Regional Modeling of Storm Surges Using Localized Features and Transfer Learning

Storm surges induced by low pressure and high winds from tropical or extratropical cyclones are the main driver of major coastal flooding events. While tide gauges provide the most accurate sea level observations, their records are often short, spatially uneven, and contain gaps, posing challenges f...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Nagaraj, Meghana, Rodriguez, Alejandra, Wahl, Thomas
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text

Cover

Loading…
Abstract Storm surges induced by low pressure and high winds from tropical or extratropical cyclones are the main driver of major coastal flooding events. While tide gauges provide the most accurate sea level observations, their records are often short, spatially uneven, and contain gaps, posing challenges for a detailed analysis of surge characteristics continuously along the coastline. To perform extreme value analysis for hazard and risk assessment requires long time series of storm surges, which do often not exist. In this study, we use a regional long short‐term memory (LSTM) model to predict storm surges at multiple tide gauges simultaneously, while also accounting for localized features. Storm surge observations from 31 tide gauges across Florida are used as a predictand; atmospheric and oceanic data are used as dynamic predictors; and shelf width, nearshore slope, shelter factor, and tidal range are used as static predictors. Results demonstrate that incorporating local static attributes improves model performance. Pearson correlation increases by 20% and RMSE drops by 22%, on average, in the cross‐validation. The pretrained model captures localized surge patterns at gauged and ungauged locations making it suitable to simulate storm surge while accounting for local bathymetric features. Comparison with a state‐of‐the‐art hydrodynamic numerical model hindcast shows that the regional LSTM approach performs better in most locations. The proposed modeling framework is efficient and can derive hindcasts and future projections of storm surges facilitating robust analysis of trends, decadal variations, and the calculation of return levels with reduced uncertainty. Coastal areas are increasingly at risk due to rising sea levels and extreme weather events, which lead to devastating flooding. Storm surges, caused by high winds and low pressures from cyclones, are a major driver of such flooding events. This study investigates the use of a machine learning model called long short‐term memory (LSTM) to predict storm surges at multiple tide gauges along Florida's coast. We used data from tide gauges, as well as climate and oceanic variables, and local characteristics to improve storm surge predictions. Results showed that by incorporating local features for each tide gauge, such as shelf width and shelter factor, the model's performance improved. This modeling framework can be used for more accurate storm surge predictions in gauged and ungauged locations, helping to improve flood risk assessments. Regional LSTM model predicts storm surges at multiple tide gauges simultaneously, improving performance including local static features Proposed model outperforms hydrodynamic models and at‐site models, capturing surge patterns at both gauged and ungauged locations The regional LSTM model can offer a robust framework for modeling storm surges at various spatial scales
AbstractList Storm surges induced by low pressure and high winds from tropical or extratropical cyclones are the main driver of major coastal flooding events. While tide gauges provide the most accurate sea level observations, their records are often short, spatially uneven, and contain gaps, posing challenges for a detailed analysis of surge characteristics continuously along the coastline. To perform extreme value analysis for hazard and risk assessment requires long time series of storm surges, which do often not exist. In this study, we use a regional long short‐term memory (LSTM) model to predict storm surges at multiple tide gauges simultaneously, while also accounting for localized features. Storm surge observations from 31 tide gauges across Florida are used as a predictand; atmospheric and oceanic data are used as dynamic predictors; and shelf width, nearshore slope, shelter factor, and tidal range are used as static predictors. Results demonstrate that incorporating local static attributes improves model performance. Pearson correlation increases by 20% and RMSE drops by 22%, on average, in the cross‐validation. The pretrained model captures localized surge patterns at gauged and ungauged locations making it suitable to simulate storm surge while accounting for local bathymetric features. Comparison with a state‐of‐the‐art hydrodynamic numerical model hindcast shows that the regional LSTM approach performs better in most locations. The proposed modeling framework is efficient and can derive hindcasts and future projections of storm surges facilitating robust analysis of trends, decadal variations, and the calculation of return levels with reduced uncertainty. Coastal areas are increasingly at risk due to rising sea levels and extreme weather events, which lead to devastating flooding. Storm surges, caused by high winds and low pressures from cyclones, are a major driver of such flooding events. This study investigates the use of a machine learning model called long short‐term memory (LSTM) to predict storm surges at multiple tide gauges along Florida's coast. We used data from tide gauges, as well as climate and oceanic variables, and local characteristics to improve storm surge predictions. Results showed that by incorporating local features for each tide gauge, such as shelf width and shelter factor, the model's performance improved. This modeling framework can be used for more accurate storm surge predictions in gauged and ungauged locations, helping to improve flood risk assessments. Regional LSTM model predicts storm surges at multiple tide gauges simultaneously, improving performance including local static features Proposed model outperforms hydrodynamic models and at‐site models, capturing surge patterns at both gauged and ungauged locations The regional LSTM model can offer a robust framework for modeling storm surges at various spatial scales
Author Nagaraj, Meghana
Rodriguez, Alejandra
Wahl, Thomas
Author_xml – sequence: 1
  givenname: Meghana
  orcidid: 0000-0003-0126-123X
  surname: Nagaraj
  fullname: Nagaraj, Meghana
  organization: Department of Civil Environmental and Construction Engineering University of Central Florida Orlando FL USA, National Center for Integrated Coastal Research University of Central Florida Orlando FL USA
– sequence: 2
  givenname: Alejandra
  surname: Rodriguez
  fullname: Rodriguez, Alejandra
  organization: Institute for Environmental Studies (IVM) Vrije Universiteit Amsterdam Amsterdam The Netherlands, School of Geosciences College of Arts & Sciences University of South Florida St Petersburg FL USA
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0003-3643-5463
  surname: Wahl
  fullname: Wahl, Thomas
  organization: Department of Civil Environmental and Construction Engineering University of Central Florida Orlando FL USA, National Center for Integrated Coastal Research University of Central Florida Orlando FL USA
BookMark eNpNkMFOwzAQRC1UJErpjQ_wBxDY2HUTH1FFKSgIRMM52qztKCi1kd0e4OtJBYeeZjTzNIe5ZBMfvGXsOofbHIS-EyDU8wYAlgrO2FRoLTMlcpic-As2T-lzZKQUUEIxZW_vtuuDx4G_BGOH3nc8OL7dh7jj20PsbOIf6ZhWgXDof6zha4v7QxwL9IbXEX1yNvLKYvQjeMXOHQ7Jzv91xur1Q73aZNXr49PqvsqoUJCRhLLVWMgFlmXZ5pQvjNYtIDqi1qiFELYVpBwZVxDqolyiM8othSVLBckZu_mbpRhSitY1X7HfYfxucmiOfzSnf8hfA35VWg
Cites_doi 10.5194/os‐15‐831‐2019
10.1162/neco.1997.9.8.1735
10.1038/ncomms11969
10.1016/j.apor.2023.103496
10.1016/j.eswa.2019.112896
10.3389/fmars.2020.00263
10.1007/s10115‐013‐0679‐x
10.1038/s41598‐022‐17099‐x
10.5194/essd‐11‐1515‐2019
10.1145/3292500.3330701
10.1029/2024WR039054
10.1016/j.ecss.2017.06.007
10.1016/j.rse.2018.03.008
10.5194/hess‐28‐4187‐2024
10.1038/s41598‐023‐35093‐9
10.1002/gdj3.42
10.1029/2023gl103492
10.5194/hess‐23‐5089‐2019
10.5194/gmd‐16‐211‐2023
10.1038/s41598‐021‐96674‐0
10.1016/j.jhydrol.2021.126573
10.1029/2022JD037617
10.1016/j.watres.2022.119171
10.1016/j.coastaleng.2024.104503
10.1038/s41598‐022‐23627‐6
10.1016/j.atmosres.2020.105339
10.1038/s41598‐024‐65718‐6
10.1088/1748‐9326/ab89d6
10.5281/zenodo.3471600
10.1002/qj.3803
10.5281/zenodo.15786140
10.24381/cds.adbb2d47
10.1016/j.gloplacha.2016.11.006
10.1029/2018EF001089
10.3389/fmars.2020.00260
10.1016/j.jhydrol.2023.129956
10.1007/s00382‐019‐05044‐0
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2025JH000650
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2025JH000650
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c750-c308b9a734a888b1c14d99b0aafccbd5422eb2c5fcdf7ca9786afd5f62ecec7c3
ISSN 2993-5210
IngestDate Thu Jul 31 00:37:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c750-c308b9a734a888b1c14d99b0aafccbd5422eb2c5fcdf7ca9786afd5f62ecec7c3
ORCID 0000-0003-0126-123X
0000-0003-3643-5463
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2025JH000650
ParticipantIDs crossref_primary_10_1029_2025JH000650
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
Akiba T. (e_1_2_9_2_1) 2019
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Naeini S. S. (e_1_2_9_28_1) 2024
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
Shi X. (e_1_2_9_33_1) 2015; 28
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_6_1
  doi: 10.5194/os‐15‐831‐2019
– ident: e_1_2_9_20_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_9_26_1
  doi: 10.1038/ncomms11969
– ident: e_1_2_9_37_1
  doi: 10.1016/j.apor.2023.103496
– ident: e_1_2_9_5_1
  doi: 10.1016/j.eswa.2019.112896
– ident: e_1_2_9_25_1
  doi: 10.3389/fmars.2020.00263
– ident: e_1_2_9_34_1
  doi: 10.1007/s10115‐013‐0679‐x
– ident: e_1_2_9_36_1
  doi: 10.1038/s41598‐022‐17099‐x
– ident: e_1_2_9_3_1
  doi: 10.5194/essd‐11‐1515‐2019
– start-page: 2623
  volume-title: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2019
  ident: e_1_2_9_2_1
  doi: 10.1145/3292500.3330701
– ident: e_1_2_9_12_1
  doi: 10.1029/2024WR039054
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ecss.2017.06.007
– ident: e_1_2_9_23_1
  doi: 10.1016/j.rse.2018.03.008
– ident: e_1_2_9_21_1
  doi: 10.5194/hess‐28‐4187‐2024
– ident: e_1_2_9_16_1
– ident: e_1_2_9_27_1
  doi: 10.1038/s41598‐023‐35093‐9
– ident: e_1_2_9_39_1
  doi: 10.1002/gdj3.42
– ident: e_1_2_9_41_1
  doi: 10.1029/2023gl103492
– ident: e_1_2_9_22_1
  doi: 10.5194/hess‐23‐5089‐2019
– ident: e_1_2_9_13_1
  doi: 10.5194/gmd‐16‐211‐2023
– ident: e_1_2_9_38_1
  doi: 10.1038/s41598‐021‐96674‐0
– year: 2024
  ident: e_1_2_9_28_1
  article-title: Advancing spatio‐temporal storm surge prediction with hierarchical deep neural networks
  publication-title: arXiv preprint arXiv:2410.12823
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jhydrol.2021.126573
– ident: e_1_2_9_24_1
  doi: 10.1029/2022JD037617
– ident: e_1_2_9_30_1
  doi: 10.1016/j.watres.2022.119171
– ident: e_1_2_9_32_1
  doi: 10.1016/j.coastaleng.2024.104503
– ident: e_1_2_9_4_1
  doi: 10.1038/s41598‐022‐23627‐6
– ident: e_1_2_9_7_1
  doi: 10.1016/j.atmosres.2020.105339
– ident: e_1_2_9_17_1
  doi: 10.1038/s41598‐024‐65718‐6
– ident: e_1_2_9_8_1
  doi: 10.1088/1748‐9326/ab89d6
– ident: e_1_2_9_9_1
  doi: 10.5281/zenodo.3471600
– ident: e_1_2_9_19_1
  doi: 10.1002/qj.3803
– ident: e_1_2_9_29_1
  doi: 10.5281/zenodo.15786140
– volume: 28
  year: 2015
  ident: e_1_2_9_33_1
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_18_1
  doi: 10.24381/cds.adbb2d47
– ident: e_1_2_9_11_1
  doi: 10.1016/j.gloplacha.2016.11.006
– ident: e_1_2_9_15_1
  doi: 10.1029/2018EF001089
– ident: e_1_2_9_35_1
  doi: 10.3389/fmars.2020.00260
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jhydrol.2023.129956
– ident: e_1_2_9_14_1
  doi: 10.1007/s00382‐019‐05044‐0
SSID ssj0003320807
Score 2.3018627
Snippet Storm surges induced by low pressure and high winds from tropical or extratropical cyclones are the main driver of major coastal flooding events. While tide...
SourceID crossref
SourceType Index Database
Title Regional Modeling of Storm Surges Using Localized Features and Transfer Learning
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9swGLYGu-yChjbEx0A-bMew1M7nESFQhQBNrJO4VbbzOgWVtoraSw_8dl5_JQF1EtsliqzWifI88vv4_TIh30FznYsBj1ih8igRcRwJyCDKNHBRaQ6p7c5_c5sN_yRX9-l951Wy1SVLearWG-tK_gdVHENcTZXsPyDbTooDeI_44hURxuu7ML6D2nnyzIlmU5-__Bt30U-4IDSme4PLCLg2ButhjdrSKL4V7rBtzMDaKQ1NaLJa_0Wp1jBfBDh9c6DJqTmyaGIk6jQ4V3yF3GL1Orp_K2rRCHd-MtQTMWsNwd28ah7qlfNhn03hEWdoOjMhJtM3KUzeO8HSNv3KL2LM5AeiRHCxF9gw5ldh1iMb37i2x8y0RjUPuRo6adnZsBC3f2Pa2oRDG2pn5bj_7y3ykeHewhx7cfPcOeY4Z7Ers2_f0xdM4AQ_-xP0pExPk4w-kx0PET1zzNglH2D2hfwKrKCBFXSuqWUFdayglhW0ZQUNrKAIAA2soIEVX8no8mJ0Poz8uRmRQv0XKR4XshQ5T0RRFHKgBklVljIWQislqzRhDCRTqVaVzpUo8yITukp1xkCByhXfI9uz-Qz2CUX5WUmVlXlcQsLypBA6zXBLkHBZDHgGB-RH-ALjheuOMt70qQ_f-bsj8qkj0TeyvWxWcIyibylPrLPkxEL1AkTwWg0
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+Modeling+of+Storm+Surges+Using+Localized+Features+and+Transfer+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Nagaraj%2C+Meghana&rft.au=Rodriguez%2C+Alejandra&rft.au=Wahl%2C+Thomas&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000650&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon