Nonisomorphic two‐dimensional algebraically defined graphs over R <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23161:jgt23161-math-0001" wiley:location="equation/jgt23161-math-0001.png"> R

For f : R 2 → R, let Γ R ( f ) be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of R 2 and two vertices ( a , a 2 ) and [ x , x 2 ] are adjacent if and only if a 2 + x 2 = f ( a , x ). It is known that Γ R ( X Y ) has girth 6 and can be ex...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 108; no. 1; pp. 50 - 64
Main Authors Kronenthal, Brian G., Miller, Joe, Nash, Alex, Roeder, Jacob, Samamah, Hani, Wong, Tony W. H.
Format Journal Article
LanguageEnglish
Published 01.01.2025
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.23161

Cover

Abstract For f : R 2 → R, let Γ R ( f ) be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of R 2 and two vertices ( a , a 2 ) and [ x , x 2 ] are adjacent if and only if a 2 + x 2 = f ( a , x ). It is known that Γ R ( X Y ) has girth 6 and can be extended to the point‐line incidence graph of the classical real projective plane. However, it was unknown whether there exists f ∈ R [ X , Y ] such that Γ R ( f ) has girth 6 and is nonisomorphic to Γ R ( X Y ). This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of Γ R ( f ) for families of bivariate functions f.
AbstractList For f : R 2 → R, let Γ R ( f ) be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of R 2 and two vertices ( a , a 2 ) and [ x , x 2 ] are adjacent if and only if a 2 + x 2 = f ( a , x ). It is known that Γ R ( X Y ) has girth 6 and can be extended to the point‐line incidence graph of the classical real projective plane. However, it was unknown whether there exists f ∈ R [ X , Y ] such that Γ R ( f ) has girth 6 and is nonisomorphic to Γ R ( X Y ). This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of Γ R ( f ) for families of bivariate functions f.
For , let be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of and two vertices and are adjacent if and only if . It is known that has girth 6 and can be extended to the point‐line incidence graph of the classical real projective plane. However, it was unknown whether there exists such that has girth 6 and is nonisomorphic to . This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of for families of bivariate functions .
Author Wong, Tony W. H.
Miller, Joe
Kronenthal, Brian G.
Samamah, Hani
Roeder, Jacob
Nash, Alex
Author_xml – sequence: 1
  givenname: Brian G.
  surname: Kronenthal
  fullname: Kronenthal, Brian G.
  organization: Kutztown University of Pennyslvania
– sequence: 2
  givenname: Joe
  surname: Miller
  fullname: Miller, Joe
  organization: Iowa State University
– sequence: 3
  givenname: Alex
  surname: Nash
  fullname: Nash, Alex
  organization: Dickinson College
– sequence: 4
  givenname: Jacob
  surname: Roeder
  fullname: Roeder, Jacob
  organization: Trine University
– sequence: 5
  givenname: Hani
  surname: Samamah
  fullname: Samamah, Hani
  organization: University of Florida
– sequence: 6
  givenname: Tony W. H.
  orcidid: 0000-0003-2234-3189
  surname: Wong
  fullname: Wong, Tony W. H.
  email: wong@kutztown.edu
  organization: Kutztown University of Pennyslvania
BookMark eNp1kcFO3DAQhi0EEgv00DewcuOQZOwssROxlRAq0GqhEtp75CTerFFip3Yg7K2PwDP21MfAm616qbjYI-ubme-XT9ChNloi9JlARABo_NQMEU1ISg7QjEDGQiCEH6IZJOk8zIDOj9GJc0_gny-Az9CfB6OVM52x_UZVeBjN719vteqkdspo0WLRNrK0QlWibbe4lmulZY0bK_qNw-ZFWvyILzsxbPBr12q3CDbD0OdxPI5jNCaRsU1MsozH9x6Zjvtl4IcOqmsWwbPV-Ws4qlZu853hTjDvZK1E7oNMOf4V4W5JCN48wPuO1lRi8JaLQP58nqr4fzjqdRN8wY9n6GgtWic__b1P0erm6-r6Llz-uP12fbUMKzYnIam5SCghJZUiExlNIE2AZTxdM8koiJLXPOUCqGAVBypTVsuLFHhZZixhHj5F5_uxlTXOWbkueqs6YbcFgWL3Q4VXLCZHz8Z7dorzMVh8v13tO94BEcqS3Q
Cites_doi 10.37236/9749
10.1090/S0025-5718-03-01612-0
10.1002/jgt.20055
10.1016/j.disc.2020.112286
10.1016/j.dam.2021.09.006
10.1016/j.ffa.2012.01.001
10.1016/j.dam.2018.06.020
10.1016/j.ffa.2016.09.001
10.1016/j.disc.2018.10.047
10.1016/j.dam.2016.01.017
10.1016/j.ffa.2006.03.001
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/jgt.23161
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 64
ExternalDocumentID 10_1002_jgt_23161
JGT23161
Genre article
GrantInformation_xml – fundername: National Science Foundation
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
ID FETCH-LOGICAL-c741-1d8a3211b2ea9a92306307986f7e720ab8d868a02a7c802e67de5608bb9737063
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Tue Jul 01 01:47:46 EDT 2025
Wed Jan 22 17:12:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c741-1d8a3211b2ea9a92306307986f7e720ab8d868a02a7c802e67de5608bb9737063
ORCID 0000-0003-2234-3189
PageCount 15
ParticipantIDs crossref_primary_10_1002_jgt_23161
wiley_primary_10_1002_jgt_23161_JGT23161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Journal of graph theory
PublicationYear 2025
References 2012; 18
2004; 73
2005; 48
2021; 344
2016; 206
2007; 13
2019; 342
2019; 254
2017; 43
2022; 29
2021; 305
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
References_xml – volume: 48
  start-page: 322
  issue: 4
  year: 2005
  end-page: 328
  article-title: Isomorphism criterion for monomial graphs
  publication-title: J. Graph Theory
– volume: 29
  issue: 4
  year: 2022
  article-title: On the girth of three‐dimensional algebraically defined graphs with multiplicatively separable functions
  publication-title: Electron. J. Combin
– volume: 206
  start-page: 188
  year: 2016
  end-page: 194
  article-title: On the uniqueness of some girth eight algebraically defined graphs
  publication-title: Discrete Appl. Math
– volume: 73
  start-page: 1547
  issue: 247
  year: 2004
  end-page: 1557
  article-title: Orthomorphisms and the construction of projective planes
  publication-title: Math. Comp
– volume: 342
  start-page: 2834
  issue: 10
  year: 2019
  end-page: 2842
  article-title: On the girth of two‐dimensional real algebraically defined graphs
  publication-title: Discrete Math
– volume: 344
  issue: 4
  year: 2021
  article-title: Classification by girth of three‐dimensional algebraically defined monomial graphs over the real numbers
  publication-title: Discrete Math
– volume: 305
  start-page: 221
  year: 2021
  end-page: 232
  article-title: On the characterization of some algebraically defined bipartite graphs of girth eight
  publication-title: Discrete Appl. Math
– volume: 43
  start-page: 42
  year: 2017
  end-page: 68
  article-title: Proof of a conjecture on monomial graphs
  publication-title: Finite Fields Appl
– volume: 13
  start-page: 828
  issue: 4
  year: 2007
  end-page: 842
  article-title: On monomial graphs of girth eight
  publication-title: Finite Fields Appl
– volume: 18
  start-page: 674
  issue: 4
  year: 2012
  end-page: 684
  article-title: Monomial graphs and generalized quadrangles
  publication-title: Finite Fields Appl
– volume: 254
  start-page: 161
  year: 2019
  end-page: 170
  article-title: On the uniqueness of some girth eight algebraically defined graphs, Part II
  publication-title: Discrete Appl. Math
– ident: e_1_2_7_7_1
  doi: 10.37236/9749
– ident: e_1_2_7_12_1
  doi: 10.1090/S0025-5718-03-01612-0
– ident: e_1_2_7_2_1
  doi: 10.1002/jgt.20055
– ident: e_1_2_7_13_1
– ident: e_1_2_7_6_1
  doi: 10.1016/j.disc.2020.112286
– ident: e_1_2_7_14_1
  doi: 10.1016/j.dam.2021.09.006
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ffa.2012.01.001
– ident: e_1_2_7_11_1
  doi: 10.1016/j.dam.2018.06.020
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ffa.2016.09.001
– ident: e_1_2_7_4_1
  doi: 10.1016/j.disc.2018.10.047
– ident: e_1_2_7_9_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.dam.2016.01.017
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ffa.2006.03.001
SSID ssj0011508
Score 2.362043
Snippet For f : R 2 → R, let Γ R ( f ) be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of R 2 and two...
For , let be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of and two vertices and are adjacent if...
SourceID crossref
wiley
SourceType Index Database
Publisher
StartPage 50
SubjectTerms algebraically defined graph
girth
nonisomorphic
real projective plane
Title Nonisomorphic two‐dimensional algebraically defined graphs over R <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23161:jgt23161-math-0001" wiley:location="equation/jgt23161-math-0001.png"> R
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23161
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQp_bQH0pV2lJZUQ9cspt1gmMvUAlBKUIsh9UicUCKbMdZaNksbYKAnvoIPCMnHoMZm6QtqBLqJfJhbM84dmbGmfmGkI-CqZwn2oQMlDs4KOCwiiI2oVkWWkV5knKXITfY49v7yc7B8sEMWWlyYTw-RHvhhifDfa_xgCtddX-Dhn4d1x0wTpzr04s54uZvDlvoKDR0hP9PmYQSFFGDKhSxbtvzL130p23qlMvWc3LYsOVjSr51zmrdMT_vITb-J98vyLM7o5Ou-13ykszYco48HbSIrdUrcrMHh7uaTqaw7seG1ufT619XOUL_e9gOivVAYFp8pyeXNLcFMJJTh3ddUYwDpUO6CqMd0YvJSVmtNRXuMIL1PPbREuB0dXFW9xjsBjBofTwZrwXAX_8idPL0cS1xKfsuqaUPgjg52kaIk2Caei-gvgfqY5eJF9jvHrm8-5C4c1qOg090OE9GW59HG9vhXRWI0IC1E_ZyoWLwUjWzSiqJHhN8lqTgRWpTFiktcsGFiphKjYiY5WluwYoTWss0ToH4NZktp6V9Q6g0MjVSK8N0nEjLhRWxjgreM0IXMOgCCZrtkJ16rI_MozqzDNjOHN8LZMnJ9m-KbOfLyDXePp70HXnCsLCwu9t5T2brH2d2EaydWn9w2_oWdEf5JQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPZQe-qIVjxasiAOX7GadkNgrqFSV0i3s7mG1SFyqyHacLY_N0m4QtKf-hP7GnvgZnbFJeFRIqJfIh7E949iZGWfmG0LWOJNZHCntM1Du4KCAw8rzUPt6gysZZFES2wy5Xj_u7Ee7BxsHM2SzyoVx-BD1hRueDPu9xgOOF9LNa9TQo1HZAOsEfZ9HERga6HptD2rwKDR1uPtTGfkCVFGFKxSwZt31lja6aZ1a9bLzjHypGHNRJceNs1I19M87mI3_y_lz8vTK7qTv3UZ5QWZM8ZI86dWgrdN5ctmH8z2djCew9IealueTP79-Z4j-75A7KJYEgXnxtZ78oJnJgZOMWsjrKcVQUDqgmzDaV3oxPimmW1WROwxiPQ9dwAT4XU2c1T56XQ8GLQ_Hoy0P-Gtf-FagNi4mrmXb5rW0QRArR93wcRLMVG951PVAlWyT8TzzzYGXN_8lbpwWI-8dHbwiw52Pww8d_6oQhK_B4PFbGZchOKqKGSmkQKcJvkyCx3liEhZIxTMecxkwmWgeMBMnmQFDjislkjAB4tdktpgUZoFQoUWihZKaqTASJuaGhyrI45bmKodBF4lX7Yf01MF9pA7YmaXAdmr5XiTrVrb7KdLdT0PbWHo46Sp53Bn2umn3c39vmcwxrDNsr3rekNny-5l5C8ZPqVbsHv8LEzj9RA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiE4QHmJAgUr4sAlu1kndeylRULAUkp3hVaL1ANS5FeWQje7sKnacuIn8Bs58TOYsZvwEhLiEvkwtseOnfnG8XxDyH3BlOWZNjED4w4OCjisokxNbDaFVonNcu4j5IYjvvM6293f3F8hD5tYmMAP0R644c7w32vc4Atbdn-Qhr6b1h0AJ-j6nMs4IAlEROOWOwqRjgg_KrNYgiVqaIUS1m2r_mKMfgan3roMLpM3jV7hUsn7zlGtO-bTb5SN_6n4Grl0hjrp47BMrpAVV10lF4ctZevyGvk2gt29nM_mMPEHhtbH86-fv1jk_g-8HRQTgkC3-FIPT6l1JShiqSe8XlK8CErHdAtae0tPZofVcrtJcYdXWI_TcF0CvK4u9uofw70IGq0PZtPtCPTrn8R-PH2cS5zKvo9q6cNA_DjaQoydYJx6L6KhBhpkH4oXuQ-Burz7p3BnUU2jR3R8nUwGzyZPduKzNBCxAbgT96xQKbipmjkllUSXCb5LUvAydzlLlBZWcKESpnIjEuZ4bh3AOKG1zNMchG-Q1WpeuZuESiNzI7UyTKeZdFw4keqk5D0jdAmNrpOoWQ7FIpB9FIHWmRWgduH1XicP_Nj-LlHsPp_4wq1_F71Hzr96Oij2Xoxe3iYXGCYZ9uc8d8hq_fHIbQDyqfVdv8K_Axwr-_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonisomorphic+two%E2%80%90dimensional+algebraically+defined+graphs+over+R+%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22+altimg%3D%22urn%3Ax-wiley%3A03649024%3Amedia%3Ajgt23161%3Ajgt23161-math-0001%22+wiley%3Alocation%3D%22equation%2Fjgt23161-math-0001.png%22%3E+R&rft.jtitle=Journal+of+graph+theory&rft.au=Kronenthal%2C+Brian+G.&rft.au=Miller%2C+Joe&rft.au=Nash%2C+Alex&rft.au=Roeder%2C+Jacob&rft.date=2025-01-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=108&rft.issue=1&rft.spage=50&rft.epage=64&rft_id=info:doi/10.1002%2Fjgt.23161&rft.externalDBID=10.1002%252Fjgt.23161&rft.externalDocID=JGT23161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon