Regulation of histone H3K4 methylation in brain development and disease

The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wid...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 369; no. 1652; p. 20130514
Main Authors Shen, Erica, Shulha, Hennady, Weng, Zhiping, Akbarian, Schahram
Format Journal Article
LanguageEnglish
Published England The Royal Society 26.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.
AbstractList The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes ( ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D ) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.
The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.
The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.
Author Shulha, Hennady
Akbarian, Schahram
Shen, Erica
Weng, Zhiping
AuthorAffiliation 2 Program in Bioinformatics and Integrative Biology , University of Massachusetts Medical School , Worcester, MA 01604 , USA
1 Department of Psychiatry , Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY 10029 , USA
AuthorAffiliation_xml – name: 2 Program in Bioinformatics and Integrative Biology , University of Massachusetts Medical School , Worcester, MA 01604 , USA
– name: 1 Department of Psychiatry , Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY 10029 , USA
Author_xml – sequence: 1
  givenname: Erica
  surname: Shen
  fullname: Shen, Erica
  organization: Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
– sequence: 2
  givenname: Hennady
  surname: Shulha
  fullname: Shulha, Hennady
  organization: Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01604, USA
– sequence: 3
  givenname: Zhiping
  surname: Weng
  fullname: Weng, Zhiping
  organization: Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01604, USA
– sequence: 4
  givenname: Schahram
  surname: Akbarian
  fullname: Akbarian, Schahram
  email: schahram.akbarian@mssm.edu
  organization: Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25135975$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1PFDEUbQxGFvTVRzOPvszaTj_nxUSIgIFogiiPN-20yxZmp0s7s3H99XbYhYgGfWnT3HPOPfee7qGdLnQOodcETwmu1buYejOtMKFTzAl7hiaESVJWtcQ7aIJrUZWKUbGL9lK6xhjXXLIXaLfihPJa8gk6PndXQ6t7H7oizIq5T31uUJzQU1YsXD9fb2u-K0zU-bRu5dqwXLiuL3RnC-uT08m9RM9nuk3u1fbeR9-OPl4cnpRnX44_HX44KxvJSF8aI7CxtjaykrYyGlstnVKNprbJ81iiNNbOMcNU3WSHkjBuHOOCVVabZkb30fuN7nIwC2ebbCPqFpbRL3RcQ9AeHlc6P4ersAJGWIUpzwJvtwIx3A4u9bDwqXFtqzsXhgREYSUoIZz-H8qFUJUUYoS--d3Wg5_7RWcA2wCaGFKKbgaN7-9Wm136FgiGMU8Y84QxTxjzzLTpH7R75ScJdEOIYZ1zCI13_RquwxC7_HyadfMv1vnXi4MVFbUngleAFSVYVhQr-OmXG6lcBJ_S4OAO8lj-727lplv-bO7Hw0Q63oCQVHL4rhicXpKDo8vPFDj9BURk5v0
CitedBy_id crossref_primary_10_2217_hep_2018_0008
crossref_primary_10_1007_s12035_023_03374_z
crossref_primary_10_3389_fnana_2018_00070
crossref_primary_10_1007_s12031_016_0770_3
crossref_primary_10_1242_bio_061647
crossref_primary_10_1038_s41598_024_74270_2
crossref_primary_10_1016_j_semcdb_2021_11_019
crossref_primary_10_3390_ijms23063084
crossref_primary_10_1016_j_ajhg_2016_10_010
crossref_primary_10_1007_s12035_024_03995_y
crossref_primary_10_3390_genes8020069
crossref_primary_10_1134_S1990747824700107
crossref_primary_10_1080_15592294_2018_1475980
crossref_primary_10_3390_pediatric14010019
crossref_primary_10_1155_2024_9933129
crossref_primary_10_1038_srep31333
crossref_primary_10_3390_genes12071088
crossref_primary_10_3390_ijms24010868
crossref_primary_10_1038_npp_2016_144
crossref_primary_10_1002_ajmg_a_63351
crossref_primary_10_1002_jcp_25914
crossref_primary_10_1038_tpj_2017_29
crossref_primary_10_1111_adb_12404
crossref_primary_10_1097_YPG_0000000000000340
crossref_primary_10_3390_ijms21082938
crossref_primary_10_1515_sh_2016_0007
crossref_primary_10_1515_med_2021_0402
crossref_primary_10_1016_j_drugalcdep_2024_111401
crossref_primary_10_1016_j_brainres_2018_11_024
crossref_primary_10_1093_hmg_ddw120
crossref_primary_10_7759_cureus_74300
crossref_primary_10_1007_s00428_022_03347_y
crossref_primary_10_1016_j_celrep_2017_06_072
crossref_primary_10_1016_j_lfs_2023_121734
crossref_primary_10_1016_j_bpsgos_2023_03_004
crossref_primary_10_3389_fncel_2022_1046692
crossref_primary_10_3390_biom14070862
crossref_primary_10_1007_s00109_018_1635_8
crossref_primary_10_1167_iovs_62_6_1
crossref_primary_10_31857_S0233475524030052
crossref_primary_10_33590_emj_MKPN4473
crossref_primary_10_3892_ol_2024_14577
crossref_primary_10_1080_01677063_2016_1229779
crossref_primary_10_1126_sciadv_abc8096
crossref_primary_10_1155_2016_6927234
crossref_primary_10_1002_jnr_24560
crossref_primary_10_3389_fgene_2023_1113086
crossref_primary_10_1016_j_neubiorev_2023_105293
crossref_primary_10_3389_fgene_2022_950082
crossref_primary_10_3389_fneur_2024_1340458
crossref_primary_10_1038_s41388_022_02273_2
crossref_primary_10_1186_s40478_014_0173_z
crossref_primary_10_1016_j_molcel_2022_11_002
crossref_primary_10_1134_S1990519X20040112
crossref_primary_10_2217_epi_15_1
crossref_primary_10_1186_s13072_018_0251_8
crossref_primary_10_1038_s41380_018_0243_x
crossref_primary_10_1186_s13148_021_01145_y
crossref_primary_10_15252_emmm_202013785
crossref_primary_10_1016_j_brainres_2024_149120
crossref_primary_10_1038_s41596_019_0218_7
crossref_primary_10_1242_dev_190637
crossref_primary_10_1002_ajmg_a_63040
crossref_primary_10_1523_JNEUROSCI_3004_14_2015
crossref_primary_10_1096_fj_201802646R
crossref_primary_10_1016_j_ejmg_2024_104990
crossref_primary_10_1007_s12041_021_01294_2
crossref_primary_10_1016_j_ajhg_2019_03_021
crossref_primary_10_1186_s13229_020_00333_6
crossref_primary_10_1038_ng_3740
crossref_primary_10_1007_s12035_017_0586_3
crossref_primary_10_1007_s11910_019_1007_y
crossref_primary_10_1111_pcn_12426
crossref_primary_10_3389_fnmol_2021_708004
crossref_primary_10_1186_s12882_019_1517_5
crossref_primary_10_1007_s11547_020_01255_2
crossref_primary_10_1242_dev_132985
crossref_primary_10_1098_rstb_2013_0501
crossref_primary_10_1186_s12943_020_01220_7
crossref_primary_10_3390_ijms22073412
crossref_primary_10_1016_j_tig_2022_04_010
crossref_primary_10_17650_2073_8803_2022_17_3_79_84
crossref_primary_10_1002_tox_23863
crossref_primary_10_3389_fped_2021_641841
crossref_primary_10_1155_2016_3853242
crossref_primary_10_1111_cge_12754
crossref_primary_10_1038_s10038_020_0762_6
crossref_primary_10_1038_s41380_022_01508_8
crossref_primary_10_1016_j_chembiol_2016_06_006
crossref_primary_10_1002_jnr_25050
crossref_primary_10_4103_JCRP_JCRP_5_20
crossref_primary_10_1016_j_taap_2020_115002
crossref_primary_10_1016_j_chemosphere_2019_05_099
crossref_primary_10_1016_j_pedneo_2024_03_014
crossref_primary_10_1371_journal_pone_0121252
crossref_primary_10_3892_etm_2022_11294
crossref_primary_10_3389_fgene_2020_00035
crossref_primary_10_1093_schbul_sbw085
crossref_primary_10_3390_jpm11121254
Cites_doi 10.1016/j.cell.2007.02.005
10.1038/ng.367
10.1111/dmcn.12268
10.1086/511134
10.1128/MCB.00976-08
10.1016/j.ajhg.2012.05.003
10.1073/pnas.1204599109
10.1093/hmg/dds035
10.1523/JNEUROSCI.3272-07.2007
10.1016/j.biopsych.2006.06.036
10.1016/j.gde.2013.02.003
10.1086/427563
10.1038/mp.2012.120
10.1016/j.cell.2011.08.008
10.1038/ng.646
10.1016/j.ajhg.2011.12.020
10.1093/hmg/11.8.981
10.1128/MCB.00924-09
10.1016/j.ceb.2008.03.019
10.1016/j.molmed.2011.02.003
10.1073/pnas.1001702107
10.1073/pnas.0905767106
10.1016/j.biopsych.2013.07.011
10.1038/nsmb1338
10.1073/pnas.0807136106
10.1523/JNEUROSCI.3732-09.2010
10.1038/nature11011
10.1038/nature07726
10.1038/ejhg.2011.220
10.1038/nature05987
10.1515/revneuro-2013-0008
10.1016/j.schres.2012.06.037
10.1016/j.cell.2012.12.033
10.1016/j.ajhg.2012.11.008
10.1016/j.cell.2012.11.009
10.1146/annurev.pharmtox.010909.105851
10.1001/archpsyc.62.8.829
10.1101/gr.6654808
10.1016/j.brainresrev.2006.04.001
10.1007/s00439-011-1004-y
10.1038/nrg3413
10.1038/nm.2828
10.1128/MCB.01742-12
10.1038/nature05823
10.1002/ajmg.a.32142
10.1038/nrg2905
10.1371/journal.pbio.1001427
10.1136/jmg.37.9.663
10.1038/nature09692
10.1086/512489
10.1016/j.cell.2007.05.009
10.1038/nature08315
10.1073/pnas.0503072102
10.1016/j.molcel.2011.05.033
10.1101/lm.029363.112
10.1016/j.molcel.2006.12.014
10.1136/jmg.2008.058990
10.1073/pnas.1016071107
10.1002/ajmg.a.34074
10.1016/j.biopsych.2013.06.025
10.1038/nature10423
10.1038/nature10989
10.1038/ng862
10.1146/annurev-genom-090711-163723
10.1016/j.cell.2007.05.042
10.1038/nature10806
10.4161/epi.6.9.16069
10.1038/nature04020
10.1017/S1461145712000363
10.1086/518903
10.1111/j.1399-0004.2009.01331.x
10.1523/JNEUROSCI.3356-12.2013
10.1002/humu.10310
10.1371/journal.pgen.1003433
10.1038/nsmb.1961
10.1146/annurev.biochem.78.070907.103946
10.1111/j.1399-0004.2012.01955.x
10.1016/j.biopsych.2006.01.003
10.1016/j.ijdevneu.2010.07.236
10.1016/j.euroneuro.2013.05.013
10.1523/JNEUROSCI.1758-09.2009
10.1001/archgenpsychiatry.2011.151
10.1371/journal.pone.0037952
10.1038/ng1009
10.1038/sj.ejhg.5201222
10.1016/j.molcel.2012.11.006
10.1016/j.molcel.2010.07.008
10.1097/FBP.0b013e32833c20c0
10.1371/journal.pone.0000895
10.1016/j.neuron.2014.04.043
10.1093/brain/awp107
10.1111/j.1742-4658.2010.07606.x
10.1016/j.biopsych.2013.09.014
10.1146/annurev-biochem-051710-134100
10.1016/j.ajhg.2012.06.008
10.1038/nn.3261
10.1038/ng.830
10.1093/hmg/ddq561
10.1038/mp.2009.35
10.1002/ajmg.1320430169
10.1093/bfgp/els017
10.1111/j.1399-0004.2011.01839.x
10.1002/ajmg.a.33152
10.1074/jbc.M608722200
10.1016/j.cell.2007.02.017
10.1016/j.bbagrm.2010.09.005
ContentType Journal Article
Copyright 2014 The Author(s) Published by the Royal Society. All rights reserved.
2014 The Author(s) Published by the Royal Society. All rights reserved. 2014
Copyright_xml – notice: 2014 The Author(s) Published by the Royal Society. All rights reserved.
– notice: 2014 The Author(s) Published by the Royal Society. All rights reserved. 2014
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7SN
7TK
C1K
5PM
DOI 10.1098/rstb.2013.0514
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Animal Behavior Abstracts
Ecology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Ecology Abstracts
Neurosciences Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
MEDLINE - Academic



MEDLINE
Ecology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Biology
DocumentTitleAlternate H3K4 Regulation in Brain Development
EISSN 1471-2970
EndPage 20130514
ExternalDocumentID PMC4142035
25135975
10_1098_rstb_2013_0514
ark_67375_V84_KW1BFWN3_5
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: P50 MH096890
GroupedDBID ---
-~X
0R~
29O
2WC
4.4
53G
AACGO
AANCE
ABBHK
ABPLY
ABTLG
ABXSQ
ACPRK
ACQIA
ACSFO
ADACV
ADBBV
ADULT
AEUPB
AEXZC
AFRAH
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
AQVQM
BAWUL
BGBPD
BSCLL
BTFSW
DCCCD
DIK
DOOOF
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
KQ8
MRS
MV1
NSAHA
O9-
OK1
OP1
RPM
RRY
SA0
TN5
V1E
W8F
YNT
~02
ABPTK
ABXXB
ADZLD
DNJUQ
DWIUU
ICLEN
AAYXX
ACHIC
ACRPL
ADNMO
ADQXQ
AGPVY
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7SN
7TK
C1K
5PM
ID FETCH-LOGICAL-c741t-bb60bdd9b727d2ba0da7e88ca3dc109d18a0aee4b489c5977145be45642dabcf3
ISSN 0962-8436
1471-2970
IngestDate Thu Aug 21 14:03:07 EDT 2025
Thu Jul 10 23:57:57 EDT 2025
Fri Jul 11 10:17:47 EDT 2025
Thu Apr 03 06:58:51 EDT 2025
Tue Jul 01 03:25:18 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Wed Jan 17 02:36:50 EST 2024
Tue May 24 16:18:38 EDT 2022
Wed Oct 30 09:38:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1652
Keywords nucleosome
histone
schizophrenia
chromatin
epigenetic
autism
Language English
License 2014 The Author(s) Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c741t-bb60bdd9b727d2ba0da7e88ca3dc109d18a0aee4b489c5977145be45642dabcf3
Notes One contribution of 19 to a Theme Issue ‘Epigenetic information-processing mechanisms in the brain’.
href:rstb20130514.pdf
ArticleID:rstb20130514
istex:2FF09BCD1BE81417C63DF6C1D5987436A0D19223
ark:/67375/V84-KW1BFWN3-5
Theme Issue 'Epigenetic information-processing mechanisms in the brain' compiled and edited by Lawrence Edelstein, John Smythies and Denis Noble
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2013.0514
PMID 25135975
PQID 1566827663
PQPubID 23479
PageCount 1
ParticipantIDs royalsociety_journals_10_1098_rstb_2013_0514
istex_primary_ark_67375_V84_KW1BFWN3_5
crossref_citationtrail_10_1098_rstb_2013_0514
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4142035
proquest_miscellaneous_1808631153
proquest_miscellaneous_1566827663
pubmed_primary_25135975
royalsociety_journals_RSTBv369i1652_0831072308_zip_rstb_369_issue_1652_rstb_2013_0514_rstb_2013_0514
crossref_primary_10_1098_rstb_2013_0514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-26
PublicationDateYYYYMMDD 2014-09-26
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-26
  day: 26
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B. Biological sciences
PublicationTitleAbbrev Phil. Trans. R. Soc. B
PublicationTitleAlternate Phil. Trans. R. Soc. B
PublicationYear 2014
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
Kenny EM (e_1_3_2_87_2) 2013
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_70_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
References_xml – ident: e_1_3_2_14_2
  doi: 10.1016/j.cell.2007.02.005
– ident: e_1_3_2_78_2
  doi: 10.1038/ng.367
– ident: e_1_3_2_85_2
  doi: 10.1111/dmcn.12268
– ident: e_1_3_2_56_2
  doi: 10.1086/511134
– ident: e_1_3_2_41_2
  doi: 10.1128/MCB.00976-08
– ident: e_1_3_2_53_2
  doi: 10.1016/j.ajhg.2012.05.003
– ident: e_1_3_2_91_2
  doi: 10.1073/pnas.1204599109
– ident: e_1_3_2_8_2
  doi: 10.1093/hmg/dds035
– ident: e_1_3_2_13_2
  doi: 10.1523/JNEUROSCI.3272-07.2007
– ident: e_1_3_2_104_2
  doi: 10.1016/j.biopsych.2006.06.036
– ident: e_1_3_2_88_2
  doi: 10.1016/j.gde.2013.02.003
– ident: e_1_3_2_67_2
  doi: 10.1086/427563
– ident: e_1_3_2_99_2
  doi: 10.1038/mp.2012.120
– ident: e_1_3_2_16_2
  doi: 10.1016/j.cell.2011.08.008
– ident: e_1_3_2_50_2
  doi: 10.1038/ng.646
– ident: e_1_3_2_2_2
  doi: 10.1016/j.ajhg.2011.12.020
– ident: e_1_3_2_69_2
  doi: 10.1093/hmg/11.8.981
– year: 2013
  ident: e_1_3_2_87_2
  article-title: Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders
  publication-title: Mol. Psychiatry
– ident: e_1_3_2_38_2
  doi: 10.1128/MCB.00924-09
– ident: e_1_3_2_22_2
  doi: 10.1016/j.ceb.2008.03.019
– ident: e_1_3_2_32_2
  doi: 10.1016/j.molmed.2011.02.003
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.1001702107
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.0905767106
– ident: e_1_3_2_92_2
  doi: 10.1016/j.biopsych.2013.07.011
– ident: e_1_3_2_15_2
  doi: 10.1038/nsmb1338
– ident: e_1_3_2_34_2
  doi: 10.1073/pnas.0807136106
– ident: e_1_3_2_80_2
  doi: 10.1523/JNEUROSCI.3732-09.2010
– ident: e_1_3_2_63_2
  doi: 10.1038/nature11011
– ident: e_1_3_2_40_2
  doi: 10.1038/nature07726
– ident: e_1_3_2_65_2
  doi: 10.1038/ejhg.2011.220
– ident: e_1_3_2_29_2
  doi: 10.1038/nature05987
– ident: e_1_3_2_106_2
  doi: 10.1515/revneuro-2013-0008
– ident: e_1_3_2_94_2
  doi: 10.1016/j.schres.2012.06.037
– ident: e_1_3_2_27_2
  doi: 10.1016/j.cell.2012.12.033
– ident: e_1_3_2_62_2
  doi: 10.1016/j.ajhg.2012.11.008
– ident: e_1_3_2_33_2
  doi: 10.1016/j.cell.2012.11.009
– ident: e_1_3_2_86_2
  doi: 10.1146/annurev.pharmtox.010909.105851
– ident: e_1_3_2_98_2
  doi: 10.1001/archpsyc.62.8.829
– ident: e_1_3_2_19_2
  doi: 10.1101/gr.6654808
– ident: e_1_3_2_89_2
  doi: 10.1016/j.brainresrev.2006.04.001
– ident: e_1_3_2_66_2
  doi: 10.1007/s00439-011-1004-y
– ident: e_1_3_2_6_2
  doi: 10.1038/nrg3413
– ident: e_1_3_2_9_2
  doi: 10.1038/nm.2828
– ident: e_1_3_2_42_2
  doi: 10.1128/MCB.01742-12
– ident: e_1_3_2_68_2
  doi: 10.1038/nature05823
– ident: e_1_3_2_59_2
  doi: 10.1002/ajmg.a.32142
– ident: e_1_3_2_17_2
  doi: 10.1038/nrg2905
– ident: e_1_3_2_18_2
  doi: 10.1371/journal.pbio.1001427
– ident: e_1_3_2_76_2
  doi: 10.1136/jmg.37.9.663
– ident: e_1_3_2_26_2
  doi: 10.1038/nature09692
– ident: e_1_3_2_79_2
  doi: 10.1086/512489
– ident: e_1_3_2_10_2
  doi: 10.1016/j.cell.2007.05.009
– ident: e_1_3_2_43_2
  doi: 10.1038/nature08315
– ident: e_1_3_2_21_2
  doi: 10.1073/pnas.0503072102
– ident: e_1_3_2_57_2
  doi: 10.1016/j.molcel.2011.05.033
– ident: e_1_3_2_105_2
  doi: 10.1101/lm.029363.112
– ident: e_1_3_2_44_2
  doi: 10.1016/j.molcel.2006.12.014
– ident: e_1_3_2_61_2
  doi: 10.1136/jmg.2008.058990
– ident: e_1_3_2_25_2
  doi: 10.1073/pnas.1016071107
– ident: e_1_3_2_49_2
  doi: 10.1002/ajmg.a.34074
– ident: e_1_3_2_93_2
  doi: 10.1016/j.biopsych.2013.06.025
– ident: e_1_3_2_58_2
  doi: 10.1038/nature10423
– ident: e_1_3_2_64_2
  doi: 10.1038/nature10989
– ident: e_1_3_2_75_2
  doi: 10.1038/ng862
– ident: e_1_3_2_24_2
  doi: 10.1146/annurev-genom-090711-163723
– ident: e_1_3_2_20_2
  doi: 10.1016/j.cell.2007.05.042
– ident: e_1_3_2_37_2
  doi: 10.1038/nature10806
– ident: e_1_3_2_35_2
  doi: 10.4161/epi.6.9.16069
– ident: e_1_3_2_46_2
  doi: 10.1038/nature04020
– ident: e_1_3_2_100_2
  doi: 10.1017/S1461145712000363
– ident: e_1_3_2_72_2
  doi: 10.1086/518903
– ident: e_1_3_2_55_2
  doi: 10.1111/j.1399-0004.2009.01331.x
– ident: e_1_3_2_83_2
  doi: 10.1523/JNEUROSCI.3356-12.2013
– ident: e_1_3_2_71_2
  doi: 10.1002/humu.10310
– ident: e_1_3_2_11_2
  doi: 10.1371/journal.pgen.1003433
– ident: e_1_3_2_39_2
  doi: 10.1038/nsmb.1961
– ident: e_1_3_2_45_2
  doi: 10.1146/annurev.biochem.78.070907.103946
– ident: e_1_3_2_51_2
  doi: 10.1111/j.1399-0004.2012.01955.x
– ident: e_1_3_2_95_2
  doi: 10.1016/j.biopsych.2006.01.003
– ident: e_1_3_2_90_2
  doi: 10.1016/j.ijdevneu.2010.07.236
– ident: e_1_3_2_96_2
  doi: 10.1016/j.euroneuro.2013.05.013
– ident: e_1_3_2_103_2
  doi: 10.1523/JNEUROSCI.1758-09.2009
– ident: e_1_3_2_12_2
  doi: 10.1001/archgenpsychiatry.2011.151
– ident: e_1_3_2_36_2
  doi: 10.1371/journal.pone.0037952
– ident: e_1_3_2_73_2
  doi: 10.1038/ng1009
– ident: e_1_3_2_70_2
  doi: 10.1038/sj.ejhg.5201222
– ident: e_1_3_2_30_2
  doi: 10.1016/j.molcel.2012.11.006
– ident: e_1_3_2_48_2
  doi: 10.1016/j.molcel.2010.07.008
– ident: e_1_3_2_102_2
  doi: 10.1097/FBP.0b013e32833c20c0
– ident: e_1_3_2_3_2
  doi: 10.1371/journal.pone.0000895
– ident: e_1_3_2_108_2
  doi: 10.1016/j.neuron.2014.04.043
– ident: e_1_3_2_84_2
  doi: 10.1093/brain/awp107
– ident: e_1_3_2_82_2
  doi: 10.1111/j.1742-4658.2010.07606.x
– ident: e_1_3_2_97_2
  doi: 10.1016/j.biopsych.2013.09.014
– ident: e_1_3_2_23_2
  doi: 10.1146/annurev-biochem-051710-134100
– ident: e_1_3_2_52_2
  doi: 10.1016/j.ajhg.2012.06.008
– ident: e_1_3_2_107_2
  doi: 10.1038/nn.3261
– ident: e_1_3_2_7_2
  doi: 10.1038/ng.830
– ident: e_1_3_2_4_2
  doi: 10.1093/hmg/ddq561
– ident: e_1_3_2_101_2
  doi: 10.1038/mp.2009.35
– ident: e_1_3_2_74_2
  doi: 10.1002/ajmg.1320430169
– ident: e_1_3_2_31_2
  doi: 10.1093/bfgp/els017
– ident: e_1_3_2_77_2
  doi: 10.1111/j.1399-0004.2011.01839.x
– ident: e_1_3_2_54_2
  doi: 10.1002/ajmg.a.33152
– ident: e_1_3_2_81_2
  doi: 10.1074/jbc.M608722200
– ident: e_1_3_2_60_2
  doi: 10.1016/j.cell.2007.02.017
– ident: e_1_3_2_47_2
  doi: 10.1016/j.bbagrm.2010.09.005
SSID ssj0009574
Score 2.4924662
SecondaryResourceType review_article
Snippet The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C,...
The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes ( ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C,...
SourceID pubmedcentral
proquest
pubmed
crossref
royalsociety
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20130514
SubjectTerms Animals
Autism
Autistic Disorder - genetics
Autistic Disorder - metabolism
Brain - growth & development
Brain - physiopathology
Chromatin
Epigenesis, Genetic - physiology
Epigenetic
Histone
Histone Demethylases - metabolism
Histone-Lysine N-Methyltransferase - metabolism
Histones - metabolism
Humans
Methylation
Mice
Mutation - genetics
Nervous System Diseases - genetics
Nervous System Diseases - metabolism
Nervous System Diseases - physiopathology
Nucleosome
Part IV: Intercellular communication—clinical insight
Review
Schizophrenia
Schizophrenia - genetics
Schizophrenia - metabolism
Title Regulation of histone H3K4 methylation in brain development and disease
URI https://api.istex.fr/ark:/67375/V84-KW1BFWN3-5/fulltext.pdf
https://royalsocietypublishing.org/doi/full/10.1098/rstb.2013.0514
https://www.ncbi.nlm.nih.gov/pubmed/25135975
https://www.proquest.com/docview/1566827663
https://www.proquest.com/docview/1808631153
https://pubmed.ncbi.nlm.nih.gov/PMC4142035
Volume 369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfKJhBfECuv8lKQEA9tKWniJM5HOjEqqk5j69jEF8vOg1bbsqoPxPZn8RdyF9tJCh2CfYna5JSH7-fz2b77HSEvfeEIpFWxfSeIbcoiYQtfOraIMs_NEpq6End0B7tB75B-OvaPG42ftailxVy248uVeSXX0SqcA71ilux_aLa8KZyA36BfOIKG4fhPOt5XheSNz4csAeAz9rw-LSpDX-hr43xTYiUIkyFVxpXXd2e0g7pnShsUyptX1cRnJppALTiYaE_cYigqgrTR7MC0e7Pb1gUuq4TLuApUPNDZIIX9rU4uTtXGUw_svkiqZf5UmaKvIyyx_a1E54mEKb5euo1HYjQVZ_Xliw7FWAuVI982CXBL711foQzAWFNPM2Ur-wxjqe1GqtaIMeCeKvZikBooStw_xgYnwnwH8KklRvR5bWR-rwuCbidnBVLA5_NgouVXY2QZubg32KYd6jqef4OsuzA1waoZ_c-sRvSsmL_Ny5dEoezd8qORhlo_Z8knWsfu_WPVhGdF3O4Um26mWq7mFw3vkjt6QmO9V-jcII00b5KbCgEXTXJroIM3mmRDjyMz640mO397j3ysMGydZ5bGsIUYtmoYtsa5VWDYqmHYAgxbGsP3yeHOh-F2z9bFPewYnNi5LWXgyCSJJDjQiSuFk4gwZSwWXhJDayUdBlYkTakE-xEjSWKH-jJF8iM3ETLOvAdkLYcXekQscEIdj2ZCRKCayGUigXEsFhkNUzcKZNYitmleHmvmeyzAcspVBAbjqBmOmuGomRZ5XcpPFOfLlZKvCm2VYmJ6gpGSoc-_MMr7R53uztGux_0WeWHUycF-46acyNPzxYzj-glzQ3D8_yLDHBYgLRbIPFQQKJ9oMNQi4RI4SgHkj1--ko9HBY-8BnKLbNVhxLWBm135zclq8f2DYfc79MUx9kBeVDAMXc9h_HI8UfeAi7zopLwQWb7vb38fX_t7npDblaF5Stbm00X6DGYOc_m86Kq_ABUTG3o
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+histone+H3K4+methylation+in+brain+development+and+disease&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Shen%2C+Erica&rft.au=Shulha%2C+Hennady&rft.au=Weng%2C+Zhiping&rft.au=Akbarian%2C+Schahram&rft.date=2014-09-26&rft.pub=The+Royal+Society&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=369&rft.issue=1652&rft_id=info:doi/10.1098%2Frstb.2013.0514&rft_id=info%3Apmid%2F25135975&rft.externalDocID=PMC4142035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon