into plant, vegetation and ecosystem processes, and responses to the soil environment and global change. For example, the grouping of species along an RES could help to understand their performance (growth and survival) or distribution across soil resource gradients. However, the existence of an RES analogous to the LES is currently debated, because of contradictory results within and among studies (e.g. Withington et al., ; McCormack et al., ; Mommer & Weemstra, ; Chen et al., ; Kong et al., ). This study aims to clarify the uncertainty concerning the existence of an RES by reviewing the available evidence for the RES hypothesis within individual studies and by performing a meta-level analysis (Smith et al., ) to test the RES hypothesis across those studies. In addition to root trait relationships, we also reviewed the literature on correlations between the leaf and root traits of the LES and of the RES. This study focuses on the fine-root traits of trees. This is important as recent papers show that for herbaceous species, root trait correlations provide a better match with the RES than for woody species (Roumet et al., ). This suggests that root trait correlations may be fundamentally different for woody species. Our literature review is based on 18 studies that compared the root traits expected to play a role in an RES across more than two tree species (Supporting Information Table S1). Our meta-level analysis was carried out on a subset of 14 studies (Table S1), because not all studies provided root trait data at the individual species level, and one study already comprised a meta-analysis. This meta-level analysis was based on raw data and did not include calculating effect sizes, and therefore does not comply with the standards of a meta-analysis (Vetter et al., ; Koricheva & Gurevitch, ). 1159 II. II. The root economics spectrum The root traits expected to feature in the RES are based on a parallel with the key leaf traits in the LES: SLA, leaf N content, maximum photosynthetic rate, respiration rate and leaf lifespan (Fig. ). These traits are related to three leaf processes involved in plant growth and survival. First, SLA relates to leaf resource interception at a given biomass investment. Second, leaf N content, photosynthetic rate and respiration rate are related to leaf C gain. Third, leaf lifespan refers to the conservation of biomass. Assuming functional similarity between leaves and fine roots, the critical fine-root traits in the RES are therefore expected to be: specific root length (root length per root mass, SRL), root N content, root water and nutrient uptake rate, root respiration rate and root lifespan (Fig. ). Similar to leaf traits in the LES, it is expected that SRL reflects the root uptake area at a given biomass cost; root N content, uptake rate and respiration rate are expected to be associated with net soil resource acquisition rate; and root lifespan reflects the degree of biomass conservation. In both the LES and RES it is expected that most traits (SLA/SRL, N content, photosynthetic/resource uptake rates and respiration rates) will decrease from an acquisitive to a conservative strategy, whereas lifespan will increase (Fig. ). Several studies have assessed the support for the RES hypothesis across tree species. In addition to the five key traits, most of these studies measured root diameter and root C : N ratios, and calculated tissue density (from root length, diameter and mass), although their aboveground parallels (leaf thickness, C : N ratio and tissue density) are less explicitly incorporated in the LES. These additional root traits are expected to increase from the acquisitive to the conservative side of the RES (Fig. ), because they have been found to contribute to root lifespan and thus to resource conservation (Wahl & Ryser, ; Gu et al., ): thick roots are sometimes assumed to be long-lived due to their relatively large stele cross-sectional area that protects them from mechanical, herbivore and drought stress, and to have low N content and therefore slow metabolism due to their relatively small cortex area (Eissenstat & Achor, ; Wahl & Ryser, ; Guo et al., ). However, the exact mechanisms underlying these correlations between these root traits and root lifespan are not fully clear yet: for example, Kong et al. demonstrate that thicker roots have a relatively large cortex area, and other anatomical features such as a well-developed exodermis may also drive the longer lifespan of thicker roots (Withington et al., ). In turn, other traits in the RES (e.g. nutrient and water uptake rates, respiration rates, and root lifespan) are measured far less frequently than their aboveground counterparts (i.e. photosynthetic and respiration rates and leaf lifespan). In order to maintain the functional parallel with leaves, RES studies have examined absorptive rather than transporting roots. These functional groups were initially separated on the basis of their diameter (e.g. all roots < 1 or 2 mm diameter were considered absorptive), but although both traits may be partially correlated, root order rather than diameter has since proved to be a better proxy for root functioning (Pregitzer et al., ; McCormack et al., ). We therefore focus mainly on studies that compared all or some of these RES traits (Table S1) on first- to third-order roots (first-order roots being the most distal). Because data on root uptake and respiration rate across species are scarce, especially in relation to other root traits, our analysis was restricted to three RES traits: SRL, root N content and root lifespan. As only one study measured both root N content and root lifespan (Valverde-Barrantes et al., ), we related root lifespan to root C : N ratios - for which more data were available - instead. We also tested for relationships between these RES traits and root diameter, root tissue density and root C : N ratios. 1. Correlations between root traits are inconsistent In terms of correlations between root lifespan and other root traits, the RES is little supported by data. As expected from the RES hypothesis, within the individual studies reviewed, the trait most consistently and positively correlated with root lifespan across species is root diameter (Gu et al., ; McCormack et al., ; Adams et al., ; Hansson et al., ), although not in the study by Withington et al. (Table ). Withington et al. attributed their failure to find significant correlations to the limited variation in root diameter across their study species (in their study it ranged between 0.36 and 0.62 mm across 11 tree species, but in, for example, the study by McCormack et al. , it ranged between 0.22 and 0.64 mm across 12 tree species). Our meta-level analysis also demonstrated that root diameter was the trait most strongly correlated to root lifespan (Fig. S1d; Table S2). In line with the RES h The search for a root economics spectrum ( RES ) has been sparked by recent interest in trait‐based plant ecology. By analogy with the one‐dimensional leaf economics spectrum ( LES ), fine‐root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta‐level analysis reveal no consistent evidence of an RES mirroring an LES . Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above‐ and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES . Understanding and explaining the belowground mechanisms and trade‐offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework. Contents Summary 1159 I. Introduction 1159 II. The root economics spectrum 1161 III. Why the one‐dimensional resource economics spectrum does not work for tree roots 1164 IV. Outlook 1166 Acknowledgements 1167 References 1167 |
Author | Thomas W. Kuyper4 Frank J. Sterck Eric J. W. Visser Jasper van Ruijven Liesje Mommer Godefridus M. J. Mohren Monique Weemstra |
Author_xml | – sequence: 1 givenname: Monique surname: Weemstra fullname: Weemstra, Monique organization: Wageningen University – sequence: 2 givenname: Liesje surname: Mommer fullname: Mommer, Liesje organization: Wageningen University – sequence: 3 givenname: Eric J. W. surname: Visser fullname: Visser, Eric J. W. organization: Radboud University Nijmegen – sequence: 4 givenname: Jasper surname: Ruijven fullname: Ruijven, Jasper organization: Wageningen University – sequence: 5 givenname: Thomas W. surname: Kuyper fullname: Kuyper, Thomas W. organization: Wageningen University – sequence: 6 givenname: Godefridus M. J. surname: Mohren fullname: Mohren, Godefridus M. J. organization: Wageningen University – sequence: 7 givenname: Frank J. surname: Sterck fullname: Sterck, Frank J. organization: Wageningen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27174359$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAURi1URKeFBS-AIrGBRab-TezuqhFQpApYFImd5SRO68Gxg-0QzdvjaWZYVCDwwo6Ucz75-t4zcOK80wC8RHCN8rpw4_0aUQjJE7BCtBIlR6Q-ASsIMS8rWn07BWcxbiGEglX4GTjFNaopYWIFNrd-VqGLhSqGySbTmUG7aLxTtgjepyIFZVLRBzXo2YfvlxlMQevlZ9A_jZ6fg6e9slG_OJzn4Ov7d7eb6_Lm84ePm6ubsq0ZJKVQWuQvQfpWkarGndIV4xrBDlcd7UQL65YpylpUq0rQvqmx5vmiFWswF0KQc3C55M7qTjvj8iadCq2J0isjrWmCCjs5T0E6uz_GqYmSQQoJzfKbRR6D_zHpmORgYqutVU77KUqcXwdxzNG_UcQR4gIRxP8DhQJSxiHK6OtH6NZPIb_zQyDhvOaYZerVgZqaQXdyDGbYF3XsWAYuFqANPsage9mapFLu2L5TViIo9zMh80zIh5nIxttHxjH0T-whfTZW7_4Oyk9fro_GejG2Mfnw23B6Hu93yVt_Z3KpOMs0Z-QCfgHTDNTr |
CitedBy_id | crossref_primary_10_1111_nph_19762 crossref_primary_10_1111_nph_19521 crossref_primary_10_1093_aob_mcac108 crossref_primary_10_3389_fpls_2024_1410372 crossref_primary_10_1007_s10342_020_01284_6 crossref_primary_10_1111_pce_14428 crossref_primary_10_1111_nph_16370 crossref_primary_10_1038_s41598_024_84162_0 crossref_primary_10_1126_sciadv_abe9256 crossref_primary_10_1186_s12862_024_02275_6 crossref_primary_10_1007_s00442_019_04546_2 crossref_primary_10_3389_fpls_2024_1481323 crossref_primary_10_1111_nph_19529 crossref_primary_10_1016_j_foreco_2019_05_032 crossref_primary_10_1093_aob_mcaa175 crossref_primary_10_1111_oik_09213 crossref_primary_10_3390_ijms241210262 crossref_primary_10_1016_j_apsoil_2023_105198 crossref_primary_10_1007_s11104_021_05182_7 crossref_primary_10_1111_nph_17572 crossref_primary_10_3390_f15071226 crossref_primary_10_1016_j_ecolind_2024_111572 crossref_primary_10_1111_1442_1984_12305 crossref_primary_10_1016_j_advwatres_2021_103896 crossref_primary_10_1007_s11104_020_04701_2 crossref_primary_10_1016_j_scitotenv_2022_157155 crossref_primary_10_3732_ajb_1700051 crossref_primary_10_1007_s11104_017_3428_1 crossref_primary_10_1016_j_gecco_2024_e03399 crossref_primary_10_3390_f11040364 crossref_primary_10_1093_jpe_rtad045 crossref_primary_10_1038_s41559_021_01471_7 crossref_primary_10_1007_s11104_022_05714_9 crossref_primary_10_1111_nph_17561 crossref_primary_10_1007_s11104_019_04309_1 crossref_primary_10_3389_fpls_2021_690235 crossref_primary_10_1111_1365_2745_13368 crossref_primary_10_1111_1365_2745_14213 crossref_primary_10_1111_oik_10219 crossref_primary_10_1111_pce_14898 crossref_primary_10_1002_ece3_3447 crossref_primary_10_1111_1365_2745_13125 crossref_primary_10_2139_ssrn_4059804 crossref_primary_10_1111_ejss_13303 crossref_primary_10_1111_oik_09354 crossref_primary_10_1111_nph_17326 crossref_primary_10_1007_s11104_024_06717_4 crossref_primary_10_1111_nph_17435 crossref_primary_10_1111_oik_08491 crossref_primary_10_3390_plants8070199 crossref_primary_10_1016_j_scitotenv_2024_175352 crossref_primary_10_1016_j_fcr_2025_109737 crossref_primary_10_3389_fpls_2018_00852 crossref_primary_10_3389_fpls_2020_00013 crossref_primary_10_3390_f13010093 crossref_primary_10_1111_oik_09465 crossref_primary_10_59717_j_xinn_life_2024_100106 crossref_primary_10_1111_gcb_13514 crossref_primary_10_3390_plants14050825 crossref_primary_10_1007_s10342_024_01689_7 crossref_primary_10_1016_j_foreco_2016_08_043 crossref_primary_10_1016_j_rhisph_2022_100504 crossref_primary_10_1093_aob_mcac146 crossref_primary_10_1007_s11104_019_04395_1 crossref_primary_10_1007_s13595_020_00977_7 crossref_primary_10_1038_s41598_021_02206_1 crossref_primary_10_1111_nph_19561 crossref_primary_10_1016_j_scitotenv_2023_161956 crossref_primary_10_1007_s10021_018_0280_y crossref_primary_10_1016_j_foreco_2023_121316 crossref_primary_10_1038_s41467_024_47295_4 crossref_primary_10_1038_s41586_021_03871_y crossref_primary_10_1111_1365_2435_14495 crossref_primary_10_1002_ecy_4295 crossref_primary_10_1093_aob_mcae212 crossref_primary_10_1111_oik_08284 crossref_primary_10_1007_s10530_018_1664_9 crossref_primary_10_1016_j_envpol_2018_11_074 crossref_primary_10_3389_fpls_2021_734167 crossref_primary_10_1016_j_tree_2023_09_002 crossref_primary_10_1111_nph_17136 crossref_primary_10_1111_nph_19678 crossref_primary_10_3389_fpls_2024_1461893 crossref_primary_10_1016_j_envpol_2024_124503 crossref_primary_10_1016_j_scitotenv_2024_176386 crossref_primary_10_1139_cjb_2018_0065 crossref_primary_10_1007_s11258_025_01499_w crossref_primary_10_1111_1365_2745_14464 crossref_primary_10_1016_j_scitotenv_2022_157111 crossref_primary_10_1111_1365_2435_14381 crossref_primary_10_3390_plants11192495 crossref_primary_10_1038_s41598_018_23518_9 crossref_primary_10_1016_j_sajb_2019_09_018 crossref_primary_10_3897_neobiota_92_110985 crossref_primary_10_3389_fpls_2022_982478 crossref_primary_10_1111_oik_03967 crossref_primary_10_1016_j_scitotenv_2017_08_283 crossref_primary_10_1111_1365_2745_14379 crossref_primary_10_1111_1365_2435_14390 crossref_primary_10_3389_fpls_2017_01196 crossref_primary_10_1111_1365_2435_14394 crossref_primary_10_1111_1365_2745_13160 crossref_primary_10_1093_aob_mcac052 crossref_primary_10_1038_s41467_019_10245_6 crossref_primary_10_1111_gcb_15945 crossref_primary_10_1016_j_agee_2019_106614 crossref_primary_10_1093_aob_mcad009 crossref_primary_10_1111_nph_16027 crossref_primary_10_1111_nph_18203 crossref_primary_10_1111_1365_2745_70018 crossref_primary_10_1111_nph_17590 crossref_primary_10_1007_s11104_020_04515_2 crossref_primary_10_1098_rspb_2018_0647 crossref_primary_10_1111_btp_70021 crossref_primary_10_1007_s00442_021_04937_4 crossref_primary_10_1111_1365_2745_13276 crossref_primary_10_1111_1365_2745_13393 crossref_primary_10_1111_nph_18327 crossref_primary_10_1002_ppp3_10534 crossref_primary_10_1016_j_rhisph_2023_100705 crossref_primary_10_1007_s10021_020_00546_z crossref_primary_10_1016_j_ecolind_2021_108031 crossref_primary_10_1111_nph_20118 crossref_primary_10_3389_fpls_2020_588098 crossref_primary_10_1007_s11104_025_07300_1 crossref_primary_10_1111_1365_2745_14035 crossref_primary_10_3117_rootres_31_61 crossref_primary_10_1016_j_foreco_2018_10_055 crossref_primary_10_1111_1365_2435_14330 crossref_primary_10_1111_1365_2435_14452 crossref_primary_10_1111_1365_2745_14151 crossref_primary_10_1007_s00468_023_02418_0 crossref_primary_10_3389_fpls_2023_1145709 crossref_primary_10_1007_s11104_018_3815_2 crossref_primary_10_1007_s11104_021_05208_0 crossref_primary_10_3389_fpls_2022_1077090 crossref_primary_10_1111_ele_13248 crossref_primary_10_1111_nph_18386 crossref_primary_10_1111_mec_15749 crossref_primary_10_1126_sciadv_aba3756 crossref_primary_10_3389_ffgc_2021_704469 crossref_primary_10_3389_fpls_2022_993127 crossref_primary_10_1002_ecy_4389 crossref_primary_10_1029_2022JG007268 crossref_primary_10_1017_S0266467424000129 crossref_primary_10_1111_1365_2435_14345 crossref_primary_10_3390_ijms23147710 crossref_primary_10_1111_1365_2435_13145 crossref_primary_10_1007_s11104_025_07358_x crossref_primary_10_1002_ajb2_1659 crossref_primary_10_3389_ffgc_2023_1206225 crossref_primary_10_3389_fpls_2024_1488383 crossref_primary_10_1098_rsos_180890 crossref_primary_10_1093_icb_icaf003 crossref_primary_10_3389_fpls_2018_01682 crossref_primary_10_1016_j_foreco_2021_119457 crossref_primary_10_1093_jpe_rtae064 crossref_primary_10_1111_1365_2745_14297 crossref_primary_10_3390_f11050528 crossref_primary_10_1111_1365_2435_70025 crossref_primary_10_3390_f14010114 crossref_primary_10_1038_s42003_020_1112_0 crossref_primary_10_1007_s11104_018_3816_1 crossref_primary_10_3390_f10110953 crossref_primary_10_1002_ece3_10908 crossref_primary_10_3390_agriculture12030423 crossref_primary_10_1111_nph_17279 crossref_primary_10_1007_s00468_021_02113_y crossref_primary_10_1016_j_agwat_2021_107341 crossref_primary_10_1111_1365_2745_14286 crossref_primary_10_1007_s10021_020_00544_1 crossref_primary_10_1007_s11104_025_07379_6 crossref_primary_10_1007_s00468_023_02394_5 crossref_primary_10_1111_1365_2435_70013 crossref_primary_10_1007_s11104_020_04624_y crossref_primary_10_1111_1365_2664_14556 crossref_primary_10_1111_2041_210X_12771 crossref_primary_10_1007_s00572_023_01126_4 crossref_primary_10_1111_gcb_15344 crossref_primary_10_3389_fpls_2019_01412 crossref_primary_10_1007_s42832_021_0098_y crossref_primary_10_1007_s11104_017_3230_0 crossref_primary_10_1093_jpe_rtae072 crossref_primary_10_1016_j_pld_2023_01_007 crossref_primary_10_1038_s41598_025_93787_8 crossref_primary_10_1016_j_pedobi_2021_150708 crossref_primary_10_1111_jvs_13194 crossref_primary_10_1007_s00442_023_05353_6 crossref_primary_10_1007_s11104_018_3618_5 crossref_primary_10_1111_nph_18070 crossref_primary_10_1002_ece3_2895 crossref_primary_10_1016_j_fecs_2024_100211 crossref_primary_10_1007_s11104_019_04161_3 crossref_primary_10_1093_jpe_rtae043 crossref_primary_10_1007_s00374_024_01832_x crossref_primary_10_1016_j_scitotenv_2023_165003 crossref_primary_10_1002_eap_3082 crossref_primary_10_1111_1365_2435_13562 crossref_primary_10_1002_ecs2_4437 crossref_primary_10_1002_ecs2_4794 crossref_primary_10_1111_1365_2435_14654 crossref_primary_10_1111_1365_2745_14070 crossref_primary_10_1016_j_jhazmat_2023_130947 crossref_primary_10_1111_nph_19279 crossref_primary_10_1111_nph_18066 crossref_primary_10_1016_j_foreco_2021_119372 crossref_primary_10_1111_plb_13562 crossref_primary_10_1016_j_ecoenv_2023_115458 crossref_primary_10_1016_j_foreco_2019_117851 crossref_primary_10_1111_oik_04751 crossref_primary_10_1093_conphys_coac061 crossref_primary_10_1111_1365_2745_14067 crossref_primary_10_1016_j_actao_2024_103996 crossref_primary_10_1111_1365_2745_13092 crossref_primary_10_1186_s13717_023_00475_4 crossref_primary_10_1111_1365_2435_14679 crossref_primary_10_1016_j_catena_2022_106857 crossref_primary_10_3390_plants13172472 crossref_primary_10_1016_j_rhisph_2022_100489 crossref_primary_10_1111_nph_19261 crossref_primary_10_1016_j_soilbio_2022_108715 crossref_primary_10_1111_ele_13651 crossref_primary_10_1111_jac_12360 crossref_primary_10_1111_1365_2435_14554 crossref_primary_10_1139_cjfr_2022_0216 crossref_primary_10_1093_aob_mcx172 crossref_primary_10_1007_s00442_023_05388_9 crossref_primary_10_1111_gcb_15668 crossref_primary_10_3390_f15050806 crossref_primary_10_3390_plants13070978 crossref_primary_10_1016_j_fecs_2024_100249 crossref_primary_10_3389_ffgc_2019_00081 crossref_primary_10_1007_s11104_016_3040_9 crossref_primary_10_1007_s11104_022_05516_z crossref_primary_10_1111_nph_17072 crossref_primary_10_3389_fpls_2021_734775 crossref_primary_10_1007_s11104_020_04788_7 crossref_primary_10_1007_s11104_021_04970_5 crossref_primary_10_1007_s11104_019_03934_0 crossref_primary_10_1093_jpe_rtae036 crossref_primary_10_3389_frwa_2022_950346 crossref_primary_10_1111_1365_2435_14682 crossref_primary_10_3389_fpls_2019_01215 crossref_primary_10_1093_aob_mcad095 crossref_primary_10_1016_j_soilbio_2023_109093 crossref_primary_10_1111_1365_2435_13402 crossref_primary_10_1111_1365_2435_13520 crossref_primary_10_1111_1758_2229_13120 crossref_primary_10_3390_f15091500 crossref_primary_10_1016_j_soilbio_2020_108019 crossref_primary_10_1371_journal_pone_0309321 crossref_primary_10_1007_s00468_021_02235_3 crossref_primary_10_3117_rootres_33_84 crossref_primary_10_3390_f15030476 crossref_primary_10_1111_nph_17906 crossref_primary_10_1093_aob_mcae099 crossref_primary_10_1016_j_geoderma_2023_116759 crossref_primary_10_1111_1365_2435_13656 crossref_primary_10_1016_j_scitotenv_2024_172424 crossref_primary_10_1111_1365_2745_12806 crossref_primary_10_1038_s42003_023_04626_3 crossref_primary_10_3390_f16010046 crossref_primary_10_1002_eap_2863 crossref_primary_10_1111_oik_08908 crossref_primary_10_1111_oik_05517 crossref_primary_10_1111_oik_08907 crossref_primary_10_1111_nph_16807 crossref_primary_10_1007_s00468_023_02391_8 crossref_primary_10_1111_nph_16920 crossref_primary_10_1111_ppl_14253 crossref_primary_10_1111_nph_15830 crossref_primary_10_1111_nph_15833 crossref_primary_10_3389_fevo_2022_841824 crossref_primary_10_2139_ssrn_4160293 crossref_primary_10_1111_nph_14748 crossref_primary_10_1111_1365_2435_14514 crossref_primary_10_1111_1365_2435_13420 crossref_primary_10_1111_nph_20178 crossref_primary_10_1016_j_soilbio_2020_108038 crossref_primary_10_1002_ldr_3954 crossref_primary_10_1002_ece3_11398 crossref_primary_10_1111_1365_2745_12953 crossref_primary_10_1016_j_rhisph_2024_100890 crossref_primary_10_3389_fpls_2024_1358367 crossref_primary_10_1002_ajb2_16366 crossref_primary_10_1094_PBIOMES_04_19_0021_R crossref_primary_10_1111_oik_08827 crossref_primary_10_1016_j_soilbio_2021_108310 crossref_primary_10_1016_j_soilbio_2021_108431 crossref_primary_10_1007_s11104_019_04117_7 crossref_primary_10_1007_s11104_023_06069_5 crossref_primary_10_1111_nph_14853 crossref_primary_10_1111_oik_07970 crossref_primary_10_3389_fpls_2022_897256 crossref_primary_10_1007_s10021_017_0163_7 crossref_primary_10_1111_nph_20166 crossref_primary_10_3390_plants13131736 crossref_primary_10_1002_ecy_3318 crossref_primary_10_1002_ecy_2588 crossref_primary_10_1007_s11104_020_04532_1 crossref_primary_10_1111_gcb_17127 crossref_primary_10_3390_plants13172378 crossref_primary_10_1093_aob_mcz166 crossref_primary_10_1111_1365_2435_14524 crossref_primary_10_3390_d13020097 crossref_primary_10_1002_ecs2_4702 crossref_primary_10_1007_s11104_019_04203_w crossref_primary_10_1002_ecy_2437 crossref_primary_10_1093_treephys_tpad047 crossref_primary_10_1111_1365_2745_12977 crossref_primary_10_3389_ffgc_2021_698191 crossref_primary_10_3389_fpls_2017_00315 crossref_primary_10_1111_oik_07874 crossref_primary_10_1016_j_scitotenv_2022_161048 crossref_primary_10_1111_oik_08606 crossref_primary_10_3389_fevo_2022_955663 crossref_primary_10_1111_nph_17707 crossref_primary_10_1007_s11104_023_06350_7 crossref_primary_10_3390_f15020336 crossref_primary_10_1111_nph_18915 crossref_primary_10_3389_fpls_2021_773118 crossref_primary_10_1111_nph_16841 crossref_primary_10_1111_1365_2745_13934 crossref_primary_10_1016_j_fecs_2022_100066 crossref_primary_10_3389_fpls_2021_785589 crossref_primary_10_1371_journal_pone_0309510 crossref_primary_10_1111_1365_2435_12888 crossref_primary_10_3390_f13010112 crossref_primary_10_1007_s11104_024_06701_y crossref_primary_10_1007_s11104_019_03989_z crossref_primary_10_1007_s11104_023_06473_x crossref_primary_10_1016_j_geoderma_2023_116414 crossref_primary_10_1021_acs_est_1c07575 crossref_primary_10_1111_1365_2745_13729 crossref_primary_10_1111_1365_2745_13845 crossref_primary_10_1016_j_scitotenv_2024_172670 crossref_primary_10_1093_treephys_tpae038 crossref_primary_10_1016_j_fecs_2023_100113 crossref_primary_10_1007_s11356_022_19503_5 crossref_primary_10_1016_j_fmre_2023_12_002 crossref_primary_10_1016_j_scitotenv_2021_146748 crossref_primary_10_1007_s11104_023_06408_6 crossref_primary_10_1111_oik_08987 crossref_primary_10_1111_ppl_14105 crossref_primary_10_3389_ffgc_2022_867912 crossref_primary_10_1007_s00442_018_4156_9 crossref_primary_10_1111_gcb_15391 crossref_primary_10_3390_f12121797 crossref_primary_10_7717_peerj_6513 crossref_primary_10_1139_er_2023_0130 crossref_primary_10_1111_1365_2435_13877 crossref_primary_10_1111_geb_13205 crossref_primary_10_1016_j_foreco_2025_122544 crossref_primary_10_3390_plants12112140 crossref_primary_10_1073_pnas_2107541118 crossref_primary_10_3389_ffgc_2024_1488389 crossref_primary_10_1007_s11104_017_3499_z crossref_primary_10_3389_ffgc_2020_535117 crossref_primary_10_1002_ajb2_1451 crossref_primary_10_1016_j_soilbio_2025_109736 crossref_primary_10_1094_PBIOMES_4_1 crossref_primary_10_1111_oik_08975 crossref_primary_10_1007_s11104_022_05522_1 crossref_primary_10_1111_oik_06797 crossref_primary_10_3389_fpls_2022_965576 crossref_primary_10_3390_f12121680 crossref_primary_10_3389_fpls_2021_680379 crossref_primary_10_1111_nph_14522 crossref_primary_10_1111_nph_14643 crossref_primary_10_1093_treephys_tpx159 crossref_primary_10_1016_j_envexpbot_2023_105318 crossref_primary_10_1002_agg2_20190 crossref_primary_10_1186_s13717_024_00554_0 crossref_primary_10_1093_jpe_rtw111 crossref_primary_10_1038_nature25783 crossref_primary_10_1111_btp_13262 crossref_primary_10_1016_j_pedobi_2023_150875 crossref_primary_10_1016_j_foreco_2018_08_005 crossref_primary_10_1111_1365_2745_13862 crossref_primary_10_1038_s41467_022_30888_2 crossref_primary_10_3390_land10040363 crossref_primary_10_1007_s11104_019_03981_7 crossref_primary_10_3390_agronomy14123006 crossref_primary_10_1111_1365_2435_13934 crossref_primary_10_1016_j_apsoil_2022_104441 crossref_primary_10_3390_agronomy14112584 crossref_primary_10_1002_ecs2_2716 crossref_primary_10_1111_nph_16522 crossref_primary_10_1111_nph_14344 crossref_primary_10_1111_1365_2745_12769 crossref_primary_10_1111_1365_2745_13612 crossref_primary_10_1016_j_geoderma_2021_115011 crossref_primary_10_1111_gcb_13827 crossref_primary_10_1016_j_ecolind_2021_107979 crossref_primary_10_1111_oik_08877 crossref_primary_10_1098_rstb_2021_0067 crossref_primary_10_1111_nph_14466 crossref_primary_10_1111_nph_17978 crossref_primary_10_1111_nph_17854 crossref_primary_10_1111_geb_13384 crossref_primary_10_1111_oik_08995 crossref_primary_10_1111_btp_13125 crossref_primary_10_1002_ecs2_2944 crossref_primary_10_1111_nph_14571 crossref_primary_10_1093_jpe_rtaa015 crossref_primary_10_3389_fpls_2022_1089720 crossref_primary_10_1111_1365_2745_13407 crossref_primary_10_1016_j_pld_2023_05_002 crossref_primary_10_1007_s10342_020_01312_5 crossref_primary_10_1111_nph_14459 crossref_primary_10_1016_j_envexpbot_2019_103865 crossref_primary_10_1002_eap_2486 crossref_primary_10_1111_1365_2435_12983 crossref_primary_10_1007_s11104_018_3854_8 crossref_primary_10_1016_j_still_2021_104969 crossref_primary_10_3389_fpls_2022_769551 crossref_primary_10_3389_fpls_2024_1485542 crossref_primary_10_1007_s11104_021_05149_8 crossref_primary_10_1093_treephys_tpae120 crossref_primary_10_1111_oik_08898 crossref_primary_10_3390_f11111227 crossref_primary_10_1111_1440_1703_12224 crossref_primary_10_1111_nph_16865 crossref_primary_10_1007_s13595_018_0758_y crossref_primary_10_1111_nph_18870 crossref_primary_10_1007_s11104_020_04584_3 crossref_primary_10_1111_nph_19962 crossref_primary_10_1007_s11676_021_01397_7 crossref_primary_10_1080_13416979_2022_2102752 crossref_primary_10_1111_oik_10763 crossref_primary_10_1007_s11104_022_05672_2 crossref_primary_10_1111_1365_2745_13786 crossref_primary_10_3389_fpls_2021_692715 crossref_primary_10_24326_asphc_2023_5050 crossref_primary_10_1093_biolinnean_blaa181 crossref_primary_10_1007_s11104_017_3433_4 crossref_primary_10_1016_j_foreco_2024_121799 crossref_primary_10_1111_nph_17546 crossref_primary_10_1002_ecm_1634 crossref_primary_10_1111_oik_08203 crossref_primary_10_3389_fpls_2022_998169 crossref_primary_10_12677_AEP_2024_141011 crossref_primary_10_1111_nph_17896 crossref_primary_10_1016_j_tree_2022_05_007 crossref_primary_10_1007_s10533_017_0302_4 crossref_primary_10_1111_1365_2745_13894 crossref_primary_10_1007_s11104_025_07351_4 crossref_primary_10_1111_1365_2745_13774 crossref_primary_10_1111_brv_13107 crossref_primary_10_1007_s11104_024_06740_5 crossref_primary_10_1016_j_scitotenv_2024_171404 crossref_primary_10_1111_oik_08794 crossref_primary_10_1007_s11104_017_3323_9 crossref_primary_10_3389_fmicb_2024_1447999 crossref_primary_10_1093_aobpla_plab073 crossref_primary_10_1016_j_heliyon_2019_e02210 crossref_primary_10_1111_1365_2435_13906 crossref_primary_10_1016_j_jplph_2020_153297 crossref_primary_10_3389_frsc_2022_1064525 crossref_primary_10_1007_s11104_020_04485_5 crossref_primary_10_1111_oik_10412 crossref_primary_10_1002_ajb2_70011 crossref_primary_10_1111_nph_18736 crossref_primary_10_1029_2019MS001846 crossref_primary_10_1038_s41586_023_06149_7 crossref_primary_10_3389_fpls_2023_1104632 crossref_primary_10_1007_s11104_016_3148_y crossref_primary_10_1016_j_envexpbot_2024_105925 crossref_primary_10_1007_s11104_019_04232_5 crossref_primary_10_1007_s11104_023_06381_0 crossref_primary_10_1111_nph_14486 crossref_primary_10_1111_nph_16302 crossref_primary_10_1093_treephys_tpad118 crossref_primary_10_3389_fpls_2023_1150832 crossref_primary_10_3389_ffgc_2023_1187127 crossref_primary_10_5424_fs_2022312_18793 crossref_primary_10_1016_j_foreco_2021_119941 crossref_primary_10_1111_1365_2745_13675 crossref_primary_10_1016_j_ecolind_2021_107838 crossref_primary_10_1086_728188 crossref_primary_10_1016_j_foreco_2020_118439 crossref_primary_10_3390_d14100823 crossref_primary_10_1007_s11104_019_04058_1 crossref_primary_10_1111_nph_14247 |
Cites_doi | 10.1046/j.1469-8137.2002.00397.x 10.1111/nph.12538 10.1139/X09-093 10.1007/s00442-002-0922-8 10.1111/j.1469-8137.2006.01712.x 10.1093/treephys/18.10.665 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2 10.1007/s004420100746 10.1111/j.1469-8137.2012.04198.x 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 10.1111/1365-2435.12384 10.1890/ES13-00062.1 10.1046/j.1469-8137.2002.00393.x 10.1073/pnas.0704716104 10.1046/j.1469-8137.2000.00781.x 10.1111/1365-2745.12014 10.3389/fpls.2015.00064 10.1111/j.1469-8137.2005.01428.x 10.1126/science.1151382 10.1007/s11104-012-1464-4 10.1016/j.still.2010.07.008 10.1111/nph.13434 10.1093/treephys/tpt067 10.1002/ece3.1147 10.1515/9781400830640 10.1111/nph.13451 10.1007/s11284-011-0833-4 10.1007/978-1-4020-8435-5_5 10.1080/17550874.2014.992488 10.1007/s004420100752 10.1111/j.1469-8137.2008.02573.x 10.1093/treephys/27.11.1627 10.1016/j.soilbio.2012.08.027 10.1016/j.envexpbot.2012.01.004 10.1034/j.1600-0706.2003.10638.x 10.1111/j.1469-8137.2010.03388.x 10.1111/1365-2745.12224 10.1007/s005720100108 10.1111/nph.13363 10.1007/s00442-015-3230-9 10.1086/503056 10.1046/j.1469-8137.1999.00342.x 10.1111/j.1365-2311.2004.00572.x 10.2307/1942040 10.1111/nph.12927 10.1016/j.foreco.2013.01.022 10.1071/FP08195 10.1139/x90-134 10.1111/j.1365-2745.2011.01821.x 10.1007/s11104-006-9168-2 10.1093/treephys/15.5.281 10.1007/BF01972080 10.1023/A:1026140122848 10.1111/j.1469-8137.2005.01349.x 10.1111/nph.13828 10.1111/j.1469-8137.2009.02799.x 10.1007/s00468-007-0160-0 10.1111/1365-2745.12211 10.1007/s11104-012-1313-5 10.1046/j.1469-8137.2000.00775.x 10.1086/507879 10.1093/treephys/tps008 10.1111/j.1461-0248.2008.01185.x 10.1111/j.1469-8137.2007.02242.x 10.1890/04-1075 10.1111/j.1469-8137.2012.04247.x 10.1016/j.fbr.2015.03.001 10.1086/665823 10.1046/j.0028-646x.2001.00199.x 10.1111/geb.12048 10.1139/cjfr-29-2-260 10.1139/x85-007 10.1093/aob/mcl114 10.1111/j.0269-8463.2004.00835.x 10.1086/283244 10.1007/s00344-003-0011-1 10.1007/3-540-27998-9_17 10.1111/j.1365-2745.2009.01615.x 10.1007/s11104-016-2820-6 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2 10.1111/nph.13289 10.1111/nph.12842 10.1007/BF02257530 10.2307/2937116 10.1046/j.1365-2435.1998.00209.x 10.1111/j.1469-8137.2012.04297.x 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 10.1111/j.1654-1103.2004.tb02266.x 10.1016/S0269-7491(98)00058-X 10.1007/s11104-013-1630-3 |
ContentType | Journal Article |
Copyright | 2016 New Phytologist Trust 2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust 2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust. Copyright © 2016 New Phytologist Trust Wageningen University & Research |
Copyright_xml | – notice: 2016 New Phytologist Trust – notice: 2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust – notice: 2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust. – notice: Copyright © 2016 New Phytologist Trust – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 QVL |
DOI | 10.1111/nph.14003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Economics |
EISSN | 1469-8137 |
EndPage | 1169 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_504034 4158149571 27174359 10_1111_nph_14003 NPH14003 newphytologist.211.4.1159 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: NWO‐VIDI funderid: 864.14.006 – fundername: Netherlands Organisation for Scientific Research (NWO) – fundername: Graduate School Production Ecology and Resource Conservation (PE&RC) |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 - 02 08R 0R 31 3N 8RP AAPBV ABFLS ABHUG ABPTK ABUFD ABWRO ACXME ADACO ADAWD ADDAD ADZLD AESBF AFMIJ AGJLS AS CWIXF DWIUU F20 GA HZ IA KM LW7 NF P4A QVL UNR WT X XHC Y3 ZY4 |
ID | FETCH-LOGICAL-c7503-9ae9c7593fca3672dae658e10d26d4d9c07c5a45c17a694fb72e871765b289993 |
IEDL.DBID | DR2 |
ISSN | 0028-646X |
IngestDate | Fri Feb 05 18:08:23 EST 2021 Fri Jul 11 18:33:33 EDT 2025 Fri Jul 11 09:20:34 EDT 2025 Thu Jul 10 18:52:32 EDT 2025 Fri Jul 25 10:33:02 EDT 2025 Wed Feb 19 02:43:40 EST 2025 Tue Jul 01 03:09:24 EDT 2025 Thu Apr 24 22:59:56 EDT 2025 Wed Jan 22 16:24:45 EST 2025 Thu Jul 03 22:44:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | resource acquisition trait syndromes mycorrhizal symbiosis functional traits root economics spectrum (RES) |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7503-9ae9c7593fca3672dae658e10d26d4d9c07c5a45c17a694fb72e871765b289993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F504034 |
PMID | 27174359 |
PQID | 1813887825 |
PQPubID | 2026848 |
PageCount | 11 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_504034 proquest_miscellaneous_2000182814 proquest_miscellaneous_1811891318 proquest_miscellaneous_1809045801 proquest_journals_1813887825 pubmed_primary_27174359 crossref_citationtrail_10_1111_nph_14003 crossref_primary_10_1111_nph_14003 wiley_primary_10_1111_nph_14003_NPH14003 jstor_primary_newphytologist_211_4_1159 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2016 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 2007; 104 2010; 98 2012; 362 2013; 4 2013; 22 2002; 154 2006; 76 2010; 188 2011; 99 2013; 367 2013; 366 2013; 201 1996; 185 1999; 80 2012; 173 2014; 204 1998; 18 2014; 4 1997; 94 1991; 47 2006; 67 2013; 57 2015; 177 2008; 319 2010; 110 2002; 148 2011; 26 2001; 11 2007; 21 1998; 12 1985; 15 2006; 167 2014; 203 2006; 168 2007; 27 2015; 6 2012 2002; 132 1995; 15 2013; 309 2006; 98 2002; 72 1999; 29 2009; 182 2016; 404 2009 2013; 101 2008 2005; 86 1999; 141 2015; 208 2015; 207 2008; 11 2007; 290 2015; 205 2004; 428 2012; 79 2001; 129 2015; 8 2003; 255 2012; 32 1995; 5 2012; 195 2009; 36 2012; 196 1990; 20 2008b; 180 2001; 151 2008a; 177 2015; 29 2013; 33 2004; 18 2006; 87 2005; 167 2000; 148 2004; 15 1997; 79 2016; 210 1977; 111 2003; 103 1998; 101 2003; 21 1992; 62 2014; 102 2009; 39 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_92_1 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 e_1_2_6_21_1 Smith SE (e_1_2_6_79_1) 2008 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 79 start-page: 49 year: 2012 end-page: 57 article-title: Linking root traits to plant physiology and growth in Vahl. seedlings under soil compaction conditions publication-title: Environmental and Experimental Botany – volume: 18 start-page: 388 year: 2004 end-page: 397 article-title: Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species publication-title: Functional Ecology – volume: 177 start-page: 935 year: 2015 end-page: 947 article-title: Global environmental change and the nature of aboveground net primary productivity responses: insights from long‐term experiments publication-title: Oecologia – year: 2009 – volume: 6 start-page: 64 year: 2015 article-title: Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order‐related fine root morphology and biomass? publication-title: Frontiers in Plant Science – volume: 39 start-page: 1787 year: 2009 end-page: 1796 article-title: Does a fungal species drive ectomycorrhizal root traits in spp.? publication-title: Canadian Journal of Forest Research – volume: 21 start-page: 593 year: 2007 end-page: 603 article-title: Estimating nutrient uptake by mature tree roots under field conditions: challenges and opportunities publication-title: Trees – volume: 76 start-page: 381 year: 2006 end-page: 397 article-title: Comparisons of structure and life span in roots and leaves among temperate trees publication-title: Ecological Monographs – volume: 180 start-page: 673 year: 2008b end-page: 683 article-title: Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species publication-title: New Phytologist – volume: 182 start-page: 919 year: 2009 end-page: 928 article-title: Patterns in root trait variation among 25 co‐existing North American forest species publication-title: New Phytologist – volume: 167 start-page: 758 year: 2006 end-page: 765 article-title: Leaf traits determine the growth‐survival trade‐off across rain forest tree species publication-title: American Naturalist – volume: 255 start-page: 93 year: 2003 end-page: 104 article-title: How do roots penetrate strong soil? publication-title: Plant and Soil – volume: 18 start-page: 665 year: 1998 end-page: 670 article-title: Variation in sugar maple root respiration with root diameter and soil depth publication-title: Tree Physiology – volume: 4 start-page: 1 year: 2013 end-page: 24 article-title: Meta‐analysis: a need for well‐defined usage in ecology and conservation biology publication-title: Ecosphere – volume: 309 start-page: 58 year: 2013 end-page: 65 article-title: Fine root production and turnover of tree and understorey vegetation in Scots pine, silver birch and Norway spruce stands in SW Sweden publication-title: Forest Ecology and Management – volume: 32 start-page: 303 year: 2012 end-page: 312 article-title: Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest publication-title: Tree Physiology – volume: 319 start-page: 456 year: 2008 end-page: 458 article-title: Irreconcilable differences: fine‐root life spans and soil carbon persistence publication-title: Science – volume: 15 start-page: 29 year: 1985 end-page: 33 article-title: Response of red spruce and balsam fir seedlings to aluminum toxicity in nutrient solutions publication-title: Canadian Journal of Forest Research – volume: 154 start-page: 275 year: 2002 end-page: 304 article-title: Coevolution of roots and mycorrhizas of land plants publication-title: New Phytologist – volume: 208 start-page: 125 year: 2015 end-page: 136 article-title: Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species publication-title: New Phytologist – volume: 201 start-page: 433 year: 2013 end-page: 439 article-title: Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function publication-title: New Phytologist – volume: 26 start-page: 755 year: 2011 end-page: 762 article-title: Influence of root structure on root survivorship: an analysis of 18 tree species using a minirhizotron method publication-title: Ecological Research – volume: 94 start-page: 13730 year: 1997 end-page: 13734 article-title: From tropics to tundra: global convergence in plant functioning publication-title: Proceedings of the National Academy of Sciences, USA – volume: 203 start-page: 863 year: 2014 end-page: 872 article-title: Leading dimensions in absorptive root trait variation across 96 subtropical forest species publication-title: New Phytologist – volume: 33 start-page: 940 year: 2013 end-page: 948 article-title: Foraging strategies in trees of different root morphology: the role of root lifespan publication-title: Tree Physiology – volume: 195 start-page: 823 year: 2012 end-page: 831 article-title: Predicting fine root lifespan from plant functional traits in temperate trees publication-title: New Phytologist – volume: 12 start-page: 395 year: 1998 end-page: 405 article-title: Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate publication-title: Functional Ecology – volume: 104 start-page: 20684 year: 2007 end-page: 20689 article-title: Incorporating plant functional diversity effects in ecosystem service assessments publication-title: Proceedings of the National Academy of Sciences, USA – volume: 103 start-page: 668 year: 2003 end-page: 680 article-title: Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement publication-title: Oikos – volume: 11 start-page: 107 year: 2001 end-page: 114 article-title: Exploration types of ectomycorrhizae. a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance publication-title: Mycorrhiza – volume: 98 start-page: 693 year: 2006 end-page: 713 article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits publication-title: Annals of Botany – year: 2008 – volume: 188 start-page: 543 year: 2010 end-page: 553 article-title: Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi‐arid and arid ecosystems publication-title: New Phytologist – volume: 87 start-page: 1733 year: 2006 end-page: 1743 article-title: Leaf traits are good predictors of plant performance across 53 rain forest species publication-title: Ecology – volume: 177 start-page: 443 year: 2008a end-page: 456 article-title: Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods publication-title: New Phytologist – volume: 8 start-page: 387 year: 2015 end-page: 399 article-title: Arbuscular mycorrhiza and water and nutrient supply differently impact seedling performance of dry woodland species with different acquisition strategies publication-title: Plant Ecology & Diversity – volume: 185 start-page: 255 year: 1996 end-page: 258 article-title: Root sampling methods – applications and limitations of the minirhizotron technique publication-title: Plant and Soil – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast‐slow’ plant economics spectrum: a traits manifesto publication-title: Journal of Ecology – volume: 207 start-page: 505 year: 2015 end-page: 518 article-title: Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes publication-title: New Phytologist – volume: 62 start-page: 365 year: 1992 end-page: 392 article-title: Leaf life‐span in relation to leaf, plant, and stand characteristics among diverse ecosystems publication-title: Ecological Monographs – volume: 195 start-page: 725 year: 2012 end-page: 727 article-title: The role of roots in the resource economics spectrum publication-title: New Phytologist – volume: 102 start-page: 828 year: 2014 end-page: 844 article-title: Uses and misuses of meta‐analysis in plant ecology publication-title: Journal of Ecology – volume: 80 start-page: 1955 year: 1999 end-page: 1969 article-title: Generality of leaf trait relationships: a test across six biomes publication-title: Ecology – volume: 210 start-page: 815 year: 2016 end-page: 826 article-title: Root structure–function relationships in 74 species : evidence of a root economics spectrum related to carbon economy publication-title: New Phytologist – volume: 366 start-page: 1 year: 2013 end-page: 27 article-title: The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling publication-title: Plant and Soil – volume: 29 start-page: 34 year: 2015 end-page: 41 article-title: Branching out: towards a trait‐based understanding of fungal ecology publication-title: Fungal Biology Reviews – volume: 173 start-page: 584 year: 2012 end-page: 595 article-title: Evolutionary patterns and biogeochemical significance of angiosperm root traits publication-title: International Journal of Plant Sciences – volume: 15 start-page: 295 year: 2004 article-title: The plant traits that drive ecosystems: evidence from three continents publication-title: Journal of Vegetation Science – volume: 101 start-page: 339 year: 1998 end-page: 347 article-title: Effects of low pH and aluminum on root morphology of Japanese red cedar saplings publication-title: Environmental Pollution – volume: 404 start-page: 1 year: 2016 article-title: Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms publication-title: Plant and Soil – volume: 11 start-page: 793 year: 2008 end-page: 801 article-title: Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants publication-title: Ecology Letters – volume: 5 start-page: 517 year: 1995 end-page: 532 article-title: Juvenile tree survivorship as a component of shade tolerance publication-title: Ecological Applications – volume: 110 start-page: 108 year: 2010 end-page: 114 article-title: Effects of soil compaction and light on growth of Willd. (Fagaceae) seedlings publication-title: Soil and Tillage Research – volume: 86 start-page: 12 year: 2005 end-page: 19 article-title: Environmental constraints on a global relationship among leaf and root traits of grasses publication-title: Ecology – volume: 196 start-page: 845 year: 2012 end-page: 852 article-title: No globally consistent effect of ectomycorrhizal status on foliar traits publication-title: New Phytologist – volume: 21 start-page: 324 year: 2003 end-page: 334 article-title: Beyond the roots of young seedlings: the influence of age and order on fine root physiology publication-title: Journal of Plant Growth Regulation – volume: 148 start-page: 353 year: 2002 end-page: 354 article-title: Root structure and function in an ecological context publication-title: New Phytologist – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 22 start-page: 846 year: 2013 end-page: 856 article-title: Variation of first‐order root traits across climatic gradients and evolutionary trends in geological time publication-title: Global Ecology and Biogeography – year: 2012 – volume: 27 start-page: 1627 year: 2007 end-page: 1634 article-title: Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests publication-title: Tree Physiology – volume: 47 start-page: 376 year: 1991 end-page: 391 article-title: Mycorrhizas in ecosystems publication-title: Experientia – volume: 111 start-page: 1169 year: 1977 end-page: 1194 article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory publication-title: American Naturalist – volume: 205 start-page: 1378 year: 2015 end-page: 1380 article-title: Moving beyond the black‐box: fungal traits, community structure, and carbon sequestration in forest soils publication-title: New Phytologist – volume: 204 start-page: 192 year: 2014 end-page: 200 article-title: Is there an association between root architecture and mycorrhizal growth response? publication-title: New Phytologist – start-page: 83 year: 2008 end-page: 116 – volume: 290 start-page: 357 year: 2007 end-page: 370 article-title: Fine‐root mass, growth and nitrogen content for six tropical tree species publication-title: Plant and Soil – volume: 132 start-page: 34 year: 2002 end-page: 43 article-title: Linking root traits to potential growth rate in six temperate tree species publication-title: Oecologia – volume: 4 start-page: 2979 year: 2014 end-page: 2990 article-title: Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies publication-title: Ecology and Evolution – volume: 168 start-page: E103 year: 2006 end-page: E122 article-title: Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants publication-title: American Naturalist – volume: 79 start-page: 259 year: 1997 end-page: 281 article-title: Integrated screening validates primary axes of specialisation in plants publication-title: Oikos – volume: 101 start-page: 47 year: 2013 end-page: 57 article-title: Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services publication-title: Journal of Ecology – volume: 141 start-page: 309 year: 1999 end-page: 321 article-title: Anatomical characteristics of roots of citrus rootstocks that vary in specific root length publication-title: New Phytologist – volume: 129 start-page: 611 year: 2001 end-page: 619 article-title: Carbon cycling traits of plant species are linked with mycorrhizal strategy publication-title: Oecologia – volume: 148 start-page: 459 year: 2000 end-page: 471 article-title: Root tissue structure is linked to ecological strategies of grasses publication-title: New Phytologist – volume: 57 start-page: 1034 year: 2013 end-page: 1047 article-title: Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – a review publication-title: Soil Biology and Biochemistry – volume: 72 start-page: 293 year: 2002 end-page: 309 article-title: Fine root architecture of nine North American trees publication-title: Ecological Monographs – volume: 208 start-page: 114 year: 2015 end-page: 124 article-title: Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest publication-title: New Phytologist – volume: 20 start-page: 1001 year: 1990 end-page: 1011 article-title: Response of red spruce seedlings to aluminum toxicity in nutrient solution: alterations in root anatomy publication-title: Canadian Journal of Forest Research – volume: 15 start-page: 281 year: 1995 end-page: 293 article-title: Arbuscular mycorrhizal induced changes to plant growth and root system morphology in publication-title: Tree Physiology – volume: 67 start-page: 385 year: 2006 end-page: 419 article-title: Structural determinants of leaf light‐harvesting capacity and photosynthetic potentials publication-title: Progress in Botany – volume: 99 start-page: 954 year: 2011 end-page: 963 article-title: Species‐ and community‐level patterns in fine root traits along a 120 000‐year soil chronosequence in temperate rain forest publication-title: Journal of Ecology – volume: 29 start-page: 796 year: 2015 end-page: 807 article-title: Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees publication-title: Functional Ecology – volume: 36 start-page: 11 year: 2009 end-page: 19 article-title: Estimating fine root longevity in a temperate Norway spruce forest using three independent methods publication-title: Functional Plant Biology – volume: 362 start-page: 357 year: 2012 end-page: 372 article-title: Fine‐root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores publication-title: Plant and Soil – volume: 167 start-page: 493 year: 2005 end-page: 508 article-title: Linking leaf and root trait syndromes among 39 grassland and savannah species publication-title: New Phytologist – volume: 29 start-page: 260 year: 1999 end-page: 273 article-title: Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada publication-title: Canadian Journal of Forest Research – volume: 154 start-page: 389 year: 2002 end-page: 398 article-title: Below‐ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine publication-title: New Phytologist – volume: 129 start-page: 420 year: 2001 end-page: 429 article-title: The age of fine‐root carbon in three forests of the eastern United States measured by radiocarbon publication-title: Oecologia – volume: 367 start-page: 313 year: 2013 end-page: 326 article-title: Insights into root growth, function, and mycorrhizal abundance from chemical and isotopic data across root orders publication-title: Plant and Soil – volume: 151 start-page: 753 year: 2001 end-page: 760 article-title: Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field publication-title: New Phytologist – volume: 98 start-page: 362 year: 2010 end-page: 373 article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora publication-title: Journal of Ecology – ident: e_1_2_6_10_1 doi: 10.1046/j.1469-8137.2002.00397.x – ident: e_1_2_6_46_1 doi: 10.1111/nph.12538 – ident: e_1_2_6_64_1 doi: 10.1139/X09-093 – ident: e_1_2_6_14_1 doi: 10.1007/s00442-002-0922-8 – ident: e_1_2_6_74_1 doi: 10.1111/j.1469-8137.2006.01712.x – ident: e_1_2_6_68_1 doi: 10.1093/treephys/18.10.665 – ident: e_1_2_6_92_1 doi: 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2 – ident: e_1_2_6_30_1 doi: 10.1007/s004420100746 – ident: e_1_2_6_58_1 doi: 10.1111/j.1469-8137.2012.04198.x – ident: e_1_2_6_66_1 doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 – ident: e_1_2_6_85_1 doi: 10.1111/1365-2435.12384 – ident: e_1_2_6_87_1 doi: 10.1890/ES13-00062.1 – ident: e_1_2_6_43_1 doi: 10.1046/j.1469-8137.2002.00393.x – ident: e_1_2_6_23_1 doi: 10.1073/pnas.0704716104 – ident: e_1_2_6_24_1 doi: 10.1046/j.1469-8137.2000.00781.x – ident: e_1_2_6_32_1 doi: 10.1111/1365-2745.12014 – volume-title: Mycorrhizal symbiosis year: 2008 ident: e_1_2_6_79_1 – ident: e_1_2_6_49_1 doi: 10.3389/fpls.2015.00064 – ident: e_1_2_6_82_1 doi: 10.1111/j.1469-8137.2005.01428.x – ident: e_1_2_6_81_1 doi: 10.1126/science.1151382 – ident: e_1_2_6_65_1 doi: 10.1007/s11104-012-1464-4 – ident: e_1_2_6_7_1 doi: 10.1016/j.still.2010.07.008 – ident: e_1_2_6_51_1 doi: 10.1111/nph.13434 – ident: e_1_2_6_2_1 doi: 10.1093/treephys/tpt067 – ident: e_1_2_6_15_1 doi: 10.1002/ece3.1147 – ident: e_1_2_6_20_1 doi: 10.1515/9781400830640 – ident: e_1_2_6_26_1 doi: 10.1111/nph.13451 – ident: e_1_2_6_35_1 doi: 10.1007/s11284-011-0833-4 – ident: e_1_2_6_54_1 doi: 10.1007/978-1-4020-8435-5_5 – ident: e_1_2_6_9_1 doi: 10.1080/17550874.2014.992488 – ident: e_1_2_6_19_1 doi: 10.1007/s004420100752 – ident: e_1_2_6_37_1 doi: 10.1111/j.1469-8137.2008.02573.x – ident: e_1_2_6_63_1 doi: 10.1093/treephys/27.11.1627 – ident: e_1_2_6_89_1 doi: 10.1016/j.soilbio.2012.08.027 – ident: e_1_2_6_5_1 doi: 10.1016/j.envexpbot.2012.01.004 – ident: e_1_2_6_86_1 doi: 10.1034/j.1600-0706.2003.10638.x – ident: e_1_2_6_52_1 doi: 10.1111/j.1469-8137.2010.03388.x – ident: e_1_2_6_48_1 doi: 10.1111/1365-2745.12224 – ident: e_1_2_6_3_1 doi: 10.1007/s005720100108 – ident: e_1_2_6_59_1 doi: 10.1111/nph.13363 – ident: e_1_2_6_78_1 doi: 10.1007/s00442-015-3230-9 – ident: e_1_2_6_80_1 doi: 10.1086/503056 – ident: e_1_2_6_25_1 doi: 10.1046/j.1469-8137.1999.00342.x – ident: e_1_2_6_34_1 doi: 10.1111/j.1365-2311.2004.00572.x – ident: e_1_2_6_44_1 doi: 10.2307/1942040 – ident: e_1_2_6_55_1 doi: 10.1111/nph.12927 – ident: e_1_2_6_38_1 doi: 10.1016/j.foreco.2013.01.022 – ident: e_1_2_6_31_1 doi: 10.1071/FP08195 – ident: e_1_2_6_60_1 doi: 10.1139/x90-134 – ident: e_1_2_6_40_1 doi: 10.1111/j.1365-2745.2011.01821.x – ident: e_1_2_6_84_1 doi: 10.1007/s11104-006-9168-2 – ident: e_1_2_6_8_1 doi: 10.1093/treephys/15.5.281 – ident: e_1_2_6_69_1 doi: 10.1007/BF01972080 – ident: e_1_2_6_13_1 doi: 10.1023/A:1026140122848 – ident: e_1_2_6_93_1 doi: 10.1111/j.1469-8137.2005.01349.x – ident: e_1_2_6_76_1 doi: 10.1111/nph.13828 – ident: e_1_2_6_17_1 doi: 10.1111/j.1469-8137.2009.02799.x – ident: e_1_2_6_53_1 doi: 10.1007/s00468-007-0160-0 – ident: e_1_2_6_70_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_6_11_1 doi: 10.1007/s11104-012-1313-5 – ident: e_1_2_6_88_1 doi: 10.1046/j.1469-8137.2000.00775.x – ident: e_1_2_6_41_1 – ident: e_1_2_6_42_1 doi: 10.1086/507879 – ident: e_1_2_6_57_1 doi: 10.1093/treephys/tps008 – ident: e_1_2_6_72_1 doi: 10.1111/j.1461-0248.2008.01185.x – ident: e_1_2_6_36_1 doi: 10.1111/j.1469-8137.2007.02242.x – ident: e_1_2_6_21_1 doi: 10.1890/04-1075 – ident: e_1_2_6_61_1 doi: 10.1111/j.1469-8137.2012.04247.x – ident: e_1_2_6_4_1 doi: 10.1016/j.fbr.2015.03.001 – ident: e_1_2_6_18_1 doi: 10.1086/665823 – ident: e_1_2_6_90_1 doi: 10.1046/j.0028-646x.2001.00199.x – ident: e_1_2_6_12_1 doi: 10.1111/geb.12048 – ident: e_1_2_6_6_1 doi: 10.1139/cjfr-29-2-260 – ident: e_1_2_6_77_1 doi: 10.1139/x85-007 – ident: e_1_2_6_50_1 doi: 10.1093/aob/mcl114 – ident: e_1_2_6_16_1 doi: 10.1111/j.0269-8463.2004.00835.x – ident: e_1_2_6_33_1 doi: 10.1086/283244 – ident: e_1_2_6_91_1 doi: 10.1007/s00344-003-0011-1 – ident: e_1_2_6_62_1 doi: 10.1007/3-540-27998-9_17 – ident: e_1_2_6_29_1 doi: 10.1111/j.1365-2745.2009.01615.x – ident: e_1_2_6_83_1 doi: 10.1007/s11104-016-2820-6 – ident: e_1_2_6_71_1 doi: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2 – ident: e_1_2_6_28_1 doi: 10.1111/nph.13289 – ident: e_1_2_6_47_1 doi: 10.1111/nph.12842 – ident: e_1_2_6_56_1 doi: 10.1007/BF02257530 – ident: e_1_2_6_73_1 doi: 10.2307/2937116 – ident: e_1_2_6_75_1 doi: 10.1046/j.1365-2435.1998.00209.x – ident: e_1_2_6_45_1 doi: 10.1111/j.1469-8137.2012.04297.x – ident: e_1_2_6_67_1 doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 – ident: e_1_2_6_22_1 doi: 10.1111/j.1654-1103.2004.tb02266.x – ident: e_1_2_6_39_1 doi: 10.1016/S0269-7491(98)00058-X – ident: e_1_2_6_27_1 doi: 10.1007/s11104-013-1630-3 |
SSID | ssj0009562 |
Score | 2.6554239 |
SecondaryResourceType | review_article |
Snippet | The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf... Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 Summary The search for a root economics spectrum (RES) has been sparked by recent... The search for a root economics spectrum ( RES ) has been sparked by recent interest in trait‐based plant ecology. By analogy with the one‐dimensional leaf... Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent... 1159 I. I. Introduction One of the basic principles of trait-based plant ecology is the trade-off between plant growth and survival (Grime, ; Kobe et al., ;... |
SourceID | wageningen proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1159 |
SubjectTerms | Aluminum Bosecologie en Bosbeheer Carbon dioxide Carboxylic acids Climate effects Conservation Drought Economics Ecosystems edaphic factors fine roots Forest Ecology and Forest Management functional traits Graduate schools Herbivores Herbivory Leaves Leerstoelgroep Bosecologie en bosbeheer Life span Mycorrhizae - physiology mycorrhizal symbiosis Nature Conservation and Plant Ecology Natuurbeheer en Plantenecologie Nutrient requirements PE&RC Photosynthesis Physiology Plant ecology Plant Ecology and Nature Conservation Plant growth Plant Leaves - physiology Plant resources Plant Roots - physiology Plant species Plant tissues Plantenecologie en Natuurbeheer Plants Quantitative Trait, Heritable resource acquisition Resource conservation Respiration root economics spectrum (RES) soil Soil pH Tansley reviews trait syndromes trees Trees - physiology uptake mechanisms |
Title | Towards a multidimensional root trait framework: a tree root review |
URI | https://www.jstor.org/stable/newphytologist.211.4.1159 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14003 https://www.ncbi.nlm.nih.gov/pubmed/27174359 https://www.proquest.com/docview/1813887825 https://www.proquest.com/docview/1809045801 https://www.proquest.com/docview/1811891318 https://www.proquest.com/docview/2000182814 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F504034 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFD6I7ME97If71c1JHYP5UmnTNDXb0xTlIkzGULgPg5CkCYNJr9heZPvrd07SVh06hk8t9LSkyTnJ9yUnXwDe4yDmvGtcxmppM84tTTTJKvOIjSpP6jCW5iG_HIvZKT-aV_MV-DTuhYn6ENOEG0VG6K8pwLXprgV5e_4DwzwqfVKuFgGib-ya4K5gowKz4GI-qApRFs_05o2xKKYj3gY0H8LaJQZ3G3Y73QSxYRQ6fAzfx_LH5JOfO8ve7Njff0k73vMHn8CjAZ2mn6M7PYUV167Dg70FIshfz2D_JOTYdqlOQx5iQycDRFWPFAF4n9J5E33qx3yvj2hIi97xYdwk8xxODw9O9mfZcAhDZmmJMyPxbryTpbe6FDVrtEPQ4oq8YaLhjbR5bSvNK1vUWkjuTc0ckrBaVIa4nCxfwGq7aN0rSPNdLWqZe6cNR15mkBtr45n1jhmfO5fA9tgcyg4K5VTwMzUyFawSFaokgXeT6XmU5bjN6ENo08kCiQr6bjgXGGNIIfdVHN-pZAIbY6urIYY7hdinxC4YKXQCW9NjjD5aUtGtWyzJJpe01JwX_7JBEicL7DzvtqENU8j0dguewMvodVOpWU2skQpZXrmhaumoqU6ROvjgTOpyeaHaM7rgFzpVYf9c4ve2g5PdXU3q-Oss3Lz-f9M3sIbIUcRkuw1Y7S-W7i2is95shjD8A_yoNtM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtRAFD4haCJc-C9WUavRyE1JO51OtyZeKEgWgY0xS7J3YzudCQmkS2g3G3gmXsV38pyZtoIB4w0XXm2Tnm2mnfP3zZz5DsBbDGLa6FIHLM1UwLmihaYsCQzmRokhdhhF65B7IzHc518nyWQBzruzMI4fol9wI8uw_poMnBakL1h5dXyAdo5a2ZZU7ujTOQK2-uP2Js7uO8a2vow3hkHbUyBQtGMXEBc1XmWxUXksUlbmGmOwjsKSiZKXmQpTleQ8UVGai4ybImUaMUUqkoKgCVEvocO_RR3Eial_8zu7QPErWMf5LLiYtDxGVDfUD_VS9HMFkFeltsuwNEd3UtnzVZfTZhv3tu7Bz-6LuXKXw_VZU6yrsz_IJP-XT3of7rYJuP_JWcwDWNDVQ7j9eYpJ8ukj2BjbMuLaz31ballS8wNHXOIjxmh8aqnR-KYrafuAgrSv7266c0CPYf9GXuAJLFbTSj8FPxzkIs1Co_OCI_QsEP7nhWHKaFaYUGsP1rr5l6olYaeBH8kOjOEUSDsFHrzpRY8d88hVQu-tEvUSiMXQPG3rY3QTEuG95PifJPNgtVMz2bqpWmJ6F2OUGbDEg9f9bXQwtGuUV3o6I5kwo930MPqbDOLULML4cL0MnQlDMDuIuAcrTs37UbOUgDENMv6t97Kiblq1JAL0VnvlfHYiqyP6wSfUMsEQFOPz1qxWX_-Z5Ojb0F48-3fRV3BnON7blbvbo53nsISJsnC1hauw2JzM9AtMRpvipfUBPvy4aQv5BZotk2U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBaFy4B8aKBAQiF5SZb22s0HiAF1WWwqrCrXS3tzEsYXUKrtqslqVV-JVeChm7CS0qEVceuC0kTIbOfH8ffb4G4BXGMSMNYWJWJLqiHNNC02piCzmRsISO4ymdcgvEzk-4J-mYroCP9qzMJ4foltwI8tw_poMfF7YM0Zezr-hmaNSNhWVu-Z0iXiterczxMl9zdjo4_72OGpaCkSaNuwioqLGq7RvddaXCSsygyHY9OKCyYIXqY4TLTIudC_JZMptnjCDkCKRIidkQsxL6O-vcRmn1Cdi-JWdYfiVrKV8llxOGxojKhvqhnou-Pn6x4sy25uwtkRvUrrjVeezZhf2RrfhZ_vBfLXL0daizrf09z-4JP-TL3oHbjXpd_je28tdWDHlPbj-YYYp8ul92N53RcRVmIWu0LKg1geetiREhFGH1FCjDm1b0PYWBWlX39_0p4AewMGVvMBDWC1npVmHMB5kMklja7KcI_DMEfxnuWXaGpbb2JgANtvpV7qhYKeBH6sWiuEUKDcFAbzsROeed-QioTdOhzoJRGJonK7xMToJheBecfyPSAPYaLVMNU6qUpjc9THGDJgI4EV3G90L7RllpZktSAY1nQvMY_4mgyg17WF0uFyGToQhlB30eACPvJZ3o2YJwWIaZP-32quSemlViujPG-VVy8WJKo_pB59QKYEBqI_P23RKfflnUpO9sbt4_O-iz-HG3nCkPu9Mdp_AGmbJ0hcWbsBqfbIwTzETrfNnzgOEcHjVBvILQKiSFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+multidimensional+root+trait+framework%3A+a+tree+root+review&rft.jtitle=The+New+phytologist&rft.au=Weemstra%2C+Monique&rft.au=Mommer%2C+Liesje&rft.au=Visser%2C+Eric+J+W&rft.au=Ruijven%2C+Jasper&rft.date=2016-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=211&rft.issue=4&rft.spage=1159&rft_id=info:doi/10.1111%2Fnph.14003&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4158149571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |