Mechanisms of BRCA1–BARD1 nucleosome recognition and ubiquitylation
The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination 1 – 10 . The BRCA1–BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular target...
Saved in:
Published in | Nature (London) Vol. 596; no. 7872; pp. 438 - 443 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.08.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination
1
–
10
. The BRCA1–BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets
11
–
14
. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1–BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks
15
,
16
. We further show that RING domains
17
in BRCA1–BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1–BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1–BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1–BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin
18
–
22
. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.
The authors elucidate the mechanisms for the ubiquitylation specificity and recruitment of the ubiquitin ligase complex BRCA1–BARD1 to damaged DNA within chromatin to facilitate homologous recombination. |
---|---|
AbstractList | The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination.sup.1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets.sup.11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks.sup.15,16. We further show that RING domains.sup.17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin.sup.18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks15,16. We further show that RING domains17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks15,16. We further show that RING domains17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination.sup.1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets.sup.11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks.sup.15,16. We further show that RING domains.sup.17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin.sup.18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. The authors elucidate the mechanisms for the ubiquitylation specificity and recruitment of the ubiquitin ligase complex BRCA1-BARD1 to damaged DNA within chromatin to facilitate homologous recombination. The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination 1 – 10 . The BRCA1–BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets 11 – 14 . The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1–BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks 15 , 16 . We further show that RING domains 17 in BRCA1–BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1–BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1–BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1–BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin 18 – 22 . These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. The authors elucidate the mechanisms for the ubiquitylation specificity and recruitment of the ubiquitin ligase complex BRCA1–BARD1 to damaged DNA within chromatin to facilitate homologous recombination. The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination 1 – 10 . The BRCA1–BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets 11 – 14 . The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1–BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks 15 , 16 . We further show that RING domains 17 in BRCA1–BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1–BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1–BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin 18 – 22 . These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair ofDNA double-strand breaks by homologous recombination. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks. We further show that RING domains in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions ofBARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination . The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets . The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks . We further show that RING domains in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin . These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer. |
Audience | Academic |
Author | Zhao, Debiao Botuyan, Maria Victoria Cui, Gaofeng Mer, Elie Hu, Qi Mer, Georges |
AuthorAffiliation | 1 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA 2 Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA |
AuthorAffiliation_xml | – name: 2 Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA – name: 1 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA |
Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0003-3647-8471 surname: Hu fullname: Hu, Qi organization: Department of Biochemistry and Molecular Biology, Mayo Clinic – sequence: 2 givenname: Maria Victoria orcidid: 0000-0002-6466-7432 surname: Botuyan fullname: Botuyan, Maria Victoria organization: Department of Biochemistry and Molecular Biology, Mayo Clinic – sequence: 3 givenname: Debiao surname: Zhao fullname: Zhao, Debiao organization: Department of Biochemistry and Molecular Biology, Mayo Clinic – sequence: 4 givenname: Gaofeng surname: Cui fullname: Cui, Gaofeng organization: Department of Biochemistry and Molecular Biology, Mayo Clinic – sequence: 5 givenname: Elie orcidid: 0000-0003-2339-9547 surname: Mer fullname: Mer, Elie organization: Department of Biochemistry and Molecular Biology, Mayo Clinic – sequence: 6 givenname: Georges orcidid: 0000-0002-1900-1578 surname: Mer fullname: Mer, Georges email: mer.georges@mayo.edu organization: Department of Biochemistry and Molecular Biology, Mayo Clinic, Department of Cancer Biology, Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34321665$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNURKeFF2CBItiAUIr_YjsbpHQoUKmANBSxtDzOTeoqsWfiBNEd78Ab8iR4Oi3tVEPlhaXr7xzfq3v2kh3nHSTJU4wOMKLyTWA4lzxDBGeICswz-SCZYCZ4xrgUO8kEISIzJCnfTfZCOEcI5ViwR8kuZZRgzvNJcvQJzJl2NnQh9XV6OJuW-M-v34fl7B1O3Wha8MF3kPZgfOPsYL1LtavScW6Xox0uWr0qPU4e1roN8OTq3k--vT86nX7MTr58OJ6WJ5kRjAxZTY0gQOYFNnXBGUO6JkwbbLAWYj5nFc55AXkeh0HMVKauAaCQICGvQCBM95O3a9_FOO-gMuCGXrdq0dtO9xfKa6s2X5w9U43_oSSXCOciGry8Muj9coQwqM4GA22rHfgxKJLnnEpKyQp9cQc992Pv4niR4pQVhSyKG6rRLSjrah__NStTVXJBWEGEWHllW6gGHMQm41JrG8sb_PMtvFnYpboNHWyB4qmgs2ar66sNQWQG-Dk0egxBHX-dbbKv_8-Wp9-nnzfpZ7f38m8h1zmLgFwDpvch9FArY4fL6MSebaswUqtIq3WkVYy0uoy0klFK7kiv3e8V0bUoRNg10N8s7x7VXwpdBKM |
CitedBy_id | crossref_primary_10_1021_jacsau_4c00392 crossref_primary_10_21769_BioProtoc_4337 crossref_primary_10_1016_j_semcdb_2022_03_011 crossref_primary_10_1038_s41467_025_57384_7 crossref_primary_10_1016_j_ceb_2023_102176 crossref_primary_10_1093_bib_bbae006 crossref_primary_10_1016_j_ejphar_2025_177344 crossref_primary_10_1016_j_molcel_2023_06_031 crossref_primary_10_1016_j_biopha_2023_115877 crossref_primary_10_1016_j_molcel_2023_08_001 crossref_primary_10_15252_embr_202154116 crossref_primary_10_3389_freae_2024_1445765 crossref_primary_10_1016_j_gde_2021_08_006 crossref_primary_10_1080_07391102_2023_2175383 crossref_primary_10_1093_gpbjnl_qzae019 crossref_primary_10_1172_JCI179122 crossref_primary_10_3390_cells14040307 crossref_primary_10_1038_s41467_023_41821_6 crossref_primary_10_1038_s41467_023_37499_5 crossref_primary_10_1093_nar_gkae499 crossref_primary_10_3390_ijms24054982 crossref_primary_10_1016_j_bpc_2023_107070 crossref_primary_10_1021_acs_bioconjchem_4c00130 crossref_primary_10_1016_j_bbagrm_2024_195033 crossref_primary_10_1016_j_jmb_2024_168442 crossref_primary_10_1016_j_str_2023_03_010 crossref_primary_10_1038_s41421_023_00590_8 crossref_primary_10_1093_nar_gkac877 crossref_primary_10_1083_jcb_202111050 crossref_primary_10_1002_anie_202408435 crossref_primary_10_2217_epi_2023_0234 crossref_primary_10_1016_j_molcel_2023_12_036 crossref_primary_10_1038_s41568_022_00535_5 crossref_primary_10_12998_wjcc_v12_i18_3539 crossref_primary_10_1002_mc_23829 crossref_primary_10_1002_ange_202408435 crossref_primary_10_1016_j_pharmthera_2021_108009 crossref_primary_10_1080_07391102_2023_2233028 crossref_primary_10_1002_mco2_736 crossref_primary_10_1038_s41594_024_01381_9 crossref_primary_10_1042_BCJ20200864 crossref_primary_10_34133_research_0249 crossref_primary_10_1186_s13148_022_01251_5 crossref_primary_10_3389_fgene_2021_747734 crossref_primary_10_3389_fcell_2022_968398 crossref_primary_10_1038_s41467_023_43677_2 crossref_primary_10_1016_j_csbj_2024_10_008 crossref_primary_10_1016_j_ijbiomac_2023_127717 crossref_primary_10_1016_j_ijbiomac_2024_135977 crossref_primary_10_3389_fgene_2022_793884 crossref_primary_10_1016_j_chempr_2023_01_012 crossref_primary_10_15252_embr_202153679 crossref_primary_10_1016_j_tibs_2022_03_001 crossref_primary_10_1038_s41594_023_01137_x crossref_primary_10_1360_SSC_2023_0066 crossref_primary_10_1002_pro_4479 crossref_primary_10_1016_j_dnarep_2024_103702 crossref_primary_10_1101_gad_349431_122 crossref_primary_10_1093_nar_gkae831 crossref_primary_10_3389_fcell_2022_932633 crossref_primary_10_1016_j_chempr_2023_04_016 crossref_primary_10_1073_pnas_2320804121 crossref_primary_10_1042_BST20230862 crossref_primary_10_1016_j_apsb_2023_05_017 crossref_primary_10_1038_s41594_023_01141_1 crossref_primary_10_1016_j_molcel_2025_02_004 crossref_primary_10_3390_ijms23158187 crossref_primary_10_3390_polym14163391 crossref_primary_10_1093_nar_gkac611 crossref_primary_10_3389_fcell_2022_909696 crossref_primary_10_1016_j_dnarep_2024_103711 crossref_primary_10_1016_j_dnarep_2025_103811 crossref_primary_10_15252_embj_2023113565 crossref_primary_10_1038_s41589_022_01067_7 crossref_primary_10_1002_advs_202207435 crossref_primary_10_1093_nar_gkae361 crossref_primary_10_1101_gad_350989_123 crossref_primary_10_1038_s41594_021_00658_7 crossref_primary_10_1007_s42764_023_00100_w crossref_primary_10_1016_j_semcdb_2021_11_006 crossref_primary_10_1371_journal_pgen_1010457 crossref_primary_10_1016_j_molcel_2023_09_015 crossref_primary_10_1172_JCI171533 crossref_primary_10_1039_D2CP04059J crossref_primary_10_1038_s41589_024_01750_x crossref_primary_10_3389_fcell_2022_928113 crossref_primary_10_1093_nar_gkad793 crossref_primary_10_1038_s41467_024_46910_8 |
Cites_doi | 10.1016/S0092-8674(00)81847-4 10.1016/j.ccr.2013.03.025 10.1038/s41594-020-00556-4 10.7554/eLife.36861 10.1038/38444 10.1126/sciadv.1701386 10.1021/bi025571d 10.1038/nsmb.1831 10.4161/cc.20919 10.1126/science.1139516 10.1038/s41586-019-1259-3 10.1007/s10858-005-4425-x 10.1002/jcc.20084 10.1074/jbc.C000881200 10.1038/s41556-018-0152-x 10.1073/pnas.111125998 10.1016/S0960-9822(00)00610-2 10.1016/j.celrep.2014.07.025 10.1107/S0907444909042073 10.1107/S2059798319011471 10.1016/j.cell.2006.10.043 10.1016/j.cell.2008.12.042 10.1038/nature13430 10.1074/jbc.M802333200 10.1038/emboj.2011.243 10.1126/science.7939630 10.1038/ng1294-399 10.1038/s41580-020-0218-z 10.1016/S1097-2765(00)80202-6 10.1074/jbc.C111.220715 10.1038/s41556-019-0282-9 10.1016/j.cell.2008.12.041 10.1038/nsmb.3236 10.1016/0010-4655(95)00042-E 10.1073/pnas.1715467115 10.1016/j.jsb.2012.09.006 10.1038/nature10861 10.1096/fj.201701413RRR 10.1126/science.1139621 10.1038/nsb1001-833 10.1126/science.1139476 10.1002/pro.3235 10.1016/j.molcel.2018.08.016 10.1016/j.ab.2011.06.034 10.1101/gad.2011011 10.1038/nmeth.4347 10.1038/nature18312 10.1089/adt.2005.3.613 10.1016/j.str.2010.04.017 10.1007/BF00197809 10.7554/eLife.42166 10.1016/j.molcel.2017.04.009 10.1016/S0076-6879(99)04003-3 10.1016/j.celrep.2017.05.016 10.1038/nature24060 10.1107/S0907444904019158 10.1093/emboj/cdf691 10.1016/j.jsb.2021.107702 10.1093/nar/gkx1153 10.1021/bi801115g 10.1093/bioinformatics/btu830 10.1016/j.cell.2010.03.012 10.1038/nmeth.4169 10.1016/j.cell.2012.08.005 10.1038/nsmb1148 10.1021/bi101303t 10.1074/jbc.M110.213728 10.1038/nmeth.4193 10.1038/nature18951 10.1038/nature09321 10.1038/nature12318 10.1126/science.1178994 10.1126/science.7545954 10.1038/ng1296-430 10.1126/science.2270482 10.1038/nature13890 10.1016/0022-2836(87)90679-6 10.1021/bi700323t 10.1242/jcs.105353 10.1101/2020.06.01.127951 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. COPYRIGHT 2021 Nature Publishing Group Copyright Nature Publishing Group Aug 19, 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Copyright Nature Publishing Group Aug 19, 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/s41586-021-03716-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 443 |
ExternalDocumentID | PMC8680157 A672492777 34321665 10_1038_s41586_021_03716_8 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM116829 – fundername: NIGMS NIH HHS grantid: U24 GM129547 – fundername: NCI NIH HHS grantid: R01 CA132878 – fundername: NIGMS NIH HHS grantid: R35 GM136262 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAVBQ AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c742t-f3c72e2b91cf96440af24ac1c1a77bb4d1569e5537104cdcffeee98e8e5de7013 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:17:33 EDT 2025 Thu Jul 10 19:11:03 EDT 2025 Sat Aug 23 13:34:54 EDT 2025 Tue Jun 17 21:21:10 EDT 2025 Thu Jun 12 23:57:37 EDT 2025 Tue Jun 10 15:35:03 EDT 2025 Tue Jun 10 20:46:37 EDT 2025 Fri Jun 27 03:50:04 EDT 2025 Fri Jun 27 04:47:55 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Tue Jul 01 02:32:25 EDT 2025 Fri Feb 21 02:37:08 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7872 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. Reprints and permissions information is available at http://www.nature.com/reprints. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c742t-f3c72e2b91cf96440af24ac1c1a77bb4d1569e5537104cdcffeee98e8e5de7013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally: Qi Hu, Maria Victoria Botuyan, Debiao Zhao. Author contributions G.M. conceived and supervised this work. G.M., Q.H., M.V.B. and D.Z. designed the experiments. Q.H. determined the cryo-EM structures. G.C. and Q.H. performed the NMR spectroscopy experiments. M.V.B. cLoned the different constructs. M.V.B., D.Z., Q.H. and E.M. produced and purified all samples. M.V.B., Q.H., D.Z. and E.M. performed the functional assays. G.M. wrote the manuscript with major contributions from M.V.B. and Q.H., and input from all authors. |
ORCID | 0000-0002-6466-7432 0000-0003-2339-9547 0000-0003-3647-8471 0000-0002-1900-1578 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8680157 |
PMID | 34321665 |
PQID | 2563499899 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8680157 proquest_miscellaneous_2556383327 proquest_journals_2563499899 gale_infotracmisc_A672492777 gale_infotracgeneralonefile_A672492777 gale_infotraccpiq_672492777 gale_infotracacademiconefile_A672492777 gale_incontextgauss_ISR_A672492777 gale_incontextgauss_ATWCN_A672492777 pubmed_primary_34321665 crossref_citationtrail_10_1038_s41586_021_03716_8 crossref_primary_10_1038_s41586_021_03716_8 springer_journals_10_1038_s41586_021_03716_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-19 |
PublicationDateYYYYMMDD | 2021-08-19 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Stewart (CR30) 2009; 136 Moynahan, Chiu, Koller, Jasin (CR8) 1999; 4 Kalb, Mallery, Larkin, Huang, Hiom (CR13) 2014; 8 Hu (CR46) 2011; 25 Hall (CR1) 1990; 250 Benirschke (CR53) 2010; 18 Coleman, Greenberg (CR45) 2011; 286 Zivanov (CR63) 2018; 7 CR32 Hashizume (CR24) 2001; 276 Fradet-Turcotte (CR27) 2013; 499 Cui (CR50) 2010; 49 Chen (CR71) 2010; 66 Punjani, Fleet (CR35) 2021; 213 Lee, Tonelli, Markley (CR75) 2015; 31 Makde, England, Yennawar, Tan (CR57) 2010; 467 McGinty, Henrici, Tan (CR34) 2014; 514 Punjani, Rubinstein, Fleet, Brubaker (CR61) 2017; 14 Densham (CR14) 2016; 23 Su (CR54) 2011; 286 Matsumoto (CR58) 2019; 571 Luger, Rechsteiner, Richmond (CR56) 1999; 304 Futreal (CR3) 1994; 266 Scully (CR6) 1997; 88 Shukla (CR60) 2014; 512 Tan (CR65) 2017; 14 Brzovic, Rajagopal, Hoyt, King, Klevit (CR17) 2001; 8 Eddins, Carlile, Gomez, Pickart, Wolberger (CR41) 2006; 13 Sundd, Iverson, Ibarra-Molero, Sanchez-Ruiz, Robertson (CR49) 2002; 41 Zhao (CR7) 2017; 550 Billing (CR40) 2018; 72 Berndsen, Wolberger (CR51) 2011; 418 Doil (CR31) 2009; 136 Paull (CR37) 2000; 10 Mallery, Vandenberg, Hiom (CR25) 2002; 21 Liang (CR23) 2017; 3 Nakamura (CR11) 2019; 21 Mattiroli (CR15) 2012; 150 Berendsen, van der Spoel, van Drunen (CR77) 1995; 91 Fox (CR38) 2008; 283 Tarsounas, Sung (CR10) 2020; 21 Kim, Chen, Yu (CR44) 2007; 316 Witus (CR80) 2021; 28 Hu, Botuyan, Cui, Zhao, Mer (CR48) 2017; 66 Gatti (CR16) 2012; 11 Schanda, Kupce, Brutscher (CR76) 2005; 33 Stewart (CR26) 2018; 115 Delaglio (CR74) 1995; 6 Mukherjee (CR78) 2019; 33 Scheres (CR62) 2012; 180 Nakane, Kimanius, Lindahl, Scheres (CR36) 2018; 7 Sobhian (CR42) 2007; 316 Friedman (CR4) 1994; 8 Xu (CR47) 2010; 328 Chapman, Sossick, Boulton, Jackson (CR20) 2012; 125 Zheng (CR64) 2017; 14 Edwards (CR69) 2008; 47 Miki (CR2) 1994; 266 Li, Yu (CR39) 2013; 23 Greenberg (CR22) 2018; 20 Vijay-Kumar, Bugg, Cook (CR70) 1987; 194 Emsley, Cowtan (CR67) 2004; 60 Wilson (CR28) 2016; 536 Landrum (CR79) 2018; 46 Bouwman (CR19) 2010; 17 Botuyan (CR29) 2006; 127 Wu (CR5) 1996; 14 Birrane, Varma, Soni, Ladias (CR68) 2007; 46 Paull, Cortez, Bowers, Elledge, Gellert (CR9) 2001; 98 Pettersen (CR72) 2004; 25 Bentley (CR52) 2011; 30 Saredi (CR12) 2016; 534 Wang (CR43) 2007; 316 Bunting (CR18) 2010; 141 Liebschner (CR66) 2019; 75 Goddard (CR73) 2018; 27 Pellegrino, Michelena, Teloni, Imhof, Altmeyer (CR21) 2017; 19 Luger, Mäder, Richmond, Sargent, Richmond (CR33) 1997; 389 Su (CR55) 2012; 483 Marks (CR59) 2005; 3 CE Berndsen (3716_CR51) 2011; 418 D Fox III (3716_CR38) 2008; 283 TT Paull (3716_CR9) 2001; 98 A Fradet-Turcotte (3716_CR27) 2013; 499 LC Wu (3716_CR5) 1996; 14 A Punjani (3716_CR61) 2017; 14 VB Chen (3716_CR71) 2010; 66 SQ Zheng (3716_CR64) 2017; 14 Q Hu (3716_CR48) 2017; 66 RD Makde (3716_CR57) 2010; 467 DL Mallery (3716_CR25) 2002; 21 3716_CR32 JR Chapman (3716_CR20) 2012; 125 TT Paull (3716_CR37) 2000; 10 F Delaglio (3716_CR74) 1995; 6 GS Stewart (3716_CR30) 2009; 136 S Pellegrino (3716_CR21) 2017; 19 G Cui (3716_CR50) 2010; 49 W Zhao (3716_CR7) 2017; 550 KA Coleman (3716_CR45) 2011; 286 R Kalb (3716_CR13) 2014; 8 RM Densham (3716_CR14) 2016; 23 C Doil (3716_CR31) 2009; 136 AK Shukla (3716_CR60) 2014; 512 MJ Landrum (3716_CR79) 2018; 46 G Birrane (3716_CR68) 2007; 46 H Kim (3716_CR44) 2007; 316 D Su (3716_CR55) 2012; 483 M Tarsounas (3716_CR10) 2020; 21 T Nakane (3716_CR36) 2018; 7 HJC Berendsen (3716_CR77) 1995; 91 ML Bentley (3716_CR52) 2011; 30 EF Pettersen (3716_CR72) 2004; 25 M Li (3716_CR39) 2013; 23 RC Benirschke (3716_CR53) 2010; 18 TD Goddard (3716_CR73) 2018; 27 F Mattiroli (3716_CR15) 2012; 150 MD Stewart (3716_CR26) 2018; 115 D Su (3716_CR54) 2011; 286 MD Wilson (3716_CR28) 2016; 536 R Mukherjee (3716_CR78) 2019; 33 RA Edwards (3716_CR69) 2008; 47 J Zivanov (3716_CR63) 2018; 7 P Emsley (3716_CR67) 2004; 60 K Luger (3716_CR56) 1999; 304 PS Brzovic (3716_CR17) 2001; 8 PA Futreal (3716_CR3) 1994; 266 B Sobhian (3716_CR42) 2007; 316 D Liebschner (3716_CR66) 2019; 75 SH Scheres (3716_CR62) 2012; 180 ME Moynahan (3716_CR8) 1999; 4 D Billing (3716_CR40) 2018; 72 SF Bunting (3716_CR18) 2010; 141 W Lee (3716_CR75) 2015; 31 JM Hall (3716_CR1) 1990; 250 B Wang (3716_CR43) 2007; 316 Y Hu (3716_CR46) 2011; 25 S Vijay-Kumar (3716_CR70) 1987; 194 S Matsumoto (3716_CR58) 2019; 571 YZ Tan (3716_CR65) 2017; 14 SR Witus (3716_CR80) 2021; 28 Y Miki (3716_CR2) 1994; 266 RK McGinty (3716_CR34) 2014; 514 P Bouwman (3716_CR19) 2010; 17 M Xu (3716_CR47) 2010; 328 K Nakamura (3716_CR11) 2019; 21 A Punjani (3716_CR35) 2021; 213 MJ Eddins (3716_CR41) 2006; 13 M Gatti (3716_CR16) 2012; 11 BD Marks (3716_CR59) 2005; 3 LS Friedman (3716_CR4) 1994; 8 R Hashizume (3716_CR24) 2001; 276 RA Greenberg (3716_CR22) 2018; 20 MV Botuyan (3716_CR29) 2006; 127 Y Liang (3716_CR23) 2017; 3 M Sundd (3716_CR49) 2002; 41 K Luger (3716_CR33) 1997; 389 R Scully (3716_CR6) 1997; 88 G Saredi (3716_CR12) 2016; 534 P Schanda (3716_CR76) 2005; 33 34404953 - Nature. 2021 Aug 17 |
References_xml | – volume: 125 start-page: 3529 year: 2012 end-page: 3534 ident: CR20 article-title: BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair publication-title: J. Cell Sci. – volume: 88 start-page: 265 year: 1997 end-page: 275 ident: CR6 article-title: Association of BRCA1 with Rad51 in mitotic and meiotic cells publication-title: Cell doi: 10.1016/S0092-8674(00)81847-4 – volume: 23 start-page: 693 year: 2013 end-page: 704 ident: CR39 article-title: Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.03.025 – volume: 28 start-page: 268 year: 2021 end-page: 277 ident: CR80 article-title: BRCA1/BARD1 site-specific ubiquitylation of nucleosomal H2A is directed by BARD1 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-00556-4 – volume: 7 year: 2018 ident: CR36 article-title: Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION publication-title: eLife doi: 10.7554/eLife.36861 – volume: 389 start-page: 251 year: 1997 end-page: 260 ident: CR33 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature doi: 10.1038/38444 – volume: 3 year: 2017 ident: CR23 article-title: Structural analysis of BRCA1 reveals modification hotspot publication-title: Sci. Adv. doi: 10.1126/sciadv.1701386 – volume: 41 start-page: 7586 year: 2002 end-page: 7596 ident: CR49 article-title: Electrostatic interactions in ubiquitin: stabilization of carboxylates by lysine amino groups publication-title: Biochemistry doi: 10.1021/bi025571d – volume: 17 start-page: 688 year: 2010 end-page: 695 ident: CR19 article-title: 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1831 – volume: 11 start-page: 2538 year: 2012 end-page: 2544 ident: CR16 article-title: A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase publication-title: Cell Cycle doi: 10.4161/cc.20919 – volume: 316 start-page: 1198 year: 2007 end-page: 1202 ident: CR42 article-title: RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites publication-title: Science doi: 10.1126/science.1139516 – volume: 571 start-page: 79 year: 2019 end-page: 84 ident: CR58 article-title: DNA damage detection in nucleosomes involves DNA register shifting publication-title: Nature doi: 10.1038/s41586-019-1259-3 – volume: 33 start-page: 199 year: 2005 end-page: 211 ident: CR76 article-title: SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds publication-title: J. Biomol. NMR doi: 10.1007/s10858-005-4425-x – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: CR72 article-title: UCSF Chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 276 start-page: 14537 year: 2001 end-page: 14540 ident: CR24 article-title: The RING heterodimer BRCA1–BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation publication-title: J. Biol. Chem. doi: 10.1074/jbc.C000881200 – volume: 20 start-page: 862 year: 2018 end-page: 863 ident: CR22 article-title: Assembling a protective shield publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0152-x – volume: 98 start-page: 6086 year: 2001 end-page: 6091 ident: CR9 article-title: Direct DNA binding by Brca1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.111125998 – volume: 10 start-page: 886 year: 2000 end-page: 895 ident: CR37 article-title: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00610-2 – volume: 8 start-page: 999 year: 2014 end-page: 1005 ident: CR13 article-title: BRCA1 is a histone-H2A-specific ubiquitin ligase publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.07.025 – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: CR71 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909042073 – volume: 75 start-page: 861 year: 2019 end-page: 877 ident: CR66 article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix publication-title: Acta Crystallogr. D doi: 10.1107/S2059798319011471 – volume: 127 start-page: 1361 year: 2006 end-page: 1373 ident: CR29 article-title: Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair publication-title: Cell doi: 10.1016/j.cell.2006.10.043 – volume: 136 start-page: 420 year: 2009 end-page: 434 ident: CR30 article-title: The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage publication-title: Cell doi: 10.1016/j.cell.2008.12.042 – volume: 512 start-page: 218 year: 2014 end-page: 222 ident: CR60 article-title: Visualization of arrestin recruitment by a G-protein-coupled receptor publication-title: Nature doi: 10.1038/nature13430 – volume: 283 start-page: 21179 year: 2008 end-page: 21186 ident: CR38 article-title: Crystal structure of the BARD1 ankyrin repeat domain and its functional consequences publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802333200 – volume: 30 start-page: 3285 year: 2011 end-page: 3297 ident: CR52 article-title: Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex publication-title: EMBO J. doi: 10.1038/emboj.2011.243 – volume: 266 start-page: 120 year: 1994 end-page: 122 ident: CR3 article-title: BRCA1 mutations in primary breast and ovarian carcinomas publication-title: Science doi: 10.1126/science.7939630 – volume: 8 start-page: 399 year: 1994 end-page: 404 ident: CR4 article-title: Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families publication-title: Nat. Genet. doi: 10.1038/ng1294-399 – volume: 21 start-page: 284 year: 2020 end-page: 299 ident: CR10 article-title: The antitumorigenic roles of BRCA1–BARD1 in DNA repair and replication publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0218-z – volume: 4 start-page: 511 year: 1999 end-page: 518 ident: CR8 article-title: Brca1 controls homology-directed DNA repair publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80202-6 – volume: 286 start-page: 15625 year: 2011 end-page: 15629 ident: CR54 article-title: Structure and histone binding properties of the Vps75–Rtt109 chaperone–lysine acetyltransferase complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.C111.220715 – volume: 21 start-page: 311 year: 2019 end-page: 318 ident: CR11 article-title: H4K20me0 recognition by BRCA1–BARD1 directs homologous recombination to sister chromatids publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0282-9 – volume: 136 start-page: 435 year: 2009 end-page: 446 ident: CR31 article-title: RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins publication-title: Cell doi: 10.1016/j.cell.2008.12.041 – ident: CR32 – volume: 23 start-page: 647 year: 2016 end-page: 655 ident: CR14 article-title: Human BRCA1–BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3236 – volume: 91 start-page: 43 year: 1995 end-page: 56 ident: CR77 article-title: GROMACS: a message-passing parallel molecular dynamics implementation publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(95)00042-E – volume: 115 start-page: 1316 year: 2018 end-page: 1321 ident: CR26 article-title: BARD1 is necessary for ubiquitylation of nucleosomal histone H2A and for transcriptional regulation of estrogen metabolism genes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1715467115 – volume: 180 start-page: 519 year: 2012 end-page: 530 ident: CR62 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 483 start-page: 104 year: 2012 end-page: 107 ident: CR55 article-title: Structural basis for recognition of H3K56-acetylated histone H3–H4 by the chaperone Rtt106 publication-title: Nature doi: 10.1038/nature10861 – volume: 33 start-page: 1927 year: 2019 end-page: 1945 ident: CR78 article-title: Calmodulin regulates MGRN1–GP78 interaction mediated ubiquitin proteasomal degradation system publication-title: FASEB J. doi: 10.1096/fj.201701413RRR – volume: 316 start-page: 1202 year: 2007 end-page: 1205 ident: CR44 article-title: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response publication-title: Science doi: 10.1126/science.1139621 – volume: 8 start-page: 833 year: 2001 end-page: 837 ident: CR17 article-title: Structure of a BRCA1–BARD1 heterodimeric RING–RING complex publication-title: Nat. Struct. Biol. doi: 10.1038/nsb1001-833 – volume: 316 start-page: 1194 year: 2007 end-page: 1198 ident: CR43 article-title: Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response publication-title: Science doi: 10.1126/science.1139476 – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: CR73 article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 72 start-page: 127 year: 2018 end-page: 139.e8 ident: CR40 article-title: The BRCT domains of the BRCA1 and BARD1 tumor suppressors differentially regulate homology-directed repair and stalled fork protection publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.016 – volume: 418 start-page: 102 year: 2011 end-page: 110 ident: CR51 article-title: A spectrophotometric assay for conjugation of ubiquitin and ubiquitin-like proteins publication-title: Anal. Biochem. doi: 10.1016/j.ab.2011.06.034 – volume: 25 start-page: 685 year: 2011 end-page: 700 ident: CR46 article-title: RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci publication-title: Genes Dev. doi: 10.1101/gad.2011011 – volume: 14 start-page: 793 year: 2017 end-page: 796 ident: CR65 article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting publication-title: Nat. Methods doi: 10.1038/nmeth.4347 – volume: 534 start-page: 714 year: 2016 end-page: 718 ident: CR12 article-title: H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex publication-title: Nature doi: 10.1038/nature18312 – volume: 3 start-page: 613 year: 2005 end-page: 622 ident: CR59 article-title: Multiparameter analysis of a screen for progesterone receptor ligands: comparing fluorescence lifetime and fluorescence polarization measurements publication-title: Assay Drug Dev. Technol. doi: 10.1089/adt.2005.3.613 – volume: 18 start-page: 955 year: 2010 end-page: 965 ident: CR53 article-title: Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4 publication-title: Structure doi: 10.1016/j.str.2010.04.017 – volume: 6 start-page: 277 year: 1995 end-page: 293 ident: CR74 article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes publication-title: J. Biomol. NMR doi: 10.1007/BF00197809 – volume: 7 year: 2018 ident: CR63 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife doi: 10.7554/eLife.42166 – volume: 66 start-page: 473 year: 2017 end-page: 487.e9 ident: CR48 article-title: Mechanisms of ubiquitin -nucleosome recognition and regulation of 53BP1 chromatin recruitment by RNF168/169 and RAD18 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.04.009 – volume: 304 start-page: 3 year: 1999 end-page: 19 ident: CR56 article-title: Preparation of nucleosome core particle from recombinant histones publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(99)04003-3 – volume: 19 start-page: 1819 year: 2017 end-page: 1831 ident: CR21 article-title: Replication-coupled dilution of H4K20me2 guides 53BP1 to pre-replicative chromatin publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.05.016 – volume: 550 start-page: 360 year: 2017 end-page: 365 ident: CR7 article-title: BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing publication-title: Nature doi: 10.1038/nature24060 – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: CR67 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D doi: 10.1107/S0907444904019158 – volume: 21 start-page: 6755 year: 2002 end-page: 6762 ident: CR25 article-title: Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains publication-title: EMBO J. doi: 10.1093/emboj/cdf691 – volume: 213 start-page: 107702 year: 2021 ident: CR35 article-title: 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2021.107702 – volume: 46 start-page: D1062 year: 2018 end-page: D1067 ident: CR79 article-title: ClinVar: improving access to variant interpretations and supporting evidence publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1153 – volume: 47 start-page: 11446 year: 2008 end-page: 11456 ident: CR69 article-title: The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50 publication-title: Biochemistry doi: 10.1021/bi801115g – volume: 31 start-page: 1325 year: 2015 end-page: 1327 ident: CR75 article-title: NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu830 – volume: 141 start-page: 243 year: 2010 end-page: 254 ident: CR18 article-title: 53BP1 inhibits homologous recombination in -deficient cells by blocking resection of DNA breaks publication-title: Cell doi: 10.1016/j.cell.2010.03.012 – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: CR61 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 150 start-page: 1182 year: 2012 end-page: 1195 ident: CR15 article-title: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling publication-title: Cell doi: 10.1016/j.cell.2012.08.005 – volume: 13 start-page: 915 year: 2006 end-page: 920 ident: CR41 article-title: Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1148 – volume: 49 start-page: 10198 year: 2010 end-page: 10207 ident: CR50 article-title: Structural basis of ubiquitin recognition by translesion synthesis DNA polymerase ι publication-title: Biochemistry doi: 10.1021/bi101303t – volume: 286 start-page: 13669 year: 2011 end-page: 13680 ident: CR45 article-title: The BRCA1–RAP80 complex regulates DNA repair mechanism utilization by restricting end resection publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.213728 – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: CR64 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 536 start-page: 100 year: 2016 end-page: 103 ident: CR28 article-title: The structural basis of modified nucleosome recognition by 53BP1 publication-title: Nature doi: 10.1038/nature18951 – volume: 467 start-page: 562 year: 2010 end-page: 566 ident: CR57 article-title: Structure of RCC1 chromatin factor bound to the nucleosome core particle publication-title: Nature doi: 10.1038/nature09321 – volume: 499 start-page: 50 year: 2013 end-page: 54 ident: CR27 article-title: 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark publication-title: Nature doi: 10.1038/nature12318 – volume: 328 start-page: 94 year: 2010 end-page: 98 ident: CR47 article-title: Partitioning of histone H3–H4 tetramers during DNA replication-dependent chromatin assembly publication-title: Science doi: 10.1126/science.1178994 – volume: 266 start-page: 66 year: 1994 end-page: 71 ident: CR2 article-title: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1 publication-title: Science doi: 10.1126/science.7545954 – volume: 14 start-page: 430 year: 1996 end-page: 440 ident: CR5 article-title: Identification of a RING protein that can interact in vivo with the BRCA1 gene product publication-title: Nat. Genet. doi: 10.1038/ng1296-430 – volume: 250 start-page: 1684 year: 1990 end-page: 1689 ident: CR1 article-title: Linkage of early-onset familial breast cancer to chromosome 17q21 publication-title: Science doi: 10.1126/science.2270482 – volume: 514 start-page: 591 year: 2014 end-page: 596 ident: CR34 article-title: Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome publication-title: Nature doi: 10.1038/nature13890 – volume: 194 start-page: 531 year: 1987 end-page: 544 ident: CR70 article-title: Structure of ubiquitin refined at 1.8 A resolution publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90679-6 – volume: 46 start-page: 7706 year: 2007 end-page: 7712 ident: CR68 article-title: Crystal structure of the BARD1 BRCT domains publication-title: Biochemistry doi: 10.1021/bi700323t – volume: 550 start-page: 360 year: 2017 ident: 3716_CR7 publication-title: Nature doi: 10.1038/nature24060 – volume: 31 start-page: 1325 year: 2015 ident: 3716_CR75 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu830 – volume: 512 start-page: 218 year: 2014 ident: 3716_CR60 publication-title: Nature doi: 10.1038/nature13430 – volume: 11 start-page: 2538 year: 2012 ident: 3716_CR16 publication-title: Cell Cycle doi: 10.4161/cc.20919 – volume: 8 start-page: 833 year: 2001 ident: 3716_CR17 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb1001-833 – volume: 3 year: 2017 ident: 3716_CR23 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701386 – volume: 23 start-page: 693 year: 2013 ident: 3716_CR39 publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.03.025 – volume: 571 start-page: 79 year: 2019 ident: 3716_CR58 publication-title: Nature doi: 10.1038/s41586-019-1259-3 – volume: 136 start-page: 420 year: 2009 ident: 3716_CR30 publication-title: Cell doi: 10.1016/j.cell.2008.12.042 – volume: 41 start-page: 7586 year: 2002 ident: 3716_CR49 publication-title: Biochemistry doi: 10.1021/bi025571d – volume: 23 start-page: 647 year: 2016 ident: 3716_CR14 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3236 – volume: 467 start-page: 562 year: 2010 ident: 3716_CR57 publication-title: Nature doi: 10.1038/nature09321 – volume: 17 start-page: 688 year: 2010 ident: 3716_CR19 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1831 – volume: 316 start-page: 1202 year: 2007 ident: 3716_CR44 publication-title: Science doi: 10.1126/science.1139621 – volume: 3 start-page: 613 year: 2005 ident: 3716_CR59 publication-title: Assay Drug Dev. Technol. doi: 10.1089/adt.2005.3.613 – volume: 14 start-page: 793 year: 2017 ident: 3716_CR65 publication-title: Nat. Methods doi: 10.1038/nmeth.4347 – volume: 14 start-page: 331 year: 2017 ident: 3716_CR64 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 21 start-page: 284 year: 2020 ident: 3716_CR10 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0218-z – volume: 21 start-page: 311 year: 2019 ident: 3716_CR11 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0282-9 – volume: 30 start-page: 3285 year: 2011 ident: 3716_CR52 publication-title: EMBO J. doi: 10.1038/emboj.2011.243 – volume: 14 start-page: 290 year: 2017 ident: 3716_CR61 publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 33 start-page: 199 year: 2005 ident: 3716_CR76 publication-title: J. Biomol. NMR doi: 10.1007/s10858-005-4425-x – volume: 33 start-page: 1927 year: 2019 ident: 3716_CR78 publication-title: FASEB J. doi: 10.1096/fj.201701413RRR – volume: 46 start-page: D1062 year: 2018 ident: 3716_CR79 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1153 – volume: 276 start-page: 14537 year: 2001 ident: 3716_CR24 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C000881200 – volume: 127 start-page: 1361 year: 2006 ident: 3716_CR29 publication-title: Cell doi: 10.1016/j.cell.2006.10.043 – volume: 8 start-page: 399 year: 1994 ident: 3716_CR4 publication-title: Nat. Genet. doi: 10.1038/ng1294-399 – volume: 20 start-page: 862 year: 2018 ident: 3716_CR22 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0152-x – volume: 75 start-page: 861 year: 2019 ident: 3716_CR66 publication-title: Acta Crystallogr. D doi: 10.1107/S2059798319011471 – volume: 304 start-page: 3 year: 1999 ident: 3716_CR56 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(99)04003-3 – volume: 125 start-page: 3529 year: 2012 ident: 3716_CR20 publication-title: J. Cell Sci. doi: 10.1242/jcs.105353 – volume: 21 start-page: 6755 year: 2002 ident: 3716_CR25 publication-title: EMBO J. doi: 10.1093/emboj/cdf691 – volume: 4 start-page: 511 year: 1999 ident: 3716_CR8 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80202-6 – volume: 88 start-page: 265 year: 1997 ident: 3716_CR6 publication-title: Cell doi: 10.1016/S0092-8674(00)81847-4 – volume: 72 start-page: 127 year: 2018 ident: 3716_CR40 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.016 – volume: 316 start-page: 1194 year: 2007 ident: 3716_CR43 publication-title: Science doi: 10.1126/science.1139476 – volume: 499 start-page: 50 year: 2013 ident: 3716_CR27 publication-title: Nature doi: 10.1038/nature12318 – volume: 250 start-page: 1684 year: 1990 ident: 3716_CR1 publication-title: Science doi: 10.1126/science.2270482 – volume: 27 start-page: 14 year: 2018 ident: 3716_CR73 publication-title: Protein Sci. doi: 10.1002/pro.3235 – ident: 3716_CR32 doi: 10.1101/2020.06.01.127951 – volume: 14 start-page: 430 year: 1996 ident: 3716_CR5 publication-title: Nat. Genet. doi: 10.1038/ng1296-430 – volume: 141 start-page: 243 year: 2010 ident: 3716_CR18 publication-title: Cell doi: 10.1016/j.cell.2010.03.012 – volume: 66 start-page: 12 year: 2010 ident: 3716_CR71 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909042073 – volume: 13 start-page: 915 year: 2006 ident: 3716_CR41 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1148 – volume: 286 start-page: 15625 year: 2011 ident: 3716_CR54 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C111.220715 – volume: 10 start-page: 886 year: 2000 ident: 3716_CR37 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00610-2 – volume: 286 start-page: 13669 year: 2011 ident: 3716_CR45 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.213728 – volume: 47 start-page: 11446 year: 2008 ident: 3716_CR69 publication-title: Biochemistry doi: 10.1021/bi801115g – volume: 7 year: 2018 ident: 3716_CR36 publication-title: eLife doi: 10.7554/eLife.36861 – volume: 213 start-page: 107702 year: 2021 ident: 3716_CR35 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2021.107702 – volume: 6 start-page: 277 year: 1995 ident: 3716_CR74 publication-title: J. Biomol. NMR doi: 10.1007/BF00197809 – volume: 266 start-page: 120 year: 1994 ident: 3716_CR3 publication-title: Science doi: 10.1126/science.7939630 – volume: 28 start-page: 268 year: 2021 ident: 3716_CR80 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-00556-4 – volume: 180 start-page: 519 year: 2012 ident: 3716_CR62 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 115 start-page: 1316 year: 2018 ident: 3716_CR26 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1715467115 – volume: 8 start-page: 999 year: 2014 ident: 3716_CR13 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.07.025 – volume: 328 start-page: 94 year: 2010 ident: 3716_CR47 publication-title: Science doi: 10.1126/science.1178994 – volume: 418 start-page: 102 year: 2011 ident: 3716_CR51 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2011.06.034 – volume: 7 year: 2018 ident: 3716_CR63 publication-title: eLife doi: 10.7554/eLife.42166 – volume: 91 start-page: 43 year: 1995 ident: 3716_CR77 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(95)00042-E – volume: 60 start-page: 2126 year: 2004 ident: 3716_CR67 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444904019158 – volume: 316 start-page: 1198 year: 2007 ident: 3716_CR42 publication-title: Science doi: 10.1126/science.1139516 – volume: 49 start-page: 10198 year: 2010 ident: 3716_CR50 publication-title: Biochemistry doi: 10.1021/bi101303t – volume: 25 start-page: 1605 year: 2004 ident: 3716_CR72 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 534 start-page: 714 year: 2016 ident: 3716_CR12 publication-title: Nature doi: 10.1038/nature18312 – volume: 98 start-page: 6086 year: 2001 ident: 3716_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.111125998 – volume: 46 start-page: 7706 year: 2007 ident: 3716_CR68 publication-title: Biochemistry doi: 10.1021/bi700323t – volume: 483 start-page: 104 year: 2012 ident: 3716_CR55 publication-title: Nature doi: 10.1038/nature10861 – volume: 19 start-page: 1819 year: 2017 ident: 3716_CR21 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.05.016 – volume: 25 start-page: 685 year: 2011 ident: 3716_CR46 publication-title: Genes Dev. doi: 10.1101/gad.2011011 – volume: 18 start-page: 955 year: 2010 ident: 3716_CR53 publication-title: Structure doi: 10.1016/j.str.2010.04.017 – volume: 150 start-page: 1182 year: 2012 ident: 3716_CR15 publication-title: Cell doi: 10.1016/j.cell.2012.08.005 – volume: 66 start-page: 473 year: 2017 ident: 3716_CR48 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.04.009 – volume: 266 start-page: 66 year: 1994 ident: 3716_CR2 publication-title: Science doi: 10.1126/science.7545954 – volume: 283 start-page: 21179 year: 2008 ident: 3716_CR38 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802333200 – volume: 389 start-page: 251 year: 1997 ident: 3716_CR33 publication-title: Nature doi: 10.1038/38444 – volume: 136 start-page: 435 year: 2009 ident: 3716_CR31 publication-title: Cell doi: 10.1016/j.cell.2008.12.041 – volume: 536 start-page: 100 year: 2016 ident: 3716_CR28 publication-title: Nature doi: 10.1038/nature18951 – volume: 194 start-page: 531 year: 1987 ident: 3716_CR70 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90679-6 – volume: 514 start-page: 591 year: 2014 ident: 3716_CR34 publication-title: Nature doi: 10.1038/nature13890 – reference: 34404953 - Nature. 2021 Aug 17;: |
SSID | ssj0005174 |
Score | 2.6134045 |
Snippet | The BRCA1–BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination
1
–
10
. The... The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination . The BRCA1-BARD1... The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination.sup.1-10. The... The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair ofDNA double-strand breaks by homologous recombination. The BRCA1-BARD1... The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 438 |
SubjectTerms | 101/28 101/6 631/337/100/1701 631/337/1427/2122 631/337/458/582 631/535/1258/1259 631/535/878/1263 82 82/16 82/6 82/80 82/83 Amino acids Ankyrins BRCA1 protein BRCA1 Protein - metabolism Breast cancer C-Terminus Cancer Chromatin Crosstalk Cryoelectron Microscopy Damage localization Deoxyribonucleic acid DNA DNA biosynthesis DNA Repair Domains Electron microscopy Enzymes Flexibility Genetic aspects Histone H2A Histones Histones - chemistry Histones - metabolism Homologous Recombination Homology Humanities and Social Sciences Humans Microscopy Models, Molecular multidisciplinary Mutation Neoplasms - genetics NMR Nuclear magnetic resonance Nucleosomes Nucleosomes - chemistry Nucleosomes - genetics Nucleosomes - metabolism Nucleosomes - ultrastructure Physiological aspects Protein Domains Proteins Recruitment Repair Science Science (multidisciplinary) Spectrum analysis Target recognition Tumor suppressor genes Tumor Suppressor p53-Binding Protein 1 - antagonists & inhibitors Tumor Suppressor p53-Binding Protein 1 - metabolism Tumor Suppressor Proteins - chemistry Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism Tumor Suppressor Proteins - ultrastructure Tumors Ubiquitin Ubiquitin - metabolism Ubiquitin-conjugating enzyme Ubiquitin-Conjugating Enzymes - chemistry Ubiquitin-Conjugating Enzymes - metabolism Ubiquitin-Conjugating Enzymes - ultrastructure Ubiquitin-protein ligase Ubiquitin-Protein Ligases - chemistry Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitin-Protein Ligases - ultrastructure Ubiquitination |
Title | Mechanisms of BRCA1–BARD1 nucleosome recognition and ubiquitylation |
URI | https://link.springer.com/article/10.1038/s41586-021-03716-8 https://www.ncbi.nlm.nih.gov/pubmed/34321665 https://www.proquest.com/docview/2563499899 https://www.proquest.com/docview/2556383327 https://pubmed.ncbi.nlm.nih.gov/PMC8680157 |
Volume | 596 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviI2vsDEFNPEhiFbnw3aeUBtWBtIqVDbRNytxnFGJJS1u_n_uEjddqrGXvPhsJec7313888-EHGcsFxpCH7g41R7UXwxcKmdemMYq8iPBtMZC8XzCzi7D77NoZn-4GQurXK-JzUKdVwr_kZ9AaA4gO4fy4PNi6eGtUbi7aq_QuE92kboMIV18xjcQjy0WZntoZhCIEwOBSyD8FgFFUDN4oheYtpfnG_FpGzu5tYHaxKXxY_LIJpTusLWAPXJPl_vkQQPsVGaf7FnnNe57yzD94QlJzjUe-J2ba-NWhTuaJkPqjYbTL9Qtkd-4MtW1djtsUVW6aZm7dTZf1pC0t-i5p-RyfHqRnHn2NgVPQfm78opAcV_7WUxVEUMWNEgLP0wVVTTlPMvCHCq5WEcRaGMQqlwVhdY6FlroKNccMsVnZKesSv2CuJyzPINMD_pmUPBokVJkefHDCLKbQR47hK5VKZWlGscbL_7IZss7ELJVvwT1y0b9UjjkY9dn0RJt3Cl9jDMkkcGiRIjMVVobI4cXv5KJHDKOPIicc4e8uU3s289pT-idFSoqeEuV2oMJ8K3IjdWTPOhJqsV8KW-0vu21XrWzetswhz1BcGjVb16bnbQLipEb83fI664ZeyJIrtRVjTIgJILAhyGet1baqRLPD1PGIofwnv12Akgz3m8p578bunHBIIuJYMxPa0vfvNb_Z-jl3V9xQB76jfMJj8aHZGf1t9avIL1bZUeND8NTJBSf469HZHd0Ovkx_QeKyEm4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXRMvLtIBB5SWwGj93fUAoTakS2uQQUpHbYq_XJRK1ExwL8af4jcz4lToqvfW8s6v17Dy9M98C7IVexBW6PlRxUxmYf3moUpFnOIEvXcvlnlKUKA5HXv_U-TJ1pxvwt-6FobLK2iYWhjpKJf0j30fXbGN0junBp_nCoFej6Ha1fkKjFItj9ec3pmzZx8Ehnu8ryzr6POn1jepVAUNiGrg0YlsyS1mhb8rYx2igE8SWE0hTmgFjYehEmNH4ynVt9L2OjGQcK6V8rrhyI8UwYsJ1b8BNdLwd0ig2ZauSkjXU56pJp2Pz_QwdJadyXypgwhzF4C1HuO4OLvjD9VrNtQvbwg8e3YO7VQCrd0uJ24INlWzDraKQVGbbsFUZi0x_WyFav7sPvaGiBuNZdp7paawfjHtd0zjojg9NPSE85TRLz5Xe1DKliR4kkZ6Hs0WOSUJZrfcATq-Fzw9hM0kT9Rh0xrwoxMgS54aYYCkemIQqYzkuRlOdyNfArFkpZAVtTi9s_BTFFbvNRcl-gewXBfsF1-B9M2deAntcSb1HJyQIMSOhkpyzIM8y0Z18641E12OEu8gY0-DlZWSDr-MW0ZuKKE5xlzKoGiHwWwmLq0W506KU89lCXBh93Ro9K0_1smV2W4RoQGR7uBY7URmwTKzUTYMXzTDNpKK8RKU50SARt20Ll3hUSmnDSupXNj3P1YC15LchIFjz9kgy-1HAm3MPoyYX1_xQS_pqW_8_oSdXf8VzuN2fDE_EyWB0vAN3rEIRuWH6u7C5_JWrpxhaLsNnhT7r8P26Dcg_jIyElg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIhAviJbLtIBB5RJYyfra9QNCaULUUBqh0Iq8LfZ6XSJRO8GJEH-NX8eMj6SOSt_6vLOr9eyc3plvAfYiPxYaXR-qONMW5l8-qlTsW24YKM_2hK81JYpHQ__gxP009sYb8LfuhaGyytomFoY6zhT9I2-ha3YwOsf0oJVUZRFfev0P05lFL0jRTWv9nEYpIof6z29M3_L3gx6e9Qvb7n887h5Y1QsDlsKUcG4ljuK2tqOAqSTAyKAdJrYbKqZYyHkUuTFmN4H2PAf9sKtilSRa60Boob1Yc4yecN1rcJ07HiMd42O-Ki9ZQ4CuGnbajmjl6DQFlf5SMRPmK5ZoOMV113DON67Xba5d3hY-sX8HblfBrNkppW8LNnS6DTeKolKVb8NWZThy83WFbv3mLnSPNDUbT_Kz3MwSc3_U7TBrvzPqMTMlbOUsz860uaxrylIzTGNzEU1mC0wYysq9e3ByJXy-D5tpluqHYHLuxxFGmTg3wmRLi5ARwoztehhZtePAAFazUqoK5pxe2_gpi-t2R8iS_RLZLwv2S2HA2-WcaQnycSn1Hp2QJPSMlOTwNFzkuewcf-sOZcfnhMHIOTfg-UVkg6-jBtGriijJcJcqrJoi8FsJl6tBudOgVNPJTJ4bfdkYPS1P9aJldhuEaExUc7gWO1kZs1yuVM-AZ8thmkkFeqnOFkSDRMJxbFziQSmlS1ZS7zLzfc8A3pDfJQFBnDdH0smPAupc-BhBebjmu1rSV9v6_wk9uvwrnsJNNB3y82B4uAO37EIPhcWCXdic_1roxxhlzqMnhTqb8P2q7cc_JCuIzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+BRCA1-BARD1+nucleosome+recognition+and+ubiquitylation&rft.jtitle=Nature+%28London%29&rft.au=Hu%2C+Qi&rft.au=Botuyan%2C+Maria+Victoria&rft.au=Zhao%2C+Debiao&rft.au=Cui%2C+Gaofeng&rft.date=2021-08-19&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=596&rft.issue=7872&rft.spage=438&rft_id=info:doi/10.1038%2Fs41586-021-03716-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |