An exocyst component, Sec5, is essential for ascospore formation in Bipolaris maydis
In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong redu...
Saved in:
Published in | Mycoscience Vol. 62; no. 5; pp. 289 - 296 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Mycological Society of Japan
20.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1340-3540 1618-2545 |
DOI | 10.47371/mycosci.2021.05.002 |
Cover
Abstract | In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur. |
---|---|
AbstractList | In this study, we identified Sec5 in
, a homologue of Sec5 in
and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of
, we generated null mutant strains of the gene (
). The
strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between
and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur. In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur.In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur. In this study, we identified Sec5 in Bipolaris maydis , a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis , we generated null mutant strains of the gene ( Δsec5 ). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur. In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur. |
ArticleNumber | MYC543 |
Author | Kitade, Yuki Tanaka, Chihiro Tsuji, Kenya Sumita, Takuya |
Author_xml | – sequence: 1 fullname: Sumita, Takuya organization: Graduate School of Agriculture, Kyoto University – sequence: 1 fullname: Tanaka, Chihiro organization: Graduate School of Agriculture, Kyoto University – sequence: 1 fullname: Kitade, Yuki organization: Graduate School of Agriculture, Kyoto University – sequence: 1 fullname: Tsuji, Kenya organization: Graduate School of Agriculture, Kyoto University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37089464$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUtv1DAQtlARfcA_QMhHDs3i8TPhgFS2vKQiDpQDJ8vrnbSukjjYWcT--3q7SwRcuNgez_cYzXdKjoY4ICHPgS2kEQZe9Vsfsw8LzjgsmFowxh-RE9BQV1xJdVTeQrJKKMmOyWnOd4yB0YI_IcfCsLqRWp6Q64uB4q_ot3miPvZj8Rimc_oVvTqnIVPMuXwE19E2JupysRxjwl3VuynEgYaBvg1j7Fwq8N5t1yE_JY9b12V8drjPyLf3766XH6urLx8-LS-uKm9kM1WGSa5bMKBXShuj1yvNgANXvAEwQrReAm_QawdOrpXHRjjjWqxBNk4jijPyZq87blY9rn2ZNLnOjin0Lm1tdMH-3RnCrb2JP21jOChQReDlQSDFHxvMk-1D9th1bsC4yZbXTBVcLaBAX_zpNZv8XmUByD3Ap5hzwnaGALMPidlDYnaXmGXKlsQK7fU_NB-mh82WiUP3P_LlnnyXJ3eDs6NLU_AdzhzNrdodn78vlRRz29-6ZHEQ96VHuCg |
CitedBy_id | crossref_primary_10_3390_jof10090614 |
Cites_doi | 10.1146/annurev.phyto.36.1.115 10.1105/tpc.15.00552 10.1038/s41594-017-0016-2 10.1016/j.fgb.2007.08.007 10.1016/S0953-7562(09)81360-9 10.1002/j.1460-2075.1996.tb01039.x 10.1139/b82-143 10.1007/s00294-009-0257-7 10.1016/j.pbi.2015.09.003 10.1091/mbc.8.4.647 10.1007/s00294-019-01002-9 10.1091/mbc.e13-06-0299 10.1139/b56-047 10.1111/j.1574-6968.2010.01915.x 10.1093/bioinformatics/btm404 10.1016/j.funbio.2017.05.008 10.1091/mbc.E16-03-0162 10.1038/nprot.2006.405 10.1371/journal.pone.0068681 10.1094/Phyto-76-383 10.1007/S10267-012-0182-3 10.4148/1941-4765.1367 10.12705/626.22 10.1016/j.cub.2018.06.042 10.1038/ncomms2996 10.1007/s00294-019-00977-9 |
ContentType | Journal Article |
Copyright | 2021, by The Mycological Society of Japan 2021, by The Mycological Society of Japan. |
Copyright_xml | – notice: 2021, by The Mycological Society of Japan – notice: 2021, by The Mycological Society of Japan. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.47371/mycosci.2021.05.002 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1618-2545 |
EndPage | 296 |
ExternalDocumentID | PMC9721515 37089464 10_47371_mycosci_2021_05_002 article_mycosci_62_5_62_MYC543_article_char_en |
Genre | Journal Article |
GrantInformation_xml | – fundername: GrantsinAid for Scienti c Research from the Japan Society for the Promotion of Science to CT (Nos. 15K07311, 15H05249, and 19K06052) |
GroupedDBID | --M .86 .~1 0R~ 0VY 123 1N0 1~. 1~5 29M 4.4 408 409 40D 457 4G. 67N 67Z 6NX 7-5 78A 8P~ 8TC 8UJ AAEDT AAHBH AAIKJ AAKOC AALRI AAOAW AARKO ABGRD ABGSF ABMAC ABUDA ACDAQ ACGFS ADBBV ADEZE ADIMF ADQTV ADUVX AEKER AENEX AFBBN AFTJW AGEKW AGHFR AGUBO AGYEJ AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS BA0 BKOJK BLXMC CS3 DL5 DU5 ECGQY EPAXT ESX F5P FDB FIRID FNPLU GBLVA GXS HG5 HG6 I09 IXC IZQ I~X JSF JSH KDC KOM KPH LAS LUGTX MO0 O-L O9- O9I OAM OAUVE OK1 P-8 P-9 P19 P2P PC. PGMZT Q38 QOK QOS R89 R9I RJT RPM RPX RSV RZJ S27 S3A S3B SBL SDF SDH SDM SOJ SPCBC SSZ T13 TSK TSV U2A VC2 WJK WK8 Z45 ~EX ~G- ~KM AAYXX CITATION -56 -5G -BR -Y2 1SB 2.D 28- 2JY 2P1 2VQ 3SX 5QI 5VS AACTN AAIAL AALCJ AANXM AAQXK AARHV AAXUO AAYZH ABDBF ABMNI ABQSL ABTEG ABWVN ABXDB ACOMO ACRPL ACUHS ADINQ ADKPE ADMUD ADNMO ADRFC AEFIE AFEXP AFGCZ AFKWA AFLOW AGGDS AGJBK AGRDE AHKAY AIKHN AITUG AJOXV AMFUW AMKLP ASPBG AVWKF AZFZN BBWZM BGNMA CAG COF CSCUP EBD EBS EJD EN4 FEDTE FGOYB HF~ HVGLF HZ~ IHE KOV KOW M41 M4Y N2Q NDZJH NPM NU0 PT5 R2- R4E RIG RNI ROL RZK S1Z S26 S28 SZN T16 T5K TUS WK6 ~8M 7X8 5PM |
ID | FETCH-LOGICAL-c749t-70426f1716b56776db60121252911733fc4129ec6a1a4d5ce93a7afe8149a6ee3 |
ISSN | 1340-3540 |
IngestDate | Thu Aug 21 18:37:40 EDT 2025 Thu Jul 10 22:12:55 EDT 2025 Wed Feb 19 02:24:10 EST 2025 Thu Apr 24 22:51:55 EDT 2025 Tue Jul 01 00:19:56 EDT 2025 Wed Sep 03 06:30:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | sexual reproduction Cochliobolus heterostrophus exocytosis membrane traffic |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja 2021, by The Mycological Society of Japan. This is an open-access paper distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivative 4.0 international license (CC BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c749t-70426f1716b56776db60121252911733fc4129ec6a1a4d5ce93a7afe8149a6ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9721515 |
PMID | 37089464 |
PQID | 2805515831 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9721515 proquest_miscellaneous_2805515831 pubmed_primary_37089464 crossref_primary_10_47371_mycosci_2021_05_002 crossref_citationtrail_10_47371_mycosci_2021_05_002 jstage_primary_article_mycosci_62_5_62_MYC543_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210920 |
PublicationDateYYYYMMDD | 2021-09-20 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210920 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo, JAPAN |
PublicationTitle | Mycoscience |
PublicationTitleAlternate | Mycoscience |
PublicationYear | 2021 |
Publisher | The Mycological Society of Japan |
Publisher_xml | – name: The Mycological Society of Japan |
References | Mei, K., Li, Y., Wang, S., Shao, G., Wang, J., Ding, Y., Luo, G., Yue, P., Liu, J. J., Wang, X., Dong, M. Q., Wang, H. W., &Guo, W. (2018). Cryo-EM structure of the exocyst complex. Nature Structural & Molecular Biology, 25, 139–146. https://doi.org/10.1038/s41594-017-0016-2 Raju, N. B. (2008). Meiosis and ascospore development in Cochliobolus heterostrophus. Fungal Genetics and Biology, 45, 554–564. https://doi.org/10.1016/j.fgb.2007.08.007 Izumitsu, K., Hatoh, K., Sumita, T., Kitade, Y., Morita, A., Gafur, A., Ohta, A., Kawai, M., Yamanaka, T., Neda, H., Ota, Y., & Tanaka, C. (2012). Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience, 53, 396–401. https://doi.org/10.1007/S10267-012-0182-3 Guzman, D., Garber, R. C., & Yoder, O. C. (1982). Cytology of meiosis I and chromosome number of Cochliobolus heterostrophus (Ascomycetes). Canadian Journal of Botany, 60, 1138–1141. https://doi.org/10.1139/b82-143 Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S. A., & Oakley, B. R. (2006). Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols, 1, 3111–3120. https://doi.org/10.1038/nprot.2006.405 Sharifmoghadam, M. R., de Leon, N., Hoya, M., Curto, M. A., & Valdivieso, M. H. (2010). Different steps of sexual development are differentially regulated by the Sec8p and Exo70p exocyst subunits. FEMS Microbiology Letters, 305, 71–80. https://doi.org/10.1111/j.1574-6968.2010.01915.x Riquelme, M., Bredeweg, E. L., Callejas-Negrete, O., Roberson, R. W., Ludwig, S., Beltran-Aguilar, A., Seiler, S., Novick, P., & Freitag, M. (2014). The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Molecular Biology of the Cell, 25, 1312–1326. https://doi.org/10.1091/mbc.E13-06-0299 Finger, F.P., & Novick, P. (1997). Sec3p is involved in secretion and morphogenesis in Saccharomyces cerevisiae. Molecular Biology of the Cell, 8, 647–662. https://doi.org/10.1091/mbc.8.4.647 Yang, X., Ben, S., Sun, Y., Fan, X., Tian, C., & Wang, Y. (2013). Genome-wide identification, phylogeny and expression profile of vesicle fusion components in Verticillium dahliae. PLoS ONE, 8, e68681. https://doi.org/10.1371/journal.pone.0068681 Giraldo, M. C., Dagdas, Y. F., Gupta, Y. K., Mentlak, T. A., Yi, M., Martinez-Rocha, A. L., Saitoh, H., Terauchi, R., Talbot,N. J., & Valent, B. (2013). Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communication, 4, 1996. https://doi.org/10.1038/ncomms2996 Mei, K., & Guo, W. (2018). The exocyst complex. Current Biology, 28, R922–R925. https://doi.org/10.1016/j.cub.2018.06.042 Chen, X., Ebbole D.J., & Wang, Z. (2015). The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. Current Opinion in Plant Biology, 28, 48–54. https://doi.org/10.1016/j.pbi.2015.09.003 Sumita, T., Izumitsu, K., & Tanka, C. (2017). Characterization of the autophagy-related gene BmATG8 in Bipolaris maydis. Fungal Biology, 121, 785–797. https://doi.org/ 10.1016/j.funbio.2017.05.008 Imada, K., & Nakamura, T. (2016). The exocytic Rabs Ypt3 and Ypt2 regulate the early step of biogenesis of the spore plasma membrane in fission yeast. Molecular Biology of the Cell, 27, 3317–3328. https://doi.org/10.1091/mbc.E16-03-0162 Izumitsu, K., Yoshimi, A., Kubo, D., Morita, A., Saitoh, Y., & Tanaka, C. (2009). The MAPKK kinase ChSte11 regulates sexual/asexual development, melanization, pathogenicity, and adaption to oxidative stress in Cochliobolus heterostrophus. Current Gentics, 55, 439–448. https://doi.org/10.1007/s00294-009-0257-7 Kitade, Y., Sumita, T., Izumitsu, K., & Tanaka, C. (2019). Cla4 PAK-like kinase is required for pathogenesis, asexual/sexual development and polarized growth in Bipolaris maydis. Current Genetics, 65, 1229–1242. https://doi.org/10.1007/s00294-019-00977-9 Turgeon, B. G. (1998). Application of mating type gene technology to problems in fungal biology. Annual Review of Phytopathology, 36, 115–137. https://doi.org/10.1146/annurev.phyto.36.1.115 Rossman, A. Y., Manamgoda, D. S., & Hyde, K. D. (2013). Proposal to conserve the name Helminthosporium maydis Y. Nisik. & C. Miyake (Bipolaris maydis) again H. maydis Brond. and Ophiobolus heterostrophus (Ascomycota: Pleosporales: Pleosporaceae). Taxon, 62, 1332–1333. https://doi.org/10.12705/626.22 Hrushovetz, S. B. (1956). Cytological studies of ascus development in Cochliobolus sativus. Canadian Journal of Botany, 34, 641–651. https://doi.org/10.1139/b56-047 Sato, H., Sawano, T., Shigemori, I., Mejima, H., & Miki, M. (2008). Breeding of a silage maize hybrid cultivar “Takanestar”. Bulliten of the Nagano Chushin Agricultural Experiment Station, 18, 11–24 [In Japnaese]. Guan, W., Feng, J., Wang, R., Ma, Z., Wang, W., Wang, K., & Zhu, T. (2019). Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea. Current Genetics. https://doi.org/10.1007/s00294-019-01002-9 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 Yoder, O. C., Valent, B., & Chumley, F. (1986). Genetic nomenclature and practice for plant pathogenic fungi. Phytopathology, 76, 383–385. https://doi.org/10.1094/Phyto-76-383 Tanaka, C., Kubo, Y., & Tsuda, M. (1991). Genetic analysis and characterization of Cochlioborus heterostrophus colour mutants. Mycological Research, 95, 49–56. https://doi.org/10.1016/S0953-7562(09)81360-9. Carroll, A. M., Sweigard, J. A., & Valent, B. (1994). Improved vectors for selecting resistance to hygromycin. Fungal Genetics Reports, 41, Article 5. https://doi.org/10.4148/1941-4765.1367 Gupta, Y. K., Dagdas, Y. F., Martinez-Rocha, A. L., Kershaw, M. J., Littlejohn, G. R., Ryder, L. S., Sklenar, J., Menke, F., & Talbot, N. (2015). Septin-dependent assembly of the exocyst is essential for plant infection. The Plant Cell, 27, 3277–3289. https://doi.org/10.1105/tpc.15.00552 Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.) Cold Spring Harbor Laboratory Press. Ribeiro, O. K. (1978). A source book of the genus Phytophthora. J. Cramer. TerBush, D. R., Maurice, T., Roth, D., & Novick, P. (1996). The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. The EMBO Journal, 15, 6483–6494. https://doi.org/10.1002/j.1460-2075.1996.tb01039.x 22 23 24 25 26 27 28 29 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: Chen, X., Ebbole D.J., & Wang, Z. (2015). The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. Current Opinion in Plant Biology, 28, 48–54. https://doi.org/10.1016/j.pbi.2015.09.003 – reference: Raju, N. B. (2008). Meiosis and ascospore development in Cochliobolus heterostrophus. Fungal Genetics and Biology, 45, 554–564. https://doi.org/10.1016/j.fgb.2007.08.007 – reference: Kitade, Y., Sumita, T., Izumitsu, K., & Tanaka, C. (2019). Cla4 PAK-like kinase is required for pathogenesis, asexual/sexual development and polarized growth in Bipolaris maydis. Current Genetics, 65, 1229–1242. https://doi.org/10.1007/s00294-019-00977-9 – reference: Yang, X., Ben, S., Sun, Y., Fan, X., Tian, C., & Wang, Y. (2013). Genome-wide identification, phylogeny and expression profile of vesicle fusion components in Verticillium dahliae. PLoS ONE, 8, e68681. https://doi.org/10.1371/journal.pone.0068681 – reference: Riquelme, M., Bredeweg, E. L., Callejas-Negrete, O., Roberson, R. W., Ludwig, S., Beltran-Aguilar, A., Seiler, S., Novick, P., & Freitag, M. (2014). The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Molecular Biology of the Cell, 25, 1312–1326. https://doi.org/10.1091/mbc.E13-06-0299 – reference: Finger, F.P., & Novick, P. (1997). Sec3p is involved in secretion and morphogenesis in Saccharomyces cerevisiae. Molecular Biology of the Cell, 8, 647–662. https://doi.org/10.1091/mbc.8.4.647 – reference: Hrushovetz, S. B. (1956). Cytological studies of ascus development in Cochliobolus sativus. Canadian Journal of Botany, 34, 641–651. https://doi.org/10.1139/b56-047 – reference: Izumitsu, K., Yoshimi, A., Kubo, D., Morita, A., Saitoh, Y., & Tanaka, C. (2009). The MAPKK kinase ChSte11 regulates sexual/asexual development, melanization, pathogenicity, and adaption to oxidative stress in Cochliobolus heterostrophus. Current Gentics, 55, 439–448. https://doi.org/10.1007/s00294-009-0257-7 – reference: Carroll, A. M., Sweigard, J. A., & Valent, B. (1994). Improved vectors for selecting resistance to hygromycin. Fungal Genetics Reports, 41, Article 5. https://doi.org/10.4148/1941-4765.1367 – reference: Ribeiro, O. K. (1978). A source book of the genus Phytophthora. J. Cramer. – reference: Yoder, O. C., Valent, B., & Chumley, F. (1986). Genetic nomenclature and practice for plant pathogenic fungi. Phytopathology, 76, 383–385. https://doi.org/10.1094/Phyto-76-383 – reference: Giraldo, M. C., Dagdas, Y. F., Gupta, Y. K., Mentlak, T. A., Yi, M., Martinez-Rocha, A. L., Saitoh, H., Terauchi, R., Talbot,N. J., & Valent, B. (2013). Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communication, 4, 1996. https://doi.org/10.1038/ncomms2996 – reference: Guan, W., Feng, J., Wang, R., Ma, Z., Wang, W., Wang, K., & Zhu, T. (2019). Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea. Current Genetics. https://doi.org/10.1007/s00294-019-01002-9 – reference: Sumita, T., Izumitsu, K., & Tanka, C. (2017). Characterization of the autophagy-related gene BmATG8 in Bipolaris maydis. Fungal Biology, 121, 785–797. https://doi.org/ 10.1016/j.funbio.2017.05.008 – reference: Izumitsu, K., Hatoh, K., Sumita, T., Kitade, Y., Morita, A., Gafur, A., Ohta, A., Kawai, M., Yamanaka, T., Neda, H., Ota, Y., & Tanaka, C. (2012). Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience, 53, 396–401. https://doi.org/10.1007/S10267-012-0182-3 – reference: Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.) Cold Spring Harbor Laboratory Press. – reference: Sharifmoghadam, M. R., de Leon, N., Hoya, M., Curto, M. A., & Valdivieso, M. H. (2010). Different steps of sexual development are differentially regulated by the Sec8p and Exo70p exocyst subunits. FEMS Microbiology Letters, 305, 71–80. https://doi.org/10.1111/j.1574-6968.2010.01915.x – reference: Tanaka, C., Kubo, Y., & Tsuda, M. (1991). Genetic analysis and characterization of Cochlioborus heterostrophus colour mutants. Mycological Research, 95, 49–56. https://doi.org/10.1016/S0953-7562(09)81360-9. – reference: Rossman, A. Y., Manamgoda, D. S., & Hyde, K. D. (2013). Proposal to conserve the name Helminthosporium maydis Y. Nisik. & C. Miyake (Bipolaris maydis) again H. maydis Brond. and Ophiobolus heterostrophus (Ascomycota: Pleosporales: Pleosporaceae). Taxon, 62, 1332–1333. https://doi.org/10.12705/626.22 – reference: Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S. A., & Oakley, B. R. (2006). Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols, 1, 3111–3120. https://doi.org/10.1038/nprot.2006.405 – reference: Mei, K., & Guo, W. (2018). The exocyst complex. Current Biology, 28, R922–R925. https://doi.org/10.1016/j.cub.2018.06.042 – reference: Sato, H., Sawano, T., Shigemori, I., Mejima, H., & Miki, M. (2008). Breeding of a silage maize hybrid cultivar “Takanestar”. Bulliten of the Nagano Chushin Agricultural Experiment Station, 18, 11–24 [In Japnaese]. – reference: Gupta, Y. K., Dagdas, Y. F., Martinez-Rocha, A. L., Kershaw, M. J., Littlejohn, G. R., Ryder, L. S., Sklenar, J., Menke, F., & Talbot, N. (2015). Septin-dependent assembly of the exocyst is essential for plant infection. The Plant Cell, 27, 3277–3289. https://doi.org/10.1105/tpc.15.00552 – reference: Guzman, D., Garber, R. C., & Yoder, O. C. (1982). Cytology of meiosis I and chromosome number of Cochliobolus heterostrophus (Ascomycetes). Canadian Journal of Botany, 60, 1138–1141. https://doi.org/10.1139/b82-143 – reference: Mei, K., Li, Y., Wang, S., Shao, G., Wang, J., Ding, Y., Luo, G., Yue, P., Liu, J. J., Wang, X., Dong, M. Q., Wang, H. W., &Guo, W. (2018). Cryo-EM structure of the exocyst complex. Nature Structural & Molecular Biology, 25, 139–146. https://doi.org/10.1038/s41594-017-0016-2 – reference: TerBush, D. R., Maurice, T., Roth, D., & Novick, P. (1996). The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. The EMBO Journal, 15, 6483–6494. https://doi.org/10.1002/j.1460-2075.1996.tb01039.x – reference: Turgeon, B. G. (1998). Application of mating type gene technology to problems in fungal biology. Annual Review of Phytopathology, 36, 115–137. https://doi.org/10.1146/annurev.phyto.36.1.115 – reference: Imada, K., & Nakamura, T. (2016). The exocytic Rabs Ypt3 and Ypt2 regulate the early step of biogenesis of the spore plasma membrane in fission yeast. Molecular Biology of the Cell, 27, 3317–3328. https://doi.org/10.1091/mbc.E16-03-0162 – reference: Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 – ident: 27 doi: 10.1146/annurev.phyto.36.1.115 – ident: 6 doi: 10.1105/tpc.15.00552 – ident: 14 doi: 10.1038/s41594-017-0016-2 – ident: 16 doi: 10.1016/j.fgb.2007.08.007 – ident: 25 doi: 10.1016/S0953-7562(09)81360-9 – ident: 26 doi: 10.1002/j.1460-2075.1996.tb01039.x – ident: 7 doi: 10.1139/b82-143 – ident: 10 doi: 10.1007/s00294-009-0257-7 – ident: 2 doi: 10.1016/j.pbi.2015.09.003 – ident: 3 doi: 10.1091/mbc.8.4.647 – ident: 5 doi: 10.1007/s00294-019-01002-9 – ident: 18 doi: 10.1091/mbc.e13-06-0299 – ident: 20 – ident: 8 doi: 10.1139/b56-047 – ident: 17 – ident: 22 doi: 10.1111/j.1574-6968.2010.01915.x – ident: 13 doi: 10.1093/bioinformatics/btm404 – ident: 23 doi: 10.1016/j.funbio.2017.05.008 – ident: 9 doi: 10.1091/mbc.E16-03-0162 – ident: 24 doi: 10.1038/nprot.2006.405 – ident: 28 doi: 10.1371/journal.pone.0068681 – ident: 29 doi: 10.1094/Phyto-76-383 – ident: 11 doi: 10.1007/S10267-012-0182-3 – ident: 1 doi: 10.4148/1941-4765.1367 – ident: 19 doi: 10.12705/626.22 – ident: 15 doi: 10.1016/j.cub.2018.06.042 – ident: 21 – ident: 4 doi: 10.1038/ncomms2996 – ident: 12 doi: 10.1007/s00294-019-00977-9 |
SSID | ssj0017632 |
Score | 2.2516465 |
Snippet | In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To... In this study, we identified Sec5 in , a homologue of Sec5 in and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of ,... In this study, we identified Sec5 in Bipolaris maydis , a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 289 |
SubjectTerms | Cochliobolus heterostrophus exocytosis membrane traffic sexual reproduction Short Communication |
Title | An exocyst component, Sec5, is essential for ascospore formation in Bipolaris maydis |
URI | https://www.jstage.jst.go.jp/article/mycosci/62/5/62_MYC543/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/37089464 https://www.proquest.com/docview/2805515831 https://pubmed.ncbi.nlm.nih.gov/PMC9721515 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Mycoscience, 2021/09/20, Vol.62(5), pp.289-296 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLemsQMXxDflS0bitqW0sR03Bw5dBZqGipDopO0UOY7LvNJkWtJDufGf816cuOlUCdglrRwntvx-eR-238-EvB8iKZoSOhBMpwFnIQvibM4CqYdMR1ywgcLc4enX6OSMn56L8729393skirt618780ruIlUoA7lilux_SNa_FArgP8gXriBhuP6TjMfI0F_odVnVW8OL3DgWge9GC_y15SFSg-eVdWmKh6rUBcaxZpO0iBMex_YaI1yovlTrzJZdj3W61g3fpYfArFxd2SapZ-3V-hdbNRy-F6uF3Sw2La1zUGdqsdrUnqlcLZRb8LeX9qboTj-EQ9wrEQ48YBDM2JFWUbd7TcHTPQVrn3dUK-Og8YUjZ-obVxYNQaLCEUq2-jgKO7gTXeXqDhtq7HToTsK9bQK4ZBJtwNKNTh_73HcTZxuT5zcifptOkL5IIE3BvVDKeqW_nvBpFqJA_dYL5m3nXfZl3ciHHU1seTcHV-Dg_zC7YpfbW3A7Ps3sIXnQBCN07JD1iOyZ_DE5OC4gYFg_IbNxTht4UQ-vI4rgOqK2pB5aFMBEPbSohxa1OfXQog5aT8nZ50-zyUnQHMIRaMnjKpAYZM-RVCkVkZRRlkZIAxiKEMykZGyuObiMRkdqqHgmtImZkmpuRhB6q8gY9ozs59DBF4TKjEfgDJlUZBkfgRaI44zLWJh5zFgqsx5h7eAlumGox4NSfiYQqdZDnjRDnuCQJwORwJD3SOCfunYMLX-p_9HJxdduvl9fOQoTgZfpxURw5m9jGiRonR5514ozAVWM62sqN8WqTMLRAOIPMWLDHnnuxOvbYHIwinnEe0RuCd5XQJr37Tu5vazp3huAvrzzk6_I_c2X-5rsVzcr8wZc6Sp9W4P9D8xPz3w |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exocyst+component%2C+Sec5%2C+is+essential+for+ascospore+formation+in+Bipolaris+maydis&rft.jtitle=Mycoscience&rft.au=Tsuji%2C+Kenya&rft.au=Kitade%2C+Yuki&rft.au=Sumita%2C+Takuya&rft.au=Tanaka%2C+Chihiro&rft.date=2021-09-20&rft.pub=The+Mycological+Society+of+Japan&rft.issn=1340-3540&rft.eissn=1618-2545&rft.volume=62&rft.issue=5&rft.spage=289&rft.epage=296&rft_id=info:doi/10.47371%2Fmycosci.2021.05.002&rft.externalDocID=PMC9721515 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-3540&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-3540&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-3540&client=summon |