Effects of Anticholinergic Drugs Used for the Therapy of Overactive Bladder on P-Glycoprotein Activity

We evaluated the effects of anticholinergic drugs principally used for the therapy of overactive bladder (OAB) on the activity of P-glycoprotein, an efflux transport protein, in Caco-2 cells. The time-dependent changes in the fluorescence of residual rhodamine 123, a P-glycoprotein activity marker,...

Full description

Saved in:
Bibliographic Details
Published inBiological & pharmaceutical bulletin Vol. 42; no. 12; pp. 1996 - 2001
Main Authors Okura, Takashi, Yamada, Shizuo, Otani, Naoyuki, Kagota, Satomi, Ito, Yoshihiko, Shinozuka, Kazumasa, Maruyama-Fumoto, Kana, Uemura, Naoto, Wakuda, Hirokazu, Miyauchi-Wakuda, Shino
Format Journal Article
LanguageEnglish
Published Japan The Pharmaceutical Society of Japan 01.12.2019
Pharmaceutical Society of Japan
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We evaluated the effects of anticholinergic drugs principally used for the therapy of overactive bladder (OAB) on the activity of P-glycoprotein, an efflux transport protein, in Caco-2 cells. The time-dependent changes in the fluorescence of residual rhodamine 123, a P-glycoprotein activity marker, in the apical region of Caco-2 cells were measured in the presence of anticholinergic drugs using time-lapse confocal laser scanning microscopy. The effect of anticholinergic drugs on human P-glycoprotein ATPase activity was also measured. The fluorescence of residual rhodamine 123 in untreated Caco-2 cells decreased over time. The gradual decrease in the fluorescence was significantly inhibited by treatment with cyclosporine A, darifenacin, and trospium. In contrast, oxybutynin, N-desethyl-oxybutynin (DEOB), propiverine, and its active metabolites (M-1, M-2), imidafenacin, solifenacin, or tolterodine had little effect on the efflux of rhodamine 123. P-Glycoprotein ATPase activity was increased by darifenacin. Darifenacin and trospium reduced the rhodamine 123 transfer across the apical cell membrane. These data suggest that darifenacin and trospium interact with P-glycoprotein. Additionally, darifenacin influenced P-glycoprotein ATPase activity. These results suggest that darifenacin may be a substrate of P-glycoprotein. This study is the first paper to test simultaneously the effects of 10 anticholinergic drugs used currently for the therapy of OAB, on the P-glycoprotein.
AbstractList We evaluated the effects of anticholinergic drugs principally used for the therapy of overactive bladder (OAB) on the activity of P-glycoprotein, an efflux transport protein, in Caco-2 cells. The time-dependent changes in the fluorescence of residual rhodamine 123, a P-glycoprotein activity marker, in the apical region of Caco-2 cells were measured in the presence of anticholinergic drugs using time-lapse confocal laser scanning microscopy. The effect of anticholinergic drugs on human P-glycoprotein ATPase activity was also measured. The fluorescence of residual rhodamine 123 in untreated Caco-2 cells decreased over time. The gradual decrease in the fluorescence was significantly inhibited by treatment with cyclosporine A, darifenacin, and trospium. In contrast, oxybutynin, N-desethyl-oxybutynin (DEOB), propiverine, and its active metabolites (M-1, M-2), imidafenacin, solifenacin, or tolterodine had little effect on the efflux of rhodamine 123. P-Glycoprotein ATPase activity was increased by darifenacin. Darifenacin and trospium reduced the rhodamine 123 transfer across the apical cell membrane. These data suggest that darifenacin and trospium interact with P-glycoprotein. Additionally, darifenacin influenced P-glycoprotein ATPase activity. These results suggest that darifenacin may be a substrate of P-glycoprotein. This study is the first paper to test simultaneously the effects of 10 anticholinergic drugs used currently for the therapy of OAB, on the P-glycoprotein. Graphical Abstract
We evaluated the effects of anticholinergic drugs principally used for the therapy of overactive bladder (OAB) on the activity of P-glycoprotein, an efflux transport protein, in Caco-2 cells. The time-dependent changes in the fluorescence of residual rhodamine 123, a P-glycoprotein activity marker, in the apical region of Caco-2 cells were measured in the presence of anticholinergic drugs using time-lapse confocal laser scanning microscopy. The effect of anticholinergic drugs on human P-glycoprotein ATPase activity was also measured. The fluorescence of residual rhodamine 123 in untreated Caco-2 cells decreased over time. The gradual decrease in the fluorescence was significantly inhibited by treatment with cyclosporine A, darifenacin, and trospium. In contrast, oxybutynin, N-desethyl-oxybutynin (DEOB), propiverine, and its active metabolites (M-1, M-2), imidafenacin, solifenacin, or tolterodine had little effect on the efflux of rhodamine 123. P-Glycoprotein ATPase activity was increased by darifenacin. Darifenacin and trospium reduced the rhodamine 123 transfer across the apical cell membrane. These data suggest that darifenacin and trospium interact with P-glycoprotein. Additionally, darifenacin influenced P-glycoprotein ATPase activity. These results suggest that darifenacin may be a substrate of P-glycoprotein. This study is the first paper to test simultaneously the effects of 10 anticholinergic drugs used currently for the therapy of OAB, on the P-glycoprotein.We evaluated the effects of anticholinergic drugs principally used for the therapy of overactive bladder (OAB) on the activity of P-glycoprotein, an efflux transport protein, in Caco-2 cells. The time-dependent changes in the fluorescence of residual rhodamine 123, a P-glycoprotein activity marker, in the apical region of Caco-2 cells were measured in the presence of anticholinergic drugs using time-lapse confocal laser scanning microscopy. The effect of anticholinergic drugs on human P-glycoprotein ATPase activity was also measured. The fluorescence of residual rhodamine 123 in untreated Caco-2 cells decreased over time. The gradual decrease in the fluorescence was significantly inhibited by treatment with cyclosporine A, darifenacin, and trospium. In contrast, oxybutynin, N-desethyl-oxybutynin (DEOB), propiverine, and its active metabolites (M-1, M-2), imidafenacin, solifenacin, or tolterodine had little effect on the efflux of rhodamine 123. P-Glycoprotein ATPase activity was increased by darifenacin. Darifenacin and trospium reduced the rhodamine 123 transfer across the apical cell membrane. These data suggest that darifenacin and trospium interact with P-glycoprotein. Additionally, darifenacin influenced P-glycoprotein ATPase activity. These results suggest that darifenacin may be a substrate of P-glycoprotein. This study is the first paper to test simultaneously the effects of 10 anticholinergic drugs used currently for the therapy of OAB, on the P-glycoprotein.
We evaluated the effects of anticholinergic drugs principally used for the therapy of overactive bladder (OAB) on the activity of P-glycoprotein, an efflux transport protein, in Caco-2 cells. The time-dependent changes in the fluorescence of residual rhodamine 123, a P-glycoprotein activity marker, in the apical region of Caco-2 cells were measured in the presence of anticholinergic drugs using time-lapse confocal laser scanning microscopy. The effect of anticholinergic drugs on human P-glycoprotein ATPase activity was also measured. The fluorescence of residual rhodamine 123 in untreated Caco-2 cells decreased over time. The gradual decrease in the fluorescence was significantly inhibited by treatment with cyclosporine A, darifenacin, and trospium. In contrast, oxybutynin, N-desethyl-oxybutynin (DEOB), propiverine, and its active metabolites (M-1, M-2), imidafenacin, solifenacin, or tolterodine had little effect on the efflux of rhodamine 123. P-Glycoprotein ATPase activity was increased by darifenacin. Darifenacin and trospium reduced the rhodamine 123 transfer across the apical cell membrane. These data suggest that darifenacin and trospium interact with P-glycoprotein. Additionally, darifenacin influenced P-glycoprotein ATPase activity. These results suggest that darifenacin may be a substrate of P-glycoprotein. This study is the first paper to test simultaneously the effects of 10 anticholinergic drugs used currently for the therapy of OAB, on the P-glycoprotein.
Author Ito, Yoshihiko
Shinozuka, Kazumasa
Uemura, Naoto
Kagota, Satomi
Otani, Naoyuki
Okura, Takashi
Wakuda, Hirokazu
Maruyama-Fumoto, Kana
Miyauchi-Wakuda, Shino
Yamada, Shizuo
Author_xml – sequence: 1
  fullname: Okura, Takashi
  organization: Laboratory of Pharmaceutics, Faculty of Pharma-Sciences, Teikyo University
– sequence: 1
  fullname: Yamada, Shizuo
  organization: Center for Pharma-Food Research, Graduate School of Pharmaceutical Sciences, University of Shizuoka
– sequence: 1
  fullname: Otani, Naoyuki
  organization: Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University
– sequence: 1
  fullname: Kagota, Satomi
  organization: Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
– sequence: 1
  fullname: Ito, Yoshihiko
  organization: Center for Pharma-Food Research, Graduate School of Pharmaceutical Sciences, University of Shizuoka
– sequence: 1
  fullname: Shinozuka, Kazumasa
  organization: Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
– sequence: 1
  fullname: Maruyama-Fumoto, Kana
  organization: Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
– sequence: 1
  fullname: Uemura, Naoto
  organization: Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University
– sequence: 1
  fullname: Wakuda, Hirokazu
  organization: Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University
– sequence: 1
  fullname: Miyauchi-Wakuda, Shino
  organization: Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31787715$$D View this record in MEDLINE/PubMed
BookMark eNp1kkFvGyEQhVGVqnHSHnutkHrpZdMBdpfdo5ukbqVI6SE5I5YFGwuDCziS_33ZbOpKkXphRsM3w4PHBTrzwWuEPhK4IrTuvg774WogfQVQA3-DFoTVvGooac7QAnrSVS1punN0kdIWADhQ9g6dM8I7zkmzQObWGK1ywsHgpc9WbYKzXse1VfgmHtYJPyY9YhMizhuNHzY6yv1xou-fSqqyfdL4m5PjqCMOHv-qVu6owj6GrK3Hywmw-fgevTXSJf3hJV6ix--3D9c_qrv71c_r5V2leM1z1YAhdKDSNKblJe2Y0aSXlBEFU52rvqRjXa40dDAyPoyjYqY3AxgGsmOX6Ms8twj4fdApi51NSjsnvQ6HJCij0LKeN3VBP79Ct-EQfVE3UaRtSE-gUJ9eqMOw06PYR7uT8Sj-vmABqhlQMaQUtTkhBMTkkCgOieKQeHao8OwVr2yW2Qafo7Tuv12ruatosEq64CeX_ilWiQ82uCAozD2U0BIaQfq-LUUo34KyuqVl0s08aZuyXOuTWhmL-U4_n1vTomFaTwJO22ojo9Ce_QHdW8Jf
CitedBy_id crossref_primary_10_3389_fnins_2021_754585
crossref_primary_10_1186_s12905_024_03103_1
crossref_primary_10_36290_uro_2020_026
Cites_doi 10.1002/nau.20798
10.1248/bpb.28.316
10.1016/j.jmgm.2016.12.008
10.1016/S0021-9258(18)82429-2
10.1007/s00192-013-2259-8
10.1016/j.clinthera.2005.02.014
10.1124/dmd.104.001669
10.1111/j.1447-0594.2005.00313.x
10.1002/jps.21831
10.1111/bcpt.12084
10.1111/j.2042-7158.2011.01294.x
10.1248/bpb.33.1238
10.1111/j.1365-2125.2011.03961.x
10.2165/00003088-200645040-00001
10.1080/14640748608401614
10.1002/nau.21110
10.1016/j.bbamem.2006.06.004
10.3390/pharmaceutics8020012
10.1046/j.1464-410x.2001.02228.x
10.1016/j.exer.2012.10.006
10.1080/00498250802050880
ContentType Journal Article
Copyright 2019 The Pharmaceutical Society of Japan
Copyright Japan Science and Technology Agency 2019
Copyright_xml – notice: 2019 The Pharmaceutical Society of Japan
– notice: Copyright Japan Science and Technology Agency 2019
CorporateAuthor Faculty of Pharma-Sciences
Teikyo University
aDepartment of Clinical Pharmacology and Therapeutics
Faculty of Medicine
School of Pharmacy and Pharmaceutical Sciences
Mukogawa Women's University
dCenter for Pharma-Food Research
Oita University
Graduate School of Pharmaceutical Sciences
bLaboratory of Pharmaceutics
University of Shizuoka
cDepartment of Pharmacology
CorporateAuthor_xml – name: Faculty of Medicine
– name: School of Pharmacy and Pharmaceutical Sciences
– name: Teikyo University
– name: Oita University
– name: cDepartment of Pharmacology
– name: dCenter for Pharma-Food Research
– name: bLaboratory of Pharmaceutics
– name: Graduate School of Pharmaceutical Sciences
– name: University of Shizuoka
– name: aDepartment of Clinical Pharmacology and Therapeutics
– name: Faculty of Pharma-Sciences
– name: Mukogawa Women's University
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
7X8
DOI 10.1248/bpb.b19-00407
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-5215
EndPage 2001
ExternalDocumentID 31787715
10_1248_bpb_b19_00407
cs7biolo_2019_004212_005_1996_20013423462
article_bpb_42_12_42_b19_00407_article_char_en
Genre Journal Article
GroupedDBID ---
23N
2WC
5GY
6J9
ABJNI
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HH5
JMI
JSF
JSH
KQ8
MOJWN
OK1
P2P
RJT
RZJ
TR2
XSB
AAYXX
CITATION
.55
1CY
53G
ABTAH
AI.
CGR
CUY
CVF
ECM
EIF
NPM
TKC
VH1
X7M
ZXP
ZY4
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c747t-50f12b2af5f67f1283fe19a231c02b2a7c931cd4158b80d37bddc3f9fb0f30a83
ISSN 0918-6158
1347-5215
IngestDate Fri Jul 11 01:47:11 EDT 2025
Mon Jun 30 09:58:59 EDT 2025
Thu Jan 02 22:59:29 EST 2025
Thu Apr 24 23:00:50 EDT 2025
Tue Jul 01 02:43:59 EDT 2025
Thu Jul 10 16:14:57 EDT 2025
Wed Sep 03 06:12:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords P-glycoprotein
anticholinergic drug
overactive bladder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c747t-50f12b2af5f67f1283fe19a231c02b2a7c931cd4158b80d37bddc3f9fb0f30a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/bpb/42/12/42_b19-00407/_article/-char/en
PMID 31787715
PQID 2321651910
PQPubID 1966364
PageCount 6
ParticipantIDs proquest_miscellaneous_2320639754
proquest_journals_2321651910
pubmed_primary_31787715
crossref_primary_10_1248_bpb_b19_00407
crossref_citationtrail_10_1248_bpb_b19_00407
medicalonline_journals_cs7biolo_2019_004212_005_1996_20013423462
jstage_primary_article_bpb_42_12_42_b19_00407_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Biological & pharmaceutical bulletin
PublicationTitleAlternate Biol Pharm Bull
PublicationYear 2019
Publisher The Pharmaceutical Society of Japan
Pharmaceutical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Pharmaceutical Society of Japan
– name: Pharmaceutical Society of Japan
– name: Japan Science and Technology Agency
References 32) Sandage B, Sabounjian L, Shipley J, Profy A, Lasseter K, Fox L, Harnett M. Predictive power of an in vitro system to assess drug interactions of an antimuscarinic medication: a comparison of in vitro and in vivo drug-drug interaction studies of trospium chloride with digoxin. J. Clin. Pharmacol., 46, 776–784 (2006).
18) Nare B, Prichard RK, Georges E. Characterization of rhodamine 123 binding to P-glycoprotein in human multidrug-resistant cells. Mol. Pharmacol., 45, 1145–1152 (1994).
26) Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control, 10, 159–165 (2003).
21) Kageyama M, Namiki H, Fukushima H, Ito Y, Shibata N, Takada K. In vivo effects of cyclosporine A and ketoconazole on the pharmacokinetics of representative substrates for P-glycoprotein and cytochrome P450 (CYP) 3A in rats. Biol. Pharm. Bull., 28, 316–322 (2005).
29) Koren G, Woodland C, Ito S. Toxic digoxin-drug interactions: The major role of renal P-glycoprotein. Vet. Hum. Toxicol., 40, 45–46 (1998).
34) Srikrishna S, Robinson D, Cardozo L. Important drug–drug interactions for treatments that target overactive bladder syndrome. Int. Urogynecol. J., 25, 715–720 (2014).
20) Wang Y, Hao D, Stein WD, Yang L. A kinetic study of Rhodamine 123 pumping by P-glycoprotein. Biochim. Biophys. Acta, 1758, 1671–1676 (2006).
17) Hunter J, Jepson MA, Tsuruo T, Simmons NL, Hirst BH. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem., 268, 14991–14997 (1993).
4) Chapple CR, Khullar V, Gabriel Z, Dooley JA. The effects of antimuscarinic treatments in overactive bladder: a systematic review and meta-analysis. Eur. Urol., 48, 5–26 (2005).
15) Zhang X, Qiu F, Jiang J, Gao C, Tan Y. Intestinal absorption mechanisms of berberine, palmatine, jateorhizine, and coptisine: involvement of P-glycoprotein. Xenobiotica, 41, 290–296 (2011).
1) Haylen BT, de Ridder D, Freeman RM, Swift SE, Berghmans B, Lee J, Monga A, Petri E, Rizk DE, Sand PK, Schaer GN. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodyn., 29, 4–20 (2010).
8) Ancelin ML, Artero S, Portet F, Dupuy A-M, Touchon J, Ritchie K. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. BMJ, 332, 455–459 (2006).
11) Wakuda H, Nejime N, Tada Y, Kagota S, Umegaki K, Yamada S, Shinozuka K. Highly sensitive measurement of P-glycoprotein-mediated transport activity in Caco-2 cells. Biol. Pharm. Bull., 33, 1238–1241 (2010).
10) Scheife R, Takeda M. Central nervous system safety of anticholinergic drugs for the treatment of overactive bladder in the elderly. Clin. Ther., 27, 144–153 (2005).
19) Annaert PP, Brouwer KL. Assessment of drug interactions in hepatobiliary transport using rhodamine 123 in sandwich-cultured rat hepatocytes. Drug Metab. Dispos., 33, 388–394 (2005).
14) Barot M, Gokulgandhi MR, Pal D, Mitra AK. Mitochondrial localization of P-glycoprotein and peptide transporters in corneal epithelial cells–novel strategies for intracellular drug targeting. Exp. Eye Res., 106, 47–54 (2013).
33) Mukhametov A, Raevsky OA. On the mechanism of substrate/non-substrate recognition by P-glycoprotein. J. Mol. Graph. Model., 71, 227–232 (2017).
5) Chapple CR, Khullar V, Gabriel Z, Muston D, Bitoun CE, Weinstein D. The effects of antimuscarinic treatments in overactive bladder: an update of a systematic review and meta-analysis. Eur. Urol., 54, 543–562 (2008).
22) Parasrampuria R, Mehvar R. Effects of P-glycoprotein and Mrp2 inhibitors on the hepatobiliary disposition of Rhodamine 123 and its glucuronidated metabolite in isolated perfused rat livers. J. Pharm. Sci., 99, 455–466 (2010).
23) Jouan E, Le Vée M, Mayati A, Denizot C, Parmentier Y, Fardel O. Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics, 8, 12 (2016).
2) Temml C, Haidinger G, Schmidbauer J, Schatzl G, Madersbacher S. Urinary incontinence in both sexes: prevalence rates and impact on quality of life and sexual life. Neurourol. Urodyn., 19, 259–271 (2000).
12) Wakuda H, Nejime N, Tada Y, Kagota S, Fahmi OA, Umegaki K, Yamada S, Shinozuka K. A novel method using confocal laser scanning microscopy for sensitive measurement of P-glycoprotein-mediated transport activity in Caco-2 cells. J. Pharm. Pharmacol., 63, 1015–1021 (2011).
27) Miller DW, Hinton M, Chen F. Evaluation of drug efflux transporter liabilities of darifenacin in cell culture models of the blood–brain and blood–ocular barriers. Neurourol. Urodyn., 30, 1633–1638 (2011).
25) van der Sandt IC, Blom-Roosemalen MC, de Boer AG, Breimer DD. Specificity of doxorubicin versus rhodamine-123 in assessing P-glycoprotein functionality in the LLC-PK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur. J. Pharm. Sci., 11, 207–214 (2000).
13) Gschwind L, Rollason V, Daali Y, Bonnabry P, Dayer P, Desmeules JA. Role of P-glycoprotein in the uptake/efflux transport of oral vitamin K antagonists and rivaroxaban through the Caco-2 cell model. Basic Clin. Pharmacol. Toxicol., 113, 259–265 (2013).
24) Lee JS, Paull K, Alvarez M, Hose C, Monks A, Grever M, Fojo AT, Bates SE. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol., 46, 627–638 (1994).
31) Darifenacin, Enablex®, prescribing information. Novartis Pharmaceuticals Corporation, East Hanover, NJ, U.S.A. (2004).
9) Kopelman MD. The cholinergic neurotransmitter system in human memory and dementia: a review. Q. J. Exp. Psychol. A, 38, 535–573 (1986).
3) Milsom I, Abrams P, Cardozo L, Roberts RG, Thüroff J, Wein AJ. How widespread are the symptoms of an overactive bladder, and how are they managed? A population-based prevalence study. BJU Int., 87, 760–766 (2001).
6) Arai H, Akishita M, Teramoto S, Arai H, Mizukami K, Morimoto S, Toba K. Incidence of adverse drug reactions in geriatric units of university hospitals. Geriatr. Gerontol. Int., 5, 293–297 (2005).
16) Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotica, 38, 1140–1164 (2008).
28) Skerjanec A. The clinical pharmacokinetics of darifenacin. Clin. Pharmacokinet., 45, 325–350 (2006).
7) Callegari E, Malhotra B, Bungay PJ, Webster R, Fenner KS, Kempshall S, LaPerle JL, Michel MC, Kay GG. A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder. Br. J. Clin. Pharmacol., 72, 235–246 (2011).
30) Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM. Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation, 99, 552–557 (1999).
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 4) Chapple CR, Khullar V, Gabriel Z, Dooley JA. The effects of antimuscarinic treatments in overactive bladder: a systematic review and meta-analysis. Eur. Urol., 48, 5–26 (2005).
– reference: 17) Hunter J, Jepson MA, Tsuruo T, Simmons NL, Hirst BH. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem., 268, 14991–14997 (1993).
– reference: 30) Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM. Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation, 99, 552–557 (1999).
– reference: 25) van der Sandt IC, Blom-Roosemalen MC, de Boer AG, Breimer DD. Specificity of doxorubicin versus rhodamine-123 in assessing P-glycoprotein functionality in the LLC-PK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur. J. Pharm. Sci., 11, 207–214 (2000).
– reference: 26) Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control, 10, 159–165 (2003).
– reference: 20) Wang Y, Hao D, Stein WD, Yang L. A kinetic study of Rhodamine 123 pumping by P-glycoprotein. Biochim. Biophys. Acta, 1758, 1671–1676 (2006).
– reference: 8) Ancelin ML, Artero S, Portet F, Dupuy A-M, Touchon J, Ritchie K. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. BMJ, 332, 455–459 (2006).
– reference: 9) Kopelman MD. The cholinergic neurotransmitter system in human memory and dementia: a review. Q. J. Exp. Psychol. A, 38, 535–573 (1986).
– reference: 32) Sandage B, Sabounjian L, Shipley J, Profy A, Lasseter K, Fox L, Harnett M. Predictive power of an in vitro system to assess drug interactions of an antimuscarinic medication: a comparison of in vitro and in vivo drug-drug interaction studies of trospium chloride with digoxin. J. Clin. Pharmacol., 46, 776–784 (2006).
– reference: 28) Skerjanec A. The clinical pharmacokinetics of darifenacin. Clin. Pharmacokinet., 45, 325–350 (2006).
– reference: 18) Nare B, Prichard RK, Georges E. Characterization of rhodamine 123 binding to P-glycoprotein in human multidrug-resistant cells. Mol. Pharmacol., 45, 1145–1152 (1994).
– reference: 22) Parasrampuria R, Mehvar R. Effects of P-glycoprotein and Mrp2 inhibitors on the hepatobiliary disposition of Rhodamine 123 and its glucuronidated metabolite in isolated perfused rat livers. J. Pharm. Sci., 99, 455–466 (2010).
– reference: 29) Koren G, Woodland C, Ito S. Toxic digoxin-drug interactions: The major role of renal P-glycoprotein. Vet. Hum. Toxicol., 40, 45–46 (1998).
– reference: 3) Milsom I, Abrams P, Cardozo L, Roberts RG, Thüroff J, Wein AJ. How widespread are the symptoms of an overactive bladder, and how are they managed? A population-based prevalence study. BJU Int., 87, 760–766 (2001).
– reference: 23) Jouan E, Le Vée M, Mayati A, Denizot C, Parmentier Y, Fardel O. Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics, 8, 12 (2016).
– reference: 11) Wakuda H, Nejime N, Tada Y, Kagota S, Umegaki K, Yamada S, Shinozuka K. Highly sensitive measurement of P-glycoprotein-mediated transport activity in Caco-2 cells. Biol. Pharm. Bull., 33, 1238–1241 (2010).
– reference: 31) Darifenacin, Enablex®, prescribing information. Novartis Pharmaceuticals Corporation, East Hanover, NJ, U.S.A. (2004).
– reference: 21) Kageyama M, Namiki H, Fukushima H, Ito Y, Shibata N, Takada K. In vivo effects of cyclosporine A and ketoconazole on the pharmacokinetics of representative substrates for P-glycoprotein and cytochrome P450 (CYP) 3A in rats. Biol. Pharm. Bull., 28, 316–322 (2005).
– reference: 5) Chapple CR, Khullar V, Gabriel Z, Muston D, Bitoun CE, Weinstein D. The effects of antimuscarinic treatments in overactive bladder: an update of a systematic review and meta-analysis. Eur. Urol., 54, 543–562 (2008).
– reference: 6) Arai H, Akishita M, Teramoto S, Arai H, Mizukami K, Morimoto S, Toba K. Incidence of adverse drug reactions in geriatric units of university hospitals. Geriatr. Gerontol. Int., 5, 293–297 (2005).
– reference: 14) Barot M, Gokulgandhi MR, Pal D, Mitra AK. Mitochondrial localization of P-glycoprotein and peptide transporters in corneal epithelial cells–novel strategies for intracellular drug targeting. Exp. Eye Res., 106, 47–54 (2013).
– reference: 27) Miller DW, Hinton M, Chen F. Evaluation of drug efflux transporter liabilities of darifenacin in cell culture models of the blood–brain and blood–ocular barriers. Neurourol. Urodyn., 30, 1633–1638 (2011).
– reference: 2) Temml C, Haidinger G, Schmidbauer J, Schatzl G, Madersbacher S. Urinary incontinence in both sexes: prevalence rates and impact on quality of life and sexual life. Neurourol. Urodyn., 19, 259–271 (2000).
– reference: 34) Srikrishna S, Robinson D, Cardozo L. Important drug–drug interactions for treatments that target overactive bladder syndrome. Int. Urogynecol. J., 25, 715–720 (2014).
– reference: 33) Mukhametov A, Raevsky OA. On the mechanism of substrate/non-substrate recognition by P-glycoprotein. J. Mol. Graph. Model., 71, 227–232 (2017).
– reference: 1) Haylen BT, de Ridder D, Freeman RM, Swift SE, Berghmans B, Lee J, Monga A, Petri E, Rizk DE, Sand PK, Schaer GN. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodyn., 29, 4–20 (2010).
– reference: 16) Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotica, 38, 1140–1164 (2008).
– reference: 24) Lee JS, Paull K, Alvarez M, Hose C, Monks A, Grever M, Fojo AT, Bates SE. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol., 46, 627–638 (1994).
– reference: 15) Zhang X, Qiu F, Jiang J, Gao C, Tan Y. Intestinal absorption mechanisms of berberine, palmatine, jateorhizine, and coptisine: involvement of P-glycoprotein. Xenobiotica, 41, 290–296 (2011).
– reference: 7) Callegari E, Malhotra B, Bungay PJ, Webster R, Fenner KS, Kempshall S, LaPerle JL, Michel MC, Kay GG. A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder. Br. J. Clin. Pharmacol., 72, 235–246 (2011).
– reference: 19) Annaert PP, Brouwer KL. Assessment of drug interactions in hepatobiliary transport using rhodamine 123 in sandwich-cultured rat hepatocytes. Drug Metab. Dispos., 33, 388–394 (2005).
– reference: 12) Wakuda H, Nejime N, Tada Y, Kagota S, Fahmi OA, Umegaki K, Yamada S, Shinozuka K. A novel method using confocal laser scanning microscopy for sensitive measurement of P-glycoprotein-mediated transport activity in Caco-2 cells. J. Pharm. Pharmacol., 63, 1015–1021 (2011).
– reference: 13) Gschwind L, Rollason V, Daali Y, Bonnabry P, Dayer P, Desmeules JA. Role of P-glycoprotein in the uptake/efflux transport of oral vitamin K antagonists and rivaroxaban through the Caco-2 cell model. Basic Clin. Pharmacol. Toxicol., 113, 259–265 (2013).
– reference: 10) Scheife R, Takeda M. Central nervous system safety of anticholinergic drugs for the treatment of overactive bladder in the elderly. Clin. Ther., 27, 144–153 (2005).
– ident: 2
– ident: 18
– ident: 1
  doi: 10.1002/nau.20798
– ident: 4
– ident: 21
  doi: 10.1248/bpb.28.316
– ident: 33
  doi: 10.1016/j.jmgm.2016.12.008
– ident: 17
  doi: 10.1016/S0021-9258(18)82429-2
– ident: 34
  doi: 10.1007/s00192-013-2259-8
– ident: 10
  doi: 10.1016/j.clinthera.2005.02.014
– ident: 31
– ident: 19
  doi: 10.1124/dmd.104.001669
– ident: 6
  doi: 10.1111/j.1447-0594.2005.00313.x
– ident: 22
  doi: 10.1002/jps.21831
– ident: 13
  doi: 10.1111/bcpt.12084
– ident: 24
– ident: 12
  doi: 10.1111/j.2042-7158.2011.01294.x
– ident: 11
  doi: 10.1248/bpb.33.1238
– ident: 26
– ident: 7
  doi: 10.1111/j.1365-2125.2011.03961.x
– ident: 28
  doi: 10.2165/00003088-200645040-00001
– ident: 5
– ident: 9
  doi: 10.1080/14640748608401614
– ident: 27
  doi: 10.1002/nau.21110
– ident: 15
– ident: 32
– ident: 29
– ident: 30
– ident: 20
  doi: 10.1016/j.bbamem.2006.06.004
– ident: 23
  doi: 10.3390/pharmaceutics8020012
– ident: 3
  doi: 10.1046/j.1464-410x.2001.02228.x
– ident: 8
– ident: 14
  doi: 10.1016/j.exer.2012.10.006
– ident: 16
  doi: 10.1080/00498250802050880
– ident: 25
SSID ssj0007023
ssib058492369
ssib023156946
ssib002483627
ssib002822050
ssib017383521
Score 2.2794213
Snippet We evaluated the effects of anticholinergic drugs principally used for the therapy of overactive bladder (OAB) on the activity of P-glycoprotein, an efflux...
SourceID proquest
pubmed
crossref
medicalonline
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1996
SubjectTerms Adenosine triphosphatase
Adenosine Triphosphatases - metabolism
anticholinergic drug
Anticholinergics
ATP Binding Cassette Transporter, Subfamily B - metabolism
Caco-2 Cells
Cell membranes
Cholinergic Antagonists - pharmacology
Cholinergic Antagonists - therapeutic use
Confocal microscopy
Cyclosporins
Drugs
Glycoproteins
Humans
Metabolites
overactive bladder
P-Glycoprotein
Protein transport
Rhodamine
Urinary Bladder, Overactive - drug therapy
Title Effects of Anticholinergic Drugs Used for the Therapy of Overactive Bladder on P-Glycoprotein Activity
URI https://www.jstage.jst.go.jp/article/bpb/42/12/42_b19-00407/_article/-char/en
http://mol.medicalonline.jp/library/journal/download?GoodsID=cs7biolo/2019/004212/005&name=1996-2001e
https://www.ncbi.nlm.nih.gov/pubmed/31787715
https://www.proquest.com/docview/2321651910
https://www.proquest.com/docview/2320639754
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biological and Pharmaceutical Bulletin, 2019/12/01, Vol.42(12), pp.1996-2001
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj9JAEN_gaaKJMcr5gZ5mTQwvUOx3y4OJeIJEz7tLLAlvze62PRFoCdAHzn_emd3SguGS05fSbGc3LfPb2ZmdnRlC3jHdZ13BYy2B1V6zLROmlHAMjflWZMXM5Z6HgcLfz93hyP46dsa12u_d6JI174jrg3El_8NVaAO-YpTsP3C2HBQa4B74C1fgMFxvxeN-dRijl2IEFVbgiZcgzFqfl_nVqjVagT65PUgYqAQCSH0Bn8qkpGt9mqHsWaLT4FL7MtuITKZukIUkVGWJPb_vpBSWiJnFz70dcb6by1vu0k_zSGqnw8kym7LrvNzTneaywFErYFMs51RtjC_zDZszbZADhjJ13iMtl45v7CpT6u4Pts7mk909C6O7c_5DiVnL9sAEVoGcnfhAWyGbbXMXg-aOpMXT0weXANPGsAa-4B2O8VkgpLxqrdv6988vwsHo7CwM-uPgDrlrgo1hSqle2U6eLmsDlq9VJGiF4d_vDb6n0Nz7BTo9Jmt4OFd-NpXv5GbzRaoxwWPyqLA_aE-B6QmpxWmdHPdS_Ds3tEnliWDpaqmT-6fbaoB10rxUrN60aVCF7K3askuZ_XxzTJIClDRL6F-gpBKUFEFJAZQUQFkMtkHqCpS0ACXNUroPSroF5VMyGvSD06FWFPPQBFisa83RE8PkJkucxPXg1reS2OgyMC-Eju2e6MJtBPqkz309sjweRcJKugnXE0sH0fGMHKVZGr8glAnfASHCPDNKbFtEzIwNIXQr4onrCtdpkPaWI6EoMt1jwZVZiBYvMDAEBobAwFAysEGaJflCpXi5ifCDYm9JVsx8SWab0AWvJX35GAMoQV41yMc9VISFKFmFYuXJnGshThbsDAol_DghohwrxRqYqNN2zQY52QKp6g1GkeGCJWboDfK2fAz4QN8fS-MslzTSh-_YDfJcAbD8CjAhfM8znJe36P2KPKgm9Ak5Wi_z-DWo5Wv-Rk6fP2At5gY
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Anticholinergic+Drugs+Used+for+the+Therapy+of+Overactive+Bladder+on+P-Glycoprotein+Activity&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Wakuda%2C+Hirokazu&rft.au=Okura%2C+Takashi&rft.au=Maruyama-Fumoto%2C+Kana&rft.au=Kagota%2C+Satomi&rft.date=2019-12-01&rft.issn=1347-5215&rft.eissn=1347-5215&rft.volume=42&rft.issue=12&rft.spage=1996&rft_id=info:doi/10.1248%2Fbpb.b19-00407&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon