Nonisomorphic two‐dimensional algebraically defined graphs over R <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23161:jgt23161-math-0001" wiley:location="equation/jgt23161-math-0001.png"> R
For f : R 2 → R, let Γ R ( f ) be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of R 2 and two vertices ( a , a 2 ) and [ x , x 2 ] are adjacent if and only if a 2 + x 2 = f ( a , x ). It is known that Γ R ( X Y ) has girth 6 and can be ex...
Saved in:
Published in | Journal of graph theory Vol. 108; no. 1; pp. 50 - 64 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0364-9024 1097-0118 |
DOI | 10.1002/jgt.23161 |
Cover
Abstract | For
f
:
R
2
→
R, let
Γ
R
(
f
) be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of
R
2 and two vertices
(
a
,
a
2
) and
[
x
,
x
2
] are adjacent if and only if
a
2
+
x
2
=
f
(
a
,
x
). It is known that
Γ
R
(
X
Y
) has girth 6 and can be extended to the point‐line incidence graph of the classical real projective plane. However, it was unknown whether there exists
f
∈
R
[
X
,
Y
] such that
Γ
R
(
f
) has girth 6 and is nonisomorphic to
Γ
R
(
X
Y
). This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of
Γ
R
(
f
) for families of bivariate functions
f. |
---|---|
AbstractList | For
f
:
R
2
→
R, let
Γ
R
(
f
) be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of
R
2 and two vertices
(
a
,
a
2
) and
[
x
,
x
2
] are adjacent if and only if
a
2
+
x
2
=
f
(
a
,
x
). It is known that
Γ
R
(
X
Y
) has girth 6 and can be extended to the point‐line incidence graph of the classical real projective plane. However, it was unknown whether there exists
f
∈
R
[
X
,
Y
] such that
Γ
R
(
f
) has girth 6 and is nonisomorphic to
Γ
R
(
X
Y
). This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of
Γ
R
(
f
) for families of bivariate functions
f. For , let be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of and two vertices and are adjacent if and only if . It is known that has girth 6 and can be extended to the point‐line incidence graph of the classical real projective plane. However, it was unknown whether there exists such that has girth 6 and is nonisomorphic to . This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of for families of bivariate functions . |
Author | Wong, Tony W. H. Miller, Joe Kronenthal, Brian G. Samamah, Hani Roeder, Jacob Nash, Alex |
Author_xml | – sequence: 1 givenname: Brian G. surname: Kronenthal fullname: Kronenthal, Brian G. organization: Kutztown University of Pennyslvania – sequence: 2 givenname: Joe surname: Miller fullname: Miller, Joe organization: Iowa State University – sequence: 3 givenname: Alex surname: Nash fullname: Nash, Alex organization: Dickinson College – sequence: 4 givenname: Jacob surname: Roeder fullname: Roeder, Jacob organization: Trine University – sequence: 5 givenname: Hani surname: Samamah fullname: Samamah, Hani organization: University of Florida – sequence: 6 givenname: Tony W. H. orcidid: 0000-0003-2234-3189 surname: Wong fullname: Wong, Tony W. H. email: wong@kutztown.edu organization: Kutztown University of Pennyslvania |
BookMark | eNp1kcFO3DAQhi0EEgv00DewcuOQZOwssROxlRAq0GqhEtp75CTerFFip3Yg7K2PwDP21MfAm616qbjYI-ubme-XT9ChNloi9JlARABo_NQMEU1ISg7QjEDGQiCEH6IZJOk8zIDOj9GJc0_gny-Az9CfB6OVM52x_UZVeBjN719vteqkdspo0WLRNrK0QlWibbe4lmulZY0bK_qNw-ZFWvyILzsxbPBr12q3CDbD0OdxPI5jNCaRsU1MsozH9x6Zjvtl4IcOqmsWwbPV-Ws4qlZu853hTjDvZK1E7oNMOf4V4W5JCN48wPuO1lRi8JaLQP58nqr4fzjqdRN8wY9n6GgtWic__b1P0erm6-r6Llz-uP12fbUMKzYnIam5SCghJZUiExlNIE2AZTxdM8koiJLXPOUCqGAVBypTVsuLFHhZZixhHj5F5_uxlTXOWbkueqs6YbcFgWL3Q4VXLCZHz8Z7dorzMVh8v13tO94BEcqS3Q |
Cites_doi | 10.37236/9749 10.1090/S0025-5718-03-01612-0 10.1002/jgt.20055 10.1016/j.disc.2020.112286 10.1016/j.dam.2021.09.006 10.1016/j.ffa.2012.01.001 10.1016/j.dam.2018.06.020 10.1016/j.ffa.2016.09.001 10.1016/j.disc.2018.10.047 10.1016/j.dam.2016.01.017 10.1016/j.ffa.2006.03.001 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/jgt.23161 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0118 |
EndPage | 64 |
ExternalDocumentID | 10_1002_jgt_23161 JGT23161 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK VQA W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION |
ID | FETCH-LOGICAL-c741-1d8a3211b2ea9a92306307986f7e720ab8d868a02a7c802e67de5608bb9737063 |
IEDL.DBID | DR2 |
ISSN | 0364-9024 |
IngestDate | Tue Jul 01 01:47:46 EDT 2025 Wed Jan 22 17:12:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c741-1d8a3211b2ea9a92306307986f7e720ab8d868a02a7c802e67de5608bb9737063 |
ORCID | 0000-0003-2234-3189 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1002_jgt_23161 wiley_primary_10_1002_jgt_23161_JGT23161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of graph theory |
PublicationYear | 2025 |
References | 2012; 18 2004; 73 2005; 48 2021; 344 2016; 206 2007; 13 2019; 342 2019; 254 2017; 43 2022; 29 2021; 305 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 |
References_xml | – volume: 48 start-page: 322 issue: 4 year: 2005 end-page: 328 article-title: Isomorphism criterion for monomial graphs publication-title: J. Graph Theory – volume: 29 issue: 4 year: 2022 article-title: On the girth of three‐dimensional algebraically defined graphs with multiplicatively separable functions publication-title: Electron. J. Combin – volume: 206 start-page: 188 year: 2016 end-page: 194 article-title: On the uniqueness of some girth eight algebraically defined graphs publication-title: Discrete Appl. Math – volume: 73 start-page: 1547 issue: 247 year: 2004 end-page: 1557 article-title: Orthomorphisms and the construction of projective planes publication-title: Math. Comp – volume: 342 start-page: 2834 issue: 10 year: 2019 end-page: 2842 article-title: On the girth of two‐dimensional real algebraically defined graphs publication-title: Discrete Math – volume: 344 issue: 4 year: 2021 article-title: Classification by girth of three‐dimensional algebraically defined monomial graphs over the real numbers publication-title: Discrete Math – volume: 305 start-page: 221 year: 2021 end-page: 232 article-title: On the characterization of some algebraically defined bipartite graphs of girth eight publication-title: Discrete Appl. Math – volume: 43 start-page: 42 year: 2017 end-page: 68 article-title: Proof of a conjecture on monomial graphs publication-title: Finite Fields Appl – volume: 13 start-page: 828 issue: 4 year: 2007 end-page: 842 article-title: On monomial graphs of girth eight publication-title: Finite Fields Appl – volume: 18 start-page: 674 issue: 4 year: 2012 end-page: 684 article-title: Monomial graphs and generalized quadrangles publication-title: Finite Fields Appl – volume: 254 start-page: 161 year: 2019 end-page: 170 article-title: On the uniqueness of some girth eight algebraically defined graphs, Part II publication-title: Discrete Appl. Math – ident: e_1_2_7_7_1 doi: 10.37236/9749 – ident: e_1_2_7_12_1 doi: 10.1090/S0025-5718-03-01612-0 – ident: e_1_2_7_2_1 doi: 10.1002/jgt.20055 – ident: e_1_2_7_13_1 – ident: e_1_2_7_6_1 doi: 10.1016/j.disc.2020.112286 – ident: e_1_2_7_14_1 doi: 10.1016/j.dam.2021.09.006 – ident: e_1_2_7_8_1 doi: 10.1016/j.ffa.2012.01.001 – ident: e_1_2_7_11_1 doi: 10.1016/j.dam.2018.06.020 – ident: e_1_2_7_5_1 doi: 10.1016/j.ffa.2016.09.001 – ident: e_1_2_7_4_1 doi: 10.1016/j.disc.2018.10.047 – ident: e_1_2_7_9_1 – ident: e_1_2_7_10_1 doi: 10.1016/j.dam.2016.01.017 – ident: e_1_2_7_3_1 doi: 10.1016/j.ffa.2006.03.001 |
SSID | ssj0011508 |
Score | 2.362043 |
Snippet | For
f
:
R
2
→
R, let
Γ
R
(
f
) be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of
R
2 and two... For , let be a two‐dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of and two vertices and are adjacent if... |
SourceID | crossref wiley |
SourceType | Index Database Publisher |
StartPage | 50 |
SubjectTerms | algebraically defined graph girth nonisomorphic real projective plane |
Title | Nonisomorphic two‐dimensional algebraically defined graphs over R <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23161:jgt23161-math-0001" wiley:location="equation/jgt23161-math-0001.png"> R |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23161 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQp_bQH0pV2lJZUQ9cspt1gmMvUAlBKUIsh9UicUCKbMdZaNksbYKAnvoIPCMnHoMZm6QtqBLqJfJhbM84dmbGmfmGkI-CqZwn2oQMlDs4KOCwiiI2oVkWWkV5knKXITfY49v7yc7B8sEMWWlyYTw-RHvhhifDfa_xgCtddX-Dhn4d1x0wTpzr04s54uZvDlvoKDR0hP9PmYQSFFGDKhSxbtvzL130p23qlMvWc3LYsOVjSr51zmrdMT_vITb-J98vyLM7o5Ou-13ykszYco48HbSIrdUrcrMHh7uaTqaw7seG1ufT619XOUL_e9gOivVAYFp8pyeXNLcFMJJTh3ddUYwDpUO6CqMd0YvJSVmtNRXuMIL1PPbREuB0dXFW9xjsBjBofTwZrwXAX_8idPL0cS1xKfsuqaUPgjg52kaIk2Caei-gvgfqY5eJF9jvHrm8-5C4c1qOg090OE9GW59HG9vhXRWI0IC1E_ZyoWLwUjWzSiqJHhN8lqTgRWpTFiktcsGFiphKjYiY5WluwYoTWss0ToH4NZktp6V9Q6g0MjVSK8N0nEjLhRWxjgreM0IXMOgCCZrtkJ16rI_MozqzDNjOHN8LZMnJ9m-KbOfLyDXePp70HXnCsLCwu9t5T2brH2d2EaydWn9w2_oWdEf5JQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPZQe-qIVjxasiAOX7GadkNgrqFSV0i3s7mG1SFyqyHacLY_N0m4QtKf-hP7GnvgZnbFJeFRIqJfIh7E949iZGWfmG0LWOJNZHCntM1Du4KCAw8rzUPt6gysZZFES2wy5Xj_u7Ee7BxsHM2SzyoVx-BD1hRueDPu9xgOOF9LNa9TQo1HZAOsEfZ9HERga6HptD2rwKDR1uPtTGfkCVFGFKxSwZt31lja6aZ1a9bLzjHypGHNRJceNs1I19M87mI3_y_lz8vTK7qTv3UZ5QWZM8ZI86dWgrdN5ctmH8z2djCew9IealueTP79-Z4j-75A7KJYEgXnxtZ78oJnJgZOMWsjrKcVQUDqgmzDaV3oxPimmW1WROwxiPQ9dwAT4XU2c1T56XQ8GLQ_Hoy0P-Gtf-FagNi4mrmXb5rW0QRArR93wcRLMVG951PVAlWyT8TzzzYGXN_8lbpwWI-8dHbwiw52Pww8d_6oQhK_B4PFbGZchOKqKGSmkQKcJvkyCx3liEhZIxTMecxkwmWgeMBMnmQFDjislkjAB4tdktpgUZoFQoUWihZKaqTASJuaGhyrI45bmKodBF4lX7Yf01MF9pA7YmaXAdmr5XiTrVrb7KdLdT0PbWHo46Sp53Bn2umn3c39vmcwxrDNsr3rekNny-5l5C8ZPqVbsHv8LEzj9RA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiE4QHmJAgUr4sAlu1kndeylRULAUkp3hVaL1ANS5FeWQje7sKnacuIn8Bs58TOYsZvwEhLiEvkwtseOnfnG8XxDyH3BlOWZNjED4w4OCjisokxNbDaFVonNcu4j5IYjvvM6293f3F8hD5tYmMAP0R644c7w32vc4Atbdn-Qhr6b1h0AJ-j6nMs4IAlEROOWOwqRjgg_KrNYgiVqaIUS1m2r_mKMfgan3roMLpM3jV7hUsn7zlGtO-bTb5SN_6n4Grl0hjrp47BMrpAVV10lF4ctZevyGvk2gt29nM_mMPEHhtbH86-fv1jk_g-8HRQTgkC3-FIPT6l1JShiqSe8XlK8CErHdAtae0tPZofVcrtJcYdXWI_TcF0CvK4u9uofw70IGq0PZtPtCPTrn8R-PH2cS5zKvo9q6cNA_DjaQoydYJx6L6KhBhpkH4oXuQ-Burz7p3BnUU2jR3R8nUwGzyZPduKzNBCxAbgT96xQKbipmjkllUSXCb5LUvAydzlLlBZWcKESpnIjEuZ4bh3AOKG1zNMchG-Q1WpeuZuESiNzI7UyTKeZdFw4keqk5D0jdAmNrpOoWQ7FIpB9FIHWmRWgduH1XicP_Nj-LlHsPp_4wq1_F71Hzr96Oij2Xoxe3iYXGCYZ9uc8d8hq_fHIbQDyqfVdv8K_Axwr-_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonisomorphic+two%E2%80%90dimensional+algebraically+defined+graphs+over+R+%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22+altimg%3D%22urn%3Ax-wiley%3A03649024%3Amedia%3Ajgt23161%3Ajgt23161-math-0001%22+wiley%3Alocation%3D%22equation%2Fjgt23161-math-0001.png%22%3E+R&rft.jtitle=Journal+of+graph+theory&rft.au=Kronenthal%2C+Brian+G.&rft.au=Miller%2C+Joe&rft.au=Nash%2C+Alex&rft.au=Roeder%2C+Jacob&rft.date=2025-01-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=108&rft.issue=1&rft.spage=50&rft.epage=64&rft_id=info:doi/10.1002%2Fjgt.23161&rft.externalDBID=10.1002%252Fjgt.23161&rft.externalDocID=JGT23161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |