Nucleotide degradation and ribose salvage in yeast

Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated wi...

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 9; no. 1; pp. 665 - n/a
Main Authors Xu, Yi‐Fan, Létisse, Fabien, Absalan, Farnaz, Lu, Wenyun, Kuznetsova, Ekaterina, Brown, Greg, Caudy, Amy A, Yakunin, Alexander F, Broach, James R, Rabinowitz, Joshua D
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 2013
John Wiley & Sons, Ltd
EMBO Press
Wiley
European Molecular Biology Organization
Springer Nature
Subjects
Online AccessGet full text
ISSN1744-4292
1744-4292
DOI10.1038/msb.2013.21

Cover

Abstract Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. Synopsis Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. During carbon starvation, ribose salvage from nucleotides promotes yeast survival. The salvage pathway requires the previously misannotated nucleotidase Phm8. Ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate. This carbon reserve enables rapid NADPH production in oxidative stress.
AbstractList Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. During carbon starvation, ribose salvage from nucleotides promotes yeast survival. The salvage pathway requires the previously misannotated nucleotidase Phm8. Ribose-derived carbon accumulates as sedoheptulose-7-phosphate. This carbon reserve enables rapid NADPH production in oxidative stress. Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. image During carbon starvation, ribose salvage from nucleotides promotes yeast survival. The salvage pathway requires the previously misannotated nucleotidase Phm8. Ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate. This carbon reserve enables rapid NADPH production in oxidative stress.
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress.
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress. Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. Synopsis Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress. During carbon starvation, ribose salvage from nucleotides promotes yeast survival. The salvage pathway requires the previously misannotated nucleotidase Phm8. Ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate. This carbon reserve enables rapid NADPH production in oxidative stress.
Abstract Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
Author Absalan, Farnaz
Lu, Wenyun
Caudy, Amy A
Yakunin, Alexander F
Létisse, Fabien
Kuznetsova, Ekaterina
Broach, James R
Brown, Greg
Xu, Yi‐Fan
Rabinowitz, Joshua D
Author_xml – sequence: 1
  givenname: Yi‐Fan
  surname: Xu
  fullname: Xu, Yi‐Fan
  organization: Lewis Sigler Institute for Integrative Genomics, Princeton University, Department of Chemistry, Princeton University
– sequence: 2
  givenname: Fabien
  surname: Létisse
  fullname: Létisse, Fabien
  organization: Université de Toulouse, INSA, UPS, INP; LISBP
– sequence: 3
  givenname: Farnaz
  surname: Absalan
  fullname: Absalan, Farnaz
  organization: Department of Molecular Biology, Princeton University
– sequence: 4
  givenname: Wenyun
  surname: Lu
  fullname: Lu, Wenyun
  organization: Lewis Sigler Institute for Integrative Genomics, Princeton University
– sequence: 5
  givenname: Ekaterina
  surname: Kuznetsova
  fullname: Kuznetsova, Ekaterina
  organization: Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto
– sequence: 6
  givenname: Greg
  surname: Brown
  fullname: Brown, Greg
  organization: Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto
– sequence: 7
  givenname: Amy A
  surname: Caudy
  fullname: Caudy, Amy A
  organization: Donnelly Centre for Cellular and Biomolecular Research, University of Toronto
– sequence: 8
  givenname: Alexander F
  surname: Yakunin
  fullname: Yakunin, Alexander F
  organization: Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto
– sequence: 9
  givenname: James R
  surname: Broach
  fullname: Broach, James R
  organization: Department of Molecular Biology, Princeton University
– sequence: 10
  givenname: Joshua D
  surname: Rabinowitz
  fullname: Rabinowitz, Joshua D
  email: joshr@princeton.edu
  organization: Lewis Sigler Institute for Integrative Genomics, Princeton University, Department of Chemistry, Princeton University, Chemistry and Genomics, Princeton University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23670538$$D View this record in MEDLINE/PubMed
https://insa-toulouse.hal.science/hal-02170940$$DView record in HAL
https://www.osti.gov/servlets/purl/1623808$$D View this record in Osti.gov
BookMark eNqFkktvEzEURkeoiD5gxR5FsAFBgp8z9gapVEArBVgAa8uPO4mriV3sSVD-PZ5MKW3EY2XLc-6Z6-vvuDoIMUBVPcZohhEVr1fZzAjCdEbwveoIN4xNGZHk4Nb-sDrO-RIVGgvyoDoktG4Qp-KoIp_WtoPYewcTB4ukne59DBMd3CR5EzNMsu42egETHyZb0Ll_WN1vdZfh0fV6Un17_-7r2fl0_vnDxdnpfGobRvG0kYa3xmAqHGqI0byVzqHacYylsxK1RiPOJceOUAEgHK5bIZwmnImWGUlPqovR66K-VFfJr3Taqqi92h3EtFA69b60r2iNmK0bEK1lDIyQ1mjKUN0CBWQYL643o-tqbVbgLIQ-6e6O9O6X4JdqETeKISppPTTzdBTE3HuVre_BLm0MAWyvcF2ugESBXozQcs99fjpXwxkiuEGSoQ0u7PPrjlL8vobcq5XPFrpOB4jrrDCva0E54vL_KOW4xligwfpsD72M6xTKMylCpMRESDZQT25P46bVX7EowMsRsCnmnKC9QTBSQ-hUCZ0aQqfIoMN7dBnPLkZllL77Sw0Za374Drb_0quPX94O213Rq7EoFz4sIP2-3Z_-8RPT8PSs
CitedBy_id crossref_primary_10_1016_j_bbagen_2019_129465
crossref_primary_10_1186_s12915_014_0060_x
crossref_primary_10_1038_s41467_021_27152_4
crossref_primary_10_1038_s42255_020_0219_4
crossref_primary_10_1091_mbc_E18_08_0515
crossref_primary_10_1021_ac504118y
crossref_primary_10_1016_j_cub_2014_09_004
crossref_primary_10_1074_jbc_M114_558643
crossref_primary_10_1016_j_xcrp_2024_102041
crossref_primary_10_1111_mmi_13133
crossref_primary_10_1016_j_isci_2022_104681
crossref_primary_10_1021_acschembio_8b00804
crossref_primary_10_3390_life14010029
crossref_primary_10_1111_nph_14782
crossref_primary_10_3389_fmicb_2020_01367
crossref_primary_10_1101_gad_283416_116
crossref_primary_10_1016_j_crfs_2024_100820
crossref_primary_10_15252_embj_201489083
crossref_primary_10_1007_s00294_015_0544_4
crossref_primary_10_1016_j_celrep_2014_10_002
crossref_primary_10_1074_jbc_M115_657916
crossref_primary_10_1016_j_jbiosc_2015_02_011
crossref_primary_10_1016_j_coisb_2021_100390
crossref_primary_10_1016_j_dnarep_2014_07_009
crossref_primary_10_1371_journal_pbio_2002039
crossref_primary_10_1002_lol2_10043
crossref_primary_10_1038_s41589_024_01689_z
crossref_primary_10_2217_fmb_2016_0025
crossref_primary_10_1007_s00294_016_0590_6
crossref_primary_10_15252_embj_201490621
crossref_primary_10_1093_femsre_fuaa069
crossref_primary_10_1016_j_algal_2016_12_003
crossref_primary_10_1038_s41467_024_50058_w
crossref_primary_10_1074_jbc_M113_503557
crossref_primary_10_1093_nar_gku1251
crossref_primary_10_1111_1567_1364_12137
crossref_primary_10_3390_cells8010067
crossref_primary_10_3390_jof7110987
crossref_primary_10_1016_j_bbrc_2018_05_047
crossref_primary_10_1128_mbio_00102_23
crossref_primary_10_1016_j_foodres_2022_112275
crossref_primary_10_7554_eLife_84295
crossref_primary_10_1074_jbc_M117_807214
crossref_primary_10_1007_s11515_015_1367_x
crossref_primary_10_15252_emmm_202012461
crossref_primary_10_1038_s41598_020_61745_1
crossref_primary_10_1186_s12934_024_02365_6
crossref_primary_10_1128_AEM_01086_14
crossref_primary_10_7554_eLife_63341
crossref_primary_10_1016_j_ymben_2016_08_003
crossref_primary_10_1016_j_molimm_2015_07_036
crossref_primary_10_3390_md18110563
crossref_primary_10_1002_yea_3434
crossref_primary_10_1007_s11694_018_9765_9
crossref_primary_10_1038_s41598_020_65935_9
Cites_doi 10.1126/science.1212642
10.1074/jbc.M008300200
10.1016/j.cell.2004.11.047
10.1016/j.cbpa.2004.12.004
10.1186/jbiol61
10.1126/science.1139080
10.1074/jbc.M411023200
10.1038/nprot.2008.107
10.1074/jbc.M109.079848
10.1146/annurev.genet.41.110306.130206
10.1038/nbt823
10.1038/nature11745
10.1021/ja072997c
10.1074/jbc.273.7.3963
10.1007/BF00229818
10.1534/genetics.111.135731
10.1002/1521-4028(200112)41:6<329::AID-JOBM329>3.0.CO;2-4
10.1038/msb.2009.100
10.1074/jbc.M110.118315
10.1038/nature03029
10.1074/jbc.M203030200
10.1042/bj20030414
10.1073/pnas.0903316106
10.1016/S0092-8674(02)01043-7
10.1371/journal.pcbi.1000270
10.1091/mbc.E09-07-0597
10.1016/j.jmb.2005.02.019
10.1091/mbc.9.12.3273
10.1073/pnas.102687599
10.1146/annurev.ge.26.120192.001111
10.1038/nbt1492
10.1083/jcb.151.4.863
10.1146/annurev.py.33.090195.001503
10.1186/1752-0509-2-87
10.1046/j.1365-2958.2001.02283.x
10.1038/nchembio0805-130
10.1016/j.febslet.2012.09.042
10.1091/mbc.e07-05-0485
10.1101/gad.2011311
10.1016/S0065-2911(08)60318-5
10.1111/j.1742-4658.2006.05155.x
10.1074/jbc.M605449200
10.1101/sqb.2012.76.011015
10.1111/j.1432-1033.1975.tb03925.x
10.1016/j.cell.2011.05.022
10.1128/AEM.68.3.1336-1343.2002
10.1038/nchembio.941
10.1016/j.bbrc.2003.11.179
10.1007/s00294-002-0296-9
10.1111/j.1567-1364.2011.00765.x
10.1074/jbc.M706752200
10.1038/msb.2009.65
10.1002/bit.10378
10.1016/j.molcel.2012.07.013
10.1016/j.pharmthera.2005.01.003
10.1126/science.1192588
10.1038/msb.2009.2
10.1091/mbc.11.12.4241
10.1038/nbt.2489
10.1038/nchembio.186
10.1038/83496
10.1126/science.1065810
10.1074/jbc.M200573200
10.1101/gad.2016111
10.1023/A:1013713905833
10.1021/ac902837x
10.1101/gad.2016311
10.1007/BF02826554
10.1128/JB.183.16.4910-4913.2001
ContentType Journal Article
Copyright EMBO and Macmillan Publishers Limited 2013
Copyright © 2013 EMBO and Macmillan Publishers Limited
2013. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2013, EMBO and Macmillan Publishers Limited 2013 EMBO and Macmillan Publishers Limited
Copyright_xml – notice: EMBO and Macmillan Publishers Limited 2013
– notice: Copyright © 2013 EMBO and Macmillan Publishers Limited
– notice: 2013. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2013, EMBO and Macmillan Publishers Limited 2013 EMBO and Macmillan Publishers Limited
CorporateAuthor Princeton Univ., NJ (United States)
CorporateAuthor_xml – name: Princeton Univ., NJ (United States)
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/msb.2013.21
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science Database (NC LIVE)
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
Publicly Available Content Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_3604c67e8fc44eb89cba3406fe3e0b45
PMC4039369
1623808
oai_HAL_hal_02170940v1
23670538
10_1038_msb_2013_21
MSB201321
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA163591
GroupedDBID ---
-Q-
0R~
123
1OC
24P
29M
2WC
39C
4.4
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAJSJ
AAMMB
ABDBF
ABUWG
ACCMX
ACGFO
ACPRK
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AFRAH
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
NAO
O5R
O5S
OK1
OVT
P2P
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
AASML
AVUZU
COF
EBLON
HZ~
IGS
O9-
PUEGO
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7XB
88A
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
AAPBV
ABPTK
M0L
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c7431-79b5fbb138d072ba5f9dd06d5119dc90fba055951d238ee8d16f88da2548f4b93
IEDL.DBID M48
ISSN 1744-4292
IngestDate Wed Aug 27 01:09:29 EDT 2025
Thu Aug 21 18:13:58 EDT 2025
Mon Jul 10 02:35:04 EDT 2023
Fri Sep 12 12:40:55 EDT 2025
Fri Sep 05 12:10:36 EDT 2025
Thu Sep 04 15:40:45 EDT 2025
Wed Aug 13 04:06:02 EDT 2025
Thu Aug 07 06:23:27 EDT 2025
Tue Jul 01 04:10:32 EDT 2025
Thu Apr 24 23:11:37 EDT 2025
Tue Sep 09 05:10:57 EDT 2025
Tue Aug 12 01:10:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nutrient starvation
mass spectrometry
metabolism
autophagy
Subject Categories: RNA
cellular metabolism Keywords: autophagy
Saccharomyces cerevisiae
Language English
License Attribution-NonCommercial-ShareAlike
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7431-79b5fbb138d072ba5f9dd06d5119dc90fba055951d238ee8d16f88da2548f4b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0002077
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
ORCID 0000-0002-1490-0152
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/msb.2013.21
PMID 23670538
PQID 2299128941
PQPubID 29031
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_3604c67e8fc44eb89cba3406fe3e0b45
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4039369
osti_scitechconnect_1623808
hal_primary_oai_HAL_hal_02170940v1
proquest_miscellaneous_1566835059
proquest_miscellaneous_1351611801
proquest_journals_2299128941
pubmed_primary_23670538
crossref_primary_10_1038_msb_2013_21
crossref_citationtrail_10_1038_msb_2013_21
wiley_primary_10_1038_msb_2013_21_MSB201321
springer_journals_10_1038_msb_2013_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Chichester, UK
– name: Germany
– name: United States
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2013
Publisher Nature Publishing Group UK
John Wiley & Sons, Ltd
EMBO Press
Wiley
European Molecular Biology Organization
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: John Wiley & Sons, Ltd
– name: EMBO Press
– name: Wiley
– name: European Molecular Biology Organization
– name: Springer Nature
References 2001; 183
1997; 42
1995; 33
2002; 111
2002; 99
2002; 277
2005b; 9
2008; 3
2012b; 48
2008; 2
1975; 51
2003; 278
2012; 12
2001; 41
1998; 273
2010; 21
2012; 493
2002; 48
2001; 294
2002; 41
2000; 11
2005; 348
2005; 107
2001; 19
2008; 26
2007; 6
2011; 25
2006; 281
1991; 104
2010; 6
2012a; 8
2007; 18
2011; 334
2007; 129
2012; 586
2002; 79
2006; 273
1996
2000; 151
2010; 285
2011; 76
2008; 283
2003; 374
2010; 82
2001; 276
2007; 316
2004; 313
2004; 279
2004; 432
1977; 15
2005a; 1
2002; 68
2012; 192
2013; 31
2010; 330
2009; 5
1992; 26
2001; 39
2008; 42
2004; 119
2011; 145
2003; 21
1998; 9
2009; 106
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
Bremer H (e_1_2_7_10_1) 1996
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 3
  start-page: 1299
  year: 2008
  end-page: 1311
  article-title: Absolute quantitation of intracellular metabolite concentrations by an isotope ratio‐based approach
  publication-title: Nat Protoc
– volume: 273
  start-page: 3963
  year: 1998
  end-page: 3966
  article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
  publication-title: J Biol Chem
– volume: 277
  start-page: 22103
  year: 2002
  end-page: 22106
  article-title: SDT1/SSM1, a multicopy suppressor of S‐II null mutant, encodes a novel pyrimidine 5'‐nucleotidase
  publication-title: J Biol Chem
– volume: 104
  start-page: 181
  year: 1991
  end-page: 187
  article-title: Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate
  publication-title: Mol Cell Biochem
– volume: 106
  start-page: 17049
  year: 2009
  end-page: 17054
  article-title: The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 593
  year: 2009
  end-page: 599
  article-title: Absolute metabolite concentrations and implied enzyme active site occupancy in
  publication-title: Nat Chem Biol
– volume: 25
  start-page: 717
  year: 2011
  end-page: 729
  article-title: Pancreatic cancers require autophagy for tumor growth
  publication-title: Genes Dev
– volume: 26
  start-page: 159
  year: 1992
  end-page: 177
  article-title: Genetics and Intermediary Metabolism
  publication-title: Annu Rev Genet
– volume: 432
  start-page: 1032
  year: 2004
  end-page: 1036
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
– volume: 145
  start-page: 969
  year: 2011
  end-page: 980
  article-title: Riboneogenesis in yeast
  publication-title: Cell
– volume: 8
  start-page: 562
  year: 2012a
  end-page: 568
  article-title: Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase
  publication-title: Nat Chem Biol
– volume: 26
  start-page: 1155
  year: 2008
  end-page: 1160
  article-title: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
  publication-title: Nat Biotechnol
– start-page: 1553
  year: 1996
  end-page: 1569
  article-title: Modulation of chemical composition and other parameters of the cell by growth rate
  publication-title: Escherichia coli and Salmonella
– volume: 79
  start-page: 703
  year: 2002
  end-page: 712
  article-title: A functional genomics approach using metabolomics and in silico pathway analysis
  publication-title: Biotechnol Bioeng
– volume: 334
  start-page: 1524
  year: 2011
  end-page: 1529
  article-title: The structure of the eukaryotic ribosome at 3.0 angstrom resolution
  publication-title: Science
– volume: 42
  start-page: 463
  year: 1997
  end-page: 467
  article-title: Continuous cultivation of bakers' yeast: change in cell composition at different dilution rates and effect of heat stress on trehalose level
  publication-title: Folia Microbiol
– volume: 1
  start-page: 130
  year: 2005a
  end-page: 142
  article-title: Assignment of protein function in the postgenomic era
  publication-title: Nat Chem Biol
– volume: 273
  start-page: 1089
  year: 2006
  end-page: 1101
  article-title: Pentose phosphates in nucleoside interconversion and catabolism
  publication-title: The FEBS journal
– volume: 39
  start-page: 533
  year: 2001
  end-page: 541
  article-title: Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
  publication-title: Mol Microbiol
– volume: 11
  start-page: 4241
  year: 2000
  end-page: 4257
  article-title: Genomic expression programs in the response of yeast cells to environmental changes
  publication-title: Mol Biol Cell
– volume: 2
  start-page: 87
  year: 2008
  article-title: A quantitative estimation of the global translational activity in logarithmically growing yeast cells
  publication-title: Bmc Systems Biol
– volume: 48
  start-page: 52
  year: 2012b
  end-page: 62
  article-title: Regulation of yeast pyruvate kinase by ultrasensitive allostery independent of phosphorylation
  publication-title: Mol Cell
– volume: 183
  start-page: 4910
  year: 2001
  end-page: 4913
  article-title: YLR209c encodes purine nucleoside phosphorylase
  publication-title: J Bacteriol
– volume: 42
  start-page: 27
  year: 2008
  end-page: 81
  article-title: How responds to nutrients
  publication-title: Annu Rev Genet
– volume: 316
  start-page: 109
  year: 2007
  end-page: 112
  article-title: Regulation of a cyclin‐CDK‐CDK inhibitor complex by inositol pyrophosphates
  publication-title: Science
– volume: 294
  start-page: 2364
  year: 2001
  end-page: 2368
  article-title: Systematic genetic analysis with ordered arrays of yeast deletion mutants
  publication-title: Science
– volume: 21
  start-page: 692
  year: 2003
  end-page: 696
  article-title: High‐throughput classification of yeast mutants for functional genomics using metabolic footprinting
  publication-title: Nat Biotechnol
– volume: 493
  start-page: 679
  year: 2012
  end-page: 683
  article-title: Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
  publication-title: Nature
– volume: 285
  start-page: 10703
  year: 2010
  end-page: 10714
  article-title: Snf1 dependence of peroxisomal gene expression is mediated by Adr1
  publication-title: J Biol Chem
– volume: 5
  start-page: 245
  year: 2009
  article-title: Glucose regulates transcription in yeast through a network of signaling pathways
  publication-title: Mol Syst Biol
– volume: 82
  start-page: 3212
  year: 2010
  end-page: 3221
  article-title: Metabolomic analysis via reversed‐phase ion‐pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer
  publication-title: Anal Chem
– volume: 51
  start-page: 253
  year: 1975
  end-page: 265
  article-title: Purine nucleoside phosphorylase from and . Purification and some properties
  publication-title: Euro J Biochem
– volume: 31
  start-page: 5
  year: 2013
  article-title: Systematic identification of allosteric protein‐metabolite interactions that control enzyme activity
  publication-title: Nat Biotechnol
– volume: 76
  start-page: 389
  year: 2011
  end-page: 396
  article-title: Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 283
  start-page: 8846
  year: 2008
  end-page: 8854
  article-title: The PHM8 gene encodes a soluble magnesium‐dependent lysophosphatidic acid phosphatase
  publication-title: J Biol Chem
– volume: 5
  start-page: e1000270
  year: 2009
  article-title: Coordinated concentration changes of transcripts and metabolites in
  publication-title: PLoS Comput Biol
– volume: 48
  start-page: 155
  year: 2002
  end-page: 171
  article-title: Metabolomics‐‐the link between genotypes and phenotypes
  publication-title: Plant Mol Biol
– volume: 276
  start-page: 884
  year: 2001
  end-page: 894
  article-title: The RihA, RihB, and RihC ribonucleoside hydrolases of . Substrate specificity, gene expression, and regulation
  publication-title: J Biol Chem
– volume: 279
  start-page: 54687
  year: 2004
  end-page: 54694
  article-title: General enzymatic screens identify three new nucleotidases in . Biochemical characterization of SurE, YfbR, and YjjG
  publication-title: J Biol Chem
– volume: 9
  start-page: 62
  year: 2005b
  end-page: 68
  article-title: Global strategies to integrate the proteome and metabolome
  publication-title: Curr Opin Chem Biol
– volume: 99
  start-page: 6784
  year: 2002
  end-page: 6789
  article-title: The TOR‐controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 253
  year: 1977
  end-page: 306
  article-title: Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast
  publication-title: Adv Microb Physiol
– volume: 18
  start-page: 4180
  year: 2007
  end-page: 4189
  article-title: Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae
  publication-title: Mol Biol Cell
– volume: 119
  start-page: 969
  year: 2004
  end-page: 979
  article-title: TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1
  publication-title: Cell
– volume: 6
  start-page: 10
  year: 2007
  article-title: Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress
  publication-title: J Biol
– volume: 278
  start-page: 1415
  year: 2003
  end-page: 1423
  article-title: Dihydroxyacetone kinases in are involved in detoxification of dihydroxyacetone
  publication-title: J Biol Chem
– volume: 5
  start-page: 306
  year: 2009
  article-title: Systematic phenome analysis of multiple‐knockout mutants reveals hidden reactions in central carbon metabolism
  publication-title: Mol Syst Biol
– volume: 330
  start-page: 1099
  year: 2010
  end-page: 1102
  article-title: Interdependence of cell growth and gene expression: origins and consequences
  publication-title: Science
– volume: 192
  start-page: 73
  year: 2012
  end-page: 105
  article-title: Nutritional control of growth and development in yeast
  publication-title: Genetics
– volume: 19
  start-page: 45
  year: 2001
  end-page: 50
  article-title: A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations
  publication-title: Nat Biotechnol
– volume: 313
  start-page: 907
  year: 2004
  end-page: 914
  article-title: Structures of human purine nucleoside phosphorylase complexed with inosine and ddI
  publication-title: Biochem Biophys Res Commun
– volume: 285
  start-page: 21049
  year: 2010
  end-page: 21059
  article-title: Structure and activity of the metal‐independent fructose‐1,6‐bisphosphatase YK23 from
  publication-title: J Biol Chem
– volume: 586
  start-page: 4114
  year: 2012
  end-page: 4118
  article-title: The PGM3 gene encodes the major phosphoribomutase in the yeast
  publication-title: FEBS Lett
– volume: 107
  start-page: 1
  year: 2005
  end-page: 30
  article-title: The 5′‐nucleotidases as regulators of nucleotide and drug metabolism
  publication-title: Pharmacol Therapeut
– volume: 33
  start-page: 299
  year: 1995
  end-page: 321
  article-title: Active oxygen in plant pathogenesis
  publication-title: Ann Rev Phytopathol
– volume: 25
  start-page: 460
  year: 2011
  end-page: 470
  article-title: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
  publication-title: Genes Dev
– volume: 41
  start-page: 132
  year: 2002
  end-page: 141
  article-title: The URH1 uridine ribohydrolase of
  publication-title: Curr Genet
– volume: 374
  start-page: 513
  year: 2003
  end-page: 519
  article-title: Protein S‐thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast
  publication-title: Biochem J
– volume: 281
  start-page: 36149
  year: 2006
  end-page: 36161
  article-title: Genome‐wide analysis of substrate specificities of the haloacid dehalogenase‐like phosphatase family
  publication-title: J Biol Chem
– volume: 12
  start-page: 104
  year: 2012
  end-page: 117
  article-title: The importance of post‐translational modifications in regulating metabolism
  publication-title: FEMS Yeast Res
– volume: 6
  start-page: 344
  year: 2010
  article-title: Control of ATP homeostasis during the respiro‐fermentative transition in yeast
  publication-title: Mol Syst Biol
– volume: 68
  start-page: 1336
  year: 2002
  end-page: 1343
  article-title: URH1 (encoding uridine‐cytidine N‐ribohydrolase): functional complementation by a nucleoside hydrolase from a protozoan parasite and by a mammalian uridine phosphorylase
  publication-title: Appl Environ Microbiol
– volume: 41
  start-page: 329
  year: 2001
  end-page: 337
  article-title: The role of the intracellular inhibitor of periplasmic UDP‐sugar hydrolase (5′‐nucleotidase) in : cytoplasmic localisation of 5′‐nucleotidase is conditionally lethal
  publication-title: J Basic Microbiol
– volume: 9
  start-page: 3273
  year: 1998
  end-page: 3297
  article-title: Comprehensive identification of cell cycle‐regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
  publication-title: Mol Bio of the cell
– volume: 25
  start-page: 336
  year: 2011
  end-page: 349
  article-title: Yeast cells can access distinct quiescent states
  publication-title: Gene Dev
– volume: 129
  start-page: 9294
  year: 2007
  end-page: 9295
  article-title: Differentiating metabolites formed from synthesis versus macromolecule decomposition
  publication-title: J Am Chem Soc
– volume: 21
  start-page: 198
  year: 2010
  end-page: 211
  article-title: Growth‐limiting intracellular metabolites in yeast growing under diverse nutrient limitations
  publication-title: Mol Biol Cell
– volume: 348
  start-page: 113
  year: 2005
  end-page: 125
  article-title: purine nucleoside phosphorylase II, the product of the xapA gene
  publication-title: J Mol Biol
– volume: 111
  start-page: 155
  year: 2002
  end-page: 158
  article-title: Nutrient‐regulated protein kinases in budding yeast
  publication-title: Cell
– volume: 151
  start-page: 863
  year: 2000
  end-page: 878
  article-title: Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors
  publication-title: J Cell Biol
– ident: e_1_2_7_4_1
  doi: 10.1126/science.1212642
– ident: e_1_2_7_46_1
  doi: 10.1074/jbc.M008300200
– ident: e_1_2_7_38_1
  doi: 10.1016/j.cell.2004.11.047
– ident: e_1_2_7_54_1
  doi: 10.1016/j.cbpa.2004.12.004
– ident: e_1_2_7_50_1
  doi: 10.1186/jbiol61
– ident: e_1_2_7_35_1
  doi: 10.1126/science.1139080
– ident: e_1_2_7_47_1
  doi: 10.1074/jbc.M411023200
– ident: e_1_2_7_6_1
  doi: 10.1038/nprot.2008.107
– ident: e_1_2_7_51_1
  doi: 10.1074/jbc.M109.079848
– ident: e_1_2_7_71_1
  doi: 10.1146/annurev.genet.41.110306.130206
– ident: e_1_2_7_2_1
  doi: 10.1038/nbt823
– ident: e_1_2_7_16_1
  doi: 10.1038/nature11745
– ident: e_1_2_7_69_1
  doi: 10.1021/ja072997c
– ident: e_1_2_7_44_1
  doi: 10.1074/jbc.273.7.3963
– ident: e_1_2_7_37_1
  doi: 10.1007/BF00229818
– ident: e_1_2_7_11_1
  doi: 10.1534/genetics.111.135731
– ident: e_1_2_7_26_1
  doi: 10.1002/1521-4028(200112)41:6<329::AID-JOBM329>3.0.CO;2-4
– ident: e_1_2_7_63_1
  doi: 10.1038/msb.2009.100
– ident: e_1_2_7_33_1
  doi: 10.1074/jbc.M110.118315
– ident: e_1_2_7_30_1
  doi: 10.1038/nature03029
– ident: e_1_2_7_41_1
  doi: 10.1074/jbc.M203030200
– ident: e_1_2_7_56_1
  doi: 10.1042/bj20030414
– ident: e_1_2_7_58_1
  doi: 10.1073/pnas.0903316106
– ident: e_1_2_7_64_1
  doi: 10.1016/S0092-8674(02)01043-7
– ident: e_1_2_7_9_1
  doi: 10.1371/journal.pcbi.1000270
– ident: e_1_2_7_8_1
  doi: 10.1091/mbc.E09-07-0597
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jmb.2005.02.019
– ident: e_1_2_7_57_1
  doi: 10.1091/mbc.9.12.3273
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.102687599
– ident: e_1_2_7_20_1
  doi: 10.1146/annurev.ge.26.120192.001111
– ident: e_1_2_7_24_1
  doi: 10.1038/nbt1492
– ident: e_1_2_7_29_1
  doi: 10.1083/jcb.151.4.863
– ident: e_1_2_7_3_1
  doi: 10.1146/annurev.py.33.090195.001503
– ident: e_1_2_7_61_1
  doi: 10.1186/1752-0509-2-87
– ident: e_1_2_7_22_1
  doi: 10.1046/j.1365-2958.2001.02283.x
– ident: e_1_2_7_53_1
  doi: 10.1038/nchembio0805-130
– ident: e_1_2_7_62_1
  doi: 10.1016/j.febslet.2012.09.042
– ident: e_1_2_7_68_1
  doi: 10.1091/mbc.e07-05-0485
– ident: e_1_2_7_28_1
  doi: 10.1101/gad.2011311
– ident: e_1_2_7_7_1
  doi: 10.1016/S0065-2911(08)60318-5
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1742-4658.2006.05155.x
– ident: e_1_2_7_32_1
  doi: 10.1074/jbc.M605449200
– ident: e_1_2_7_39_1
  doi: 10.1101/sqb.2012.76.011015
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1432-1033.1975.tb03925.x
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cell.2011.05.022
– ident: e_1_2_7_40_1
  doi: 10.1128/AEM.68.3.1336-1343.2002
– ident: e_1_2_7_65_1
  doi: 10.1038/nchembio.941
– ident: e_1_2_7_12_1
  doi: 10.1016/j.bbrc.2003.11.179
– start-page: 1553
  year: 1996
  ident: e_1_2_7_10_1
  article-title: Modulation of chemical composition and other parameters of the cell by growth rate
  publication-title: Escherichia coli and Salmonella
– ident: e_1_2_7_31_1
  doi: 10.1007/s00294-002-0296-9
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1567-1364.2011.00765.x
– ident: e_1_2_7_52_1
  doi: 10.1074/jbc.M706752200
– ident: e_1_2_7_42_1
  doi: 10.1038/msb.2009.65
– ident: e_1_2_7_19_1
  doi: 10.1002/bit.10378
– ident: e_1_2_7_66_1
  doi: 10.1016/j.molcel.2012.07.013
– ident: e_1_2_7_25_1
  doi: 10.1016/j.pharmthera.2005.01.003
– ident: e_1_2_7_55_1
  doi: 10.1126/science.1192588
– ident: e_1_2_7_70_1
  doi: 10.1038/msb.2009.2
– ident: e_1_2_7_21_1
  doi: 10.1091/mbc.11.12.4241
– ident: e_1_2_7_36_1
  doi: 10.1038/nbt.2489
– ident: e_1_2_7_5_1
  doi: 10.1038/nchembio.186
– ident: e_1_2_7_48_1
  doi: 10.1038/83496
– ident: e_1_2_7_59_1
  doi: 10.1126/science.1065810
– ident: e_1_2_7_43_1
  doi: 10.1074/jbc.M200573200
– ident: e_1_2_7_67_1
  doi: 10.1101/gad.2016111
– ident: e_1_2_7_18_1
  doi: 10.1023/A:1013713905833
– ident: e_1_2_7_49_1
  doi: 10.1021/ac902837x
– ident: e_1_2_7_23_1
  doi: 10.1101/gad.2016311
– ident: e_1_2_7_17_1
  doi: 10.1007/BF02826554
– ident: e_1_2_7_34_1
  doi: 10.1128/JB.183.16.4910-4913.2001
SSID ssj0038182
Score 2.3033001
Snippet Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient...
Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This...
Abstract Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway....
SourceID doaj
pubmedcentral
osti
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 665
SubjectTerms Ablation
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
Antioxidants
autophagy
BASIC BIOLOGICAL SCIENCES
Biochemistry
Biochemistry & Molecular Biology
Biodegradation
Carbon
Chromatography
Consumption
Cyclic AMP-Dependent Protein Kinases - genetics
Cyclic AMP-Dependent Protein Kinases - metabolism
Degradation
Depletion
E coli
EMBO21
EMBO36
Enzymes
Experiments
Gene deletion
Gene Expression Regulation, Fungal
Genetics
Genomes
Glyceraldehyde
Glyceraldehyde 3-Phosphate - metabolism
Grants
Hydrolase
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Kinases
Life Sciences
mass spectrometry
Metabolism
Metabolites
Metabolomics
N-Glycosyl Hydrolases - deficiency
N-Glycosyl Hydrolases - genetics
NADP
NADP - metabolism
Nitrogen
Nucleosides
Nucleotides
Nucleotides - metabolism
nutrient starvation
Nutrients
Oxidative stress
Pentose
Pentose phosphate pathway
Pentose Phosphate Pathway - genetics
Phosphatase
Phosphorylase
Phosphorylases
Physiology
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proteins
Purine-Nucleoside Phosphorylase - deficiency
Purine-Nucleoside Phosphorylase - genetics
Ribose
Ribose - metabolism
Ribosomes
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Signal Transduction
Software
Starvation
Stress, Physiological - genetics
Substrates
Sugar Phosphates
Transaldolase
Transaldolase - genetics
Transaldolase - metabolism
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEG9CCwqoXEChjuM49rFFVCtEe4FKvVl-qiu1CWq2lfrvmXGygYhVuXDbTbx5eGbyfbOefEPIXl2izBwLRS2NK3hNeSGBGBeVF9apYCDWMVE8PhHLU_71rD77o9UX1oQN8sDDxO1XgnInmiCj4zxYqZw1FaBQDFWglif1UqroJpkansEIQ2x8Gw--7F_2Fqu4qk-snOFPkukHVDnHIshFB0G1jWj-XS85LZrOKW3CpKNH5OFIJvOD4SYek3uhfULuD-0lb58SdoJixd165UPuURRi6J-Um9bnVyvb9SHvzcUNPFHyVZvfYhefZ-T06MuPz8ti7JFQOMT-olG2jtaWlfS0YdbUUXlPhcflQe8UjdZQSBrq0gM2hyB9KaKU3kBeKCO3qnpOFm3XhpckD42xqFXT1I3hykajDCSXwktrHfUyZuTDZua0GwXEsY_FhU4L2ZXUMM0ap1mzMiN70-Cfg27G9mGHaIJpCIpdpw3gAnp0Af0vF8jIOzDg7BjLg28at2HGhQqBN3CmHbSvBmKB6rgOy4jcWpdA_ySVGdndmF2PQdxrBlAN8K04_PjttBvCD9dUTBu6615jg0OBMnp3jQHKDEQXiGxGXgyeNF1sEtAD0MlIM_Ox2d3M97Sr8yQDzvG1agHHfL_xxt-XvnWqPyZXvcsc-vj7IX5k5av_YZgd8oCl7iH4j9UuWayvrsNr4HBr-yaF6y98N0FW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD7oFsEX0XppbJUo9UWJzWWSTJ6kW1oWsYuohb4Nc0u70CZ1sy3033tOMkkJLvuWTYYke67fmZl8B2A_jYhmLrZByqUOWBqygCMwDhKTKV1Yib5OheLpPJudse_n6bmbcGvctso-JraB2tSa5sgPYoybGEsLFn27-RtQ1yhaXXUtNB7DFoZgjna-NT2e__zVx2JKR7H7Kg9_HFw3inZzJV_jaJSHWrp-zC6XtBlyUqNzrQOc_--bHBZPx9C2zU0nz-GZA5X-YWcFL-CRrbbhSddm8v4lxHMiLa5XC2N9Q-QQXR8lX1bGXy5U3Vi_kVd3GFn8ReXfUzefV3B2cvznaBa4XgmBJgwQ5IVKS6WihJswj5VMy8KYMDO0TGh0EZZKhlg8pJHBHG0tN1FWcm4k1oe8ZKpIXsOkqiu7A77NpSLOmjzNJStUKQuJRWZmuFI6NLz04HMvOaEdkTj1s7gS7YJ2wgWKWZCYRRx5sD8Mvun4M9YPm5IKhiFEet2eqJcXwvmQSLKQ6Sy3vNSMWcULrWSCgKS0iQ0VSz34iAoc3WN2-EPQOaq8iCnwDp-0S_oVCDCIJVfTdiK9EhHCQB5yD_Z6tQvnzI14MD0PPgyX0Q1pbUVWtr5tBDU6zIhOb9MYhM4IeBHQevCms6ThZVsiPUw-HuQjGxv9m_GVanHZ0oEz-rw6w3t-6q3x4dXXivpLa6qb1CFOf0_pMI7ebhbILjyN2_4gNCe1B5PV8ta-Q5S2Uu-dK_4Df1g5xg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVhQ6CX0u-6SYtb0kuLW9mWZem4KQnL0uSSBnIT-nKzkNplvQnk33fGlt2aLiG3XVuWtRpJ781q9IaQwyJFmbnMJ4XQNmEFZYkAYpzkjhsrvYa5jo7i6RlfXLDlZXEZdLbbEFbZS1p2y_QQHfb1V2swDiv_gofGdwXgXjYju_P58nw5LLyIPVk4ggdf_n1kAjqdNj9AyRVGPs4amEnb2OX_QZLjTumUx3ZAdPKEPA4MMp73bX5Kdnz9jOz1OSXvnpPsDBWKm83K-dihEkSfNCnWtYvXK9O0Pm719S0sI_Gqju8wdc8LcnFy_OPbIgmJERKLgJ-U0hSVMWkuHC0zo4tKOke5wz1BZyWtjKbgKRSpA0D2XriUV0I4Dc6gqJiR-Usyq5vavyaxL7VBgZqyKDWTptJSg0fJnTDGUieqiHwaek7ZoBqOySuuVbd7nQsF3aywm1WWRuRwLPy7F8vYXuwITTAWQYXr7kKz_qmCxVXOKbO89KKyjHkjpDU6B_ZR-dxTw4qIfAADTupYzL8rvIZuFsoC3sKb9tG-CtgESuJajB2yG5UC5xNURORgMLsKM7dVGeAzYLZk8PD78TbMOdxI0bVvblqFWQ05aufdVwZ4MrBbYK8RedWPpLGxnWoeIE1EyskYm_ya6Z16ddVpfzM8S82hzo_DaPzb9K1d_bkbqveZQ52eH-HHLH3zwFr3yaOsywqC_0QdkNlmfePfAjfbmHdhTv4BJwU1Lw
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlS6GXkr6dpMUt6aXFrSzLtnxMQsJSmlBoA7kJjSQ3C6kd1ptA_n1mZK9b0yXQm7HGL2lG88ma-YaxvTwlmjnhk1wZm8icy0QhME4yV4CtvEFbp4XiyWkxP5Nfz_PzITaHcmF6fojxhxtZRpivycANdEOaOAWu_-6AIrOyz5RG_pCSa6lyg5Df1xMx-SLR50PKhKoyDel52PDlr4snDinw9qObuaCoyFmLVrYJef4bQDnuok4xbnBSx1vsyYAu4_1eHZ6yB755xh719SZvnzNxSuzF7WrhfOyIJaIvqBSbxsXLBbSdjztzeYNTTLxo4lsq6_OCnR0f_TycJ0PRhMQSGEjKCvIaIM2U46UAk9eVc7xwtF_obMVrMBxXEXnq0Fl7r1xa1Eo5gwtFVUuospds1rSNf81iXxog8poyL42soDaVwdVm4RSA5U7VEfu47jltB0ZxKmxxqcPOdqY0drOmbtYijdjeKHzVE2lsFjugIRhFiP06nGiXv_RgTDoruLRF6VVtpfSgKgsmQ2RS-8xzkHnE3uMATu4x3_-m6RwtwYgy8AaftEPjqxFpEF2upbgiu9Ip4kHFVcR218OuB6vutEDfjf68knjxu7EZ7ZE2WUzj2-tOU8XDgnj17pNBDI3IF5FtxF71mjS-bGDUQy8UsXKiY5OvmbY0i4vACy4pz7rAe35Ya-OfV9_Y1Z-Cqt43HPrkxwEdinT7v6R32GMR6obQv6pdNlstr_0bRG8reBts9A7Kcjtg
  priority: 102
  providerName: Wiley-Blackwell
Title Nucleotide degradation and ribose salvage in yeast
URI https://link.springer.com/article/10.1038/msb.2013.21
https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fmsb.2013.21
https://www.ncbi.nlm.nih.gov/pubmed/23670538
https://www.proquest.com/docview/2299128941
https://www.proquest.com/docview/1351611801
https://www.proquest.com/docview/1566835059
https://insa-toulouse.hal.science/hal-02170940
https://www.osti.gov/servlets/purl/1623808
https://pubmed.ncbi.nlm.nih.gov/PMC4039369
https://doaj.org/article/3604c67e8fc44eb89cba3406fe3e0b45
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEF6VVEi8IG5MS2RQeQG5-Fiv1w8IJVGrKCJRRYmUt9VeppGCDUlakX_PjC9kiPKSROu148yR-caz-w0hZ3GANHOh9WIutUdjn3ocgLEXGaZ0aiX4OiaK0xkbz-lkES-OSNOMsxbgZm9qh_2k5uvV-e9fu8_g8J-qLeP844-NwjVa0TluKD-GkMQwC5vStpyAUSmsdkZSD_sz1Rv1_jm5E5pKBn8IODe4PrJXgL_tw6D_L6Vs66ldtFuGq8tH5GGNM91BZRiPyZHNn5D7VefJ3VMSzpDHuNgujXUN8kVUrZVcmRt3vVTFxrobubqDPxt3mbs7bPDzjMwvL76Nxl7dPsHTCAu8JFVxplQQceMnoZJxlhrjM4OVQ6NTP1PSh3wiDgyEbWu5CVjGuZGQMvKMqjR6Tnp5kduXxLWJVEhjk8SJpKnKZCoh72SGK6V9wzOHvG8kJ3TNLY4tLlairHFHXICYBYpZhIFDztrJPytKjf3ThqiCdgryYJcDxfq7qN1KRMynmiWWZ5pSq3iqlYwAo2Q2sr6isUPeggI71xgPvggcw2QMyQPv4JtOUL8CMAcS52pcYaS3IgBkyH3ukNNG7aIxTxFCFIfInlI4-U17GDwTyy0yt8XtRmDvQ4YMe4fmAJoGDAwY1yEvKktqb7bk1oN45JCkY2OdX9M9ki9vSoZwijuuGVzzXWONf299r6g_lKZ6SB1iej3Ej2Hw6qC4TsiDsOwYgk-pTklvu761rwG3bVWf3AvpFbwmi6RPjgeDyfUE3ocXs6uvMDpio375RKRf-u4f0XFDDg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqRBcEG_cFjCovYDc2uu1vT4g1ECrlCYRglbqbdmXaaTWLnFalD_Fb2TGj1QWUW69OfbKdub5rWf3G0K2owBp5qj1Ii61xyKfeRyAsReaWOnUSvB1nCiOxvHglH09i87WyN92Lwwuq2xjYhWoTaHxG_kehbgJsTRlwaer3x52jcLqattCozaLYzv_A1O28uPRF9DvDqWHByefB17TVcDTmC29JFVRplQQcuMnVMkoS43xY4MFNaNTP1PSB5gdBQaymbXcBHHGuZEwk-IZU0i-BCF_neGO1h5Z7x-Mv31vYz-mP9rsAoQfe5elwtVj4S4NOnmvag8A2ewcF1_2CnDmZQD3_3Wai2JtF0pXufDwEXnYgFh3v7a6x2TN5k_Ivbqt5fwpoWMkSS5mE2Ndg2QUdd8mV-bGnU5UUVq3lBc3EMncSe7OsXvQM3J6J1J8Tnp5kduXxLWJVMiRk0SJZKnKZCphUhsbrpT2Dc8c8r6VnNANcTn2z7gQVQE95ALELFDMggYO2V4Mvqr5OpYP66MKFkOQZLs6UUx_icZnRRj7TMeJ5ZlmzCqeaiVDAECZDa2vWOSQd6DAzj0G-0OB53Cmh8yEN_CkTdSvAECDrLwaly_pmQgAdnKfO2SrVbtogkcpbk3dIW8Xl8HtsZYjc1tclwIbK8ZI37dqDEB1ANgAoB3yorakxctWxH2Q7BySdGys82-6V_LJeUU_znA7dwz33Gmt8fbVl4r6Q2Wqq9QhRj_6eEiDjdUCeUPuD05GQzE8Gh9vkge06k2C38O2SG82vbavACHO1OvGLV3y864jwT-2zXZ5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQIhCXijehBQIqF1AgcRzHObbAaoF2VQkq9Wb5SVdqk2qzrdR_z4yTDUSsKnGL4snLnvF8jme-IWS3yJBmjrqkEMokrEhZIgAYJ7nl2lROga3jQvFwzmfH7NtJcdLH5mAuTMcPMfxwQ8sI8zUa-IX1fZo4Bq6ftxojs_IPmEZ-G7f70C4pO1pPxOiLaJcPyRKsytSn50HDx78uHjmkwNsPbuYUoyInDVjZJuT5bwDlsIs6xrjBSU3vk60eXcZ7nTo8ILdc_ZDc6epNXj8idI7sxc1qYV1skSWiK6gUq9rGy4VuWhe36uwKpph4UcfXWNbnMTmefvn5aZb0RRMSg2AgKStdeK2zXNi0pFoVvrI25Rb3C62pUq9VCquIIrPgrJ0TNuNeCKtgoSg801X-hEzqpnbPSOxKpZG8pixKxSrtVaVgtcmt0NqkVviIvFv3nDQ9ozgWtjiTYWc7FxK6WWI3S5pFZHcQvuiINDaL7eMQDCLIfh1ONMtfsjcmmfOUGV464Q1jTovKaJUDMvEud6lmRUTewACO7jHbO5B4DpdgSBl4BU_axvGVgDSQLtdgXJFZyQzwoEhFRHbWwy57q24lBd8N_rxicPHroRnsETdZVO2ay1ZixUOOvHo3yQCGBuQLyDYiTztNGl42MOqBF4pIOdKx0deMW-rFaeAFZ5hnzeGeb9fa-OfVN3b1-6CqNw2HPPyxj4c0e_5f0q_I3aPPU3nwdf59m9yjoYQI_rbaIZPV8tK9ACC30i-Duf4GptA9_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleotide+degradation+and+ribose+salvage+in+yeast&rft.jtitle=Molecular+systems+biology&rft.au=Xu%2C+Yi%E2%80%90Fan&rft.au=L%C3%A9tisse%2C+Fabien&rft.au=Absalan%2C+Farnaz&rft.au=Lu%2C+Wenyun&rft.date=2013&rft.pub=Wiley&rft.issn=1744-4292&rft.eissn=1744-4292&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fmsb.2013.21&rft.externalDocID=1623808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon