A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques 1 , 2 . Because p...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 583; no. 7817; pp. 631 - 637
Main Authors Mok, Beverly Y., de Moraes, Marcos H., Zeng, Jun, Bosch, Dustin E., Kotrys, Anna V., Raguram, Aditya, Hsu, FoSheng, Radey, Matthew C., Peterson, S. Brook, Mootha, Vamsi K., Mougous, Joseph D., Liu, David R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.07.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques 1 , 2 . Because previously described cytidine deaminases operate on single-stranded nucleic acids 3 , their use in base editing requires the unwinding of double-stranded DNA (dsDNA)—for example by a CRISPR–Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria 4 . As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases 9 , 10 .Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. An interbacterial toxin that catalyses the deamination of cytidines within double-stranded DNA forms part of a CRISPR-free, RNA-free base editing system that enables manipulation of human mitochondrial DNA.
AbstractList Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques.sup.1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids.sup.3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)--for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria.sup.4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases.sup.9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C*G-to-T*A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.
Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions ofthe split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C·G-to-T·A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.
Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques . Because previously described cytidine deaminases operate on single-stranded nucleic acids , their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria . As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases .Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.
Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques 1 , 2 . Because previously described cytidine deaminases operate on single-stranded nucleic acids 3 , their use in base editing requires the unwinding of double-stranded DNA (dsDNA)—for example by a CRISPR–Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria 4 . As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases 9 , 10 .Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. An interbacterial toxin that catalyses the deamination of cytidines within double-stranded DNA forms part of a CRISPR-free, RNA-free base editing system that enables manipulation of human mitochondrial DNA.
Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques.sup.1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids.sup.3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)--for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria.sup.4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases.sup.9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C*G-to-T*A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. An interbacterial toxin that catalyses the deamination of cytidines within double-stranded DNA forms part of a CRISPR-free, RNA-free base editing system that enables manipulation of human mitochondrial DNA.
Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.
Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques 1 , 2 . Since previously described cytidine deaminases operate on single-stranded nucleic acids 3 , their use in base editing requires the unwinding of double-stranded DNA (dsDNA), for example, by a CRISPR–Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria 4 . Here we describe an interbacterial toxin, which we named DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. Further information on research design is available in the Nature Research Reporting Summary linked to this paper.
Audience Academic
Author Bosch, Dustin E.
Peterson, S. Brook
Mougous, Joseph D.
de Moraes, Marcos H.
Liu, David R.
Kotrys, Anna V.
Mok, Beverly Y.
Zeng, Jun
Raguram, Aditya
Radey, Matthew C.
Mootha, Vamsi K.
Hsu, FoSheng
AuthorAffiliation 3 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
8 Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
10 Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
6 Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
1 Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
9 Broad Institute of MIT and Harvard, Cambridge, MA, USA
4 Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
5 Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
7 Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
AuthorAffiliation_xml – name: 3 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
– name: 10 Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
– name: 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
– name: 7 Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
– name: 1 Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
– name: 6 Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
– name: 8 Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
– name: 4 Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
– name: 5 Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
– name: 9 Broad Institute of MIT and Harvard, Cambridge, MA, USA
Author_xml – sequence: 1
  givenname: Beverly Y.
  surname: Mok
  fullname: Mok, Beverly Y.
  organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University
– sequence: 2
  givenname: Marcos H.
  surname: de Moraes
  fullname: de Moraes, Marcos H.
  organization: Department of Microbiology, University of Washington School of Medicine
– sequence: 3
  givenname: Jun
  surname: Zeng
  fullname: Zeng, Jun
  organization: Department of Microbiology, University of Washington School of Medicine
– sequence: 4
  givenname: Dustin E.
  orcidid: 0000-0002-7430-2939
  surname: Bosch
  fullname: Bosch, Dustin E.
  organization: Department of Microbiology, University of Washington School of Medicine, Department of Pathology, University of Washington School of Medicine
– sequence: 5
  givenname: Anna V.
  orcidid: 0000-0003-4983-1414
  surname: Kotrys
  fullname: Kotrys, Anna V.
  organization: Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Broad Institute of MIT and Harvard, Institute of Biochemistry and Biophysics Polish Academy of Sciences
– sequence: 6
  givenname: Aditya
  surname: Raguram
  fullname: Raguram, Aditya
  organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University
– sequence: 7
  givenname: FoSheng
  surname: Hsu
  fullname: Hsu, FoSheng
  organization: Department of Microbiology, University of Washington School of Medicine
– sequence: 8
  givenname: Matthew C.
  surname: Radey
  fullname: Radey, Matthew C.
  organization: Department of Microbiology, University of Washington School of Medicine
– sequence: 9
  givenname: S. Brook
  surname: Peterson
  fullname: Peterson, S. Brook
  organization: Department of Microbiology, University of Washington School of Medicine
– sequence: 10
  givenname: Vamsi K.
  surname: Mootha
  fullname: Mootha, Vamsi K.
  organization: Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Broad Institute of MIT and Harvard
– sequence: 11
  givenname: Joseph D.
  surname: Mougous
  fullname: Mougous, Joseph D.
  email: mougous@uw.edu
  organization: Department of Microbiology, University of Washington School of Medicine, Department of Biochemistry, University of Washington School of Medicine, Howard Hughes Medical Institute, University of Washington
– sequence: 12
  givenname: David R.
  orcidid: 0000-0002-9943-7557
  surname: Liu
  fullname: Liu, David R.
  email: drliu@fas.harvard.edu
  organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32641830$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1v0zAUhi00xLbCD-AGRXADFxn-ip3cTKoqPipNArVwbTnOSeYpsbvYRdu_x6FjW6eCbMmS_byv7XPeU3TkvAOEXhN8RjArPwZOilLkmOKccilz_gydEC5FzkUpj9AJxrTMccnEMToN4QpjXBDJX6BjRgUnJcMnaD3Pam0ijFb3mbmNtrEOsgb0YJ0OkEV_Y10GTtc9hGyxWq6_r_J2BMgGG7259K75I60nGBobreteouet7gO8ultn6OfnTz8WX_OLb1-Wi_lFbiSrYg4ct7oqaol1U5S6EiVmuBAVoSCJrLXgFBqp27oqOWGywg3HXGhJ6soUTSXZDJ3vfDfbeoDGgIuj7tVmtIMeb5XXVu2fOHupOv9LSVaSac7Q-zuD0V9vIUQ12GCg77UDvw2KckpTzbBgCX33BL3y29Gl702UZIQTWT1Qne5BWdf6dK-ZTNVcMMyo5IImKj9AdeAgPTJ1uLVpe49_e4A3G3utHkNnB6A0GhisOej6YU-QmAg3sdPbENRyvdpn3zyu9H2J_-YoAWQHmNGHMEJ7jxCspqyqXVZVyqqasqp40sgnGmOjjtZPzbL9f5V0pwzpFtfB-NCMf4t-Azjp9-o
CitedBy_id crossref_primary_10_1016_j_apsb_2024_08_007
crossref_primary_10_1016_j_tips_2021_10_012
crossref_primary_10_1089_crispr_2021_0063
crossref_primary_10_1016_j_cell_2023_11_035
crossref_primary_10_1016_j_csbj_2021_06_003
crossref_primary_10_1093_hmg_ddae025
crossref_primary_10_1016_j_sbi_2021_03_004
crossref_primary_10_3389_fcell_2020_615461
crossref_primary_10_1016_j_omtn_2023_04_014
crossref_primary_10_1016_j_scienta_2024_113774
crossref_primary_10_1186_s12915_024_01895_0
crossref_primary_10_1093_humupd_dmaf004
crossref_primary_10_1360_SSV_2021_0366
crossref_primary_10_1038_s41586_024_07332_0
crossref_primary_10_1016_j_lfs_2021_119908
crossref_primary_10_1360_nso_20220067
crossref_primary_10_1093_hmg_ddae037
crossref_primary_10_1186_s12967_022_03685_0
crossref_primary_10_1038_s41467_022_34784_7
crossref_primary_10_1016_j_omtn_2022_10_012
crossref_primary_10_1016_j_xplc_2021_100141
crossref_primary_10_1016_j_cmet_2024_06_011
crossref_primary_10_1007_s00109_023_02389_2
crossref_primary_10_5511_plantbiotechnology_24_0510a
crossref_primary_10_1016_j_mito_2022_05_002
crossref_primary_10_1038_s41467_024_45969_7
crossref_primary_10_1016_j_xpro_2022_101288
crossref_primary_10_3389_fcell_2021_671698
crossref_primary_10_1038_s41551_024_01220_8
crossref_primary_10_1038_s41587_022_01533_6
crossref_primary_10_1016_j_xcrp_2020_100270
crossref_primary_10_1038_s41586_021_03191_1
crossref_primary_10_1016_j_ggedit_2021_100005
crossref_primary_10_1016_j_ggedit_2021_100007
crossref_primary_10_1016_j_ygeno_2024_110836
crossref_primary_10_1074_jbc_REV120_015101
crossref_primary_10_1038_s41477_022_01108_y
crossref_primary_10_1007_s10585_021_10090_2
crossref_primary_10_1016_j_molcel_2020_08_009
crossref_primary_10_1080_10409238_2021_1934812
crossref_primary_10_3390_biologics3040014
crossref_primary_10_1038_s41467_020_19753_2
crossref_primary_10_1093_pcp_pcad162
crossref_primary_10_3389_fpls_2021_701681
crossref_primary_10_1016_j_omtn_2021_08_015
crossref_primary_10_1016_j_tim_2022_03_009
crossref_primary_10_1007_s12274_024_6748_5
crossref_primary_10_1016_j_molp_2020_11_002
crossref_primary_10_3390_genes12111668
crossref_primary_10_1126_sciadv_adk8801
crossref_primary_10_1007_s11248_024_00404_x
crossref_primary_10_1016_j_heares_2023_108689
crossref_primary_10_1056_NEJMcibr2025332
crossref_primary_10_1038_s41421_021_00358_y
crossref_primary_10_1038_s41467_024_49343_5
crossref_primary_10_1186_s12929_023_00967_7
crossref_primary_10_1093_nar_gkae800
crossref_primary_10_1038_s41467_024_45100_w
crossref_primary_10_1038_s41556_025_01625_w
crossref_primary_10_1038_s41392_024_02081_y
crossref_primary_10_3724_zdxbyxb_2023_0129
crossref_primary_10_1038_s41421_021_00325_7
crossref_primary_10_1038_s41564_024_01820_9
crossref_primary_10_3389_fgeed_2023_1141618
crossref_primary_10_1038_s41467_024_53806_0
crossref_primary_10_1093_nar_gkab788
crossref_primary_10_3389_fneur_2024_1499876
crossref_primary_10_1126_scitranslmed_adr0792
crossref_primary_10_3389_fneur_2021_648916
crossref_primary_10_1007_s10571_021_01117_z
crossref_primary_10_1093_hmg_ddab299
crossref_primary_10_1038_s41594_023_01034_3
crossref_primary_10_1016_j_apsb_2022_03_001
crossref_primary_10_1038_s41422_024_01028_w
crossref_primary_10_1038_s41551_022_00968_1
crossref_primary_10_7554_eLife_76557
crossref_primary_10_1038_s41477_021_00954_6
crossref_primary_10_1038_s41587_025_02608_w
crossref_primary_10_1038_s41467_023_42359_3
crossref_primary_10_1073_pnas_2423270121
crossref_primary_10_1038_s41587_023_01910_9
crossref_primary_10_1097_ICU_0000000000001028
crossref_primary_10_3390_cells11172682
crossref_primary_10_3390_ijms231810442
crossref_primary_10_3390_ijms22147730
crossref_primary_10_1016_j_tig_2022_04_011
crossref_primary_10_3390_ijms24031969
crossref_primary_10_3390_jcto2030006
crossref_primary_10_1016_j_heliyon_2024_e28808
crossref_primary_10_1016_j_neurot_2023_11_001
crossref_primary_10_1038_s41477_021_00943_9
crossref_primary_10_1038_s41587_023_01791_y
crossref_primary_10_1002_iub_2769
crossref_primary_10_1016_j_molmet_2024_101966
crossref_primary_10_1158_1541_7786_MCR_23_0741
crossref_primary_10_3390_brainsci14090899
crossref_primary_10_1002_advs_202409644
crossref_primary_10_1038_s43018_023_00721_w
crossref_primary_10_1038_s41586_024_08048_x
crossref_primary_10_1016_j_cmet_2021_01_003
crossref_primary_10_1038_s41467_023_36600_2
crossref_primary_10_3390_ijms21165880
crossref_primary_10_1038_s41434_023_00434_w
crossref_primary_10_1016_j_celrep_2020_108562
crossref_primary_10_1242_dmm_049783
crossref_primary_10_1111_tpj_15715
crossref_primary_10_7554_eLife_62967
crossref_primary_10_1007_s11684_023_1013_y
crossref_primary_10_3389_fphar_2022_862085
crossref_primary_10_1016_j_cmet_2021_06_013
crossref_primary_10_1080_14737159_2023_2241365
crossref_primary_10_1016_j_bbadis_2023_166804
crossref_primary_10_1134_S0026893324700195
crossref_primary_10_3390_cimb45020059
crossref_primary_10_1016_j_molcel_2024_02_016
crossref_primary_10_1038_s41467_023_36651_5
crossref_primary_10_1128_JB_00365_20
crossref_primary_10_1016_j_cobme_2023_100480
crossref_primary_10_1093_nar_gkae854
crossref_primary_10_1016_j_ggedit_2022_100018
crossref_primary_10_1016_j_cobme_2023_100489
crossref_primary_10_1021_acssynbio_3c00229
crossref_primary_10_1016_j_tig_2020_08_001
crossref_primary_10_1038_s41587_021_00938_z
crossref_primary_10_1093_nsr_nwad143
crossref_primary_10_5483_BMBRep_2023_0224
crossref_primary_10_1007_s43538_022_00100_6
crossref_primary_10_1128_mbio_01039_23
crossref_primary_10_1590_1678_4685_gmb_2022_0266
crossref_primary_10_1016_j_cobme_2023_100472
crossref_primary_10_1080_15476286_2021_1935572
crossref_primary_10_1016_j_biotechadv_2025_108557
crossref_primary_10_1021_acssynbio_4c00597
crossref_primary_10_1038_s41551_022_00986_z
crossref_primary_10_3390_genes13081317
crossref_primary_10_1038_d41586_020_02054_5
crossref_primary_10_1016_j_heliyon_2024_e29382
crossref_primary_10_1111_febs_16195
crossref_primary_10_1002_adfm_202202585
crossref_primary_10_1111_mmi_14648
crossref_primary_10_3389_fbioe_2024_1372211
crossref_primary_10_1016_j_biochi_2023_09_006
crossref_primary_10_7554_eLife_62816
crossref_primary_10_1002_ajmg_a_61864
crossref_primary_10_1016_j_trecan_2020_08_004
crossref_primary_10_1016_j_canlet_2020_10_038
crossref_primary_10_1016_j_molcel_2021_12_026
crossref_primary_10_3389_fcell_2021_625020
crossref_primary_10_1186_s13059_025_03478_w
crossref_primary_10_1016_j_phrs_2022_106466
crossref_primary_10_1016_j_omtn_2023_09_005
crossref_primary_10_31857_S0026898424040013
crossref_primary_10_1242_jcs_258944
crossref_primary_10_1186_s12885_021_08155_2
crossref_primary_10_1128_JB_00281_21
crossref_primary_10_1016_S1474_4422_22_00174_0
crossref_primary_10_1002_adma_202305171
crossref_primary_10_1146_annurev_genet_111523_102448
crossref_primary_10_1167_tvst_10_8_4
crossref_primary_10_1038_s41576_021_00439_4
crossref_primary_10_1007_s10439_022_03051_7
crossref_primary_10_1021_acschembio_2c00836
crossref_primary_10_1038_s41598_024_63203_8
crossref_primary_10_1038_s41576_022_00501_9
crossref_primary_10_3389_fphys_2021_693734
crossref_primary_10_1155_2022_6235747
crossref_primary_10_1146_annurev_biochem_052521_013938
crossref_primary_10_1093_nar_gkad208
crossref_primary_10_1016_j_tplants_2023_12_014
crossref_primary_10_3389_fgene_2021_673951
crossref_primary_10_1089_crispr_2020_29101_dwa
crossref_primary_10_3390_cells12111473
crossref_primary_10_1007_s00395_021_00889_1
crossref_primary_10_1016_j_semcdb_2021_02_006
crossref_primary_10_3390_pharmaceutics14122760
crossref_primary_10_1097_WNO_0000000000001375
crossref_primary_10_1016_j_biotechadv_2023_108155
crossref_primary_10_3390_genes12101604
crossref_primary_10_1038_s41467_021_23561_7
crossref_primary_10_1016_j_bbagrm_2024_195063
crossref_primary_10_1016_j_jobb_2024_03_001
crossref_primary_10_1016_j_nbd_2025_106822
crossref_primary_10_1016_j_jsps_2022_05_011
crossref_primary_10_1007_s12519_024_00843_w
crossref_primary_10_1016_j_molcel_2024_01_027
crossref_primary_10_3389_fcell_2021_695351
crossref_primary_10_1007_s00109_023_02381_w
crossref_primary_10_1007_s11427_024_2699_5
crossref_primary_10_1101_cshperspect_a041282
crossref_primary_10_1016_j_mehy_2021_110647
crossref_primary_10_1038_s41416_023_02324_9
crossref_primary_10_3389_fbioe_2022_1033669
crossref_primary_10_3389_fmicb_2022_1042505
crossref_primary_10_3389_fimmu_2022_934444
crossref_primary_10_3390_biomedicines10020490
crossref_primary_10_3389_fpls_2021_664997
crossref_primary_10_1080_14779072_2024_2328642
crossref_primary_10_1038_s41477_022_01227_6
crossref_primary_10_1093_nar_gkac699
crossref_primary_10_1016_j_jare_2023_11_033
crossref_primary_10_1038_s41573_020_0084_6
crossref_primary_10_1038_s43587_024_00672_6
crossref_primary_10_1038_s41576_022_00480_x
crossref_primary_10_1016_j_biotechadv_2024_108473
crossref_primary_10_1093_genetics_iyad036
crossref_primary_10_1007_s40291_020_00510_6
crossref_primary_10_1016_j_jcyt_2023_10_004
crossref_primary_10_1016_j_schres_2022_04_003
crossref_primary_10_1038_s41392_024_02044_3
crossref_primary_10_1093_nar_gkac1162
crossref_primary_10_1038_s41421_021_00372_0
crossref_primary_10_1038_s41594_020_0474_9
crossref_primary_10_3389_fcvm_2020_604581
crossref_primary_10_1371_journal_pbio_3002071
crossref_primary_10_1016_j_addr_2024_115355
crossref_primary_10_1016_j_bbagen_2020_129835
crossref_primary_10_1016_j_omtn_2024_102170
crossref_primary_10_1093_nar_gkae577
crossref_primary_10_1038_d41586_020_01974_6
crossref_primary_10_1271_kagakutoseibutsu_61_596
crossref_primary_10_1016_j_yexcr_2022_113233
crossref_primary_10_1371_journal_pone_0289509
crossref_primary_10_1016_j_phrs_2024_107374
crossref_primary_10_1089_hum_2023_045
crossref_primary_10_1016_j_biochi_2024_10_013
crossref_primary_10_1038_s41467_024_44964_2
crossref_primary_10_1126_science_abg0491
crossref_primary_10_1016_j_bbadis_2020_166016
crossref_primary_10_1038_s41467_022_31745_y
crossref_primary_10_2147_JIR_S506760
crossref_primary_10_1038_s41576_024_00720_2
crossref_primary_10_1038_s41588_024_01794_8
crossref_primary_10_1038_s41467_022_28358_w
crossref_primary_10_1016_j_neurot_2023_e00311
crossref_primary_10_1089_hum_2024_073
crossref_primary_10_1002_smll_202303682
crossref_primary_10_3390_ijms22147369
crossref_primary_10_1016_j_tig_2022_06_015
crossref_primary_10_1002_ggn2_202100019
crossref_primary_10_1038_s41598_022_16716_z
crossref_primary_10_1080_15476286_2021_1940445
crossref_primary_10_1038_s41421_022_00391_5
crossref_primary_10_1186_s13578_025_01351_8
crossref_primary_10_1016_j_ymthe_2021_10_026
crossref_primary_10_1021_acsbiomaterials_1c01114
crossref_primary_10_1016_j_molmet_2021_101314
crossref_primary_10_15212_HOD_2023_0001
crossref_primary_10_1186_s13045_024_01615_9
crossref_primary_10_1038_s12276_024_01333_9
crossref_primary_10_3390_life12111934
crossref_primary_10_1038_s43587_022_00191_2
crossref_primary_10_1128_mBio_03441_20
crossref_primary_10_1093_noajnl_vdab074
crossref_primary_10_1038_s41421_021_00307_9
crossref_primary_10_1093_lifemedi_lnac014
crossref_primary_10_1080_14712598_2024_2359015
crossref_primary_10_15252_embr_202255678
crossref_primary_10_1038_s41587_022_01486_w
crossref_primary_10_1016_j_molmed_2020_12_005
crossref_primary_10_3390_ijms24010608
crossref_primary_10_1186_s40168_025_02038_5
crossref_primary_10_1038_s41586_022_04836_5
crossref_primary_10_1038_s41576_022_00541_1
crossref_primary_10_1016_j_cellin_2023_100113
crossref_primary_10_1038_s41586_024_08469_8
crossref_primary_10_1111_jipb_13425
crossref_primary_10_1016_j_biomaterials_2021_121108
crossref_primary_10_1016_j_chembiol_2021_08_003
crossref_primary_10_1002_EXP_20240095
crossref_primary_10_1016_j_molp_2021_07_012
crossref_primary_10_1016_j_ijbiomac_2023_127418
crossref_primary_10_1038_s41564_022_01133_9
crossref_primary_10_1016_j_ymthe_2022_04_010
crossref_primary_10_3390_ijms24043483
crossref_primary_10_1038_s43586_023_00200_7
crossref_primary_10_1002_1878_0261_13291
crossref_primary_10_1002_oby_23424
crossref_primary_10_1073_pnas_2121177119
crossref_primary_10_1016_j_molp_2021_07_007
crossref_primary_10_1186_s13071_023_05988_7
crossref_primary_10_1002_ctm2_529
crossref_primary_10_1038_s41551_022_00993_0
crossref_primary_10_1038_s41587_022_01256_8
crossref_primary_10_1089_hum_2024_043
crossref_primary_10_1016_j_omtn_2024_102132
crossref_primary_10_1186_s13023_022_02324_7
crossref_primary_10_1016_j_lfs_2024_122797
crossref_primary_10_1038_s41598_021_90316_1
crossref_primary_10_1111_tpj_17027
crossref_primary_10_1016_j_cell_2021_10_019
crossref_primary_10_1038_s41477_021_00991_1
crossref_primary_10_3390_ijms24087079
crossref_primary_10_1038_s41392_024_01737_z
crossref_primary_10_3390_ijms22062805
crossref_primary_10_7554_eLife_66676
crossref_primary_10_1016_j_tcb_2020_12_009
crossref_primary_10_1016_j_cell_2021_09_033
crossref_primary_10_1002_elsc_202400005
crossref_primary_10_3390_biomedicines11020532
crossref_primary_10_1242_dmm_048912
crossref_primary_10_2174_1570159X20666220810114644
crossref_primary_10_3892_ijmm_2022_5182
crossref_primary_10_1016_j_molcel_2022_08_011
crossref_primary_10_2337_db23_0430
crossref_primary_10_3390_pharmaceutics14061287
crossref_primary_10_1038_s12276_023_00973_7
crossref_primary_10_1016_j_scib_2023_10_025
crossref_primary_10_1002_adtp_202100040
crossref_primary_10_3390_horticulturae9121338
crossref_primary_10_1093_lifemedi_lnad028
crossref_primary_10_1093_plphys_kiab315
crossref_primary_10_1080_14712598_2022_2070427
crossref_primary_10_1007_s12038_020_00094_7
crossref_primary_10_1016_j_abb_2020_108689
crossref_primary_10_1016_j_omtn_2021_11_016
crossref_primary_10_1038_s41392_023_01546_w
crossref_primary_10_1186_s13059_022_02782_z
crossref_primary_10_1038_s41596_020_00450_9
crossref_primary_10_1021_acs_accounts_3c00279
crossref_primary_10_1038_s42003_023_05500_y
crossref_primary_10_1016_j_cell_2025_02_009
crossref_primary_10_3390_cells12202494
crossref_primary_10_3390_ijms232416053
crossref_primary_10_1007_s00299_024_03150_w
crossref_primary_10_1002_mrd_23615
crossref_primary_10_3390_ijms23052548
crossref_primary_10_3390_microorganisms11041040
crossref_primary_10_1360_SSV_2023_0149
crossref_primary_10_1016_j_cell_2023_05_041
crossref_primary_10_1186_s13073_022_01093_z
crossref_primary_10_1038_s12276_024_01178_2
crossref_primary_10_1111_pbi_14358
crossref_primary_10_3389_fphys_2022_883459
crossref_primary_10_1016_j_cell_2022_03_039
crossref_primary_10_1093_nar_gkaa1032
crossref_primary_10_1038_s41598_022_21794_0
crossref_primary_10_34133_2021_9898769
crossref_primary_10_1038_s41592_021_01172_w
crossref_primary_10_1093_nar_gkaa804
crossref_primary_10_1371_journal_ppat_1010182
crossref_primary_10_1016_j_mito_2023_09_004
crossref_primary_10_1016_j_cj_2021_03_011
crossref_primary_10_1038_s41477_024_01808_7
crossref_primary_10_1016_j_jacc_2022_08_716
crossref_primary_10_3389_fpls_2022_847169
crossref_primary_10_53053_TEDM6840
crossref_primary_10_1038_s41467_024_45663_8
crossref_primary_10_1038_s41576_020_00284_x
crossref_primary_10_1093_plphys_kiad678
crossref_primary_10_1016_S1474_4422_21_00098_3
crossref_primary_10_1016_j_cell_2022_03_045
crossref_primary_10_1016_j_omtn_2023_102062
crossref_primary_10_1038_s41467_022_34551_8
crossref_primary_10_1111_pbi_14246
crossref_primary_10_1038_s41467_022_27962_0
crossref_primary_10_1111_nyas_14675
crossref_primary_10_3389_fmolb_2021_711436
crossref_primary_10_1093_humupd_dmab046
crossref_primary_10_1016_j_gendis_2023_06_026
crossref_primary_10_1038_s41467_021_21464_1
crossref_primary_10_1007_s11248_021_00253_y
crossref_primary_10_1016_j_molcel_2023_04_012
crossref_primary_10_1016_j_molcel_2022_09_010
crossref_primary_10_3389_fgene_2021_627050
crossref_primary_10_1002_advs_202304113
crossref_primary_10_1007_s40265_020_01428_3
crossref_primary_10_1016_j_tig_2022_08_004
crossref_primary_10_52601_bpr_2023_230029
crossref_primary_10_1038_s41467_023_35886_6
crossref_primary_10_1038_s41477_022_01279_8
crossref_primary_10_1038_s41589_021_00880_w
crossref_primary_10_1093_plphys_kiab591
crossref_primary_10_3390_cells12152013
crossref_primary_10_1099_mic_0_001367
crossref_primary_10_2144_btn_2020_0114
crossref_primary_10_3390_ijms25052662
crossref_primary_10_1038_s41467_022_31543_6
crossref_primary_10_2217_epi_2023_0322
crossref_primary_10_1007_s11427_022_2214_2
crossref_primary_10_52601_bpr_2024_240010
crossref_primary_10_1016_j_xplc_2024_101220
crossref_primary_10_1016_j_xinn_2022_100329
crossref_primary_10_1021_acs_nanolett_2c03958
crossref_primary_10_1007_s11910_022_01246_y
crossref_primary_10_1093_nar_gkac098
crossref_primary_10_1038_s41477_021_01059_w
crossref_primary_10_1002_jimd_12521
crossref_primary_10_1021_acs_chemrev_1c01063
crossref_primary_10_1016_j_omtm_2024_101253
crossref_primary_10_1111_pbi_14268
crossref_primary_10_1038_s43018_023_00722_9
crossref_primary_10_7554_eLife_63102
crossref_primary_10_1038_s41434_022_00333_6
crossref_primary_10_1038_s41584_021_00637_8
crossref_primary_10_1021_jacsau_2c00654
crossref_primary_10_1109_RBME_2024_3494715
crossref_primary_10_1242_jcs_248468
crossref_primary_10_1002_jimd_12319
crossref_primary_10_1073_pnas_2302490120
crossref_primary_10_1186_s13578_022_00805_7
crossref_primary_10_1016_j_cell_2021_02_036
crossref_primary_10_1016_j_fertnstert_2021_04_017
crossref_primary_10_1038_s41576_021_00432_x
crossref_primary_10_1038_s41587_023_01820_w
crossref_primary_10_3389_fgene_2023_1085024
crossref_primary_10_1128_aem_01305_22
crossref_primary_10_3390_life11070633
crossref_primary_10_1080_14647273_2021_1925168
crossref_primary_10_3390_cells11162593
crossref_primary_10_2174_0113892029308327240612110334
crossref_primary_10_1016_j_tim_2023_03_005
crossref_primary_10_1038_s41467_022_31927_8
crossref_primary_10_1270_jsbbr_26_W02
crossref_primary_10_1016_j_arr_2021_101378
crossref_primary_10_1038_s42255_021_00378_8
crossref_primary_10_24072_pcjournal_385
crossref_primary_10_3390_ijms23031467
crossref_primary_10_3390_pharmaceutics13060810
crossref_primary_10_1002_jimd_12699
crossref_primary_10_1089_crispr_2021_0043
crossref_primary_10_1186_s13007_023_01124_9
crossref_primary_10_1016_j_bbagen_2021_130011
crossref_primary_10_1039_D3CC01778H
crossref_primary_10_17537_2023_18_621
crossref_primary_10_1016_j_trecan_2022_08_001
crossref_primary_10_1186_s12967_023_04610_9
crossref_primary_10_1007_s11427_022_2172_x
crossref_primary_10_1002_smll_202411583
crossref_primary_10_1515_medgen_2024_2066
crossref_primary_10_1002_advs_202305353
crossref_primary_10_1016_j_ymthe_2021_09_002
crossref_primary_10_1038_d41586_020_03560_2
crossref_primary_10_1002_jimd_12324
crossref_primary_10_31083_j_fbl2708241
crossref_primary_10_1186_s40035_024_00409_w
crossref_primary_10_1111_tpj_16311
crossref_primary_10_1038_s41580_023_00663_2
crossref_primary_10_1111_tpj_15107
crossref_primary_10_1016_j_tcb_2024_05_001
crossref_primary_10_1186_s12967_024_05957_3
crossref_primary_10_1007_s12015_024_10715_5
crossref_primary_10_1021_acs_analchem_4c05251
crossref_primary_10_1002_mco2_639
crossref_primary_10_1038_s41477_023_01538_2
crossref_primary_10_1016_j_tem_2024_01_002
crossref_primary_10_1038_s41582_022_00715_9
crossref_primary_10_1089_hs_2021_0109
crossref_primary_10_3390_ijms24065798
crossref_primary_10_1007_s10565_020_09549_x
crossref_primary_10_1038_s43018_020_00128_x
crossref_primary_10_3390_life11020076
crossref_primary_10_1016_j_ijbiomac_2022_09_110
crossref_primary_10_3389_fcell_2021_800529
Cites_doi 10.1016/j.tibs.2018.04.013
10.1101/gr.129684.111
10.1038/s41587-020-0414-6
10.1093/bib/bbx129
10.1099/mic.0.000789
10.1107/S0907444906005270
10.1126/science.aaf8729
10.1101/cshperspect.a012583
10.1126/sciadv.aao4774
10.1038/nature17946
10.1093/nar/gkr367
10.1016/j.cell.2019.01.022
10.1016/S0014-4827(03)00249-0
10.1002/mbo3.774
10.7554/eLife.02008
10.1038/s41587-020-0412-8
10.1016/j.cell.2015.08.007
10.1107/S0907444909042073
10.1093/nar/25.4.750
10.1038/nbt.4172
10.1126/sciadv.aax5717
10.1038/s41591-018-0166-8
10.1038/s41467-018-04895-1
10.1073/pnas.1522325113
10.1038/nrg3966
10.1093/nar/gkz542
10.1038/nature24644
10.1038/s41587-019-0032-3
10.1002/emmm.201303672
10.1093/bioinformatics/btp324
10.1038/s41586-019-1711-4
10.1038/nbt.3404
10.1038/nmeth.2019
10.1016/j.cell.2017.04.005
10.1038/s41467-018-04131-w
10.1093/nar/gkr691
10.7554/eLife.10575
10.1016/j.ccell.2018.06.013
10.1038/nprot.2006.25
10.1038/s41576-018-0059-1
10.1038/nature11707
10.1016/j.tig.2017.11.001
10.1038/nprot.2015.123
10.1038/nrm3486
10.1016/j.chom.2009.12.007
10.1038/nm.3261
10.1038/nrg2842
10.1093/nar/gkx342
10.1073/pnas.1711888115
10.1128/AEM.03909-14
10.1107/S0907444904019158
10.1016/j.cell.2013.02.022
10.1016/S0076-6879(97)76066-X
10.1038/nbt.2909
10.1107/S0907444909052925
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
COPYRIGHT 2020 Nature Publishing Group
Copyright Nature Publishing Group Jul 23, 2020
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jul 23, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-020-2477-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database

MEDLINE



MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 637
ExternalDocumentID PMC7381381
A630327462
32641830
10_1038_s41586_020_2477_4
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118062
– fundername: NIAID NIH HHS
  grantid: U01 AI142756
– fundername: NIDDK NIH HHS
  grantid: P30 DK089507
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: T32 GM095450
– fundername: NHGRI NIH HHS
  grantid: RM1 HG009490
– fundername: NIGMS NIH HHS
  grantid: R35 GM122455
– fundername: NIAID NIH HHS
  grantid: R01 AI080609
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c739t-e40fa95b70ad58a96803056912e717ba642ed7afb98413790d4046a71b9c5d973
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:20:56 EDT 2025
Mon Jul 21 11:27:43 EDT 2025
Sat Aug 23 14:23:55 EDT 2025
Tue Jun 17 20:57:00 EDT 2025
Thu Jun 12 23:37:48 EDT 2025
Tue Jun 10 15:32:26 EDT 2025
Tue Jun 10 20:49:51 EDT 2025
Fri Jun 27 04:59:36 EDT 2025
Mon Jul 21 05:34:02 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Tue Jul 01 02:32:13 EDT 2025
Fri Feb 21 02:37:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7817
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
Reprints and permissions information is available at www.nature.com/reprints.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c739t-e40fa95b70ad58a96803056912e717ba642ed7afb98413790d4046a71b9c5d973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally: Beverly Y. Mok, Marcos H. de Moraes.
Author contributions B.Y.M., M.H.d.M., S.B.P., V.K.M., J.D.M. and D.R.L. designed the study; M.H.d.M., J.Z. and D.E.B. designed, performed and analysed experiments to characterize DddA; B.Y.M. designed, performed and analysed nuclear and mitochondrial editing experiments; B.Y.M., M.H.d.M., A.R. and M.C.R. performed sequence analyses; F.H. performed microscopy; A.V.K. designed, performed and analysed mitochondrial biology experiments; B.Y.M., M.H.d.M., S.B.P., A.V.K., V.K.M., J.D.M. and D.R.L. wrote the manuscript.
ORCID 0000-0002-9943-7557
0000-0002-7430-2939
0000-0003-4983-1414
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7381381
PMID 32641830
PQID 2427314179
PQPubID 40569
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7381381
proquest_miscellaneous_2422005063
proquest_journals_2427314179
gale_infotracmisc_A630327462
gale_infotracgeneralonefile_A630327462
gale_infotraccpiq_630327462
gale_infotracacademiconefile_A630327462
gale_incontextgauss_ISR_A630327462
pubmed_primary_32641830
crossref_primary_10_1038_s41586_020_2477_4
crossref_citationtrail_10_1038_s41586_020_2477_4
springer_journals_10_1038_s41586_020_2477_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-23
PublicationDateYYYYMMDD 2020-07-23
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Magnusson, Orth, Lestienne, Taanman (CR32) 2003; 289
Anzalone (CR26) 2019; 576
Li, Durbin (CR49) 2009; 25
Komor (CR28) 2017; 3
Nissanka, Bacman, Plastini, Moraes (CR11) 2018; 9
Stewart, Chinnery (CR7) 2015; 16
Finn, Clements, Eddy (CR36) 2011; 39
Emsley, Cowtan (CR43) 2004; 60
Bao (CR31) 2016; 5
Miller (CR51) 2020; 38
Gaudelli (CR13) 2017; 551
Rees, Liu (CR1) 2018; 19
Gopal (CR33) 2018; 34
Gopal (CR6) 2018; 115
Urnov, Rebar, Holmes, Zhang, Gregory (CR20) 2010; 11
Choi, DeShazer, Schweizer (CR39) 2006; 1
Fazli, Harrison, Gambino, Givskov, Tolker-Nielsen (CR37) 2015; 81
Komor, Kim, Packer, Zuris, Liu (CR14) 2016; 533
Koboldt (CR50) 2012; 22
Coulthurst (CR16) 2019; 165
Bacman (CR8) 2018; 24
Rees, Wilson, Doman, Liu (CR40) 2019; 5
Chen (CR45) 2010; 66
Salter, Smith (CR3) 2018; 43
Iyer, Zhang, Rogozin, Aravind (CR15) 2011; 39
Ludwig (CR54) 2019; 176
Hood (CR17) 2010; 7
Kleinstiver (CR24) 2015; 33
Vaser, Adusumalli, Leng, Sikic, Ng (CR57) 2016; 11
Spiewak (CR38) 2019; 8
Guilinger, Thompson, Liu (CR22) 2014; 32
Diroma, Ciaccia, Pesole, Picardi (CR55) 2019; 20
Kotrys (CR47) 2019; 47
Gammage, Rorbach, Vincent, Rebar, Minczuk (CR10) 2014; 6
Nishimasu (CR25) 2015; 162
Schindelin (CR48) 2012; 9
Koblan (CR30) 2018; 36
Bacman, Williams, Pinto, Peralta, Moraes (CR9) 2013; 19
Bhagwat (CR46) 2016; 113
Richardson, Narvaiza, Planegger, Weitzman, Moran (CR18) 2014; 3
Yang (CR35) 2016; 7
Peeva (CR12) 2018; 9
Vafai, Mootha (CR5) 2012; 491
Qi (CR23) 2013; 152
Otwinowski, Minor (CR41) 1997; 276
Nishida (CR27) 2016; 353
Krokan, Bjørås (CR19) 2013; 5
Joung, Sander (CR21) 2013; 14
Gammage, Moraes, Minczuk (CR4) 2018; 34
Komor, Badran, Liu (CR2) 2017; 169
Rinaldi, Doyle, Stoddard, Bogdanove (CR34) 2017; 45
Clement (CR53) 2019; 37
Rees (CR52) 2017; 8
Doman, Raguram, Newby, Liu (CR56) 2020; 38
Adams (CR42) 2010; 66
Painter, Merritt (CR44) 2006; 62
Nilsen (CR29) 1997; 25
RK Gopal (2477_CR6) 2018; 115
XR Bao (2477_CR31) 2016; 5
M Fazli (2477_CR37) 2015; 81
PA Gammage (2477_CR4) 2018; 34
L Yang (2477_CR35) 2016; 7
MA Diroma (2477_CR55) 2019; 20
VB Chen (2477_CR45) 2010; 66
HA Rees (2477_CR1) 2018; 19
AC Komor (2477_CR14) 2016; 533
NM Gaudelli (2477_CR13) 2017; 551
Z Otwinowski (2477_CR41) 1997; 276
P Emsley (2477_CR43) 2004; 60
SB Vafai (2477_CR5) 2012; 491
RK Gopal (2477_CR33) 2018; 34
JP Guilinger (2477_CR22) 2014; 32
SR Bacman (2477_CR8) 2018; 24
JK Joung (2477_CR21) 2013; 14
HE Krokan (2477_CR19) 2013; 5
PA Gammage (2477_CR10) 2014; 6
N Nissanka (2477_CR11) 2018; 9
H Li (2477_CR49) 2009; 25
J Schindelin (2477_CR48) 2012; 9
KH Choi (2477_CR39) 2006; 1
JL Doman (2477_CR56) 2020; 38
JD Salter (2477_CR3) 2018; 43
V Peeva (2477_CR12) 2018; 9
K Nishida (2477_CR27) 2016; 353
AS Bhagwat (2477_CR46) 2016; 113
R Vaser (2477_CR57) 2016; 11
HA Rees (2477_CR40) 2019; 5
AC Komor (2477_CR28) 2017; 3
AC Komor (2477_CR2) 2017; 169
HA Rees (2477_CR52) 2017; 8
BP Kleinstiver (2477_CR24) 2015; 33
DC Koboldt (2477_CR50) 2012; 22
LS Qi (2477_CR23) 2013; 152
K Clement (2477_CR53) 2019; 37
HL Spiewak (2477_CR38) 2019; 8
SM Miller (2477_CR51) 2020; 38
RD Finn (2477_CR36) 2011; 39
H Nilsen (2477_CR29) 1997; 25
SR Richardson (2477_CR18) 2014; 3
LS Ludwig (2477_CR54) 2019; 176
FD Urnov (2477_CR20) 2010; 11
AV Kotrys (2477_CR47) 2019; 47
LM Iyer (2477_CR15) 2011; 39
J Magnusson (2477_CR32) 2003; 289
RD Hood (2477_CR17) 2010; 7
H Nishimasu (2477_CR25) 2015; 162
J Painter (2477_CR44) 2006; 62
S Coulthurst (2477_CR16) 2019; 165
AV Anzalone (2477_CR26) 2019; 576
LW Koblan (2477_CR30) 2018; 36
JB Stewart (2477_CR7) 2015; 16
FC Rinaldi (2477_CR34) 2017; 45
PD Adams (2477_CR42) 2010; 66
SR Bacman (2477_CR9) 2013; 19
32641792 - Nature. 2020 Jul;583(7816):343
33027575 - N Engl J Med. 2020 Oct 8;383(15):1489-1491
32819722 - Trends Genet. 2020 Nov;36(11):809-810
32888436 - Mol Cell. 2020 Sep 3;79(5):708-709
32641789 - Nature. 2020 Jul;583(7817):521-522
References_xml – volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: CR43
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D
– volume: 37
  start-page: 224
  year: 2019
  end-page: 226
  ident: CR53
  article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis
  publication-title: Nat. Biotechnol.
– volume: 24
  start-page: 1696
  year: 2018
  end-page: 1700
  ident: CR8
  article-title: MitoTALEN reduces mutant mtDNA load and restores tRNA levels in a mouse model of heteroplasmic mtDNA mutation
  publication-title: Nat. Med.
– volume: 66
  start-page: 12
  year: 2010
  end-page: 21
  ident: CR45
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D
– volume: 576
  start-page: 149
  year: 2019
  end-page: 157
  ident: CR26
  article-title: Search-and-replace genome editing without double-strand breaks or donor DNA
  publication-title: Nature
– volume: 289
  start-page: 133
  year: 2003
  end-page: 142
  ident: CR32
  article-title: Replication of mitochondrial DNA occurs throughout the mitochondria of cultured human cells
  publication-title: Exp. Cell Res.
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  ident: CR41
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
– volume: 9
  year: 2018
  ident: CR11
  article-title: The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions
  publication-title: Nat. Commun.
– volume: 36
  start-page: 843
  year: 2018
  end-page: 846
  ident: CR30
  article-title: Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction
  publication-title: Nat. Biotechnol.
– volume: 533
  start-page: 420
  year: 2016
  end-page: 424
  ident: CR14
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
– volume: 115
  start-page: E6283
  year: 2018
  end-page: E6290
  ident: CR6
  article-title: Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 165
  start-page: 503
  year: 2019
  end-page: 515
  ident: CR16
  article-title: The type VI secretion system: a versatile bacterial weapon
  publication-title: Microbiology
– volume: 81
  start-page: 3623
  year: 2015
  end-page: 3630
  ident: CR37
  article-title: In-frame and unmarked gene deletions in via an allelic exchange system compatible with gateway technology
  publication-title: Appl. Environ. Microbiol.
– volume: 3
  start-page: e02008
  year: 2014
  ident: CR18
  article-title: APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition
  publication-title: eLife
– volume: 113
  start-page: 2176
  year: 2016
  end-page: 2181
  ident: CR46
  article-title: Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 5
  start-page: e10575
  year: 2016
  ident: CR31
  article-title: Mitochondrial dysfunction remodels one-carbon metabolism in human cells
  publication-title: eLife
– volume: 1
  start-page: 162
  year: 2006
  end-page: 169
  ident: CR39
  article-title: P. mini-Tn7 insertion in bacteria with multiple S-linked Tn7 sites: example ATCC 23344
  publication-title: Nat. Protoc.
– volume: 176
  start-page: 1325
  year: 2019
  end-page: 1339.e22
  ident: CR54
  article-title: Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics
  publication-title: Cell
– volume: 11
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR57
  article-title: SIFT missense predictions for genomes
  publication-title: Nat. Protoc.
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: CR48
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 19
  start-page: 1111
  year: 2013
  end-page: 1113
  ident: CR9
  article-title: Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs
  publication-title: Nat. Med.
– volume: 5
  start-page: eaax5717
  year: 2019
  ident: CR40
  article-title: Analysis and minimization of cellular RNA editing by DNA adenine base editors
  publication-title: Sci. Adv.
– volume: 62
  start-page: 439
  year: 2006
  end-page: 450
  ident: CR44
  article-title: Optimal description of a protein structure in terms of multiple groups undergoing TLS motion
  publication-title: Acta Crystallogr. D
– volume: 11
  start-page: 636
  year: 2010
  end-page: 646
  ident: CR20
  article-title: Genome editing with engineered zinc finger nucleases
  publication-title: Nat. Rev. Genet.
– volume: 19
  start-page: 770
  year: 2018
  end-page: 788
  ident: CR1
  article-title: Base editing: precision chemistry on the genome and transcriptome of living cells
  publication-title: Nat. Rev. Genet.
– volume: 47
  start-page: 7502
  year: 2019
  end-page: 7517
  ident: CR47
  article-title: Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 49
  year: 2013
  end-page: 55
  ident: CR21
  article-title: TALENs: a widely applicable technology for targeted genome editing
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 34
  start-page: 242
  year: 2018
  end-page: 255.e5
  ident: CR33
  article-title: Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hürthle cell carcinoma
  publication-title: Cancer Cell
– volume: 353
  start-page: aaf8729
  year: 2016
  ident: CR27
  article-title: Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
  publication-title: Science
– volume: 34
  start-page: 101
  year: 2018
  end-page: 110
  ident: CR4
  article-title: Mitochondrial genome engineering: the revolution may not be CRISPR-ized
  publication-title: Trends Genet.
– volume: 5
  start-page: a012583
  year: 2013
  ident: CR19
  article-title: Base excision repair
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 38
  start-page: 620
  year: 2020
  end-page: 628
  ident: CR56
  article-title: Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors
  publication-title: Nat. Biotechnol.
– volume: 38
  start-page: 471
  year: 2020
  end-page: 481
  ident: CR51
  article-title: Continuous evolution of SpCas9 variants compatible with non-G PAMs
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 458
  year: 2014
  end-page: 466
  ident: CR10
  article-title: Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations
  publication-title: EMBO Mol. Med.
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: CR42
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D
– volume: 9
  year: 2018
  ident: CR12
  article-title: Linear mitochondrial DNA is rapidly degraded by components of the replication machinery
  publication-title: Nat. Commun.
– volume: 3
  start-page: eaao4774
  year: 2017
  ident: CR28
  article-title: Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity
  publication-title: Sci. Adv.
– volume: 22
  start-page: 568
  year: 2012
  end-page: 576
  ident: CR50
  article-title: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing
  publication-title: Genome Res.
– volume: 20
  start-page: 436
  year: 2019
  end-page: 447
  ident: CR55
  article-title: Elucidating the editome: bioinformatics approaches for RNA editing detection
  publication-title: Brief. Bioinform.
– volume: 39
  start-page: W29
  year: 2011
  end-page: W37
  ident: CR36
  article-title: HMMER web server: interactive sequence similarity searching
  publication-title: Nucleic Acids Res.
– volume: 45
  start-page: 6960
  year: 2017
  end-page: 6970
  ident: CR34
  article-title: The effect of increasing numbers of repeats on TAL effector DNA binding specificity
  publication-title: Nucleic Acids Res.
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: CR49
  article-title: Fast and accurate short read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
– volume: 491
  start-page: 374
  year: 2012
  end-page: 383
  ident: CR5
  article-title: Mitochondrial disorders as windows into an ancient organelle
  publication-title: Nature
– volume: 162
  start-page: 1113
  year: 2015
  end-page: 1126
  ident: CR25
  article-title: Crystal structure of Cas9
  publication-title: Cell
– volume: 152
  start-page: 1173
  year: 2013
  end-page: 1183
  ident: CR23
  article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
  publication-title: Cell
– volume: 25
  start-page: 750
  year: 1997
  end-page: 755
  ident: CR29
  article-title: Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the gene
  publication-title: Nucleic Acids Res.
– volume: 32
  start-page: 577
  year: 2014
  end-page: 582
  ident: CR22
  article-title: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
  publication-title: Nat. Biotechnol.
– volume: 551
  start-page: 464
  year: 2017
  end-page: 471
  ident: CR13
  article-title: Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage
  publication-title: Nature
– volume: 33
  start-page: 1293
  year: 2015
  end-page: 1298
  ident: CR24
  article-title: Broadening the targeting range of CRISPR–Cas9 by modifying PAM recognition
  publication-title: Nat. Biotechnol.
– volume: 7
  year: 2016
  ident: CR35
  article-title: Engineering and optimising deaminase fusions for genome editing
  publication-title: Nat. Commun.
– volume: 8
  year: 2017
  ident: CR52
  article-title: Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery
  publication-title: Nat. Commun.
– volume: 16
  start-page: 530
  year: 2015
  end-page: 542
  ident: CR7
  article-title: The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease
  publication-title: Nat. Rev. Genet.
– volume: 169
  start-page: 559
  year: 2017
  ident: CR2
  article-title: CRISPR-based technologies for the manipulation of eukaryotic genomes
  publication-title: Cell
– volume: 7
  start-page: 25
  year: 2010
  end-page: 37
  ident: CR17
  article-title: A type VI secretion system of targets a toxin to bacteria
  publication-title: Cell Host Microbe
– volume: 43
  start-page: 606
  year: 2018
  end-page: 622
  ident: CR3
  article-title: Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands
  publication-title: Trends Biochem. Sci.
– volume: 39
  start-page: 9473
  year: 2011
  end-page: 9497
  ident: CR15
  article-title: Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: e774
  year: 2019
  ident: CR38
  article-title: utilizes a type VI secretion system for bacterial competition
  publication-title: MicrobiologyOpen
– volume: 43
  start-page: 606
  year: 2018
  ident: 2477_CR3
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2018.04.013
– volume: 22
  start-page: 568
  year: 2012
  ident: 2477_CR50
  publication-title: Genome Res.
  doi: 10.1101/gr.129684.111
– volume: 38
  start-page: 620
  year: 2020
  ident: 2477_CR56
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0414-6
– volume: 20
  start-page: 436
  year: 2019
  ident: 2477_CR55
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx129
– volume: 165
  start-page: 503
  year: 2019
  ident: 2477_CR16
  publication-title: Microbiology
  doi: 10.1099/mic.0.000789
– volume: 62
  start-page: 439
  year: 2006
  ident: 2477_CR44
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444906005270
– volume: 353
  start-page: aaf8729
  year: 2016
  ident: 2477_CR27
  publication-title: Science
  doi: 10.1126/science.aaf8729
– volume: 5
  start-page: a012583
  year: 2013
  ident: 2477_CR19
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012583
– volume: 3
  start-page: eaao4774
  year: 2017
  ident: 2477_CR28
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao4774
– volume: 533
  start-page: 420
  year: 2016
  ident: 2477_CR14
  publication-title: Nature
  doi: 10.1038/nature17946
– volume: 39
  start-page: W29
  year: 2011
  ident: 2477_CR36
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr367
– volume: 176
  start-page: 1325
  year: 2019
  ident: 2477_CR54
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.022
– volume: 289
  start-page: 133
  year: 2003
  ident: 2477_CR32
  publication-title: Exp. Cell Res.
  doi: 10.1016/S0014-4827(03)00249-0
– volume: 8
  start-page: e774
  year: 2019
  ident: 2477_CR38
  publication-title: MicrobiologyOpen
  doi: 10.1002/mbo3.774
– volume: 3
  start-page: e02008
  year: 2014
  ident: 2477_CR18
  publication-title: eLife
  doi: 10.7554/eLife.02008
– volume: 38
  start-page: 471
  year: 2020
  ident: 2477_CR51
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0412-8
– volume: 162
  start-page: 1113
  year: 2015
  ident: 2477_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.007
– volume: 66
  start-page: 12
  year: 2010
  ident: 2477_CR45
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909042073
– volume: 25
  start-page: 750
  year: 1997
  ident: 2477_CR29
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.4.750
– volume: 36
  start-page: 843
  year: 2018
  ident: 2477_CR30
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4172
– volume: 5
  start-page: eaax5717
  year: 2019
  ident: 2477_CR40
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax5717
– volume: 24
  start-page: 1696
  year: 2018
  ident: 2477_CR8
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0166-8
– volume: 9
  year: 2018
  ident: 2477_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04895-1
– volume: 113
  start-page: 2176
  year: 2016
  ident: 2477_CR46
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1522325113
– volume: 16
  start-page: 530
  year: 2015
  ident: 2477_CR7
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3966
– volume: 47
  start-page: 7502
  year: 2019
  ident: 2477_CR47
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz542
– volume: 551
  start-page: 464
  year: 2017
  ident: 2477_CR13
  publication-title: Nature
  doi: 10.1038/nature24644
– volume: 37
  start-page: 224
  year: 2019
  ident: 2477_CR53
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0032-3
– volume: 7
  year: 2016
  ident: 2477_CR35
  publication-title: Nat. Commun.
– volume: 6
  start-page: 458
  year: 2014
  ident: 2477_CR10
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201303672
– volume: 25
  start-page: 1754
  year: 2009
  ident: 2477_CR49
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 576
  start-page: 149
  year: 2019
  ident: 2477_CR26
  publication-title: Nature
  doi: 10.1038/s41586-019-1711-4
– volume: 33
  start-page: 1293
  year: 2015
  ident: 2477_CR24
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3404
– volume: 9
  start-page: 676
  year: 2012
  ident: 2477_CR48
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 169
  start-page: 559
  year: 2017
  ident: 2477_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.005
– volume: 9
  year: 2018
  ident: 2477_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04131-w
– volume: 39
  start-page: 9473
  year: 2011
  ident: 2477_CR15
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr691
– volume: 5
  start-page: e10575
  year: 2016
  ident: 2477_CR31
  publication-title: eLife
  doi: 10.7554/eLife.10575
– volume: 34
  start-page: 242
  year: 2018
  ident: 2477_CR33
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.06.013
– volume: 1
  start-page: 162
  year: 2006
  ident: 2477_CR39
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.25
– volume: 19
  start-page: 770
  year: 2018
  ident: 2477_CR1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0059-1
– volume: 491
  start-page: 374
  year: 2012
  ident: 2477_CR5
  publication-title: Nature
  doi: 10.1038/nature11707
– volume: 34
  start-page: 101
  year: 2018
  ident: 2477_CR4
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2017.11.001
– volume: 11
  start-page: 1
  year: 2016
  ident: 2477_CR57
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.123
– volume: 14
  start-page: 49
  year: 2013
  ident: 2477_CR21
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3486
– volume: 7
  start-page: 25
  year: 2010
  ident: 2477_CR17
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.12.007
– volume: 19
  start-page: 1111
  year: 2013
  ident: 2477_CR9
  publication-title: Nat. Med.
  doi: 10.1038/nm.3261
– volume: 11
  start-page: 636
  year: 2010
  ident: 2477_CR20
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2842
– volume: 45
  start-page: 6960
  year: 2017
  ident: 2477_CR34
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx342
– volume: 115
  start-page: E6283
  year: 2018
  ident: 2477_CR6
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1711888115
– volume: 81
  start-page: 3623
  year: 2015
  ident: 2477_CR37
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03909-14
– volume: 60
  start-page: 2126
  year: 2004
  ident: 2477_CR43
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444904019158
– volume: 152
  start-page: 1173
  year: 2013
  ident: 2477_CR23
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.022
– volume: 276
  start-page: 307
  year: 1997
  ident: 2477_CR41
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 32
  start-page: 577
  year: 2014
  ident: 2477_CR22
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2909
– volume: 66
  start-page: 213
  year: 2010
  ident: 2477_CR42
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909052925
– volume: 8
  year: 2017
  ident: 2477_CR52
  publication-title: Nat. Commun.
– reference: 32641792 - Nature. 2020 Jul;583(7816):343
– reference: 33027575 - N Engl J Med. 2020 Oct 8;383(15):1489-1491
– reference: 32888436 - Mol Cell. 2020 Sep 3;79(5):708-709
– reference: 32819722 - Trends Genet. 2020 Nov;36(11):809-810
– reference: 32641789 - Nature. 2020 Jul;583(7817):521-522
SSID ssj0005174
Score 2.7081435
Snippet Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 631
SubjectTerms 45/41
45/70
631/1647/1511
631/326/1320
631/61/201/2110
631/80/642/333
Bacterial toxins
Bacterial Toxins - chemistry
Bacterial Toxins - genetics
Bacterial Toxins - metabolism
Base Sequence
Biocompatibility
Biomedical materials
Burkholderia cenocepacia - enzymology
Burkholderia cenocepacia - genetics
Cell Respiration - genetics
Chemical properties
CRISPR
Crystal structure
Cytidine - metabolism
Cytidine deaminase
Cytidine Deaminase - chemistry
Cytidine Deaminase - genetics
Cytidine Deaminase - metabolism
Cytosine
Deamination
Deoxyribonucleic acid
DNA
DNA, Mitochondrial - genetics
DNA-binding protein
E coli
Enzymes
Gene Editing - methods
Genes, Mitochondrial - genetics
Genetic aspects
Genetic modification
Genome editing
Genome, Mitochondrial - genetics
Genomes
HEK293 Cells
Humanities and Social Sciences
Humans
Methods
Microbial enzymes
Mitochondria
Mitochondria - genetics
Mitochondrial Diseases - genetics
Mitochondrial Diseases - therapy
Mitochondrial DNA
multidisciplinary
Mutation
Nuclease
Oxidative Phosphorylation
Phosphorylation
Protein Engineering
Proteins
Ribonucleic acid
RNA
RNA, Guide, CRISPR-Cas Systems - genetics
Science
Science (multidisciplinary)
Substrate Specificity
Therapeutic applications
Toxins
Transcription
Type VI Secretion Systems - metabolism
Unwinding
Uracil
Title A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing
URI https://link.springer.com/article/10.1038/s41586-020-2477-4
https://www.ncbi.nlm.nih.gov/pubmed/32641830
https://www.proquest.com/docview/2427314179
https://www.proquest.com/docview/2422005063
https://pubmed.ncbi.nlm.nih.gov/PMC7381381
Volume 583
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY-2-vHbFG2OfiCq2HFlPIwvN2sFKSVbIm5AluQu0TlonsP33u5OVpA5bIfhFJ8fWne6nk86_I-St5hpwLIUwVeqScmEzqkUnoVaWXe0ybqWvPPfjtHt8zr-Ps3HYcKtDWuXSJ3pHbacG98gPAUpE2sF6WV9m1xSrRuHpaiihcZ9sI3UZpnSJsVineGywMC9PNdP8sAbgyjH9ltGEC0F5C5c2vfMteNpMndw4P_WwNHhMHoX1ZNxrDGCH3HPVLnng8zpNvUt2wtyt4w-BYPrjEzLqxUVD0gw9zZ_5BPDLxdZpTIupXTyf_p5UsfNfVdVxf3gyOhvS8sa5-ArmP_jLyvquiIAxgB9mTj8l54Ojn_1jGoorUCNSOaeOs1LLrBBM2yzXspv7aEJ2EgcRXqEhLnFW6LKQOeCckMxyCKVBj4U0mZUifUa2qmnlXpDYmZQxnRirE8sTJnSmRVKy1NoOslbKiLDl0CoTmMexAMal8ifgaa4abSjQhkJtKB6RT6sus4Z24y7hN6gvhXQWFebLXOhFXauT0VD1ugDREHh3k4i8D0LlFP7c6PD5AbwCMmC1JPdakmY2uVa3Wt-1Wi8a5f3rNvstQZi2pt28tC4V3Eat1kYekderZuyJqXCVmy68DO4EwtIyIs8bY1wNEazFOfhoFhHRMtOVAJKJt1uqyS9PKi5g6Qa_iHxeGvT6sf478i_vfok98jDBGcYETdJ9sjW_WbhXsIabFwd-osI173fwOvh2QLa_Hp2eDf8C5Q5BgA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcReEBsfCxsQEN_ImuskdfyAUDWYWvYh1G5S34wTO6MSpN3SCvZP8TdydpJ2qWBvk_p256T2ne93F5_vAF6oUCGOBRimCpWRkOuIKN5iRIusrUwUauE6zx0etbsn4ZdhNFyBP_VdGJtWWdtEZ6j1OLXfyHcQSnjQsv2yPk7OiO0aZU9X6xYapVrsm4tfGLIVH3qfUL4vGdv7fLzbJVVXAZLyQEyJCWmmRJRwqnQUK9GOnRstWsxgaJModMiN5ipLRIwGnguqQ4whcQKJSCMteIDPvQE3EXip3VF8yBcpJUtVn-tT1CDeKRAoY5vuSwkLOSdhAweX0eASHC6nai6d1zoY3LsLdyr_1e-UCrcOKybfgFsujzQtNmC9shWF_6YqaP32Hgw6flIWhcaR6cV0hHhpfG2UTcMpjD8d_x7lvnG3uAp_t98bfO2T7NwY_yfaG7TPuXZDLeL6CLY2U_s-nFzLsj-A1Xycm03wTRpQqliqFdMho1xFirOMBlq3bJVM4QGtl1amVaVz23Djh3Qn7kEsS2lIlIa00pChB-_mQyZlmY-rmJ9beUlbPiO3-TmnalYUsjfoy04bXQIM9NvMg9cVUzbGl6equu6AU7AVtxqcWw3OdDI6k5eorxrU01J4_3rMdoMRzUTaJNfaJSszVcjFpvLg2ZxsR9rUu9yMZ47HfnlEV9aDh6UyzpcIff8QMYF6wBtqOmewxcublHz03RUx5-gq4s-D97VCL_7Wf1f-0dWTeAq3u8eHB_Kgd7S_BWvM7jbKCQu2YXV6PjOP0X-cJk_cpvXh23Vbib9TXnl6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviI2vsAEG8Y2iuk5Sxw8IVRvVymCa2k3qm3FiZ1SCtFtawf41_jrOTtIuFextUt_unNS-8_3u4vMdwAsVKsSxAMNUoTI_5DryFW8zX4uso0wUauE6z3096Owdh59H0WgN_tR3YWxaZW0TnaHWk9R-I28hlPCgbftltbIqLeJwt_dxeurbDlL2pLVup1GqyL45_4XhW_Ghv4uyfslY79PRzp5fdRjwUx6ImW9CmikRJZwqHcVKdGLnUos2MxjmJAqdc6O5yhIRo7HnguoQ40mcTCLSSAse4HOvwXUeRG27x_iIL9NLVipA1yeqQdwqEDRjm_pLfRZy7ocNTFxFhgvQuJq2uXJ26yCxdwduV74s6ZbKtwFrJt-EGy6nNC02YaOyGwV5UxW3fnsXhl2SlAWicWR6PhsjdhqijbIpOYUhs8nvcU6Mu9FVkJ1Bf3g48LMzY8hPtD1oq3Pthlr0JQi8Nmv7HhxfybLfh_V8kpuHQEwaUKpYqhXTIaNcRYqzjAZat23FTOEBrZdWplXVc9t844d0p-9BLEtpSJSGtNKQoQfvFkOmZcmPy5ifW3lJW0ojt0p5ouZFIfvDgex20D3AoL_DPHhdMWUTfHmqqqsPOAVbfavBudXgTKfjU3mB-qpBPSmF96_HbDcY0WSkTXKtXbIyWYVcbjAPni3IdqRNw8vNZO547FdIdGs9eFAq42KJMA4IER-oB7yhpgsGW8i8ScnH311Bc45uI_48eF8r9PJv_XflH10-iadwE-2D_NI_2N-CW8xuNsp9FmzD-uxsbh6jKzlLnrg9S-DbVRuJv3w3fbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bacterial+cytidine+deaminase+toxin+enables+CRISPR-free+mitochondrial+base+editing&rft.jtitle=Nature+%28London%29&rft.au=Mok%2C+Beverly+Y.&rft.au=de+Moraes%2C+Marcos+H.&rft.au=Zeng%2C+Jun&rft.au=Bosch%2C+Dustin+E.&rft.date=2020-07-23&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=583&rft.issue=7817&rft.spage=631&rft.epage=637&rft_id=info:doi/10.1038%2Fs41586-020-2477-4&rft_id=info%3Apmid%2F32641830&rft.externalDocID=PMC7381381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon