Nucleotide degradation and ribose salvage in yeast
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated wi...
Saved in:
Published in | Molecular systems biology Vol. 9; no. 1; pp. 665 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
2013
John Wiley & Sons, Ltd EMBO Press Wiley European Molecular Biology Organization Springer Nature |
Subjects | |
Online Access | Get full text |
ISSN | 1744-4292 1744-4292 |
DOI | 10.1038/msb.2013.21 |
Cover
Abstract | Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress.
Synopsis
Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress.
During carbon starvation, ribose salvage from nucleotides promotes yeast survival.
The salvage pathway requires the previously misannotated nucleotidase Phm8.
Ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate.
This carbon reserve enables rapid NADPH production in oxidative stress. |
---|---|
AbstractList | Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. During carbon starvation, ribose salvage from nucleotides promotes yeast survival. The salvage pathway requires the previously misannotated nucleotidase Phm8. Ribose-derived carbon accumulates as sedoheptulose-7-phosphate. This carbon reserve enables rapid NADPH production in oxidative stress. Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. image During carbon starvation, ribose salvage from nucleotides promotes yeast survival. The salvage pathway requires the previously misannotated nucleotidase Phm8. Ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate. This carbon reserve enables rapid NADPH production in oxidative stress. Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. Synopsis Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. During carbon starvation, ribose salvage from nucleotides promotes yeast survival. The salvage pathway requires the previously misannotated nucleotidase Phm8. Ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate. This carbon reserve enables rapid NADPH production in oxidative stress. Abstract Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. |
Author | Absalan, Farnaz Lu, Wenyun Caudy, Amy A Yakunin, Alexander F Létisse, Fabien Kuznetsova, Ekaterina Broach, James R Brown, Greg Xu, Yi‐Fan Rabinowitz, Joshua D |
Author_xml | – sequence: 1 givenname: Yi‐Fan surname: Xu fullname: Xu, Yi‐Fan organization: Lewis Sigler Institute for Integrative Genomics, Princeton University, Department of Chemistry, Princeton University – sequence: 2 givenname: Fabien surname: Létisse fullname: Létisse, Fabien organization: Université de Toulouse, INSA, UPS, INP; LISBP – sequence: 3 givenname: Farnaz surname: Absalan fullname: Absalan, Farnaz organization: Department of Molecular Biology, Princeton University – sequence: 4 givenname: Wenyun surname: Lu fullname: Lu, Wenyun organization: Lewis Sigler Institute for Integrative Genomics, Princeton University – sequence: 5 givenname: Ekaterina surname: Kuznetsova fullname: Kuznetsova, Ekaterina organization: Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto – sequence: 6 givenname: Greg surname: Brown fullname: Brown, Greg organization: Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto – sequence: 7 givenname: Amy A surname: Caudy fullname: Caudy, Amy A organization: Donnelly Centre for Cellular and Biomolecular Research, University of Toronto – sequence: 8 givenname: Alexander F surname: Yakunin fullname: Yakunin, Alexander F organization: Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto – sequence: 9 givenname: James R surname: Broach fullname: Broach, James R organization: Department of Molecular Biology, Princeton University – sequence: 10 givenname: Joshua D surname: Rabinowitz fullname: Rabinowitz, Joshua D email: joshr@princeton.edu organization: Lewis Sigler Institute for Integrative Genomics, Princeton University, Department of Chemistry, Princeton University, Chemistry and Genomics, Princeton University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23670538$$D View this record in MEDLINE/PubMed https://insa-toulouse.hal.science/hal-02170940$$DView record in HAL https://www.osti.gov/servlets/purl/1623808$$D View this record in Osti.gov |
BookMark | eNqFkktvEzEURkeoiD5gxR5FsAFBgp8z9gapVEArBVgAa8uPO4mriV3sSVD-PZ5MKW3EY2XLc-6Z6-vvuDoIMUBVPcZohhEVr1fZzAjCdEbwveoIN4xNGZHk4Nb-sDrO-RIVGgvyoDoktG4Qp-KoIp_WtoPYewcTB4ukne59DBMd3CR5EzNMsu42egETHyZb0Ll_WN1vdZfh0fV6Un17_-7r2fl0_vnDxdnpfGobRvG0kYa3xmAqHGqI0byVzqHacYylsxK1RiPOJceOUAEgHK5bIZwmnImWGUlPqovR66K-VFfJr3Taqqi92h3EtFA69b60r2iNmK0bEK1lDIyQ1mjKUN0CBWQYL643o-tqbVbgLIQ-6e6O9O6X4JdqETeKISppPTTzdBTE3HuVre_BLm0MAWyvcF2ugESBXozQcs99fjpXwxkiuEGSoQ0u7PPrjlL8vobcq5XPFrpOB4jrrDCva0E54vL_KOW4xligwfpsD72M6xTKMylCpMRESDZQT25P46bVX7EowMsRsCnmnKC9QTBSQ-hUCZ0aQqfIoMN7dBnPLkZllL77Sw0Za374Drb_0quPX94O213Rq7EoFz4sIP2-3Z_-8RPT8PSs |
CitedBy_id | crossref_primary_10_1016_j_bbagen_2019_129465 crossref_primary_10_1186_s12915_014_0060_x crossref_primary_10_1038_s41467_021_27152_4 crossref_primary_10_1038_s42255_020_0219_4 crossref_primary_10_1091_mbc_E18_08_0515 crossref_primary_10_1021_ac504118y crossref_primary_10_1016_j_cub_2014_09_004 crossref_primary_10_1074_jbc_M114_558643 crossref_primary_10_1016_j_xcrp_2024_102041 crossref_primary_10_1111_mmi_13133 crossref_primary_10_1016_j_isci_2022_104681 crossref_primary_10_1021_acschembio_8b00804 crossref_primary_10_3390_life14010029 crossref_primary_10_1111_nph_14782 crossref_primary_10_3389_fmicb_2020_01367 crossref_primary_10_1101_gad_283416_116 crossref_primary_10_1016_j_crfs_2024_100820 crossref_primary_10_15252_embj_201489083 crossref_primary_10_1007_s00294_015_0544_4 crossref_primary_10_1016_j_celrep_2014_10_002 crossref_primary_10_1074_jbc_M115_657916 crossref_primary_10_1016_j_jbiosc_2015_02_011 crossref_primary_10_1016_j_coisb_2021_100390 crossref_primary_10_1016_j_dnarep_2014_07_009 crossref_primary_10_1371_journal_pbio_2002039 crossref_primary_10_1002_lol2_10043 crossref_primary_10_1038_s41589_024_01689_z crossref_primary_10_2217_fmb_2016_0025 crossref_primary_10_1007_s00294_016_0590_6 crossref_primary_10_15252_embj_201490621 crossref_primary_10_1093_femsre_fuaa069 crossref_primary_10_1016_j_algal_2016_12_003 crossref_primary_10_1038_s41467_024_50058_w crossref_primary_10_1074_jbc_M113_503557 crossref_primary_10_1093_nar_gku1251 crossref_primary_10_1111_1567_1364_12137 crossref_primary_10_3390_cells8010067 crossref_primary_10_3390_jof7110987 crossref_primary_10_1016_j_bbrc_2018_05_047 crossref_primary_10_1128_mbio_00102_23 crossref_primary_10_1016_j_foodres_2022_112275 crossref_primary_10_7554_eLife_84295 crossref_primary_10_1074_jbc_M117_807214 crossref_primary_10_1007_s11515_015_1367_x crossref_primary_10_15252_emmm_202012461 crossref_primary_10_1038_s41598_020_61745_1 crossref_primary_10_1186_s12934_024_02365_6 crossref_primary_10_1128_AEM_01086_14 crossref_primary_10_7554_eLife_63341 crossref_primary_10_1016_j_ymben_2016_08_003 crossref_primary_10_1016_j_molimm_2015_07_036 crossref_primary_10_3390_md18110563 crossref_primary_10_1002_yea_3434 crossref_primary_10_1007_s11694_018_9765_9 crossref_primary_10_1038_s41598_020_65935_9 |
Cites_doi | 10.1126/science.1212642 10.1074/jbc.M008300200 10.1016/j.cell.2004.11.047 10.1016/j.cbpa.2004.12.004 10.1186/jbiol61 10.1126/science.1139080 10.1074/jbc.M411023200 10.1038/nprot.2008.107 10.1074/jbc.M109.079848 10.1146/annurev.genet.41.110306.130206 10.1038/nbt823 10.1038/nature11745 10.1021/ja072997c 10.1074/jbc.273.7.3963 10.1007/BF00229818 10.1534/genetics.111.135731 10.1002/1521-4028(200112)41:6<329::AID-JOBM329>3.0.CO;2-4 10.1038/msb.2009.100 10.1074/jbc.M110.118315 10.1038/nature03029 10.1074/jbc.M203030200 10.1042/bj20030414 10.1073/pnas.0903316106 10.1016/S0092-8674(02)01043-7 10.1371/journal.pcbi.1000270 10.1091/mbc.E09-07-0597 10.1016/j.jmb.2005.02.019 10.1091/mbc.9.12.3273 10.1073/pnas.102687599 10.1146/annurev.ge.26.120192.001111 10.1038/nbt1492 10.1083/jcb.151.4.863 10.1146/annurev.py.33.090195.001503 10.1186/1752-0509-2-87 10.1046/j.1365-2958.2001.02283.x 10.1038/nchembio0805-130 10.1016/j.febslet.2012.09.042 10.1091/mbc.e07-05-0485 10.1101/gad.2011311 10.1016/S0065-2911(08)60318-5 10.1111/j.1742-4658.2006.05155.x 10.1074/jbc.M605449200 10.1101/sqb.2012.76.011015 10.1111/j.1432-1033.1975.tb03925.x 10.1016/j.cell.2011.05.022 10.1128/AEM.68.3.1336-1343.2002 10.1038/nchembio.941 10.1016/j.bbrc.2003.11.179 10.1007/s00294-002-0296-9 10.1111/j.1567-1364.2011.00765.x 10.1074/jbc.M706752200 10.1038/msb.2009.65 10.1002/bit.10378 10.1016/j.molcel.2012.07.013 10.1016/j.pharmthera.2005.01.003 10.1126/science.1192588 10.1038/msb.2009.2 10.1091/mbc.11.12.4241 10.1038/nbt.2489 10.1038/nchembio.186 10.1038/83496 10.1126/science.1065810 10.1074/jbc.M200573200 10.1101/gad.2016111 10.1023/A:1013713905833 10.1021/ac902837x 10.1101/gad.2016311 10.1007/BF02826554 10.1128/JB.183.16.4910-4913.2001 |
ContentType | Journal Article |
Copyright | EMBO and Macmillan Publishers Limited 2013 Copyright © 2013 EMBO and Macmillan Publishers Limited 2013. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2013, EMBO and Macmillan Publishers Limited 2013 EMBO and Macmillan Publishers Limited |
Copyright_xml | – notice: EMBO and Macmillan Publishers Limited 2013 – notice: Copyright © 2013 EMBO and Macmillan Publishers Limited – notice: 2013. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2013, EMBO and Macmillan Publishers Limited 2013 EMBO and Macmillan Publishers Limited |
CorporateAuthor | Princeton Univ., NJ (United States) |
CorporateAuthor_xml | – name: Princeton Univ., NJ (United States) |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 1XC VOOES OIOZB OTOTI 5PM DOA |
DOI | 10.1038/msb.2013.21 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Database (NC LIVE) Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_3604c67e8fc44eb89cba3406fe3e0b45 PMC4039369 1623808 oai_HAL_hal_02170940v1 23670538 10_1038_msb_2013_21 MSB201321 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA163591 |
GroupedDBID | --- -Q- 0R~ 123 1OC 24P 29M 2WC 39C 4.4 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAJSJ AAMMB ABDBF ABUWG ACCMX ACGFO ACPRK ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN AEFGJ AEGXH AENEX AEUYN AFKRA AFRAH AGXDD AHMBA AIAGR AIDQK AIDYY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN ESX F5P FYUFA GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HYE IAO IHR INH ITC KQ8 LK8 M1P M2O M48 M7P ML0 M~E NAO O5R O5S OK1 OVT P2P PADUT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M AASML AVUZU COF EBLON HZ~ IGS O9- PUEGO AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7TM 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC VOOES AAPBV ABPTK M0L OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c7431-79b5fbb138d072ba5f9dd06d5119dc90fba055951d238ee8d16f88da2548f4b93 |
IEDL.DBID | M48 |
ISSN | 1744-4292 |
IngestDate | Wed Aug 27 01:09:29 EDT 2025 Thu Aug 21 18:13:58 EDT 2025 Mon Jul 10 02:35:04 EDT 2023 Fri Sep 12 12:40:55 EDT 2025 Fri Sep 05 12:10:36 EDT 2025 Thu Sep 04 15:40:45 EDT 2025 Wed Aug 13 04:06:02 EDT 2025 Thu Aug 07 06:23:27 EDT 2025 Tue Jul 01 04:10:32 EDT 2025 Thu Apr 24 23:11:37 EDT 2025 Tue Sep 09 05:10:57 EDT 2025 Tue Aug 12 01:10:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | nutrient starvation mass spectrometry metabolism autophagy Subject Categories: RNA cellular metabolism Keywords: autophagy Saccharomyces cerevisiae |
Language | English |
License | Attribution-NonCommercial-ShareAlike Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7431-79b5fbb138d072ba5f9dd06d5119dc90fba055951d238ee8d16f88da2548f4b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0002077 USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division |
ORCID | 0000-0002-1490-0152 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/msb.2013.21 |
PMID | 23670538 |
PQID | 2299128941 |
PQPubID | 29031 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3604c67e8fc44eb89cba3406fe3e0b45 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4039369 osti_scitechconnect_1623808 hal_primary_oai_HAL_hal_02170940v1 proquest_miscellaneous_1566835059 proquest_miscellaneous_1351611801 proquest_journals_2299128941 pubmed_primary_23670538 crossref_primary_10_1038_msb_2013_21 crossref_citationtrail_10_1038_msb_2013_21 wiley_primary_10_1038_msb_2013_21_MSB201321 springer_journals_10_1038_msb_2013_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Chichester, UK – name: Germany – name: United States |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationTitleAlternate | Mol Syst Biol |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK John Wiley & Sons, Ltd EMBO Press Wiley European Molecular Biology Organization Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: John Wiley & Sons, Ltd – name: EMBO Press – name: Wiley – name: European Molecular Biology Organization – name: Springer Nature |
References | 2001; 183 1997; 42 1995; 33 2002; 111 2002; 99 2002; 277 2005b; 9 2008; 3 2012b; 48 2008; 2 1975; 51 2003; 278 2012; 12 2001; 41 1998; 273 2010; 21 2012; 493 2002; 48 2001; 294 2002; 41 2000; 11 2005; 348 2005; 107 2001; 19 2008; 26 2007; 6 2011; 25 2006; 281 1991; 104 2010; 6 2012a; 8 2007; 18 2011; 334 2007; 129 2012; 586 2002; 79 2006; 273 1996 2000; 151 2010; 285 2011; 76 2008; 283 2003; 374 2010; 82 2001; 276 2007; 316 2004; 313 2004; 279 2004; 432 1977; 15 2005a; 1 2002; 68 2012; 192 2013; 31 2010; 330 2009; 5 1992; 26 2001; 39 2008; 42 2004; 119 2011; 145 2003; 21 1998; 9 2009; 106 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 Bremer H (e_1_2_7_10_1) 1996 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 3 start-page: 1299 year: 2008 end-page: 1311 article-title: Absolute quantitation of intracellular metabolite concentrations by an isotope ratio‐based approach publication-title: Nat Protoc – volume: 273 start-page: 3963 year: 1998 end-page: 3966 article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast publication-title: J Biol Chem – volume: 277 start-page: 22103 year: 2002 end-page: 22106 article-title: SDT1/SSM1, a multicopy suppressor of S‐II null mutant, encodes a novel pyrimidine 5'‐nucleotidase publication-title: J Biol Chem – volume: 104 start-page: 181 year: 1991 end-page: 187 article-title: Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate publication-title: Mol Cell Biochem – volume: 106 start-page: 17049 year: 2009 end-page: 17054 article-title: The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 593 year: 2009 end-page: 599 article-title: Absolute metabolite concentrations and implied enzyme active site occupancy in publication-title: Nat Chem Biol – volume: 25 start-page: 717 year: 2011 end-page: 729 article-title: Pancreatic cancers require autophagy for tumor growth publication-title: Genes Dev – volume: 26 start-page: 159 year: 1992 end-page: 177 article-title: Genetics and Intermediary Metabolism publication-title: Annu Rev Genet – volume: 432 start-page: 1032 year: 2004 end-page: 1036 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature – volume: 145 start-page: 969 year: 2011 end-page: 980 article-title: Riboneogenesis in yeast publication-title: Cell – volume: 8 start-page: 562 year: 2012a end-page: 568 article-title: Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase publication-title: Nat Chem Biol – volume: 26 start-page: 1155 year: 2008 end-page: 1160 article-title: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology publication-title: Nat Biotechnol – start-page: 1553 year: 1996 end-page: 1569 article-title: Modulation of chemical composition and other parameters of the cell by growth rate publication-title: Escherichia coli and Salmonella – volume: 79 start-page: 703 year: 2002 end-page: 712 article-title: A functional genomics approach using metabolomics and in silico pathway analysis publication-title: Biotechnol Bioeng – volume: 334 start-page: 1524 year: 2011 end-page: 1529 article-title: The structure of the eukaryotic ribosome at 3.0 angstrom resolution publication-title: Science – volume: 42 start-page: 463 year: 1997 end-page: 467 article-title: Continuous cultivation of bakers' yeast: change in cell composition at different dilution rates and effect of heat stress on trehalose level publication-title: Folia Microbiol – volume: 1 start-page: 130 year: 2005a end-page: 142 article-title: Assignment of protein function in the postgenomic era publication-title: Nat Chem Biol – volume: 273 start-page: 1089 year: 2006 end-page: 1101 article-title: Pentose phosphates in nucleoside interconversion and catabolism publication-title: The FEBS journal – volume: 39 start-page: 533 year: 2001 end-page: 541 article-title: Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions publication-title: Mol Microbiol – volume: 11 start-page: 4241 year: 2000 end-page: 4257 article-title: Genomic expression programs in the response of yeast cells to environmental changes publication-title: Mol Biol Cell – volume: 2 start-page: 87 year: 2008 article-title: A quantitative estimation of the global translational activity in logarithmically growing yeast cells publication-title: Bmc Systems Biol – volume: 48 start-page: 52 year: 2012b end-page: 62 article-title: Regulation of yeast pyruvate kinase by ultrasensitive allostery independent of phosphorylation publication-title: Mol Cell – volume: 183 start-page: 4910 year: 2001 end-page: 4913 article-title: YLR209c encodes purine nucleoside phosphorylase publication-title: J Bacteriol – volume: 42 start-page: 27 year: 2008 end-page: 81 article-title: How responds to nutrients publication-title: Annu Rev Genet – volume: 316 start-page: 109 year: 2007 end-page: 112 article-title: Regulation of a cyclin‐CDK‐CDK inhibitor complex by inositol pyrophosphates publication-title: Science – volume: 294 start-page: 2364 year: 2001 end-page: 2368 article-title: Systematic genetic analysis with ordered arrays of yeast deletion mutants publication-title: Science – volume: 21 start-page: 692 year: 2003 end-page: 696 article-title: High‐throughput classification of yeast mutants for functional genomics using metabolic footprinting publication-title: Nat Biotechnol – volume: 493 start-page: 679 year: 2012 end-page: 683 article-title: Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival publication-title: Nature – volume: 285 start-page: 10703 year: 2010 end-page: 10714 article-title: Snf1 dependence of peroxisomal gene expression is mediated by Adr1 publication-title: J Biol Chem – volume: 5 start-page: 245 year: 2009 article-title: Glucose regulates transcription in yeast through a network of signaling pathways publication-title: Mol Syst Biol – volume: 82 start-page: 3212 year: 2010 end-page: 3221 article-title: Metabolomic analysis via reversed‐phase ion‐pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer publication-title: Anal Chem – volume: 51 start-page: 253 year: 1975 end-page: 265 article-title: Purine nucleoside phosphorylase from and . Purification and some properties publication-title: Euro J Biochem – volume: 31 start-page: 5 year: 2013 article-title: Systematic identification of allosteric protein‐metabolite interactions that control enzyme activity publication-title: Nat Biotechnol – volume: 76 start-page: 389 year: 2011 end-page: 396 article-title: Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger publication-title: Cold Spring Harb Symp Quant Biol – volume: 283 start-page: 8846 year: 2008 end-page: 8854 article-title: The PHM8 gene encodes a soluble magnesium‐dependent lysophosphatidic acid phosphatase publication-title: J Biol Chem – volume: 5 start-page: e1000270 year: 2009 article-title: Coordinated concentration changes of transcripts and metabolites in publication-title: PLoS Comput Biol – volume: 48 start-page: 155 year: 2002 end-page: 171 article-title: Metabolomics‐‐the link between genotypes and phenotypes publication-title: Plant Mol Biol – volume: 276 start-page: 884 year: 2001 end-page: 894 article-title: The RihA, RihB, and RihC ribonucleoside hydrolases of . Substrate specificity, gene expression, and regulation publication-title: J Biol Chem – volume: 279 start-page: 54687 year: 2004 end-page: 54694 article-title: General enzymatic screens identify three new nucleotidases in . Biochemical characterization of SurE, YfbR, and YjjG publication-title: J Biol Chem – volume: 9 start-page: 62 year: 2005b end-page: 68 article-title: Global strategies to integrate the proteome and metabolome publication-title: Curr Opin Chem Biol – volume: 99 start-page: 6784 year: 2002 end-page: 6789 article-title: The TOR‐controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 253 year: 1977 end-page: 306 article-title: Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast publication-title: Adv Microb Physiol – volume: 18 start-page: 4180 year: 2007 end-page: 4189 article-title: Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae publication-title: Mol Biol Cell – volume: 119 start-page: 969 year: 2004 end-page: 979 article-title: TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1 publication-title: Cell – volume: 6 start-page: 10 year: 2007 article-title: Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress publication-title: J Biol – volume: 278 start-page: 1415 year: 2003 end-page: 1423 article-title: Dihydroxyacetone kinases in are involved in detoxification of dihydroxyacetone publication-title: J Biol Chem – volume: 5 start-page: 306 year: 2009 article-title: Systematic phenome analysis of multiple‐knockout mutants reveals hidden reactions in central carbon metabolism publication-title: Mol Syst Biol – volume: 330 start-page: 1099 year: 2010 end-page: 1102 article-title: Interdependence of cell growth and gene expression: origins and consequences publication-title: Science – volume: 192 start-page: 73 year: 2012 end-page: 105 article-title: Nutritional control of growth and development in yeast publication-title: Genetics – volume: 19 start-page: 45 year: 2001 end-page: 50 article-title: A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations publication-title: Nat Biotechnol – volume: 313 start-page: 907 year: 2004 end-page: 914 article-title: Structures of human purine nucleoside phosphorylase complexed with inosine and ddI publication-title: Biochem Biophys Res Commun – volume: 285 start-page: 21049 year: 2010 end-page: 21059 article-title: Structure and activity of the metal‐independent fructose‐1,6‐bisphosphatase YK23 from publication-title: J Biol Chem – volume: 586 start-page: 4114 year: 2012 end-page: 4118 article-title: The PGM3 gene encodes the major phosphoribomutase in the yeast publication-title: FEBS Lett – volume: 107 start-page: 1 year: 2005 end-page: 30 article-title: The 5′‐nucleotidases as regulators of nucleotide and drug metabolism publication-title: Pharmacol Therapeut – volume: 33 start-page: 299 year: 1995 end-page: 321 article-title: Active oxygen in plant pathogenesis publication-title: Ann Rev Phytopathol – volume: 25 start-page: 460 year: 2011 end-page: 470 article-title: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis publication-title: Genes Dev – volume: 41 start-page: 132 year: 2002 end-page: 141 article-title: The URH1 uridine ribohydrolase of publication-title: Curr Genet – volume: 374 start-page: 513 year: 2003 end-page: 519 article-title: Protein S‐thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast publication-title: Biochem J – volume: 281 start-page: 36149 year: 2006 end-page: 36161 article-title: Genome‐wide analysis of substrate specificities of the haloacid dehalogenase‐like phosphatase family publication-title: J Biol Chem – volume: 12 start-page: 104 year: 2012 end-page: 117 article-title: The importance of post‐translational modifications in regulating metabolism publication-title: FEMS Yeast Res – volume: 6 start-page: 344 year: 2010 article-title: Control of ATP homeostasis during the respiro‐fermentative transition in yeast publication-title: Mol Syst Biol – volume: 68 start-page: 1336 year: 2002 end-page: 1343 article-title: URH1 (encoding uridine‐cytidine N‐ribohydrolase): functional complementation by a nucleoside hydrolase from a protozoan parasite and by a mammalian uridine phosphorylase publication-title: Appl Environ Microbiol – volume: 41 start-page: 329 year: 2001 end-page: 337 article-title: The role of the intracellular inhibitor of periplasmic UDP‐sugar hydrolase (5′‐nucleotidase) in : cytoplasmic localisation of 5′‐nucleotidase is conditionally lethal publication-title: J Basic Microbiol – volume: 9 start-page: 3273 year: 1998 end-page: 3297 article-title: Comprehensive identification of cell cycle‐regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization publication-title: Mol Bio of the cell – volume: 25 start-page: 336 year: 2011 end-page: 349 article-title: Yeast cells can access distinct quiescent states publication-title: Gene Dev – volume: 129 start-page: 9294 year: 2007 end-page: 9295 article-title: Differentiating metabolites formed from synthesis versus macromolecule decomposition publication-title: J Am Chem Soc – volume: 21 start-page: 198 year: 2010 end-page: 211 article-title: Growth‐limiting intracellular metabolites in yeast growing under diverse nutrient limitations publication-title: Mol Biol Cell – volume: 348 start-page: 113 year: 2005 end-page: 125 article-title: purine nucleoside phosphorylase II, the product of the xapA gene publication-title: J Mol Biol – volume: 111 start-page: 155 year: 2002 end-page: 158 article-title: Nutrient‐regulated protein kinases in budding yeast publication-title: Cell – volume: 151 start-page: 863 year: 2000 end-page: 878 article-title: Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors publication-title: J Cell Biol – ident: e_1_2_7_4_1 doi: 10.1126/science.1212642 – ident: e_1_2_7_46_1 doi: 10.1074/jbc.M008300200 – ident: e_1_2_7_38_1 doi: 10.1016/j.cell.2004.11.047 – ident: e_1_2_7_54_1 doi: 10.1016/j.cbpa.2004.12.004 – ident: e_1_2_7_50_1 doi: 10.1186/jbiol61 – ident: e_1_2_7_35_1 doi: 10.1126/science.1139080 – ident: e_1_2_7_47_1 doi: 10.1074/jbc.M411023200 – ident: e_1_2_7_6_1 doi: 10.1038/nprot.2008.107 – ident: e_1_2_7_51_1 doi: 10.1074/jbc.M109.079848 – ident: e_1_2_7_71_1 doi: 10.1146/annurev.genet.41.110306.130206 – ident: e_1_2_7_2_1 doi: 10.1038/nbt823 – ident: e_1_2_7_16_1 doi: 10.1038/nature11745 – ident: e_1_2_7_69_1 doi: 10.1021/ja072997c – ident: e_1_2_7_44_1 doi: 10.1074/jbc.273.7.3963 – ident: e_1_2_7_37_1 doi: 10.1007/BF00229818 – ident: e_1_2_7_11_1 doi: 10.1534/genetics.111.135731 – ident: e_1_2_7_26_1 doi: 10.1002/1521-4028(200112)41:6<329::AID-JOBM329>3.0.CO;2-4 – ident: e_1_2_7_63_1 doi: 10.1038/msb.2009.100 – ident: e_1_2_7_33_1 doi: 10.1074/jbc.M110.118315 – ident: e_1_2_7_30_1 doi: 10.1038/nature03029 – ident: e_1_2_7_41_1 doi: 10.1074/jbc.M203030200 – ident: e_1_2_7_56_1 doi: 10.1042/bj20030414 – ident: e_1_2_7_58_1 doi: 10.1073/pnas.0903316106 – ident: e_1_2_7_64_1 doi: 10.1016/S0092-8674(02)01043-7 – ident: e_1_2_7_9_1 doi: 10.1371/journal.pcbi.1000270 – ident: e_1_2_7_8_1 doi: 10.1091/mbc.E09-07-0597 – ident: e_1_2_7_15_1 doi: 10.1016/j.jmb.2005.02.019 – ident: e_1_2_7_57_1 doi: 10.1091/mbc.9.12.3273 – ident: e_1_2_7_14_1 doi: 10.1073/pnas.102687599 – ident: e_1_2_7_20_1 doi: 10.1146/annurev.ge.26.120192.001111 – ident: e_1_2_7_24_1 doi: 10.1038/nbt1492 – ident: e_1_2_7_29_1 doi: 10.1083/jcb.151.4.863 – ident: e_1_2_7_3_1 doi: 10.1146/annurev.py.33.090195.001503 – ident: e_1_2_7_61_1 doi: 10.1186/1752-0509-2-87 – ident: e_1_2_7_22_1 doi: 10.1046/j.1365-2958.2001.02283.x – ident: e_1_2_7_53_1 doi: 10.1038/nchembio0805-130 – ident: e_1_2_7_62_1 doi: 10.1016/j.febslet.2012.09.042 – ident: e_1_2_7_68_1 doi: 10.1091/mbc.e07-05-0485 – ident: e_1_2_7_28_1 doi: 10.1101/gad.2011311 – ident: e_1_2_7_7_1 doi: 10.1016/S0065-2911(08)60318-5 – ident: e_1_2_7_60_1 doi: 10.1111/j.1742-4658.2006.05155.x – ident: e_1_2_7_32_1 doi: 10.1074/jbc.M605449200 – ident: e_1_2_7_39_1 doi: 10.1101/sqb.2012.76.011015 – ident: e_1_2_7_27_1 doi: 10.1111/j.1432-1033.1975.tb03925.x – ident: e_1_2_7_13_1 doi: 10.1016/j.cell.2011.05.022 – ident: e_1_2_7_40_1 doi: 10.1128/AEM.68.3.1336-1343.2002 – ident: e_1_2_7_65_1 doi: 10.1038/nchembio.941 – ident: e_1_2_7_12_1 doi: 10.1016/j.bbrc.2003.11.179 – start-page: 1553 year: 1996 ident: e_1_2_7_10_1 article-title: Modulation of chemical composition and other parameters of the cell by growth rate publication-title: Escherichia coli and Salmonella – ident: e_1_2_7_31_1 doi: 10.1007/s00294-002-0296-9 – ident: e_1_2_7_45_1 doi: 10.1111/j.1567-1364.2011.00765.x – ident: e_1_2_7_52_1 doi: 10.1074/jbc.M706752200 – ident: e_1_2_7_42_1 doi: 10.1038/msb.2009.65 – ident: e_1_2_7_19_1 doi: 10.1002/bit.10378 – ident: e_1_2_7_66_1 doi: 10.1016/j.molcel.2012.07.013 – ident: e_1_2_7_25_1 doi: 10.1016/j.pharmthera.2005.01.003 – ident: e_1_2_7_55_1 doi: 10.1126/science.1192588 – ident: e_1_2_7_70_1 doi: 10.1038/msb.2009.2 – ident: e_1_2_7_21_1 doi: 10.1091/mbc.11.12.4241 – ident: e_1_2_7_36_1 doi: 10.1038/nbt.2489 – ident: e_1_2_7_5_1 doi: 10.1038/nchembio.186 – ident: e_1_2_7_48_1 doi: 10.1038/83496 – ident: e_1_2_7_59_1 doi: 10.1126/science.1065810 – ident: e_1_2_7_43_1 doi: 10.1074/jbc.M200573200 – ident: e_1_2_7_67_1 doi: 10.1101/gad.2016111 – ident: e_1_2_7_18_1 doi: 10.1023/A:1013713905833 – ident: e_1_2_7_49_1 doi: 10.1021/ac902837x – ident: e_1_2_7_23_1 doi: 10.1101/gad.2016311 – ident: e_1_2_7_17_1 doi: 10.1007/BF02826554 – ident: e_1_2_7_34_1 doi: 10.1128/JB.183.16.4910-4913.2001 |
SSID | ssj0038182 |
Score | 2.3033001 |
Snippet | Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient... Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This... Abstract Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway.... |
SourceID | doaj pubmedcentral osti hal proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 665 |
SubjectTerms | Ablation AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism Antioxidants autophagy BASIC BIOLOGICAL SCIENCES Biochemistry Biochemistry & Molecular Biology Biodegradation Carbon Chromatography Consumption Cyclic AMP-Dependent Protein Kinases - genetics Cyclic AMP-Dependent Protein Kinases - metabolism Degradation Depletion E coli EMBO21 EMBO36 Enzymes Experiments Gene deletion Gene Expression Regulation, Fungal Genetics Genomes Glyceraldehyde Glyceraldehyde 3-Phosphate - metabolism Grants Hydrolase INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Kinases Life Sciences mass spectrometry Metabolism Metabolites Metabolomics N-Glycosyl Hydrolases - deficiency N-Glycosyl Hydrolases - genetics NADP NADP - metabolism Nitrogen Nucleosides Nucleotides Nucleotides - metabolism nutrient starvation Nutrients Oxidative stress Pentose Pentose phosphate pathway Pentose Phosphate Pathway - genetics Phosphatase Phosphorylase Phosphorylases Physiology Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Proteins Purine-Nucleoside Phosphorylase - deficiency Purine-Nucleoside Phosphorylase - genetics Ribose Ribose - metabolism Ribosomes Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Signal Transduction Software Starvation Stress, Physiological - genetics Substrates Sugar Phosphates Transaldolase Transaldolase - genetics Transaldolase - metabolism Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEG9CCwqoXEChjuM49rFFVCtEe4FKvVl-qiu1CWq2lfrvmXGygYhVuXDbTbx5eGbyfbOefEPIXl2izBwLRS2NK3hNeSGBGBeVF9apYCDWMVE8PhHLU_71rD77o9UX1oQN8sDDxO1XgnInmiCj4zxYqZw1FaBQDFWglif1UqroJpkansEIQ2x8Gw--7F_2Fqu4qk-snOFPkukHVDnHIshFB0G1jWj-XS85LZrOKW3CpKNH5OFIJvOD4SYek3uhfULuD-0lb58SdoJixd165UPuURRi6J-Um9bnVyvb9SHvzcUNPFHyVZvfYhefZ-T06MuPz8ti7JFQOMT-olG2jtaWlfS0YdbUUXlPhcflQe8UjdZQSBrq0gM2hyB9KaKU3kBeKCO3qnpOFm3XhpckD42xqFXT1I3hykajDCSXwktrHfUyZuTDZua0GwXEsY_FhU4L2ZXUMM0ap1mzMiN70-Cfg27G9mGHaIJpCIpdpw3gAnp0Af0vF8jIOzDg7BjLg28at2HGhQqBN3CmHbSvBmKB6rgOy4jcWpdA_ySVGdndmF2PQdxrBlAN8K04_PjttBvCD9dUTBu6615jg0OBMnp3jQHKDEQXiGxGXgyeNF1sEtAD0MlIM_Ox2d3M97Sr8yQDzvG1agHHfL_xxt-XvnWqPyZXvcsc-vj7IX5k5av_YZgd8oCl7iH4j9UuWayvrsNr4HBr-yaF6y98N0FW priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD7oFsEX0XppbJUo9UWJzWWSTJ6kW1oWsYuohb4Nc0u70CZ1sy3033tOMkkJLvuWTYYke67fmZl8B2A_jYhmLrZByqUOWBqygCMwDhKTKV1Yib5OheLpPJudse_n6bmbcGvctso-JraB2tSa5sgPYoybGEsLFn27-RtQ1yhaXXUtNB7DFoZgjna-NT2e__zVx2JKR7H7Kg9_HFw3inZzJV_jaJSHWrp-zC6XtBlyUqNzrQOc_--bHBZPx9C2zU0nz-GZA5X-YWcFL-CRrbbhSddm8v4lxHMiLa5XC2N9Q-QQXR8lX1bGXy5U3Vi_kVd3GFn8ReXfUzefV3B2cvznaBa4XgmBJgwQ5IVKS6WihJswj5VMy8KYMDO0TGh0EZZKhlg8pJHBHG0tN1FWcm4k1oe8ZKpIXsOkqiu7A77NpSLOmjzNJStUKQuJRWZmuFI6NLz04HMvOaEdkTj1s7gS7YJ2wgWKWZCYRRx5sD8Mvun4M9YPm5IKhiFEet2eqJcXwvmQSLKQ6Sy3vNSMWcULrWSCgKS0iQ0VSz34iAoc3WN2-EPQOaq8iCnwDp-0S_oVCDCIJVfTdiK9EhHCQB5yD_Z6tQvnzI14MD0PPgyX0Q1pbUVWtr5tBDU6zIhOb9MYhM4IeBHQevCms6ThZVsiPUw-HuQjGxv9m_GVanHZ0oEz-rw6w3t-6q3x4dXXivpLa6qb1CFOf0_pMI7ebhbILjyN2_4gNCe1B5PV8ta-Q5S2Uu-dK_4Df1g5xg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVhQ6CX0u-6SYtb0kuLW9mWZem4KQnL0uSSBnIT-nKzkNplvQnk33fGlt2aLiG3XVuWtRpJ781q9IaQwyJFmbnMJ4XQNmEFZYkAYpzkjhsrvYa5jo7i6RlfXLDlZXEZdLbbEFbZS1p2y_QQHfb1V2swDiv_gofGdwXgXjYju_P58nw5LLyIPVk4ggdf_n1kAjqdNj9AyRVGPs4amEnb2OX_QZLjTumUx3ZAdPKEPA4MMp73bX5Kdnz9jOz1OSXvnpPsDBWKm83K-dihEkSfNCnWtYvXK9O0Pm719S0sI_Gqju8wdc8LcnFy_OPbIgmJERKLgJ-U0hSVMWkuHC0zo4tKOke5wz1BZyWtjKbgKRSpA0D2XriUV0I4Dc6gqJiR-Usyq5vavyaxL7VBgZqyKDWTptJSg0fJnTDGUieqiHwaek7ZoBqOySuuVbd7nQsF3aywm1WWRuRwLPy7F8vYXuwITTAWQYXr7kKz_qmCxVXOKbO89KKyjHkjpDU6B_ZR-dxTw4qIfAADTupYzL8rvIZuFsoC3sKb9tG-CtgESuJajB2yG5UC5xNURORgMLsKM7dVGeAzYLZk8PD78TbMOdxI0bVvblqFWQ05aufdVwZ4MrBbYK8RedWPpLGxnWoeIE1EyskYm_ya6Z16ddVpfzM8S82hzo_DaPzb9K1d_bkbqveZQ52eH-HHLH3zwFr3yaOsywqC_0QdkNlmfePfAjfbmHdhTv4BJwU1Lw priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlS6GXkr6dpMUt6aXFrSzLtnxMQsJSmlBoA7kJjSQ3C6kd1ptA_n1mZK9b0yXQm7HGL2lG88ma-YaxvTwlmjnhk1wZm8icy0QhME4yV4CtvEFbp4XiyWkxP5Nfz_PzITaHcmF6fojxhxtZRpivycANdEOaOAWu_-6AIrOyz5RG_pCSa6lyg5Df1xMx-SLR50PKhKoyDel52PDlr4snDinw9qObuaCoyFmLVrYJef4bQDnuok4xbnBSx1vsyYAu4_1eHZ6yB755xh719SZvnzNxSuzF7WrhfOyIJaIvqBSbxsXLBbSdjztzeYNTTLxo4lsq6_OCnR0f_TycJ0PRhMQSGEjKCvIaIM2U46UAk9eVc7xwtF_obMVrMBxXEXnq0Fl7r1xa1Eo5gwtFVUuospds1rSNf81iXxog8poyL42soDaVwdVm4RSA5U7VEfu47jltB0ZxKmxxqcPOdqY0drOmbtYijdjeKHzVE2lsFjugIRhFiP06nGiXv_RgTDoruLRF6VVtpfSgKgsmQ2RS-8xzkHnE3uMATu4x3_-m6RwtwYgy8AaftEPjqxFpEF2upbgiu9Ip4kHFVcR218OuB6vutEDfjf68knjxu7EZ7ZE2WUzj2-tOU8XDgnj17pNBDI3IF5FtxF71mjS-bGDUQy8UsXKiY5OvmbY0i4vACy4pz7rAe35Ya-OfV9_Y1Z-Cqt43HPrkxwEdinT7v6R32GMR6obQv6pdNlstr_0bRG8reBts9A7Kcjtg priority: 102 providerName: Wiley-Blackwell |
Title | Nucleotide degradation and ribose salvage in yeast |
URI | https://link.springer.com/article/10.1038/msb.2013.21 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fmsb.2013.21 https://www.ncbi.nlm.nih.gov/pubmed/23670538 https://www.proquest.com/docview/2299128941 https://www.proquest.com/docview/1351611801 https://www.proquest.com/docview/1566835059 https://insa-toulouse.hal.science/hal-02170940 https://www.osti.gov/servlets/purl/1623808 https://pubmed.ncbi.nlm.nih.gov/PMC4039369 https://doaj.org/article/3604c67e8fc44eb89cba3406fe3e0b45 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEF6VVEi8IG5MS2RQeQG5-Fiv1w8IJVGrKCJRRYmUt9VeppGCDUlakX_PjC9kiPKSROu148yR-caz-w0hZ3GANHOh9WIutUdjn3ocgLEXGaZ0aiX4OiaK0xkbz-lkES-OSNOMsxbgZm9qh_2k5uvV-e9fu8_g8J-qLeP844-NwjVa0TluKD-GkMQwC5vStpyAUSmsdkZSD_sz1Rv1_jm5E5pKBn8IODe4PrJXgL_tw6D_L6Vs66ldtFuGq8tH5GGNM91BZRiPyZHNn5D7VefJ3VMSzpDHuNgujXUN8kVUrZVcmRt3vVTFxrobubqDPxt3mbs7bPDzjMwvL76Nxl7dPsHTCAu8JFVxplQQceMnoZJxlhrjM4OVQ6NTP1PSh3wiDgyEbWu5CVjGuZGQMvKMqjR6Tnp5kduXxLWJVEhjk8SJpKnKZCoh72SGK6V9wzOHvG8kJ3TNLY4tLlairHFHXICYBYpZhIFDztrJPytKjf3ThqiCdgryYJcDxfq7qN1KRMynmiWWZ5pSq3iqlYwAo2Q2sr6isUPeggI71xgPvggcw2QMyQPv4JtOUL8CMAcS52pcYaS3IgBkyH3ukNNG7aIxTxFCFIfInlI4-U17GDwTyy0yt8XtRmDvQ4YMe4fmAJoGDAwY1yEvKktqb7bk1oN45JCkY2OdX9M9ki9vSoZwijuuGVzzXWONf299r6g_lKZ6SB1iej3Ej2Hw6qC4TsiDsOwYgk-pTklvu761rwG3bVWf3AvpFbwmi6RPjgeDyfUE3ocXs6uvMDpio375RKRf-u4f0XFDDg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqRBcEG_cFjCovYDc2uu1vT4g1ECrlCYRglbqbdmXaaTWLnFalD_Fb2TGj1QWUW69OfbKdub5rWf3G0K2owBp5qj1Ii61xyKfeRyAsReaWOnUSvB1nCiOxvHglH09i87WyN92Lwwuq2xjYhWoTaHxG_kehbgJsTRlwaer3x52jcLqattCozaLYzv_A1O28uPRF9DvDqWHByefB17TVcDTmC29JFVRplQQcuMnVMkoS43xY4MFNaNTP1PSB5gdBQaymbXcBHHGuZEwk-IZU0i-BCF_neGO1h5Z7x-Mv31vYz-mP9rsAoQfe5elwtVj4S4NOnmvag8A2ewcF1_2CnDmZQD3_3Wai2JtF0pXufDwEXnYgFh3v7a6x2TN5k_Ivbqt5fwpoWMkSS5mE2Ndg2QUdd8mV-bGnU5UUVq3lBc3EMncSe7OsXvQM3J6J1J8Tnp5kduXxLWJVMiRk0SJZKnKZCphUhsbrpT2Dc8c8r6VnNANcTn2z7gQVQE95ALELFDMggYO2V4Mvqr5OpYP66MKFkOQZLs6UUx_icZnRRj7TMeJ5ZlmzCqeaiVDAECZDa2vWOSQd6DAzj0G-0OB53Cmh8yEN_CkTdSvAECDrLwaly_pmQgAdnKfO2SrVbtogkcpbk3dIW8Xl8HtsZYjc1tclwIbK8ZI37dqDEB1ANgAoB3yorakxctWxH2Q7BySdGys82-6V_LJeUU_znA7dwz33Gmt8fbVl4r6Q2Wqq9QhRj_6eEiDjdUCeUPuD05GQzE8Gh9vkge06k2C38O2SG82vbavACHO1OvGLV3y864jwT-2zXZ5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQIhCXijehBQIqF1AgcRzHObbAaoF2VQkq9Wb5SVdqk2qzrdR_z4yTDUSsKnGL4snLnvF8jme-IWS3yJBmjrqkEMokrEhZIgAYJ7nl2lROga3jQvFwzmfH7NtJcdLH5mAuTMcPMfxwQ8sI8zUa-IX1fZo4Bq6ftxojs_IPmEZ-G7f70C4pO1pPxOiLaJcPyRKsytSn50HDx78uHjmkwNsPbuYUoyInDVjZJuT5bwDlsIs6xrjBSU3vk60eXcZ7nTo8ILdc_ZDc6epNXj8idI7sxc1qYV1skSWiK6gUq9rGy4VuWhe36uwKpph4UcfXWNbnMTmefvn5aZb0RRMSg2AgKStdeK2zXNi0pFoVvrI25Rb3C62pUq9VCquIIrPgrJ0TNuNeCKtgoSg801X-hEzqpnbPSOxKpZG8pixKxSrtVaVgtcmt0NqkVviIvFv3nDQ9ozgWtjiTYWc7FxK6WWI3S5pFZHcQvuiINDaL7eMQDCLIfh1ONMtfsjcmmfOUGV464Q1jTovKaJUDMvEud6lmRUTewACO7jHbO5B4DpdgSBl4BU_axvGVgDSQLtdgXJFZyQzwoEhFRHbWwy57q24lBd8N_rxicPHroRnsETdZVO2ay1ZixUOOvHo3yQCGBuQLyDYiTztNGl42MOqBF4pIOdKx0deMW-rFaeAFZ5hnzeGeb9fa-OfVN3b1-6CqNw2HPPyxj4c0e_5f0q_I3aPPU3nwdf59m9yjoYQI_rbaIZPV8tK9ACC30i-Duf4GptA9_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleotide+degradation+and+ribose+salvage+in+yeast&rft.jtitle=Molecular+systems+biology&rft.au=Xu%2C+Yi%E2%80%90Fan&rft.au=L%C3%A9tisse%2C+Fabien&rft.au=Absalan%2C+Farnaz&rft.au=Lu%2C+Wenyun&rft.date=2013&rft.pub=Wiley&rft.issn=1744-4292&rft.eissn=1744-4292&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fmsb.2013.21&rft.externalDocID=1623808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |