An exocyst component, Sec5, is essential for ascospore formation in Bipolaris maydis

In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong redu...

Full description

Saved in:
Bibliographic Details
Published inMycoscience Vol. 62; no. 5; pp. 289 - 296
Main Authors Sumita, Takuya, Tanaka, Chihiro, Kitade, Yuki, Tsuji, Kenya
Format Journal Article
LanguageEnglish
Published Japan The Mycological Society of Japan 20.09.2021
Subjects
Online AccessGet full text
ISSN1340-3540
1618-2545
DOI10.47371/mycosci.2021.05.002

Cover

Abstract In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur.
AbstractList In this study, we identified Sec5 in , a homologue of Sec5 in and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of , we generated null mutant strains of the gene ( ). The strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur.
In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur.In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur.
In this study, we identified Sec5 in Bipolaris maydis , a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis , we generated null mutant strains of the gene ( Δsec5 ). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur.
In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur.
ArticleNumber MYC543
Author Kitade, Yuki
Tanaka, Chihiro
Tsuji, Kenya
Sumita, Takuya
Author_xml – sequence: 1
  fullname: Sumita, Takuya
  organization: Graduate School of Agriculture, Kyoto University
– sequence: 1
  fullname: Tanaka, Chihiro
  organization: Graduate School of Agriculture, Kyoto University
– sequence: 1
  fullname: Kitade, Yuki
  organization: Graduate School of Agriculture, Kyoto University
– sequence: 1
  fullname: Tsuji, Kenya
  organization: Graduate School of Agriculture, Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37089464$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtv1DAQtlARfcA_QMhHDs3i8TPhgFS2vKQiDpQDJ8vrnbSukjjYWcT--3q7SwRcuNgez_cYzXdKjoY4ICHPgS2kEQZe9Vsfsw8LzjgsmFowxh-RE9BQV1xJdVTeQrJKKMmOyWnOd4yB0YI_IcfCsLqRWp6Q64uB4q_ot3miPvZj8Rimc_oVvTqnIVPMuXwE19E2JupysRxjwl3VuynEgYaBvg1j7Fwq8N5t1yE_JY9b12V8drjPyLf3766XH6urLx8-LS-uKm9kM1WGSa5bMKBXShuj1yvNgANXvAEwQrReAm_QawdOrpXHRjjjWqxBNk4jijPyZq87blY9rn2ZNLnOjin0Lm1tdMH-3RnCrb2JP21jOChQReDlQSDFHxvMk-1D9th1bsC4yZbXTBVcLaBAX_zpNZv8XmUByD3Ap5hzwnaGALMPidlDYnaXmGXKlsQK7fU_NB-mh82WiUP3P_LlnnyXJ3eDs6NLU_AdzhzNrdodn78vlRRz29-6ZHEQ96VHuCg
CitedBy_id crossref_primary_10_3390_jof10090614
Cites_doi 10.1146/annurev.phyto.36.1.115
10.1105/tpc.15.00552
10.1038/s41594-017-0016-2
10.1016/j.fgb.2007.08.007
10.1016/S0953-7562(09)81360-9
10.1002/j.1460-2075.1996.tb01039.x
10.1139/b82-143
10.1007/s00294-009-0257-7
10.1016/j.pbi.2015.09.003
10.1091/mbc.8.4.647
10.1007/s00294-019-01002-9
10.1091/mbc.e13-06-0299
10.1139/b56-047
10.1111/j.1574-6968.2010.01915.x
10.1093/bioinformatics/btm404
10.1016/j.funbio.2017.05.008
10.1091/mbc.E16-03-0162
10.1038/nprot.2006.405
10.1371/journal.pone.0068681
10.1094/Phyto-76-383
10.1007/S10267-012-0182-3
10.4148/1941-4765.1367
10.12705/626.22
10.1016/j.cub.2018.06.042
10.1038/ncomms2996
10.1007/s00294-019-00977-9
ContentType Journal Article
Copyright 2021, by The Mycological Society of Japan
2021, by The Mycological Society of Japan.
Copyright_xml – notice: 2021, by The Mycological Society of Japan
– notice: 2021, by The Mycological Society of Japan.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.47371/mycosci.2021.05.002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1618-2545
EndPage 296
ExternalDocumentID PMC9721515
37089464
10_47371_mycosci_2021_05_002
article_mycosci_62_5_62_MYC543_article_char_en
Genre Journal Article
GrantInformation_xml – fundername: GrantsinAid for Scienti c Research from the Japan Society for the Promotion of Science to CT (Nos. 15K07311, 15H05249, and 19K06052)
GroupedDBID --M
.86
.~1
0R~
0VY
123
1N0
1~.
1~5
29M
4.4
408
409
40D
457
4G.
67N
67Z
6NX
7-5
78A
8P~
8TC
8UJ
AAEDT
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AARKO
ABGRD
ABGSF
ABMAC
ABUDA
ACDAQ
ACGFS
ADBBV
ADEZE
ADIMF
ADQTV
ADUVX
AEKER
AENEX
AFBBN
AFTJW
AGEKW
AGHFR
AGUBO
AGYEJ
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
BA0
BKOJK
BLXMC
CS3
DL5
DU5
ECGQY
EPAXT
ESX
F5P
FDB
FIRID
FNPLU
GBLVA
GXS
HG5
HG6
I09
IXC
IZQ
I~X
JSF
JSH
KDC
KOM
KPH
LAS
LUGTX
MO0
O-L
O9-
O9I
OAM
OAUVE
OK1
P-8
P-9
P19
P2P
PC.
PGMZT
Q38
QOK
QOS
R89
R9I
RJT
RPM
RPX
RSV
RZJ
S27
S3A
S3B
SBL
SDF
SDH
SDM
SOJ
SPCBC
SSZ
T13
TSK
TSV
U2A
VC2
WJK
WK8
Z45
~EX
~G-
~KM
AAYXX
CITATION
-56
-5G
-BR
-Y2
1SB
2.D
28-
2JY
2P1
2VQ
3SX
5QI
5VS
AACTN
AAIAL
AALCJ
AANXM
AAQXK
AARHV
AAXUO
AAYZH
ABDBF
ABMNI
ABQSL
ABTEG
ABWVN
ABXDB
ACOMO
ACRPL
ACUHS
ADINQ
ADKPE
ADMUD
ADNMO
ADRFC
AEFIE
AFEXP
AFGCZ
AFKWA
AFLOW
AGGDS
AGJBK
AGRDE
AHKAY
AIKHN
AITUG
AJOXV
AMFUW
AMKLP
ASPBG
AVWKF
AZFZN
BBWZM
BGNMA
CAG
COF
CSCUP
EBD
EBS
EJD
EN4
FEDTE
FGOYB
HF~
HVGLF
HZ~
IHE
KOV
KOW
M41
M4Y
N2Q
NDZJH
NPM
NU0
PT5
R2-
R4E
RIG
RNI
ROL
RZK
S1Z
S26
S28
SZN
T16
T5K
TUS
WK6
~8M
7X8
5PM
ID FETCH-LOGICAL-c749t-70426f1716b56776db60121252911733fc4129ec6a1a4d5ce93a7afe8149a6ee3
ISSN 1340-3540
IngestDate Thu Aug 21 18:37:40 EDT 2025
Thu Jul 10 22:12:55 EDT 2025
Wed Feb 19 02:24:10 EST 2025
Thu Apr 24 22:51:55 EDT 2025
Tue Jul 01 00:19:56 EDT 2025
Wed Sep 03 06:30:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords sexual reproduction
Cochliobolus heterostrophus
exocytosis
membrane traffic
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
2021, by The Mycological Society of Japan.
This is an open-access paper distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivative 4.0 international license (CC BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c749t-70426f1716b56776db60121252911733fc4129ec6a1a4d5ce93a7afe8149a6ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9721515
PMID 37089464
PQID 2805515831
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9721515
proquest_miscellaneous_2805515831
pubmed_primary_37089464
crossref_primary_10_47371_mycosci_2021_05_002
crossref_citationtrail_10_47371_mycosci_2021_05_002
jstage_primary_article_mycosci_62_5_62_MYC543_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210920
PublicationDateYYYYMMDD 2021-09-20
PublicationDate_xml – month: 9
  year: 2021
  text: 20210920
  day: 20
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo, JAPAN
PublicationTitle Mycoscience
PublicationTitleAlternate Mycoscience
PublicationYear 2021
Publisher The Mycological Society of Japan
Publisher_xml – name: The Mycological Society of Japan
References Mei, K., Li, Y., Wang, S., Shao, G., Wang, J., Ding, Y., Luo, G., Yue, P., Liu, J. J., Wang, X., Dong, M. Q., Wang, H. W., &Guo, W. (2018). Cryo-EM structure of the exocyst complex. Nature Structural & Molecular Biology, 25, 139–146. https://doi.org/10.1038/s41594-017-0016-2
Raju, N. B. (2008). Meiosis and ascospore development in Cochliobolus heterostrophus. Fungal Genetics and Biology, 45, 554–564. https://doi.org/10.1016/j.fgb.2007.08.007
Izumitsu, K., Hatoh, K., Sumita, T., Kitade, Y., Morita, A., Gafur, A., Ohta, A., Kawai, M., Yamanaka, T., Neda, H., Ota, Y., & Tanaka, C. (2012). Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience, 53, 396–401. https://doi.org/10.1007/S10267-012-0182-3
Guzman, D., Garber, R. C., & Yoder, O. C. (1982). Cytology of meiosis I and chromosome number of Cochliobolus heterostrophus (Ascomycetes). Canadian Journal of Botany, 60, 1138–1141. https://doi.org/10.1139/b82-143
Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S. A., & Oakley, B. R. (2006). Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols, 1, 3111–3120. https://doi.org/10.1038/nprot.2006.405
Sharifmoghadam, M. R., de Leon, N., Hoya, M., Curto, M. A., & Valdivieso, M. H. (2010). Different steps of sexual development are differentially regulated by the Sec8p and Exo70p exocyst subunits. FEMS Microbiology Letters, 305, 71–80. https://doi.org/10.1111/j.1574-6968.2010.01915.x
Riquelme, M., Bredeweg, E. L., Callejas-Negrete, O., Roberson, R. W., Ludwig, S., Beltran-Aguilar, A., Seiler, S., Novick, P., & Freitag, M. (2014). The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Molecular Biology of the Cell, 25, 1312–1326. https://doi.org/10.1091/mbc.E13-06-0299
Finger, F.P., & Novick, P. (1997). Sec3p is involved in secretion and morphogenesis in Saccharomyces cerevisiae. Molecular Biology of the Cell, 8, 647–662. https://doi.org/10.1091/mbc.8.4.647
Yang, X., Ben, S., Sun, Y., Fan, X., Tian, C., & Wang, Y. (2013). Genome-wide identification, phylogeny and expression profile of vesicle fusion components in Verticillium dahliae. PLoS ONE, 8, e68681. https://doi.org/10.1371/journal.pone.0068681
Giraldo, M. C., Dagdas, Y. F., Gupta, Y. K., Mentlak, T. A., Yi, M., Martinez-Rocha, A. L., Saitoh, H., Terauchi, R., Talbot,N. J., & Valent, B. (2013). Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communication, 4, 1996. https://doi.org/10.1038/ncomms2996
Mei, K., & Guo, W. (2018). The exocyst complex. Current Biology, 28, R922–R925. https://doi.org/10.1016/j.cub.2018.06.042
Chen, X., Ebbole D.J., & Wang, Z. (2015). The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. Current Opinion in Plant Biology, 28, 48–54. https://doi.org/10.1016/j.pbi.2015.09.003
Sumita, T., Izumitsu, K., & Tanka, C. (2017). Characterization of the autophagy-related gene BmATG8 in Bipolaris maydis. Fungal Biology, 121, 785–797. https://doi.org/ 10.1016/j.funbio.2017.05.008
Imada, K., & Nakamura, T. (2016). The exocytic Rabs Ypt3 and Ypt2 regulate the early step of biogenesis of the spore plasma membrane in fission yeast. Molecular Biology of the Cell, 27, 3317–3328. https://doi.org/10.1091/mbc.E16-03-0162
Izumitsu, K., Yoshimi, A., Kubo, D., Morita, A., Saitoh, Y., & Tanaka, C. (2009). The MAPKK kinase ChSte11 regulates sexual/asexual development, melanization, pathogenicity, and adaption to oxidative stress in Cochliobolus heterostrophus. Current Gentics, 55, 439–448. https://doi.org/10.1007/s00294-009-0257-7
Kitade, Y., Sumita, T., Izumitsu, K., & Tanaka, C. (2019). Cla4 PAK-like kinase is required for pathogenesis, asexual/sexual development and polarized growth in Bipolaris maydis. Current Genetics, 65, 1229–1242. https://doi.org/10.1007/s00294-019-00977-9
Turgeon, B. G. (1998). Application of mating type gene technology to problems in fungal biology. Annual Review of Phytopathology, 36, 115–137. https://doi.org/10.1146/annurev.phyto.36.1.115
Rossman, A. Y., Manamgoda, D. S., & Hyde, K. D. (2013). Proposal to conserve the name Helminthosporium maydis Y. Nisik. & C. Miyake (Bipolaris maydis) again H. maydis Brond. and Ophiobolus heterostrophus (Ascomycota: Pleosporales: Pleosporaceae). Taxon, 62, 1332–1333. https://doi.org/10.12705/626.22
Hrushovetz, S. B. (1956). Cytological studies of ascus development in Cochliobolus sativus. Canadian Journal of Botany, 34, 641–651. https://doi.org/10.1139/b56-047
Sato, H., Sawano, T., Shigemori, I., Mejima, H., & Miki, M. (2008). Breeding of a silage maize hybrid cultivar “Takanestar”. Bulliten of the Nagano Chushin Agricultural Experiment Station, 18, 11–24 [In Japnaese].
Guan, W., Feng, J., Wang, R., Ma, Z., Wang, W., Wang, K., & Zhu, T. (2019). Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea. Current Genetics. https://doi.org/10.1007/s00294-019-01002-9
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Yoder, O. C., Valent, B., & Chumley, F. (1986). Genetic nomenclature and practice for plant pathogenic fungi. Phytopathology, 76, 383–385. https://doi.org/10.1094/Phyto-76-383
Tanaka, C., Kubo, Y., & Tsuda, M. (1991). Genetic analysis and characterization of Cochlioborus heterostrophus colour mutants. Mycological Research, 95, 49–56. https://doi.org/10.1016/S0953-7562(09)81360-9.
Carroll, A. M., Sweigard, J. A., & Valent, B. (1994). Improved vectors for selecting resistance to hygromycin. Fungal Genetics Reports, 41, Article 5. https://doi.org/10.4148/1941-4765.1367
Gupta, Y. K., Dagdas, Y. F., Martinez-Rocha, A. L., Kershaw, M. J., Littlejohn, G. R., Ryder, L. S., Sklenar, J., Menke, F., & Talbot, N. (2015). Septin-dependent assembly of the exocyst is essential for plant infection. The Plant Cell, 27, 3277–3289. https://doi.org/10.1105/tpc.15.00552
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.) Cold Spring Harbor Laboratory Press.
Ribeiro, O. K. (1978). A source book of the genus Phytophthora. J. Cramer.
TerBush, D. R., Maurice, T., Roth, D., & Novick, P. (1996). The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. The EMBO Journal, 15, 6483–6494. https://doi.org/10.1002/j.1460-2075.1996.tb01039.x
22
23
24
25
26
27
28
29
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: Chen, X., Ebbole D.J., & Wang, Z. (2015). The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. Current Opinion in Plant Biology, 28, 48–54. https://doi.org/10.1016/j.pbi.2015.09.003
– reference: Raju, N. B. (2008). Meiosis and ascospore development in Cochliobolus heterostrophus. Fungal Genetics and Biology, 45, 554–564. https://doi.org/10.1016/j.fgb.2007.08.007
– reference: Kitade, Y., Sumita, T., Izumitsu, K., & Tanaka, C. (2019). Cla4 PAK-like kinase is required for pathogenesis, asexual/sexual development and polarized growth in Bipolaris maydis. Current Genetics, 65, 1229–1242. https://doi.org/10.1007/s00294-019-00977-9
– reference: Yang, X., Ben, S., Sun, Y., Fan, X., Tian, C., & Wang, Y. (2013). Genome-wide identification, phylogeny and expression profile of vesicle fusion components in Verticillium dahliae. PLoS ONE, 8, e68681. https://doi.org/10.1371/journal.pone.0068681
– reference: Riquelme, M., Bredeweg, E. L., Callejas-Negrete, O., Roberson, R. W., Ludwig, S., Beltran-Aguilar, A., Seiler, S., Novick, P., & Freitag, M. (2014). The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Molecular Biology of the Cell, 25, 1312–1326. https://doi.org/10.1091/mbc.E13-06-0299
– reference: Finger, F.P., & Novick, P. (1997). Sec3p is involved in secretion and morphogenesis in Saccharomyces cerevisiae. Molecular Biology of the Cell, 8, 647–662. https://doi.org/10.1091/mbc.8.4.647
– reference: Hrushovetz, S. B. (1956). Cytological studies of ascus development in Cochliobolus sativus. Canadian Journal of Botany, 34, 641–651. https://doi.org/10.1139/b56-047
– reference: Izumitsu, K., Yoshimi, A., Kubo, D., Morita, A., Saitoh, Y., & Tanaka, C. (2009). The MAPKK kinase ChSte11 regulates sexual/asexual development, melanization, pathogenicity, and adaption to oxidative stress in Cochliobolus heterostrophus. Current Gentics, 55, 439–448. https://doi.org/10.1007/s00294-009-0257-7
– reference: Carroll, A. M., Sweigard, J. A., & Valent, B. (1994). Improved vectors for selecting resistance to hygromycin. Fungal Genetics Reports, 41, Article 5. https://doi.org/10.4148/1941-4765.1367
– reference: Ribeiro, O. K. (1978). A source book of the genus Phytophthora. J. Cramer.
– reference: Yoder, O. C., Valent, B., & Chumley, F. (1986). Genetic nomenclature and practice for plant pathogenic fungi. Phytopathology, 76, 383–385. https://doi.org/10.1094/Phyto-76-383
– reference: Giraldo, M. C., Dagdas, Y. F., Gupta, Y. K., Mentlak, T. A., Yi, M., Martinez-Rocha, A. L., Saitoh, H., Terauchi, R., Talbot,N. J., & Valent, B. (2013). Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communication, 4, 1996. https://doi.org/10.1038/ncomms2996
– reference: Guan, W., Feng, J., Wang, R., Ma, Z., Wang, W., Wang, K., & Zhu, T. (2019). Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea. Current Genetics. https://doi.org/10.1007/s00294-019-01002-9
– reference: Sumita, T., Izumitsu, K., & Tanka, C. (2017). Characterization of the autophagy-related gene BmATG8 in Bipolaris maydis. Fungal Biology, 121, 785–797. https://doi.org/ 10.1016/j.funbio.2017.05.008
– reference: Izumitsu, K., Hatoh, K., Sumita, T., Kitade, Y., Morita, A., Gafur, A., Ohta, A., Kawai, M., Yamanaka, T., Neda, H., Ota, Y., & Tanaka, C. (2012). Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience, 53, 396–401. https://doi.org/10.1007/S10267-012-0182-3
– reference: Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.) Cold Spring Harbor Laboratory Press.
– reference: Sharifmoghadam, M. R., de Leon, N., Hoya, M., Curto, M. A., & Valdivieso, M. H. (2010). Different steps of sexual development are differentially regulated by the Sec8p and Exo70p exocyst subunits. FEMS Microbiology Letters, 305, 71–80. https://doi.org/10.1111/j.1574-6968.2010.01915.x
– reference: Tanaka, C., Kubo, Y., & Tsuda, M. (1991). Genetic analysis and characterization of Cochlioborus heterostrophus colour mutants. Mycological Research, 95, 49–56. https://doi.org/10.1016/S0953-7562(09)81360-9.
– reference: Rossman, A. Y., Manamgoda, D. S., & Hyde, K. D. (2013). Proposal to conserve the name Helminthosporium maydis Y. Nisik. & C. Miyake (Bipolaris maydis) again H. maydis Brond. and Ophiobolus heterostrophus (Ascomycota: Pleosporales: Pleosporaceae). Taxon, 62, 1332–1333. https://doi.org/10.12705/626.22
– reference: Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S. A., & Oakley, B. R. (2006). Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols, 1, 3111–3120. https://doi.org/10.1038/nprot.2006.405
– reference: Mei, K., & Guo, W. (2018). The exocyst complex. Current Biology, 28, R922–R925. https://doi.org/10.1016/j.cub.2018.06.042
– reference: Sato, H., Sawano, T., Shigemori, I., Mejima, H., & Miki, M. (2008). Breeding of a silage maize hybrid cultivar “Takanestar”. Bulliten of the Nagano Chushin Agricultural Experiment Station, 18, 11–24 [In Japnaese].
– reference: Gupta, Y. K., Dagdas, Y. F., Martinez-Rocha, A. L., Kershaw, M. J., Littlejohn, G. R., Ryder, L. S., Sklenar, J., Menke, F., & Talbot, N. (2015). Septin-dependent assembly of the exocyst is essential for plant infection. The Plant Cell, 27, 3277–3289. https://doi.org/10.1105/tpc.15.00552
– reference: Guzman, D., Garber, R. C., & Yoder, O. C. (1982). Cytology of meiosis I and chromosome number of Cochliobolus heterostrophus (Ascomycetes). Canadian Journal of Botany, 60, 1138–1141. https://doi.org/10.1139/b82-143
– reference: Mei, K., Li, Y., Wang, S., Shao, G., Wang, J., Ding, Y., Luo, G., Yue, P., Liu, J. J., Wang, X., Dong, M. Q., Wang, H. W., &Guo, W. (2018). Cryo-EM structure of the exocyst complex. Nature Structural & Molecular Biology, 25, 139–146. https://doi.org/10.1038/s41594-017-0016-2
– reference: TerBush, D. R., Maurice, T., Roth, D., & Novick, P. (1996). The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. The EMBO Journal, 15, 6483–6494. https://doi.org/10.1002/j.1460-2075.1996.tb01039.x
– reference: Turgeon, B. G. (1998). Application of mating type gene technology to problems in fungal biology. Annual Review of Phytopathology, 36, 115–137. https://doi.org/10.1146/annurev.phyto.36.1.115
– reference: Imada, K., & Nakamura, T. (2016). The exocytic Rabs Ypt3 and Ypt2 regulate the early step of biogenesis of the spore plasma membrane in fission yeast. Molecular Biology of the Cell, 27, 3317–3328. https://doi.org/10.1091/mbc.E16-03-0162
– reference: Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
– ident: 27
  doi: 10.1146/annurev.phyto.36.1.115
– ident: 6
  doi: 10.1105/tpc.15.00552
– ident: 14
  doi: 10.1038/s41594-017-0016-2
– ident: 16
  doi: 10.1016/j.fgb.2007.08.007
– ident: 25
  doi: 10.1016/S0953-7562(09)81360-9
– ident: 26
  doi: 10.1002/j.1460-2075.1996.tb01039.x
– ident: 7
  doi: 10.1139/b82-143
– ident: 10
  doi: 10.1007/s00294-009-0257-7
– ident: 2
  doi: 10.1016/j.pbi.2015.09.003
– ident: 3
  doi: 10.1091/mbc.8.4.647
– ident: 5
  doi: 10.1007/s00294-019-01002-9
– ident: 18
  doi: 10.1091/mbc.e13-06-0299
– ident: 20
– ident: 8
  doi: 10.1139/b56-047
– ident: 17
– ident: 22
  doi: 10.1111/j.1574-6968.2010.01915.x
– ident: 13
  doi: 10.1093/bioinformatics/btm404
– ident: 23
  doi: 10.1016/j.funbio.2017.05.008
– ident: 9
  doi: 10.1091/mbc.E16-03-0162
– ident: 24
  doi: 10.1038/nprot.2006.405
– ident: 28
  doi: 10.1371/journal.pone.0068681
– ident: 29
  doi: 10.1094/Phyto-76-383
– ident: 11
  doi: 10.1007/S10267-012-0182-3
– ident: 1
  doi: 10.4148/1941-4765.1367
– ident: 19
  doi: 10.12705/626.22
– ident: 15
  doi: 10.1016/j.cub.2018.06.042
– ident: 21
– ident: 4
  doi: 10.1038/ncomms2996
– ident: 12
  doi: 10.1007/s00294-019-00977-9
SSID ssj0017632
Score 2.2516465
Snippet In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To...
In this study, we identified Sec5 in , a homologue of Sec5 in and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of ,...
In this study, we identified Sec5 in Bipolaris maydis , a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 289
SubjectTerms Cochliobolus heterostrophus
exocytosis
membrane traffic
sexual reproduction
Short Communication
Title An exocyst component, Sec5, is essential for ascospore formation in Bipolaris maydis
URI https://www.jstage.jst.go.jp/article/mycosci/62/5/62_MYC543/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/37089464
https://www.proquest.com/docview/2805515831
https://pubmed.ncbi.nlm.nih.gov/PMC9721515
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Mycoscience, 2021/09/20, Vol.62(5), pp.289-296
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLemsQMXxDflS0bitqW0sR03Bw5dBZqGipDopO0UOY7LvNJkWtJDufGf816cuOlUCdglrRwntvx-eR-238-EvB8iKZoSOhBMpwFnIQvibM4CqYdMR1ywgcLc4enX6OSMn56L8729393skirt618780ruIlUoA7lilux_SNa_FArgP8gXriBhuP6TjMfI0F_odVnVW8OL3DgWge9GC_y15SFSg-eVdWmKh6rUBcaxZpO0iBMex_YaI1yovlTrzJZdj3W61g3fpYfArFxd2SapZ-3V-hdbNRy-F6uF3Sw2La1zUGdqsdrUnqlcLZRb8LeX9qboTj-EQ9wrEQ48YBDM2JFWUbd7TcHTPQVrn3dUK-Og8YUjZ-obVxYNQaLCEUq2-jgKO7gTXeXqDhtq7HToTsK9bQK4ZBJtwNKNTh_73HcTZxuT5zcifptOkL5IIE3BvVDKeqW_nvBpFqJA_dYL5m3nXfZl3ciHHU1seTcHV-Dg_zC7YpfbW3A7Ps3sIXnQBCN07JD1iOyZ_DE5OC4gYFg_IbNxTht4UQ-vI4rgOqK2pB5aFMBEPbSohxa1OfXQog5aT8nZ50-zyUnQHMIRaMnjKpAYZM-RVCkVkZRRlkZIAxiKEMykZGyuObiMRkdqqHgmtImZkmpuRhB6q8gY9ozs59DBF4TKjEfgDJlUZBkfgRaI44zLWJh5zFgqsx5h7eAlumGox4NSfiYQqdZDnjRDnuCQJwORwJD3SOCfunYMLX-p_9HJxdduvl9fOQoTgZfpxURw5m9jGiRonR5514ozAVWM62sqN8WqTMLRAOIPMWLDHnnuxOvbYHIwinnEe0RuCd5XQJr37Tu5vazp3huAvrzzk6_I_c2X-5rsVzcr8wZc6Sp9W4P9D8xPz3w
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exocyst+component%2C+Sec5%2C+is+essential+for+ascospore+formation+in+Bipolaris+maydis&rft.jtitle=Mycoscience&rft.au=Tsuji%2C+Kenya&rft.au=Kitade%2C+Yuki&rft.au=Sumita%2C+Takuya&rft.au=Tanaka%2C+Chihiro&rft.date=2021-09-20&rft.pub=The+Mycological+Society+of+Japan&rft.issn=1340-3540&rft.eissn=1618-2545&rft.volume=62&rft.issue=5&rft.spage=289&rft.epage=296&rft_id=info:doi/10.47371%2Fmycosci.2021.05.002&rft.externalDocID=PMC9721515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-3540&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-3540&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-3540&client=summon