一种众源车载GPS轨迹大数据自适应滤选方法

P228; 基于同步高低精度GPS轨迹数据的空间特征和GPS误差分布原理,提出了一种众源GPS车载轨迹大数据自适应分割-滤选模型。该模型首先通过角度、距离约束将完整的车载 GPS 轨迹数据进行分割,以轨迹分割段作为基本滤选单元;然后通过对比轨迹分割段内 GPS 轨迹向量与其参考基线间的相似度,按照相似度与GPS定位精度之间的量化关系指导滤选。试验结果表明,该方法可以实现车载轨迹大数据按信息提取精度需求的滤选。...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 45; no. 12; pp. 1455 - 1463
Main Author 唐炉亮 杨雪 牛乐 常乐 李清泉
Format Journal Article
LanguageChinese
Published 深圳大学 土木工程学院 空间信息智能感知与服务深圳市重点实验室,广东 深圳 518060 2016
武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉,430079%武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
Subjects
Online AccessGet full text

Cover

Loading…
Abstract P228; 基于同步高低精度GPS轨迹数据的空间特征和GPS误差分布原理,提出了一种众源GPS车载轨迹大数据自适应分割-滤选模型。该模型首先通过角度、距离约束将完整的车载 GPS 轨迹数据进行分割,以轨迹分割段作为基本滤选单元;然后通过对比轨迹分割段内 GPS 轨迹向量与其参考基线间的相似度,按照相似度与GPS定位精度之间的量化关系指导滤选。试验结果表明,该方法可以实现车载轨迹大数据按信息提取精度需求的滤选。
AbstractList 基于同步高低精度GPS轨迹数据的空间特征和GPS误差分布原理,提出了一种众源GPS车载轨迹大数据自适应分割-滤选模型。该模型首先通过角度、距离约束将完整的车载GPS轨迹数据进行分割,以轨迹分割段作为基本滤选单元;然后通过对比轨迹分割段内GPS轨迹向量与其参考基线间的相似度,按照相似度与GPS定位精度之间的量化关系指导滤选。试验结果表明,该方法可以实现车载轨迹大数据按信息提取精度需求的滤选。
P228; 基于同步高低精度GPS轨迹数据的空间特征和GPS误差分布原理,提出了一种众源GPS车载轨迹大数据自适应分割-滤选模型。该模型首先通过角度、距离约束将完整的车载 GPS 轨迹数据进行分割,以轨迹分割段作为基本滤选单元;然后通过对比轨迹分割段内 GPS 轨迹向量与其参考基线间的相似度,按照相似度与GPS定位精度之间的量化关系指导滤选。试验结果表明,该方法可以实现车载轨迹大数据按信息提取精度需求的滤选。
Abstract_FL Vehicles’GPS traces collected by crowds have being as a new kind of big data and are widely applied to mine urban geographic information with low-cost,quick-update and rich-informative.However, the growing volume of vehicles’GPS traces has caused difficulties in data processing and their low quality adds uncertainty when information mining.Thus,it is a hot topic to extract high-quality GPS data from the crowdsourced traces based on the expected accuracy.In this paper,we propose an efficient partition-and-filter model to filter trajectories with expected accuracy according to the spatial feature of high-precision GPS data and the error rule of GPS data.First,the proposed partition-and-filter model to partition a trajectory into sub-trajectories based on the constrained distance and angle,which are chosen as the basic unit for the next processing step.Secondly,the proposed method collects high-quality GPS data from each sub-trajectory according to the similarity between GPS tracking points and the reference baselines constructed using random sample consensus algorithm.Experimental results demonstrate that the proposed method can effectively pick up high quality GPS data from crowdsourced trace data sets with the expected accuracy.
Author 唐炉亮 杨雪 牛乐 常乐 李清泉
AuthorAffiliation 武汉大学测绘遥感信息工程国家重点实验室;深圳大学土木工程学院空间信息智能感知与服务深圳市重点实验室
AuthorAffiliation_xml – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉,430079%武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079; 深圳大学 土木工程学院 空间信息智能感知与服务深圳市重点实验室,广东 深圳 518060
Author_FL YANG Xue
CHANG Le
LI Qingquan
TANG Luliang
NIU Le
Author_FL_xml – sequence: 1
  fullname: TANG Luliang
– sequence: 2
  fullname: YANG Xue
– sequence: 3
  fullname: NIU Le
– sequence: 4
  fullname: CHANG Le
– sequence: 5
  fullname: LI Qingquan
Author_xml – sequence: 1
  fullname: 唐炉亮 杨雪 牛乐 常乐 李清泉
BookMark eNotj81Kw0AUhWdRwVr7CC5dpt6bmWQyy1I0CgWFdl9mJkl_0FRbRN0FN-Ki4MLqCxQrLkRwY6vBl2lj-hbG1sW958D5uIe7QXJhN_QJ2UIoIQrGdzqlsluplUxAe7kAkedIHgHQQEtY66TY77cVgMUot6jIEzH7iH7Gg9nXYzK9S-OnNI7do1oaP6ffk_lonAzfksFrevOyiK7n0_vkc7SIbpOHSfI-3CRrgTzu-8V_LZD63m69sm9UD92DSrlqaM6E4QnNqabKN4PA8TwfbGSSoydszkxwJEotMRAiQPQVQwFcSaW0MFUWUQBaINursxcyDGTYbHS6570wK2zo1qX6exJNAJFxdMXpVjdsnrUz8rTXPpG9q4bNuek4tm0Bc5iwWDZLxxz6CyzhbTc
ClassificationCodes P228
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2016.20160117
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitle_FL An Adaptive Filtering Method Based on Crowdsourced Big Trace Data
EndPage 1463
ExternalDocumentID chxb201612009
67728866504849544950484948
GrantInformation_xml – fundername: 国家自然科学基金(41671442,41571430,41271442)Foundation support:The National Natural Science Foundation of China
  funderid: (.41671442,41571430,41271442)
GroupedDBID -01
2B.
2C.
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
GROUPED_DOAJ
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
~WA
4A8
93N
ABJNI
AEUYN
PHGZM
PHGZT
PMFND
PSX
ID FETCH-LOGICAL-c749-d9c73c3be2ff8dde0614a71d9674208a1aca1f99f11eb41907babbc92ba1a3003
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
Wed Feb 14 09:58:09 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords 众源轨迹数据
data filtering
trajectories partition
similarity model
轨迹分割
数据滤选
big data
相似度模型
crowdsourced trace
大数据
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c749-d9c73c3be2ff8dde0614a71d9674208a1aca1f99f11eb41907babbc92ba1a3003
Notes 11-2089/P
TANG Luliang;YANG Xue;NIU Le;CHANG Le;LI Qingquan;State Key Laboratory of Information Engineering in Surveying,Mapping,and Remote Sensing,Wuhan University;Shenzhen Key Laboratory of Spatial Smart Sensing and Services,College of Civil Engineering,Shenzhen University
PageCount 9
ParticipantIDs wanfang_journals_chxb201612009
chongqing_primary_67728866504849544950484948
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 测绘学报
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2016
Publisher 深圳大学 土木工程学院 空间信息智能感知与服务深圳市重点实验室,广东 深圳 518060
武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉,430079%武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
Publisher_xml – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉,430079%武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
– name: 深圳大学 土木工程学院 空间信息智能感知与服务深圳市重点实验室,广东 深圳 518060
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.071463
Snippet ...
P228; 基于同步高低精度GPS轨迹数据的空间特征和GPS误差分布原理,提出了一种众源GPS车载轨迹大数据自适应分割-滤选模型。该模型首先通过角度、距离约束将完整的车载 GPS 轨迹数据进行分割,以轨迹分割段作为基本滤选单元;然后通过对比轨迹分割段内 GPS...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1455
SubjectTerms 众源轨迹数据;轨迹分割;相似度模型;数据滤选;大数据
Title 一种众源车载GPS轨迹大数据自适应滤选方法
URI http://lib.cqvip.com/qk/90069X/201612/67728866504849544950484948.html
https://d.wanfangdata.com.cn/periodical/chxb201612009
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0ArlwgXxVMujygFzCYF9eNf20dtsW4FAoAapt2i92TSXJkBSCXqKuCAOlThQ-IGKIg4IiQstRJz4k3ZJ_4IZ7ybdQ5AoUmtN_JgZ73g9Y69nTMgNbVvoruhXPQZvE0ssqyo1S6o8drknnWbUTNBR-P4Df_kxu7vqrZZKvwqnljb6-na8OdWv5H-kCnkgV_SSPYFkJ0ghA2CQL6QgYUj_ScY0ZDQQeFgh5FRxKmomZ4FKTkOfBopKKBI0qFHl50BQW3q4Ms4UBlikgaShRxVDJNBQejSwEACEKsQ6AvArGkqkJRysjMiZoRJgw7xImua-QQipS7O7Lcfmr8n0qAiQYWgohaGbsQfkFFXeeAhgCVCQpnNAE3EzJKvCiqGS8S-pBAZUxdQyP7AWAFbFsCnwr5BlGorQcAL98nI-sxuGxvsfmWNmPlnjcTAwx7ziOHUKszEGYS9odlAK7nStIRk3akMtLazgcT_fJBgu71hNTg4v-rAgERgmECY_WF4y-DcQE6fIaQcK8SKNe4-KVi7YmKJoRcGkV4gSB68JLBonViVeAcD84yiOnu1y15eTVR2ajJ75iJ93P3dMw17cmdYHDBvS7nbWnoIxZHzTOq2os1Ywo-rnyNl8_VNW2WA-T0qb7QtkVvXwi0x3_UX5ZtnA2YZb7yKRB98Gv3e3Dn68T_ffjIYfRsMhjN_R8OPo597hzm66_SXd-jx69elo8PJw_236fedo8Dp9t5d-3b5E6othfWG5ml_3UY05k9WmjLkbuzpxWi0BShe3KiJuN6XP8QhIZEdxZLekbNl2ohnYsVxHWsfS0VDkgnK6TGY63U4yS8q21AlPmo7mImJxZGkZxRZoUt9rgs5hzhy5NXkgjSdZVJfG38U6R-bzZ9bIX_5eI24_1_h8bfy6eOVk-K6SM9g028i7Rmb6zzaS62Da9vW8GTh_AFVeeps
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E4%BC%97%E6%BA%90%E8%BD%A6%E8%BD%BDGPS%E8%BD%A8%E8%BF%B9%E5%A4%A7%E6%95%B0%E6%8D%AE%E8%87%AA%E9%80%82%E5%BA%94%E6%BB%A4%E9%80%89%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E5%94%90%E7%82%89%E4%BA%AE+%E6%9D%A8%E9%9B%AA+%E7%89%9B%E4%B9%90+%E5%B8%B8%E4%B9%90+%E6%9D%8E%E6%B8%85%E6%B3%89&rft.date=2016&rft.issn=1001-1595&rft.issue=12&rft.spage=1455&rft.epage=1463&rft_id=info:doi/10.11947%2Fj.AGCS.2016.20160117&rft.externalDocID=67728866504849544950484948
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg