Mechanisms of BRCA1–BARD1 nucleosome recognition and ubiquitylation

The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination 1 – 10 . The BRCA1–BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular target...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 596; no. 7872; pp. 438 - 443
Main Authors Hu, Qi, Botuyan, Maria Victoria, Zhao, Debiao, Cui, Gaofeng, Mer, Elie, Mer, Georges
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.08.2021
Nature Publishing Group
Subjects
82
DNA
NMR
Online AccessGet full text

Cover

Loading…
Abstract The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination 1 – 10 . The BRCA1–BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets 11 – 14 . The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1–BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks 15 , 16 . We further show that RING domains 17 in BRCA1–BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1–BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1–BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1–BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin 18 – 22 . These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. The authors elucidate the mechanisms for the ubiquitylation specificity and recruitment of the ubiquitin ligase complex BRCA1–BARD1 to damaged DNA within chromatin to facilitate homologous recombination.
AbstractList The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination.sup.1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets.sup.11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks.sup.15,16. We further show that RING domains.sup.17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin.sup.18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks15,16. We further show that RING domains17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks15,16. We further show that RING domains17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination.sup.1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets.sup.11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks.sup.15,16. We further show that RING domains.sup.17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin.sup.18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. The authors elucidate the mechanisms for the ubiquitylation specificity and recruitment of the ubiquitin ligase complex BRCA1-BARD1 to damaged DNA within chromatin to facilitate homologous recombination.
The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination 1 – 10 . The BRCA1–BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets 11 – 14 . The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1–BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks 15 , 16 . We further show that RING domains 17 in BRCA1–BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1–BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1–BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1–BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin 18 – 22 . These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. The authors elucidate the mechanisms for the ubiquitylation specificity and recruitment of the ubiquitin ligase complex BRCA1–BARD1 to damaged DNA within chromatin to facilitate homologous recombination.
The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination 1 – 10 . The BRCA1–BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets 11 – 14 . The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1–BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks 15 , 16 . We further show that RING domains 17 in BRCA1–BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1–BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1–BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin 18 – 22 . These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair ofDNA double-strand breaks by homologous recombination. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks. We further show that RING domains in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions ofBARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination . The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets . The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks . We further show that RING domains in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin . These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.
Audience Academic
Author Zhao, Debiao
Botuyan, Maria Victoria
Cui, Gaofeng
Mer, Elie
Hu, Qi
Mer, Georges
AuthorAffiliation 1 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
2 Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA
AuthorAffiliation_xml – name: 2 Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA
– name: 1 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0003-3647-8471
  surname: Hu
  fullname: Hu, Qi
  organization: Department of Biochemistry and Molecular Biology, Mayo Clinic
– sequence: 2
  givenname: Maria Victoria
  orcidid: 0000-0002-6466-7432
  surname: Botuyan
  fullname: Botuyan, Maria Victoria
  organization: Department of Biochemistry and Molecular Biology, Mayo Clinic
– sequence: 3
  givenname: Debiao
  surname: Zhao
  fullname: Zhao, Debiao
  organization: Department of Biochemistry and Molecular Biology, Mayo Clinic
– sequence: 4
  givenname: Gaofeng
  surname: Cui
  fullname: Cui, Gaofeng
  organization: Department of Biochemistry and Molecular Biology, Mayo Clinic
– sequence: 5
  givenname: Elie
  orcidid: 0000-0003-2339-9547
  surname: Mer
  fullname: Mer, Elie
  organization: Department of Biochemistry and Molecular Biology, Mayo Clinic
– sequence: 6
  givenname: Georges
  orcidid: 0000-0002-1900-1578
  surname: Mer
  fullname: Mer, Georges
  email: mer.georges@mayo.edu
  organization: Department of Biochemistry and Molecular Biology, Mayo Clinic, Department of Cancer Biology, Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34321665$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURKeFF2CBItiAUIr_YjsbpHQoUKmANBSxtDzOTeoqsWfiBNEd78Ab8iR4Oi3tVEPlhaXr7xzfq3v2kh3nHSTJU4wOMKLyTWA4lzxDBGeICswz-SCZYCZ4xrgUO8kEISIzJCnfTfZCOEcI5ViwR8kuZZRgzvNJcvQJzJl2NnQh9XV6OJuW-M-v34fl7B1O3Wha8MF3kPZgfOPsYL1LtavScW6Xox0uWr0qPU4e1roN8OTq3k--vT86nX7MTr58OJ6WJ5kRjAxZTY0gQOYFNnXBGUO6JkwbbLAWYj5nFc55AXkeh0HMVKauAaCQICGvQCBM95O3a9_FOO-gMuCGXrdq0dtO9xfKa6s2X5w9U43_oSSXCOciGry8Muj9coQwqM4GA22rHfgxKJLnnEpKyQp9cQc992Pv4niR4pQVhSyKG6rRLSjrah__NStTVXJBWEGEWHllW6gGHMQm41JrG8sb_PMtvFnYpboNHWyB4qmgs2ar66sNQWQG-Dk0egxBHX-dbbKv_8-Wp9-nnzfpZ7f38m8h1zmLgFwDpvch9FArY4fL6MSebaswUqtIq3WkVYy0uoy0klFK7kiv3e8V0bUoRNg10N8s7x7VXwpdBKM
CitedBy_id crossref_primary_10_1021_jacsau_4c00392
crossref_primary_10_21769_BioProtoc_4337
crossref_primary_10_1016_j_semcdb_2022_03_011
crossref_primary_10_1038_s41467_025_57384_7
crossref_primary_10_1016_j_ceb_2023_102176
crossref_primary_10_1093_bib_bbae006
crossref_primary_10_1016_j_ejphar_2025_177344
crossref_primary_10_1016_j_molcel_2023_06_031
crossref_primary_10_1016_j_biopha_2023_115877
crossref_primary_10_1016_j_molcel_2023_08_001
crossref_primary_10_15252_embr_202154116
crossref_primary_10_3389_freae_2024_1445765
crossref_primary_10_1016_j_gde_2021_08_006
crossref_primary_10_1080_07391102_2023_2175383
crossref_primary_10_1093_gpbjnl_qzae019
crossref_primary_10_1172_JCI179122
crossref_primary_10_3390_cells14040307
crossref_primary_10_1038_s41467_023_41821_6
crossref_primary_10_1038_s41467_023_37499_5
crossref_primary_10_1093_nar_gkae499
crossref_primary_10_3390_ijms24054982
crossref_primary_10_1016_j_bpc_2023_107070
crossref_primary_10_1021_acs_bioconjchem_4c00130
crossref_primary_10_1016_j_bbagrm_2024_195033
crossref_primary_10_1016_j_jmb_2024_168442
crossref_primary_10_1016_j_str_2023_03_010
crossref_primary_10_1038_s41421_023_00590_8
crossref_primary_10_1093_nar_gkac877
crossref_primary_10_1083_jcb_202111050
crossref_primary_10_1002_anie_202408435
crossref_primary_10_2217_epi_2023_0234
crossref_primary_10_1016_j_molcel_2023_12_036
crossref_primary_10_1038_s41568_022_00535_5
crossref_primary_10_12998_wjcc_v12_i18_3539
crossref_primary_10_1002_mc_23829
crossref_primary_10_1002_ange_202408435
crossref_primary_10_1016_j_pharmthera_2021_108009
crossref_primary_10_1080_07391102_2023_2233028
crossref_primary_10_1002_mco2_736
crossref_primary_10_1038_s41594_024_01381_9
crossref_primary_10_1042_BCJ20200864
crossref_primary_10_34133_research_0249
crossref_primary_10_1186_s13148_022_01251_5
crossref_primary_10_3389_fgene_2021_747734
crossref_primary_10_3389_fcell_2022_968398
crossref_primary_10_1038_s41467_023_43677_2
crossref_primary_10_1016_j_csbj_2024_10_008
crossref_primary_10_1016_j_ijbiomac_2023_127717
crossref_primary_10_1016_j_ijbiomac_2024_135977
crossref_primary_10_3389_fgene_2022_793884
crossref_primary_10_1016_j_chempr_2023_01_012
crossref_primary_10_15252_embr_202153679
crossref_primary_10_1016_j_tibs_2022_03_001
crossref_primary_10_1038_s41594_023_01137_x
crossref_primary_10_1360_SSC_2023_0066
crossref_primary_10_1002_pro_4479
crossref_primary_10_1016_j_dnarep_2024_103702
crossref_primary_10_1101_gad_349431_122
crossref_primary_10_1093_nar_gkae831
crossref_primary_10_3389_fcell_2022_932633
crossref_primary_10_1016_j_chempr_2023_04_016
crossref_primary_10_1073_pnas_2320804121
crossref_primary_10_1042_BST20230862
crossref_primary_10_1016_j_apsb_2023_05_017
crossref_primary_10_1038_s41594_023_01141_1
crossref_primary_10_1016_j_molcel_2025_02_004
crossref_primary_10_3390_ijms23158187
crossref_primary_10_3390_polym14163391
crossref_primary_10_1093_nar_gkac611
crossref_primary_10_3389_fcell_2022_909696
crossref_primary_10_1016_j_dnarep_2024_103711
crossref_primary_10_1016_j_dnarep_2025_103811
crossref_primary_10_15252_embj_2023113565
crossref_primary_10_1038_s41589_022_01067_7
crossref_primary_10_1002_advs_202207435
crossref_primary_10_1093_nar_gkae361
crossref_primary_10_1101_gad_350989_123
crossref_primary_10_1038_s41594_021_00658_7
crossref_primary_10_1007_s42764_023_00100_w
crossref_primary_10_1016_j_semcdb_2021_11_006
crossref_primary_10_1371_journal_pgen_1010457
crossref_primary_10_1016_j_molcel_2023_09_015
crossref_primary_10_1172_JCI171533
crossref_primary_10_1039_D2CP04059J
crossref_primary_10_1038_s41589_024_01750_x
crossref_primary_10_3389_fcell_2022_928113
crossref_primary_10_1093_nar_gkad793
crossref_primary_10_1038_s41467_024_46910_8
Cites_doi 10.1016/S0092-8674(00)81847-4
10.1016/j.ccr.2013.03.025
10.1038/s41594-020-00556-4
10.7554/eLife.36861
10.1038/38444
10.1126/sciadv.1701386
10.1021/bi025571d
10.1038/nsmb.1831
10.4161/cc.20919
10.1126/science.1139516
10.1038/s41586-019-1259-3
10.1007/s10858-005-4425-x
10.1002/jcc.20084
10.1074/jbc.C000881200
10.1038/s41556-018-0152-x
10.1073/pnas.111125998
10.1016/S0960-9822(00)00610-2
10.1016/j.celrep.2014.07.025
10.1107/S0907444909042073
10.1107/S2059798319011471
10.1016/j.cell.2006.10.043
10.1016/j.cell.2008.12.042
10.1038/nature13430
10.1074/jbc.M802333200
10.1038/emboj.2011.243
10.1126/science.7939630
10.1038/ng1294-399
10.1038/s41580-020-0218-z
10.1016/S1097-2765(00)80202-6
10.1074/jbc.C111.220715
10.1038/s41556-019-0282-9
10.1016/j.cell.2008.12.041
10.1038/nsmb.3236
10.1016/0010-4655(95)00042-E
10.1073/pnas.1715467115
10.1016/j.jsb.2012.09.006
10.1038/nature10861
10.1096/fj.201701413RRR
10.1126/science.1139621
10.1038/nsb1001-833
10.1126/science.1139476
10.1002/pro.3235
10.1016/j.molcel.2018.08.016
10.1016/j.ab.2011.06.034
10.1101/gad.2011011
10.1038/nmeth.4347
10.1038/nature18312
10.1089/adt.2005.3.613
10.1016/j.str.2010.04.017
10.1007/BF00197809
10.7554/eLife.42166
10.1016/j.molcel.2017.04.009
10.1016/S0076-6879(99)04003-3
10.1016/j.celrep.2017.05.016
10.1038/nature24060
10.1107/S0907444904019158
10.1093/emboj/cdf691
10.1016/j.jsb.2021.107702
10.1093/nar/gkx1153
10.1021/bi801115g
10.1093/bioinformatics/btu830
10.1016/j.cell.2010.03.012
10.1038/nmeth.4169
10.1016/j.cell.2012.08.005
10.1038/nsmb1148
10.1021/bi101303t
10.1074/jbc.M110.213728
10.1038/nmeth.4193
10.1038/nature18951
10.1038/nature09321
10.1038/nature12318
10.1126/science.1178994
10.1126/science.7545954
10.1038/ng1296-430
10.1126/science.2270482
10.1038/nature13890
10.1016/0022-2836(87)90679-6
10.1021/bi700323t
10.1242/jcs.105353
10.1101/2020.06.01.127951
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Aug 19, 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Aug 19, 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-021-03716-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic







Agricultural Science Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 443
ExternalDocumentID PMC8680157
A672492777
34321665
10_1038_s41586_021_03716_8
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM116829
– fundername: NIGMS NIH HHS
  grantid: U24 GM129547
– fundername: NCI NIH HHS
  grantid: R01 CA132878
– fundername: NIGMS NIH HHS
  grantid: R35 GM136262
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAVBQ
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c742t-f3c72e2b91cf96440af24ac1c1a77bb4d1569e5537104cdcffeee98e8e5de7013
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:17:33 EDT 2025
Thu Jul 10 19:11:03 EDT 2025
Sat Aug 23 13:34:54 EDT 2025
Tue Jun 17 21:21:10 EDT 2025
Thu Jun 12 23:57:37 EDT 2025
Tue Jun 10 15:35:03 EDT 2025
Tue Jun 10 20:46:37 EDT 2025
Fri Jun 27 03:50:04 EDT 2025
Fri Jun 27 04:47:55 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Tue Jul 01 02:32:25 EDT 2025
Fri Feb 21 02:37:08 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7872
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Reprints and permissions information is available at http://www.nature.com/reprints.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c742t-f3c72e2b91cf96440af24ac1c1a77bb4d1569e5537104cdcffeee98e8e5de7013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally: Qi Hu, Maria Victoria Botuyan, Debiao Zhao.
Author contributions G.M. conceived and supervised this work. G.M., Q.H., M.V.B. and D.Z. designed the experiments. Q.H. determined the cryo-EM structures. G.C. and Q.H. performed the NMR spectroscopy experiments. M.V.B. cLoned the different constructs. M.V.B., D.Z., Q.H. and E.M. produced and purified all samples. M.V.B., Q.H., D.Z. and E.M. performed the functional assays. G.M. wrote the manuscript with major contributions from M.V.B. and Q.H., and input from all authors.
ORCID 0000-0002-6466-7432
0000-0003-2339-9547
0000-0003-3647-8471
0000-0002-1900-1578
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8680157
PMID 34321665
PQID 2563499899
PQPubID 40569
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8680157
proquest_miscellaneous_2556383327
proquest_journals_2563499899
gale_infotracmisc_A672492777
gale_infotracgeneralonefile_A672492777
gale_infotraccpiq_672492777
gale_infotracacademiconefile_A672492777
gale_incontextgauss_ISR_A672492777
gale_incontextgauss_ATWCN_A672492777
pubmed_primary_34321665
crossref_citationtrail_10_1038_s41586_021_03716_8
crossref_primary_10_1038_s41586_021_03716_8
springer_journals_10_1038_s41586_021_03716_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-19
PublicationDateYYYYMMDD 2021-08-19
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Stewart (CR30) 2009; 136
Moynahan, Chiu, Koller, Jasin (CR8) 1999; 4
Kalb, Mallery, Larkin, Huang, Hiom (CR13) 2014; 8
Hu (CR46) 2011; 25
Hall (CR1) 1990; 250
Benirschke (CR53) 2010; 18
Coleman, Greenberg (CR45) 2011; 286
Zivanov (CR63) 2018; 7
CR32
Hashizume (CR24) 2001; 276
Fradet-Turcotte (CR27) 2013; 499
Cui (CR50) 2010; 49
Chen (CR71) 2010; 66
Punjani, Fleet (CR35) 2021; 213
Lee, Tonelli, Markley (CR75) 2015; 31
Makde, England, Yennawar, Tan (CR57) 2010; 467
McGinty, Henrici, Tan (CR34) 2014; 514
Punjani, Rubinstein, Fleet, Brubaker (CR61) 2017; 14
Densham (CR14) 2016; 23
Su (CR54) 2011; 286
Matsumoto (CR58) 2019; 571
Luger, Rechsteiner, Richmond (CR56) 1999; 304
Futreal (CR3) 1994; 266
Scully (CR6) 1997; 88
Shukla (CR60) 2014; 512
Tan (CR65) 2017; 14
Brzovic, Rajagopal, Hoyt, King, Klevit (CR17) 2001; 8
Eddins, Carlile, Gomez, Pickart, Wolberger (CR41) 2006; 13
Sundd, Iverson, Ibarra-Molero, Sanchez-Ruiz, Robertson (CR49) 2002; 41
Zhao (CR7) 2017; 550
Billing (CR40) 2018; 72
Berndsen, Wolberger (CR51) 2011; 418
Doil (CR31) 2009; 136
Paull (CR37) 2000; 10
Mallery, Vandenberg, Hiom (CR25) 2002; 21
Liang (CR23) 2017; 3
Nakamura (CR11) 2019; 21
Mattiroli (CR15) 2012; 150
Berendsen, van der Spoel, van Drunen (CR77) 1995; 91
Fox (CR38) 2008; 283
Tarsounas, Sung (CR10) 2020; 21
Kim, Chen, Yu (CR44) 2007; 316
Witus (CR80) 2021; 28
Hu, Botuyan, Cui, Zhao, Mer (CR48) 2017; 66
Gatti (CR16) 2012; 11
Schanda, Kupce, Brutscher (CR76) 2005; 33
Stewart (CR26) 2018; 115
Delaglio (CR74) 1995; 6
Mukherjee (CR78) 2019; 33
Scheres (CR62) 2012; 180
Nakane, Kimanius, Lindahl, Scheres (CR36) 2018; 7
Sobhian (CR42) 2007; 316
Friedman (CR4) 1994; 8
Xu (CR47) 2010; 328
Chapman, Sossick, Boulton, Jackson (CR20) 2012; 125
Zheng (CR64) 2017; 14
Edwards (CR69) 2008; 47
Miki (CR2) 1994; 266
Li, Yu (CR39) 2013; 23
Greenberg (CR22) 2018; 20
Vijay-Kumar, Bugg, Cook (CR70) 1987; 194
Emsley, Cowtan (CR67) 2004; 60
Wilson (CR28) 2016; 536
Landrum (CR79) 2018; 46
Bouwman (CR19) 2010; 17
Botuyan (CR29) 2006; 127
Wu (CR5) 1996; 14
Birrane, Varma, Soni, Ladias (CR68) 2007; 46
Paull, Cortez, Bowers, Elledge, Gellert (CR9) 2001; 98
Pettersen (CR72) 2004; 25
Bentley (CR52) 2011; 30
Saredi (CR12) 2016; 534
Wang (CR43) 2007; 316
Bunting (CR18) 2010; 141
Liebschner (CR66) 2019; 75
Goddard (CR73) 2018; 27
Pellegrino, Michelena, Teloni, Imhof, Altmeyer (CR21) 2017; 19
Luger, Mäder, Richmond, Sargent, Richmond (CR33) 1997; 389
Su (CR55) 2012; 483
Marks (CR59) 2005; 3
CE Berndsen (3716_CR51) 2011; 418
D Fox III (3716_CR38) 2008; 283
TT Paull (3716_CR9) 2001; 98
A Fradet-Turcotte (3716_CR27) 2013; 499
LC Wu (3716_CR5) 1996; 14
A Punjani (3716_CR61) 2017; 14
VB Chen (3716_CR71) 2010; 66
SQ Zheng (3716_CR64) 2017; 14
Q Hu (3716_CR48) 2017; 66
RD Makde (3716_CR57) 2010; 467
DL Mallery (3716_CR25) 2002; 21
3716_CR32
JR Chapman (3716_CR20) 2012; 125
TT Paull (3716_CR37) 2000; 10
F Delaglio (3716_CR74) 1995; 6
GS Stewart (3716_CR30) 2009; 136
S Pellegrino (3716_CR21) 2017; 19
G Cui (3716_CR50) 2010; 49
W Zhao (3716_CR7) 2017; 550
KA Coleman (3716_CR45) 2011; 286
R Kalb (3716_CR13) 2014; 8
RM Densham (3716_CR14) 2016; 23
C Doil (3716_CR31) 2009; 136
AK Shukla (3716_CR60) 2014; 512
MJ Landrum (3716_CR79) 2018; 46
G Birrane (3716_CR68) 2007; 46
H Kim (3716_CR44) 2007; 316
D Su (3716_CR55) 2012; 483
M Tarsounas (3716_CR10) 2020; 21
T Nakane (3716_CR36) 2018; 7
HJC Berendsen (3716_CR77) 1995; 91
ML Bentley (3716_CR52) 2011; 30
EF Pettersen (3716_CR72) 2004; 25
M Li (3716_CR39) 2013; 23
RC Benirschke (3716_CR53) 2010; 18
TD Goddard (3716_CR73) 2018; 27
F Mattiroli (3716_CR15) 2012; 150
MD Stewart (3716_CR26) 2018; 115
D Su (3716_CR54) 2011; 286
MD Wilson (3716_CR28) 2016; 536
R Mukherjee (3716_CR78) 2019; 33
RA Edwards (3716_CR69) 2008; 47
J Zivanov (3716_CR63) 2018; 7
P Emsley (3716_CR67) 2004; 60
K Luger (3716_CR56) 1999; 304
PS Brzovic (3716_CR17) 2001; 8
PA Futreal (3716_CR3) 1994; 266
B Sobhian (3716_CR42) 2007; 316
D Liebschner (3716_CR66) 2019; 75
SH Scheres (3716_CR62) 2012; 180
ME Moynahan (3716_CR8) 1999; 4
D Billing (3716_CR40) 2018; 72
SF Bunting (3716_CR18) 2010; 141
W Lee (3716_CR75) 2015; 31
JM Hall (3716_CR1) 1990; 250
B Wang (3716_CR43) 2007; 316
Y Hu (3716_CR46) 2011; 25
S Vijay-Kumar (3716_CR70) 1987; 194
S Matsumoto (3716_CR58) 2019; 571
YZ Tan (3716_CR65) 2017; 14
SR Witus (3716_CR80) 2021; 28
Y Miki (3716_CR2) 1994; 266
RK McGinty (3716_CR34) 2014; 514
P Bouwman (3716_CR19) 2010; 17
M Xu (3716_CR47) 2010; 328
K Nakamura (3716_CR11) 2019; 21
A Punjani (3716_CR35) 2021; 213
MJ Eddins (3716_CR41) 2006; 13
M Gatti (3716_CR16) 2012; 11
BD Marks (3716_CR59) 2005; 3
LS Friedman (3716_CR4) 1994; 8
R Hashizume (3716_CR24) 2001; 276
RA Greenberg (3716_CR22) 2018; 20
MV Botuyan (3716_CR29) 2006; 127
Y Liang (3716_CR23) 2017; 3
M Sundd (3716_CR49) 2002; 41
K Luger (3716_CR33) 1997; 389
R Scully (3716_CR6) 1997; 88
G Saredi (3716_CR12) 2016; 534
P Schanda (3716_CR76) 2005; 33
34404953 - Nature. 2021 Aug 17
References_xml – volume: 125
  start-page: 3529
  year: 2012
  end-page: 3534
  ident: CR20
  article-title: BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair
  publication-title: J. Cell Sci.
– volume: 88
  start-page: 265
  year: 1997
  end-page: 275
  ident: CR6
  article-title: Association of BRCA1 with Rad51 in mitotic and meiotic cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81847-4
– volume: 23
  start-page: 693
  year: 2013
  end-page: 704
  ident: CR39
  article-title: Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.03.025
– volume: 28
  start-page: 268
  year: 2021
  end-page: 277
  ident: CR80
  article-title: BRCA1/BARD1 site-specific ubiquitylation of nucleosomal H2A is directed by BARD1
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-00556-4
– volume: 7
  year: 2018
  ident: CR36
  article-title: Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION
  publication-title: eLife
  doi: 10.7554/eLife.36861
– volume: 389
  start-page: 251
  year: 1997
  end-page: 260
  ident: CR33
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
  doi: 10.1038/38444
– volume: 3
  year: 2017
  ident: CR23
  article-title: Structural analysis of BRCA1 reveals modification hotspot
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701386
– volume: 41
  start-page: 7586
  year: 2002
  end-page: 7596
  ident: CR49
  article-title: Electrostatic interactions in ubiquitin: stabilization of carboxylates by lysine amino groups
  publication-title: Biochemistry
  doi: 10.1021/bi025571d
– volume: 17
  start-page: 688
  year: 2010
  end-page: 695
  ident: CR19
  article-title: 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1831
– volume: 11
  start-page: 2538
  year: 2012
  end-page: 2544
  ident: CR16
  article-title: A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase
  publication-title: Cell Cycle
  doi: 10.4161/cc.20919
– volume: 316
  start-page: 1198
  year: 2007
  end-page: 1202
  ident: CR42
  article-title: RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites
  publication-title: Science
  doi: 10.1126/science.1139516
– volume: 571
  start-page: 79
  year: 2019
  end-page: 84
  ident: CR58
  article-title: DNA damage detection in nucleosomes involves DNA register shifting
  publication-title: Nature
  doi: 10.1038/s41586-019-1259-3
– volume: 33
  start-page: 199
  year: 2005
  end-page: 211
  ident: CR76
  article-title: SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-005-4425-x
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: CR72
  article-title: UCSF Chimera—a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 276
  start-page: 14537
  year: 2001
  end-page: 14540
  ident: CR24
  article-title: The RING heterodimer BRCA1–BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C000881200
– volume: 20
  start-page: 862
  year: 2018
  end-page: 863
  ident: CR22
  article-title: Assembling a protective shield
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0152-x
– volume: 98
  start-page: 6086
  year: 2001
  end-page: 6091
  ident: CR9
  article-title: Direct DNA binding by Brca1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.111125998
– volume: 10
  start-page: 886
  year: 2000
  end-page: 895
  ident: CR37
  article-title: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00610-2
– volume: 8
  start-page: 999
  year: 2014
  end-page: 1005
  ident: CR13
  article-title: BRCA1 is a histone-H2A-specific ubiquitin ligase
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.07.025
– volume: 66
  start-page: 12
  year: 2010
  end-page: 21
  ident: CR71
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909042073
– volume: 75
  start-page: 861
  year: 2019
  end-page: 877
  ident: CR66
  article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S2059798319011471
– volume: 127
  start-page: 1361
  year: 2006
  end-page: 1373
  ident: CR29
  article-title: Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.043
– volume: 136
  start-page: 420
  year: 2009
  end-page: 434
  ident: CR30
  article-title: The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.042
– volume: 512
  start-page: 218
  year: 2014
  end-page: 222
  ident: CR60
  article-title: Visualization of arrestin recruitment by a G-protein-coupled receptor
  publication-title: Nature
  doi: 10.1038/nature13430
– volume: 283
  start-page: 21179
  year: 2008
  end-page: 21186
  ident: CR38
  article-title: Crystal structure of the BARD1 ankyrin repeat domain and its functional consequences
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802333200
– volume: 30
  start-page: 3285
  year: 2011
  end-page: 3297
  ident: CR52
  article-title: Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.243
– volume: 266
  start-page: 120
  year: 1994
  end-page: 122
  ident: CR3
  article-title: BRCA1 mutations in primary breast and ovarian carcinomas
  publication-title: Science
  doi: 10.1126/science.7939630
– volume: 8
  start-page: 399
  year: 1994
  end-page: 404
  ident: CR4
  article-title: Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families
  publication-title: Nat. Genet.
  doi: 10.1038/ng1294-399
– volume: 21
  start-page: 284
  year: 2020
  end-page: 299
  ident: CR10
  article-title: The antitumorigenic roles of BRCA1–BARD1 in DNA repair and replication
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0218-z
– volume: 4
  start-page: 511
  year: 1999
  end-page: 518
  ident: CR8
  article-title: Brca1 controls homology-directed DNA repair
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80202-6
– volume: 286
  start-page: 15625
  year: 2011
  end-page: 15629
  ident: CR54
  article-title: Structure and histone binding properties of the Vps75–Rtt109 chaperone–lysine acetyltransferase complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.220715
– volume: 21
  start-page: 311
  year: 2019
  end-page: 318
  ident: CR11
  article-title: H4K20me0 recognition by BRCA1–BARD1 directs homologous recombination to sister chromatids
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0282-9
– volume: 136
  start-page: 435
  year: 2009
  end-page: 446
  ident: CR31
  article-title: RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.041
– ident: CR32
– volume: 23
  start-page: 647
  year: 2016
  end-page: 655
  ident: CR14
  article-title: Human BRCA1–BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3236
– volume: 91
  start-page: 43
  year: 1995
  end-page: 56
  ident: CR77
  article-title: GROMACS: a message-passing parallel molecular dynamics implementation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00042-E
– volume: 115
  start-page: 1316
  year: 2018
  end-page: 1321
  ident: CR26
  article-title: BARD1 is necessary for ubiquitylation of nucleosomal histone H2A and for transcriptional regulation of estrogen metabolism genes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1715467115
– volume: 180
  start-page: 519
  year: 2012
  end-page: 530
  ident: CR62
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.09.006
– volume: 483
  start-page: 104
  year: 2012
  end-page: 107
  ident: CR55
  article-title: Structural basis for recognition of H3K56-acetylated histone H3–H4 by the chaperone Rtt106
  publication-title: Nature
  doi: 10.1038/nature10861
– volume: 33
  start-page: 1927
  year: 2019
  end-page: 1945
  ident: CR78
  article-title: Calmodulin regulates MGRN1–GP78 interaction mediated ubiquitin proteasomal degradation system
  publication-title: FASEB J.
  doi: 10.1096/fj.201701413RRR
– volume: 316
  start-page: 1202
  year: 2007
  end-page: 1205
  ident: CR44
  article-title: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response
  publication-title: Science
  doi: 10.1126/science.1139621
– volume: 8
  start-page: 833
  year: 2001
  end-page: 837
  ident: CR17
  article-title: Structure of a BRCA1–BARD1 heterodimeric RING–RING complex
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb1001-833
– volume: 316
  start-page: 1194
  year: 2007
  end-page: 1198
  ident: CR43
  article-title: Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response
  publication-title: Science
  doi: 10.1126/science.1139476
– volume: 27
  start-page: 14
  year: 2018
  end-page: 25
  ident: CR73
  article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– volume: 72
  start-page: 127
  year: 2018
  end-page: 139.e8
  ident: CR40
  article-title: The BRCT domains of the BRCA1 and BARD1 tumor suppressors differentially regulate homology-directed repair and stalled fork protection
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.08.016
– volume: 418
  start-page: 102
  year: 2011
  end-page: 110
  ident: CR51
  article-title: A spectrophotometric assay for conjugation of ubiquitin and ubiquitin-like proteins
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2011.06.034
– volume: 25
  start-page: 685
  year: 2011
  end-page: 700
  ident: CR46
  article-title: RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci
  publication-title: Genes Dev.
  doi: 10.1101/gad.2011011
– volume: 14
  start-page: 793
  year: 2017
  end-page: 796
  ident: CR65
  article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4347
– volume: 534
  start-page: 714
  year: 2016
  end-page: 718
  ident: CR12
  article-title: H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex
  publication-title: Nature
  doi: 10.1038/nature18312
– volume: 3
  start-page: 613
  year: 2005
  end-page: 622
  ident: CR59
  article-title: Multiparameter analysis of a screen for progesterone receptor ligands: comparing fluorescence lifetime and fluorescence polarization measurements
  publication-title: Assay Drug Dev. Technol.
  doi: 10.1089/adt.2005.3.613
– volume: 18
  start-page: 955
  year: 2010
  end-page: 965
  ident: CR53
  article-title: Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4
  publication-title: Structure
  doi: 10.1016/j.str.2010.04.017
– volume: 6
  start-page: 277
  year: 1995
  end-page: 293
  ident: CR74
  article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00197809
– volume: 7
  year: 2018
  ident: CR63
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
  doi: 10.7554/eLife.42166
– volume: 66
  start-page: 473
  year: 2017
  end-page: 487.e9
  ident: CR48
  article-title: Mechanisms of ubiquitin -nucleosome recognition and regulation of 53BP1 chromatin recruitment by RNF168/169 and RAD18
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.04.009
– volume: 304
  start-page: 3
  year: 1999
  end-page: 19
  ident: CR56
  article-title: Preparation of nucleosome core particle from recombinant histones
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(99)04003-3
– volume: 19
  start-page: 1819
  year: 2017
  end-page: 1831
  ident: CR21
  article-title: Replication-coupled dilution of H4K20me2 guides 53BP1 to pre-replicative chromatin
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.05.016
– volume: 550
  start-page: 360
  year: 2017
  end-page: 365
  ident: CR7
  article-title: BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing
  publication-title: Nature
  doi: 10.1038/nature24060
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: CR67
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444904019158
– volume: 21
  start-page: 6755
  year: 2002
  end-page: 6762
  ident: CR25
  article-title: Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf691
– volume: 213
  start-page: 107702
  year: 2021
  ident: CR35
  article-title: 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2021.107702
– volume: 46
  start-page: D1062
  year: 2018
  end-page: D1067
  ident: CR79
  article-title: ClinVar: improving access to variant interpretations and supporting evidence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1153
– volume: 47
  start-page: 11446
  year: 2008
  end-page: 11456
  ident: CR69
  article-title: The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50
  publication-title: Biochemistry
  doi: 10.1021/bi801115g
– volume: 31
  start-page: 1325
  year: 2015
  end-page: 1327
  ident: CR75
  article-title: NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu830
– volume: 141
  start-page: 243
  year: 2010
  end-page: 254
  ident: CR18
  article-title: 53BP1 inhibits homologous recombination in -deficient cells by blocking resection of DNA breaks
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.012
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: CR61
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 150
  start-page: 1182
  year: 2012
  end-page: 1195
  ident: CR15
  article-title: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.005
– volume: 13
  start-page: 915
  year: 2006
  end-page: 920
  ident: CR41
  article-title: Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1148
– volume: 49
  start-page: 10198
  year: 2010
  end-page: 10207
  ident: CR50
  article-title: Structural basis of ubiquitin recognition by translesion synthesis DNA polymerase ι
  publication-title: Biochemistry
  doi: 10.1021/bi101303t
– volume: 286
  start-page: 13669
  year: 2011
  end-page: 13680
  ident: CR45
  article-title: The BRCA1–RAP80 complex regulates DNA repair mechanism utilization by restricting end resection
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.213728
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  ident: CR64
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 536
  start-page: 100
  year: 2016
  end-page: 103
  ident: CR28
  article-title: The structural basis of modified nucleosome recognition by 53BP1
  publication-title: Nature
  doi: 10.1038/nature18951
– volume: 467
  start-page: 562
  year: 2010
  end-page: 566
  ident: CR57
  article-title: Structure of RCC1 chromatin factor bound to the nucleosome core particle
  publication-title: Nature
  doi: 10.1038/nature09321
– volume: 499
  start-page: 50
  year: 2013
  end-page: 54
  ident: CR27
  article-title: 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark
  publication-title: Nature
  doi: 10.1038/nature12318
– volume: 328
  start-page: 94
  year: 2010
  end-page: 98
  ident: CR47
  article-title: Partitioning of histone H3–H4 tetramers during DNA replication-dependent chromatin assembly
  publication-title: Science
  doi: 10.1126/science.1178994
– volume: 266
  start-page: 66
  year: 1994
  end-page: 71
  ident: CR2
  article-title: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1
  publication-title: Science
  doi: 10.1126/science.7545954
– volume: 14
  start-page: 430
  year: 1996
  end-page: 440
  ident: CR5
  article-title: Identification of a RING protein that can interact in vivo with the BRCA1 gene product
  publication-title: Nat. Genet.
  doi: 10.1038/ng1296-430
– volume: 250
  start-page: 1684
  year: 1990
  end-page: 1689
  ident: CR1
  article-title: Linkage of early-onset familial breast cancer to chromosome 17q21
  publication-title: Science
  doi: 10.1126/science.2270482
– volume: 514
  start-page: 591
  year: 2014
  end-page: 596
  ident: CR34
  article-title: Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome
  publication-title: Nature
  doi: 10.1038/nature13890
– volume: 194
  start-page: 531
  year: 1987
  end-page: 544
  ident: CR70
  article-title: Structure of ubiquitin refined at 1.8 A resolution
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90679-6
– volume: 46
  start-page: 7706
  year: 2007
  end-page: 7712
  ident: CR68
  article-title: Crystal structure of the BARD1 BRCT domains
  publication-title: Biochemistry
  doi: 10.1021/bi700323t
– volume: 550
  start-page: 360
  year: 2017
  ident: 3716_CR7
  publication-title: Nature
  doi: 10.1038/nature24060
– volume: 31
  start-page: 1325
  year: 2015
  ident: 3716_CR75
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu830
– volume: 512
  start-page: 218
  year: 2014
  ident: 3716_CR60
  publication-title: Nature
  doi: 10.1038/nature13430
– volume: 11
  start-page: 2538
  year: 2012
  ident: 3716_CR16
  publication-title: Cell Cycle
  doi: 10.4161/cc.20919
– volume: 8
  start-page: 833
  year: 2001
  ident: 3716_CR17
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb1001-833
– volume: 3
  year: 2017
  ident: 3716_CR23
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701386
– volume: 23
  start-page: 693
  year: 2013
  ident: 3716_CR39
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.03.025
– volume: 571
  start-page: 79
  year: 2019
  ident: 3716_CR58
  publication-title: Nature
  doi: 10.1038/s41586-019-1259-3
– volume: 136
  start-page: 420
  year: 2009
  ident: 3716_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.042
– volume: 41
  start-page: 7586
  year: 2002
  ident: 3716_CR49
  publication-title: Biochemistry
  doi: 10.1021/bi025571d
– volume: 23
  start-page: 647
  year: 2016
  ident: 3716_CR14
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3236
– volume: 467
  start-page: 562
  year: 2010
  ident: 3716_CR57
  publication-title: Nature
  doi: 10.1038/nature09321
– volume: 17
  start-page: 688
  year: 2010
  ident: 3716_CR19
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1831
– volume: 316
  start-page: 1202
  year: 2007
  ident: 3716_CR44
  publication-title: Science
  doi: 10.1126/science.1139621
– volume: 3
  start-page: 613
  year: 2005
  ident: 3716_CR59
  publication-title: Assay Drug Dev. Technol.
  doi: 10.1089/adt.2005.3.613
– volume: 14
  start-page: 793
  year: 2017
  ident: 3716_CR65
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4347
– volume: 14
  start-page: 331
  year: 2017
  ident: 3716_CR64
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 21
  start-page: 284
  year: 2020
  ident: 3716_CR10
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0218-z
– volume: 21
  start-page: 311
  year: 2019
  ident: 3716_CR11
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0282-9
– volume: 30
  start-page: 3285
  year: 2011
  ident: 3716_CR52
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.243
– volume: 14
  start-page: 290
  year: 2017
  ident: 3716_CR61
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 33
  start-page: 199
  year: 2005
  ident: 3716_CR76
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-005-4425-x
– volume: 33
  start-page: 1927
  year: 2019
  ident: 3716_CR78
  publication-title: FASEB J.
  doi: 10.1096/fj.201701413RRR
– volume: 46
  start-page: D1062
  year: 2018
  ident: 3716_CR79
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1153
– volume: 276
  start-page: 14537
  year: 2001
  ident: 3716_CR24
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C000881200
– volume: 127
  start-page: 1361
  year: 2006
  ident: 3716_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.043
– volume: 8
  start-page: 399
  year: 1994
  ident: 3716_CR4
  publication-title: Nat. Genet.
  doi: 10.1038/ng1294-399
– volume: 20
  start-page: 862
  year: 2018
  ident: 3716_CR22
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0152-x
– volume: 75
  start-page: 861
  year: 2019
  ident: 3716_CR66
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S2059798319011471
– volume: 304
  start-page: 3
  year: 1999
  ident: 3716_CR56
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(99)04003-3
– volume: 125
  start-page: 3529
  year: 2012
  ident: 3716_CR20
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.105353
– volume: 21
  start-page: 6755
  year: 2002
  ident: 3716_CR25
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf691
– volume: 4
  start-page: 511
  year: 1999
  ident: 3716_CR8
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80202-6
– volume: 88
  start-page: 265
  year: 1997
  ident: 3716_CR6
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81847-4
– volume: 72
  start-page: 127
  year: 2018
  ident: 3716_CR40
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.08.016
– volume: 316
  start-page: 1194
  year: 2007
  ident: 3716_CR43
  publication-title: Science
  doi: 10.1126/science.1139476
– volume: 499
  start-page: 50
  year: 2013
  ident: 3716_CR27
  publication-title: Nature
  doi: 10.1038/nature12318
– volume: 250
  start-page: 1684
  year: 1990
  ident: 3716_CR1
  publication-title: Science
  doi: 10.1126/science.2270482
– volume: 27
  start-page: 14
  year: 2018
  ident: 3716_CR73
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– ident: 3716_CR32
  doi: 10.1101/2020.06.01.127951
– volume: 14
  start-page: 430
  year: 1996
  ident: 3716_CR5
  publication-title: Nat. Genet.
  doi: 10.1038/ng1296-430
– volume: 141
  start-page: 243
  year: 2010
  ident: 3716_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.012
– volume: 66
  start-page: 12
  year: 2010
  ident: 3716_CR71
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909042073
– volume: 13
  start-page: 915
  year: 2006
  ident: 3716_CR41
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1148
– volume: 286
  start-page: 15625
  year: 2011
  ident: 3716_CR54
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.220715
– volume: 10
  start-page: 886
  year: 2000
  ident: 3716_CR37
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00610-2
– volume: 286
  start-page: 13669
  year: 2011
  ident: 3716_CR45
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.213728
– volume: 47
  start-page: 11446
  year: 2008
  ident: 3716_CR69
  publication-title: Biochemistry
  doi: 10.1021/bi801115g
– volume: 7
  year: 2018
  ident: 3716_CR36
  publication-title: eLife
  doi: 10.7554/eLife.36861
– volume: 213
  start-page: 107702
  year: 2021
  ident: 3716_CR35
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2021.107702
– volume: 6
  start-page: 277
  year: 1995
  ident: 3716_CR74
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00197809
– volume: 266
  start-page: 120
  year: 1994
  ident: 3716_CR3
  publication-title: Science
  doi: 10.1126/science.7939630
– volume: 28
  start-page: 268
  year: 2021
  ident: 3716_CR80
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-00556-4
– volume: 180
  start-page: 519
  year: 2012
  ident: 3716_CR62
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.09.006
– volume: 115
  start-page: 1316
  year: 2018
  ident: 3716_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1715467115
– volume: 8
  start-page: 999
  year: 2014
  ident: 3716_CR13
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.07.025
– volume: 328
  start-page: 94
  year: 2010
  ident: 3716_CR47
  publication-title: Science
  doi: 10.1126/science.1178994
– volume: 418
  start-page: 102
  year: 2011
  ident: 3716_CR51
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2011.06.034
– volume: 7
  year: 2018
  ident: 3716_CR63
  publication-title: eLife
  doi: 10.7554/eLife.42166
– volume: 91
  start-page: 43
  year: 1995
  ident: 3716_CR77
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00042-E
– volume: 60
  start-page: 2126
  year: 2004
  ident: 3716_CR67
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444904019158
– volume: 316
  start-page: 1198
  year: 2007
  ident: 3716_CR42
  publication-title: Science
  doi: 10.1126/science.1139516
– volume: 49
  start-page: 10198
  year: 2010
  ident: 3716_CR50
  publication-title: Biochemistry
  doi: 10.1021/bi101303t
– volume: 25
  start-page: 1605
  year: 2004
  ident: 3716_CR72
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 534
  start-page: 714
  year: 2016
  ident: 3716_CR12
  publication-title: Nature
  doi: 10.1038/nature18312
– volume: 98
  start-page: 6086
  year: 2001
  ident: 3716_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.111125998
– volume: 46
  start-page: 7706
  year: 2007
  ident: 3716_CR68
  publication-title: Biochemistry
  doi: 10.1021/bi700323t
– volume: 483
  start-page: 104
  year: 2012
  ident: 3716_CR55
  publication-title: Nature
  doi: 10.1038/nature10861
– volume: 19
  start-page: 1819
  year: 2017
  ident: 3716_CR21
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.05.016
– volume: 25
  start-page: 685
  year: 2011
  ident: 3716_CR46
  publication-title: Genes Dev.
  doi: 10.1101/gad.2011011
– volume: 18
  start-page: 955
  year: 2010
  ident: 3716_CR53
  publication-title: Structure
  doi: 10.1016/j.str.2010.04.017
– volume: 150
  start-page: 1182
  year: 2012
  ident: 3716_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.005
– volume: 66
  start-page: 473
  year: 2017
  ident: 3716_CR48
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.04.009
– volume: 266
  start-page: 66
  year: 1994
  ident: 3716_CR2
  publication-title: Science
  doi: 10.1126/science.7545954
– volume: 283
  start-page: 21179
  year: 2008
  ident: 3716_CR38
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802333200
– volume: 389
  start-page: 251
  year: 1997
  ident: 3716_CR33
  publication-title: Nature
  doi: 10.1038/38444
– volume: 136
  start-page: 435
  year: 2009
  ident: 3716_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.041
– volume: 536
  start-page: 100
  year: 2016
  ident: 3716_CR28
  publication-title: Nature
  doi: 10.1038/nature18951
– volume: 194
  start-page: 531
  year: 1987
  ident: 3716_CR70
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90679-6
– volume: 514
  start-page: 591
  year: 2014
  ident: 3716_CR34
  publication-title: Nature
  doi: 10.1038/nature13890
– reference: 34404953 - Nature. 2021 Aug 17;:
SSID ssj0005174
Score 2.6134045
Snippet The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination 1 – 10 . The...
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination . The BRCA1-BARD1...
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination.sup.1-10. The...
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair ofDNA double-strand breaks by homologous recombination. The BRCA1-BARD1...
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 438
SubjectTerms 101/28
101/6
631/337/100/1701
631/337/1427/2122
631/337/458/582
631/535/1258/1259
631/535/878/1263
82
82/16
82/6
82/80
82/83
Amino acids
Ankyrins
BRCA1 protein
BRCA1 Protein - metabolism
Breast cancer
C-Terminus
Cancer
Chromatin
Crosstalk
Cryoelectron Microscopy
Damage localization
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA Repair
Domains
Electron microscopy
Enzymes
Flexibility
Genetic aspects
Histone H2A
Histones
Histones - chemistry
Histones - metabolism
Homologous Recombination
Homology
Humanities and Social Sciences
Humans
Microscopy
Models, Molecular
multidisciplinary
Mutation
Neoplasms - genetics
NMR
Nuclear magnetic resonance
Nucleosomes
Nucleosomes - chemistry
Nucleosomes - genetics
Nucleosomes - metabolism
Nucleosomes - ultrastructure
Physiological aspects
Protein Domains
Proteins
Recruitment
Repair
Science
Science (multidisciplinary)
Spectrum analysis
Target recognition
Tumor suppressor genes
Tumor Suppressor p53-Binding Protein 1 - antagonists & inhibitors
Tumor Suppressor p53-Binding Protein 1 - metabolism
Tumor Suppressor Proteins - chemistry
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Tumor Suppressor Proteins - ultrastructure
Tumors
Ubiquitin
Ubiquitin - metabolism
Ubiquitin-conjugating enzyme
Ubiquitin-Conjugating Enzymes - chemistry
Ubiquitin-Conjugating Enzymes - metabolism
Ubiquitin-Conjugating Enzymes - ultrastructure
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitin-Protein Ligases - ultrastructure
Ubiquitination
Title Mechanisms of BRCA1–BARD1 nucleosome recognition and ubiquitylation
URI https://link.springer.com/article/10.1038/s41586-021-03716-8
https://www.ncbi.nlm.nih.gov/pubmed/34321665
https://www.proquest.com/docview/2563499899
https://www.proquest.com/docview/2556383327
https://pubmed.ncbi.nlm.nih.gov/PMC8680157
Volume 596
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviI2vsDEFNPEhiFbnw3aeUBtWBtIqVDbRNytxnFGJJS1u_n_uEjddqrGXvPhsJec7313888-EHGcsFxpCH7g41R7UXwxcKmdemMYq8iPBtMZC8XzCzi7D77NoZn-4GQurXK-JzUKdVwr_kZ9AaA4gO4fy4PNi6eGtUbi7aq_QuE92kboMIV18xjcQjy0WZntoZhCIEwOBSyD8FgFFUDN4oheYtpfnG_FpGzu5tYHaxKXxY_LIJpTusLWAPXJPl_vkQQPsVGaf7FnnNe57yzD94QlJzjUe-J2ba-NWhTuaJkPqjYbTL9Qtkd-4MtW1djtsUVW6aZm7dTZf1pC0t-i5p-RyfHqRnHn2NgVPQfm78opAcV_7WUxVEUMWNEgLP0wVVTTlPMvCHCq5WEcRaGMQqlwVhdY6FlroKNccMsVnZKesSv2CuJyzPINMD_pmUPBokVJkefHDCLKbQR47hK5VKZWlGscbL_7IZss7ELJVvwT1y0b9UjjkY9dn0RJt3Cl9jDMkkcGiRIjMVVobI4cXv5KJHDKOPIicc4e8uU3s289pT-idFSoqeEuV2oMJ8K3IjdWTPOhJqsV8KW-0vu21XrWzetswhz1BcGjVb16bnbQLipEb83fI664ZeyJIrtRVjTIgJILAhyGet1baqRLPD1PGIofwnv12Akgz3m8p578bunHBIIuJYMxPa0vfvNb_Z-jl3V9xQB76jfMJj8aHZGf1t9avIL1bZUeND8NTJBSf469HZHd0Ovkx_QeKyEm4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXRMvLtIBB5SWwGj93fUAoTakS2uQQUpHbYq_XJRK1ExwL8af4jcz4lToqvfW8s6v17Dy9M98C7IVexBW6PlRxUxmYf3moUpFnOIEvXcvlnlKUKA5HXv_U-TJ1pxvwt-6FobLK2iYWhjpKJf0j30fXbGN0junBp_nCoFej6Ha1fkKjFItj9ec3pmzZx8Ehnu8ryzr6POn1jepVAUNiGrg0YlsyS1mhb8rYx2igE8SWE0hTmgFjYehEmNH4ynVt9L2OjGQcK6V8rrhyI8UwYsJ1b8BNdLwd0ig2ZauSkjXU56pJp2Pz_QwdJadyXypgwhzF4C1HuO4OLvjD9VrNtQvbwg8e3YO7VQCrd0uJ24INlWzDraKQVGbbsFUZi0x_WyFav7sPvaGiBuNZdp7paawfjHtd0zjojg9NPSE85TRLz5Xe1DKliR4kkZ6Hs0WOSUJZrfcATq-Fzw9hM0kT9Rh0xrwoxMgS54aYYCkemIQqYzkuRlOdyNfArFkpZAVtTi9s_BTFFbvNRcl-gewXBfsF1-B9M2deAntcSb1HJyQIMSOhkpyzIM8y0Z18641E12OEu8gY0-DlZWSDr-MW0ZuKKE5xlzKoGiHwWwmLq0W506KU89lCXBh93Ro9K0_1smV2W4RoQGR7uBY7URmwTKzUTYMXzTDNpKK8RKU50SARt20Ll3hUSmnDSupXNj3P1YC15LchIFjz9kgy-1HAm3MPoyYX1_xQS_pqW_8_oSdXf8VzuN2fDE_EyWB0vAN3rEIRuWH6u7C5_JWrpxhaLsNnhT7r8P26Dcg_jIyElg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIhAviJbLtIBB5RJYyfra9QNCaULUUBqh0Iq8LfZ6XSJRO8GJEH-NX8eMj6SOSt_6vLOr9eyc3plvAfYiPxYaXR-qONMW5l8-qlTsW24YKM_2hK81JYpHQ__gxP009sYb8LfuhaGyytomFoY6zhT9I2-ha3YwOsf0oJVUZRFfev0P05lFL0jRTWv9nEYpIof6z29M3_L3gx6e9Qvb7n887h5Y1QsDlsKUcG4ljuK2tqOAqSTAyKAdJrYbKqZYyHkUuTFmN4H2PAf9sKtilSRa60Boob1Yc4yecN1rcJ07HiMd42O-Ki9ZQ4CuGnbajmjl6DQFlf5SMRPmK5ZoOMV113DON67Xba5d3hY-sX8HblfBrNkppW8LNnS6DTeKolKVb8NWZThy83WFbv3mLnSPNDUbT_Kz3MwSc3_U7TBrvzPqMTMlbOUsz860uaxrylIzTGNzEU1mC0wYysq9e3ByJXy-D5tpluqHYHLuxxFGmTg3wmRLi5ARwoztehhZtePAAFazUqoK5pxe2_gpi-t2R8iS_RLZLwv2S2HA2-WcaQnycSn1Hp2QJPSMlOTwNFzkuewcf-sOZcfnhMHIOTfg-UVkg6-jBtGriijJcJcqrJoi8FsJl6tBudOgVNPJTJ4bfdkYPS1P9aJldhuEaExUc7gWO1kZs1yuVM-AZ8thmkkFeqnOFkSDRMJxbFziQSmlS1ZS7zLzfc8A3pDfJQFBnDdH0smPAupc-BhBebjmu1rSV9v6_wk9uvwrnsJNNB3y82B4uAO37EIPhcWCXdic_1roxxhlzqMnhTqb8P2q7cc_JCuIzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+BRCA1-BARD1+nucleosome+recognition+and+ubiquitylation&rft.jtitle=Nature+%28London%29&rft.au=Hu%2C+Qi&rft.au=Botuyan%2C+Maria+Victoria&rft.au=Zhao%2C+Debiao&rft.au=Cui%2C+Gaofeng&rft.date=2021-08-19&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=596&rft.issue=7872&rft.spage=438&rft_id=info:doi/10.1038%2Fs41586-021-03716-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon