A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing
Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques 1 , 2 . Because p...
Saved in:
Published in | Nature (London) Vol. 583; no. 7817; pp. 631 - 637 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.07.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques
1
,
2
. Because previously described cytidine deaminases operate on single-stranded nucleic acids
3
, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)—for example by a CRISPR–Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria
4
. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases
9
,
10
.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.
An interbacterial toxin that catalyses the deamination of cytidines within double-stranded DNA forms part of a CRISPR-free, RNA-free base editing system that enables manipulation of human mitochondrial DNA. |
---|---|
AbstractList | Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques.sup.1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids.sup.3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)--for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria.sup.4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases.sup.9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C*G-to-T*A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions ofthe split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C·G-to-T·A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques . Because previously described cytidine deaminases operate on single-stranded nucleic acids , their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria . As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases .Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques 1 , 2 . Because previously described cytidine deaminases operate on single-stranded nucleic acids 3 , their use in base editing requires the unwinding of double-stranded DNA (dsDNA)—for example by a CRISPR–Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria 4 . As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases 9 , 10 .Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. An interbacterial toxin that catalyses the deamination of cytidines within double-stranded DNA forms part of a CRISPR-free, RNA-free base editing system that enables manipulation of human mitochondrial DNA. Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques.sup.1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids.sup.3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)--for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria.sup.4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases.sup.9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C*G-to-T*A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. An interbacterial toxin that catalyses the deamination of cytidines within double-stranded DNA forms part of a CRISPR-free, RNA-free base editing system that enables manipulation of human mitochondrial DNA. Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques 1 , 2 . Since previously described cytidine deaminases operate on single-stranded nucleic acids 3 , their use in base editing requires the unwinding of double-stranded DNA (dsDNA), for example, by a CRISPR–Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria 4 . Here we describe an interbacterial toxin, which we named DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. Further information on research design is available in the Nature Research Reporting Summary linked to this paper. |
Audience | Academic |
Author | Bosch, Dustin E. Peterson, S. Brook Mougous, Joseph D. de Moraes, Marcos H. Liu, David R. Kotrys, Anna V. Mok, Beverly Y. Zeng, Jun Raguram, Aditya Radey, Matthew C. Mootha, Vamsi K. Hsu, FoSheng |
AuthorAffiliation | 3 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA 8 Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 10 Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 6 Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA 1 Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA 9 Broad Institute of MIT and Harvard, Cambridge, MA, USA 4 Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA 5 Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA 7 Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA |
AuthorAffiliation_xml | – name: 3 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA – name: 10 Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland – name: 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA – name: 7 Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA – name: 1 Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA – name: 6 Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA – name: 8 Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA – name: 4 Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA – name: 5 Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA – name: 9 Broad Institute of MIT and Harvard, Cambridge, MA, USA |
Author_xml | – sequence: 1 givenname: Beverly Y. surname: Mok fullname: Mok, Beverly Y. organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University – sequence: 2 givenname: Marcos H. surname: de Moraes fullname: de Moraes, Marcos H. organization: Department of Microbiology, University of Washington School of Medicine – sequence: 3 givenname: Jun surname: Zeng fullname: Zeng, Jun organization: Department of Microbiology, University of Washington School of Medicine – sequence: 4 givenname: Dustin E. orcidid: 0000-0002-7430-2939 surname: Bosch fullname: Bosch, Dustin E. organization: Department of Microbiology, University of Washington School of Medicine, Department of Pathology, University of Washington School of Medicine – sequence: 5 givenname: Anna V. orcidid: 0000-0003-4983-1414 surname: Kotrys fullname: Kotrys, Anna V. organization: Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Broad Institute of MIT and Harvard, Institute of Biochemistry and Biophysics Polish Academy of Sciences – sequence: 6 givenname: Aditya surname: Raguram fullname: Raguram, Aditya organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University – sequence: 7 givenname: FoSheng surname: Hsu fullname: Hsu, FoSheng organization: Department of Microbiology, University of Washington School of Medicine – sequence: 8 givenname: Matthew C. surname: Radey fullname: Radey, Matthew C. organization: Department of Microbiology, University of Washington School of Medicine – sequence: 9 givenname: S. Brook surname: Peterson fullname: Peterson, S. Brook organization: Department of Microbiology, University of Washington School of Medicine – sequence: 10 givenname: Vamsi K. surname: Mootha fullname: Mootha, Vamsi K. organization: Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Broad Institute of MIT and Harvard – sequence: 11 givenname: Joseph D. surname: Mougous fullname: Mougous, Joseph D. email: mougous@uw.edu organization: Department of Microbiology, University of Washington School of Medicine, Department of Biochemistry, University of Washington School of Medicine, Howard Hughes Medical Institute, University of Washington – sequence: 12 givenname: David R. orcidid: 0000-0002-9943-7557 surname: Liu fullname: Liu, David R. email: drliu@fas.harvard.edu organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32641830$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1v0zAUhi00xLbCD-AGRXADFxn-ip3cTKoqPipNArVwbTnOSeYpsbvYRdu_x6FjW6eCbMmS_byv7XPeU3TkvAOEXhN8RjArPwZOilLkmOKccilz_gydEC5FzkUpj9AJxrTMccnEMToN4QpjXBDJX6BjRgUnJcMnaD3Pam0ijFb3mbmNtrEOsgb0YJ0OkEV_Y10GTtc9hGyxWq6_r_J2BMgGG7259K75I60nGBobreteouet7gO8ultn6OfnTz8WX_OLb1-Wi_lFbiSrYg4ct7oqaol1U5S6EiVmuBAVoSCJrLXgFBqp27oqOWGywg3HXGhJ6soUTSXZDJ3vfDfbeoDGgIuj7tVmtIMeb5XXVu2fOHupOv9LSVaSac7Q-zuD0V9vIUQ12GCg77UDvw2KckpTzbBgCX33BL3y29Gl702UZIQTWT1Qne5BWdf6dK-ZTNVcMMyo5IImKj9AdeAgPTJ1uLVpe49_e4A3G3utHkNnB6A0GhisOej6YU-QmAg3sdPbENRyvdpn3zyu9H2J_-YoAWQHmNGHMEJ7jxCspqyqXVZVyqqasqp40sgnGmOjjtZPzbL9f5V0pwzpFtfB-NCMf4t-Azjp9-o |
CitedBy_id | crossref_primary_10_1016_j_apsb_2024_08_007 crossref_primary_10_1016_j_tips_2021_10_012 crossref_primary_10_1089_crispr_2021_0063 crossref_primary_10_1016_j_cell_2023_11_035 crossref_primary_10_1016_j_csbj_2021_06_003 crossref_primary_10_1093_hmg_ddae025 crossref_primary_10_1016_j_sbi_2021_03_004 crossref_primary_10_3389_fcell_2020_615461 crossref_primary_10_1016_j_omtn_2023_04_014 crossref_primary_10_1016_j_scienta_2024_113774 crossref_primary_10_1186_s12915_024_01895_0 crossref_primary_10_1093_humupd_dmaf004 crossref_primary_10_1360_SSV_2021_0366 crossref_primary_10_1038_s41586_024_07332_0 crossref_primary_10_1016_j_lfs_2021_119908 crossref_primary_10_1360_nso_20220067 crossref_primary_10_1093_hmg_ddae037 crossref_primary_10_1186_s12967_022_03685_0 crossref_primary_10_1038_s41467_022_34784_7 crossref_primary_10_1016_j_omtn_2022_10_012 crossref_primary_10_1016_j_xplc_2021_100141 crossref_primary_10_1016_j_cmet_2024_06_011 crossref_primary_10_1007_s00109_023_02389_2 crossref_primary_10_5511_plantbiotechnology_24_0510a crossref_primary_10_1016_j_mito_2022_05_002 crossref_primary_10_1038_s41467_024_45969_7 crossref_primary_10_1016_j_xpro_2022_101288 crossref_primary_10_3389_fcell_2021_671698 crossref_primary_10_1038_s41551_024_01220_8 crossref_primary_10_1038_s41587_022_01533_6 crossref_primary_10_1016_j_xcrp_2020_100270 crossref_primary_10_1038_s41586_021_03191_1 crossref_primary_10_1016_j_ggedit_2021_100005 crossref_primary_10_1016_j_ggedit_2021_100007 crossref_primary_10_1016_j_ygeno_2024_110836 crossref_primary_10_1074_jbc_REV120_015101 crossref_primary_10_1038_s41477_022_01108_y crossref_primary_10_1007_s10585_021_10090_2 crossref_primary_10_1016_j_molcel_2020_08_009 crossref_primary_10_1080_10409238_2021_1934812 crossref_primary_10_3390_biologics3040014 crossref_primary_10_1038_s41467_020_19753_2 crossref_primary_10_1093_pcp_pcad162 crossref_primary_10_3389_fpls_2021_701681 crossref_primary_10_1016_j_omtn_2021_08_015 crossref_primary_10_1016_j_tim_2022_03_009 crossref_primary_10_1007_s12274_024_6748_5 crossref_primary_10_1016_j_molp_2020_11_002 crossref_primary_10_3390_genes12111668 crossref_primary_10_1126_sciadv_adk8801 crossref_primary_10_1007_s11248_024_00404_x crossref_primary_10_1016_j_heares_2023_108689 crossref_primary_10_1056_NEJMcibr2025332 crossref_primary_10_1038_s41421_021_00358_y crossref_primary_10_1038_s41467_024_49343_5 crossref_primary_10_1186_s12929_023_00967_7 crossref_primary_10_1093_nar_gkae800 crossref_primary_10_1038_s41467_024_45100_w crossref_primary_10_1038_s41556_025_01625_w crossref_primary_10_1038_s41392_024_02081_y crossref_primary_10_3724_zdxbyxb_2023_0129 crossref_primary_10_1038_s41421_021_00325_7 crossref_primary_10_1038_s41564_024_01820_9 crossref_primary_10_3389_fgeed_2023_1141618 crossref_primary_10_1038_s41467_024_53806_0 crossref_primary_10_1093_nar_gkab788 crossref_primary_10_3389_fneur_2024_1499876 crossref_primary_10_1126_scitranslmed_adr0792 crossref_primary_10_3389_fneur_2021_648916 crossref_primary_10_1007_s10571_021_01117_z crossref_primary_10_1093_hmg_ddab299 crossref_primary_10_1038_s41594_023_01034_3 crossref_primary_10_1016_j_apsb_2022_03_001 crossref_primary_10_1038_s41422_024_01028_w crossref_primary_10_1038_s41551_022_00968_1 crossref_primary_10_7554_eLife_76557 crossref_primary_10_1038_s41477_021_00954_6 crossref_primary_10_1038_s41587_025_02608_w crossref_primary_10_1038_s41467_023_42359_3 crossref_primary_10_1073_pnas_2423270121 crossref_primary_10_1038_s41587_023_01910_9 crossref_primary_10_1097_ICU_0000000000001028 crossref_primary_10_3390_cells11172682 crossref_primary_10_3390_ijms231810442 crossref_primary_10_3390_ijms22147730 crossref_primary_10_1016_j_tig_2022_04_011 crossref_primary_10_3390_ijms24031969 crossref_primary_10_3390_jcto2030006 crossref_primary_10_1016_j_heliyon_2024_e28808 crossref_primary_10_1016_j_neurot_2023_11_001 crossref_primary_10_1038_s41477_021_00943_9 crossref_primary_10_1038_s41587_023_01791_y crossref_primary_10_1002_iub_2769 crossref_primary_10_1016_j_molmet_2024_101966 crossref_primary_10_1158_1541_7786_MCR_23_0741 crossref_primary_10_3390_brainsci14090899 crossref_primary_10_1002_advs_202409644 crossref_primary_10_1038_s43018_023_00721_w crossref_primary_10_1038_s41586_024_08048_x crossref_primary_10_1016_j_cmet_2021_01_003 crossref_primary_10_1038_s41467_023_36600_2 crossref_primary_10_3390_ijms21165880 crossref_primary_10_1038_s41434_023_00434_w crossref_primary_10_1016_j_celrep_2020_108562 crossref_primary_10_1242_dmm_049783 crossref_primary_10_1111_tpj_15715 crossref_primary_10_7554_eLife_62967 crossref_primary_10_1007_s11684_023_1013_y crossref_primary_10_3389_fphar_2022_862085 crossref_primary_10_1016_j_cmet_2021_06_013 crossref_primary_10_1080_14737159_2023_2241365 crossref_primary_10_1016_j_bbadis_2023_166804 crossref_primary_10_1134_S0026893324700195 crossref_primary_10_3390_cimb45020059 crossref_primary_10_1016_j_molcel_2024_02_016 crossref_primary_10_1038_s41467_023_36651_5 crossref_primary_10_1128_JB_00365_20 crossref_primary_10_1016_j_cobme_2023_100480 crossref_primary_10_1093_nar_gkae854 crossref_primary_10_1016_j_ggedit_2022_100018 crossref_primary_10_1016_j_cobme_2023_100489 crossref_primary_10_1021_acssynbio_3c00229 crossref_primary_10_1016_j_tig_2020_08_001 crossref_primary_10_1038_s41587_021_00938_z crossref_primary_10_1093_nsr_nwad143 crossref_primary_10_5483_BMBRep_2023_0224 crossref_primary_10_1007_s43538_022_00100_6 crossref_primary_10_1128_mbio_01039_23 crossref_primary_10_1590_1678_4685_gmb_2022_0266 crossref_primary_10_1016_j_cobme_2023_100472 crossref_primary_10_1080_15476286_2021_1935572 crossref_primary_10_1016_j_biotechadv_2025_108557 crossref_primary_10_1021_acssynbio_4c00597 crossref_primary_10_1038_s41551_022_00986_z crossref_primary_10_3390_genes13081317 crossref_primary_10_1038_d41586_020_02054_5 crossref_primary_10_1016_j_heliyon_2024_e29382 crossref_primary_10_1111_febs_16195 crossref_primary_10_1002_adfm_202202585 crossref_primary_10_1111_mmi_14648 crossref_primary_10_3389_fbioe_2024_1372211 crossref_primary_10_1016_j_biochi_2023_09_006 crossref_primary_10_7554_eLife_62816 crossref_primary_10_1002_ajmg_a_61864 crossref_primary_10_1016_j_trecan_2020_08_004 crossref_primary_10_1016_j_canlet_2020_10_038 crossref_primary_10_1016_j_molcel_2021_12_026 crossref_primary_10_3389_fcell_2021_625020 crossref_primary_10_1186_s13059_025_03478_w crossref_primary_10_1016_j_phrs_2022_106466 crossref_primary_10_1016_j_omtn_2023_09_005 crossref_primary_10_31857_S0026898424040013 crossref_primary_10_1242_jcs_258944 crossref_primary_10_1186_s12885_021_08155_2 crossref_primary_10_1128_JB_00281_21 crossref_primary_10_1016_S1474_4422_22_00174_0 crossref_primary_10_1002_adma_202305171 crossref_primary_10_1146_annurev_genet_111523_102448 crossref_primary_10_1167_tvst_10_8_4 crossref_primary_10_1038_s41576_021_00439_4 crossref_primary_10_1007_s10439_022_03051_7 crossref_primary_10_1021_acschembio_2c00836 crossref_primary_10_1038_s41598_024_63203_8 crossref_primary_10_1038_s41576_022_00501_9 crossref_primary_10_3389_fphys_2021_693734 crossref_primary_10_1155_2022_6235747 crossref_primary_10_1146_annurev_biochem_052521_013938 crossref_primary_10_1093_nar_gkad208 crossref_primary_10_1016_j_tplants_2023_12_014 crossref_primary_10_3389_fgene_2021_673951 crossref_primary_10_1089_crispr_2020_29101_dwa crossref_primary_10_3390_cells12111473 crossref_primary_10_1007_s00395_021_00889_1 crossref_primary_10_1016_j_semcdb_2021_02_006 crossref_primary_10_3390_pharmaceutics14122760 crossref_primary_10_1097_WNO_0000000000001375 crossref_primary_10_1016_j_biotechadv_2023_108155 crossref_primary_10_3390_genes12101604 crossref_primary_10_1038_s41467_021_23561_7 crossref_primary_10_1016_j_bbagrm_2024_195063 crossref_primary_10_1016_j_jobb_2024_03_001 crossref_primary_10_1016_j_nbd_2025_106822 crossref_primary_10_1016_j_jsps_2022_05_011 crossref_primary_10_1007_s12519_024_00843_w crossref_primary_10_1016_j_molcel_2024_01_027 crossref_primary_10_3389_fcell_2021_695351 crossref_primary_10_1007_s00109_023_02381_w crossref_primary_10_1007_s11427_024_2699_5 crossref_primary_10_1101_cshperspect_a041282 crossref_primary_10_1016_j_mehy_2021_110647 crossref_primary_10_1038_s41416_023_02324_9 crossref_primary_10_3389_fbioe_2022_1033669 crossref_primary_10_3389_fmicb_2022_1042505 crossref_primary_10_3389_fimmu_2022_934444 crossref_primary_10_3390_biomedicines10020490 crossref_primary_10_3389_fpls_2021_664997 crossref_primary_10_1080_14779072_2024_2328642 crossref_primary_10_1038_s41477_022_01227_6 crossref_primary_10_1093_nar_gkac699 crossref_primary_10_1016_j_jare_2023_11_033 crossref_primary_10_1038_s41573_020_0084_6 crossref_primary_10_1038_s43587_024_00672_6 crossref_primary_10_1038_s41576_022_00480_x crossref_primary_10_1016_j_biotechadv_2024_108473 crossref_primary_10_1093_genetics_iyad036 crossref_primary_10_1007_s40291_020_00510_6 crossref_primary_10_1016_j_jcyt_2023_10_004 crossref_primary_10_1016_j_schres_2022_04_003 crossref_primary_10_1038_s41392_024_02044_3 crossref_primary_10_1093_nar_gkac1162 crossref_primary_10_1038_s41421_021_00372_0 crossref_primary_10_1038_s41594_020_0474_9 crossref_primary_10_3389_fcvm_2020_604581 crossref_primary_10_1371_journal_pbio_3002071 crossref_primary_10_1016_j_addr_2024_115355 crossref_primary_10_1016_j_bbagen_2020_129835 crossref_primary_10_1016_j_omtn_2024_102170 crossref_primary_10_1093_nar_gkae577 crossref_primary_10_1038_d41586_020_01974_6 crossref_primary_10_1271_kagakutoseibutsu_61_596 crossref_primary_10_1016_j_yexcr_2022_113233 crossref_primary_10_1371_journal_pone_0289509 crossref_primary_10_1016_j_phrs_2024_107374 crossref_primary_10_1089_hum_2023_045 crossref_primary_10_1016_j_biochi_2024_10_013 crossref_primary_10_1038_s41467_024_44964_2 crossref_primary_10_1126_science_abg0491 crossref_primary_10_1016_j_bbadis_2020_166016 crossref_primary_10_1038_s41467_022_31745_y crossref_primary_10_2147_JIR_S506760 crossref_primary_10_1038_s41576_024_00720_2 crossref_primary_10_1038_s41588_024_01794_8 crossref_primary_10_1038_s41467_022_28358_w crossref_primary_10_1016_j_neurot_2023_e00311 crossref_primary_10_1089_hum_2024_073 crossref_primary_10_1002_smll_202303682 crossref_primary_10_3390_ijms22147369 crossref_primary_10_1016_j_tig_2022_06_015 crossref_primary_10_1002_ggn2_202100019 crossref_primary_10_1038_s41598_022_16716_z crossref_primary_10_1080_15476286_2021_1940445 crossref_primary_10_1038_s41421_022_00391_5 crossref_primary_10_1186_s13578_025_01351_8 crossref_primary_10_1016_j_ymthe_2021_10_026 crossref_primary_10_1021_acsbiomaterials_1c01114 crossref_primary_10_1016_j_molmet_2021_101314 crossref_primary_10_15212_HOD_2023_0001 crossref_primary_10_1186_s13045_024_01615_9 crossref_primary_10_1038_s12276_024_01333_9 crossref_primary_10_3390_life12111934 crossref_primary_10_1038_s43587_022_00191_2 crossref_primary_10_1128_mBio_03441_20 crossref_primary_10_1093_noajnl_vdab074 crossref_primary_10_1038_s41421_021_00307_9 crossref_primary_10_1093_lifemedi_lnac014 crossref_primary_10_1080_14712598_2024_2359015 crossref_primary_10_15252_embr_202255678 crossref_primary_10_1038_s41587_022_01486_w crossref_primary_10_1016_j_molmed_2020_12_005 crossref_primary_10_3390_ijms24010608 crossref_primary_10_1186_s40168_025_02038_5 crossref_primary_10_1038_s41586_022_04836_5 crossref_primary_10_1038_s41576_022_00541_1 crossref_primary_10_1016_j_cellin_2023_100113 crossref_primary_10_1038_s41586_024_08469_8 crossref_primary_10_1111_jipb_13425 crossref_primary_10_1016_j_biomaterials_2021_121108 crossref_primary_10_1016_j_chembiol_2021_08_003 crossref_primary_10_1002_EXP_20240095 crossref_primary_10_1016_j_molp_2021_07_012 crossref_primary_10_1016_j_ijbiomac_2023_127418 crossref_primary_10_1038_s41564_022_01133_9 crossref_primary_10_1016_j_ymthe_2022_04_010 crossref_primary_10_3390_ijms24043483 crossref_primary_10_1038_s43586_023_00200_7 crossref_primary_10_1002_1878_0261_13291 crossref_primary_10_1002_oby_23424 crossref_primary_10_1073_pnas_2121177119 crossref_primary_10_1016_j_molp_2021_07_007 crossref_primary_10_1186_s13071_023_05988_7 crossref_primary_10_1002_ctm2_529 crossref_primary_10_1038_s41551_022_00993_0 crossref_primary_10_1038_s41587_022_01256_8 crossref_primary_10_1089_hum_2024_043 crossref_primary_10_1016_j_omtn_2024_102132 crossref_primary_10_1186_s13023_022_02324_7 crossref_primary_10_1016_j_lfs_2024_122797 crossref_primary_10_1038_s41598_021_90316_1 crossref_primary_10_1111_tpj_17027 crossref_primary_10_1016_j_cell_2021_10_019 crossref_primary_10_1038_s41477_021_00991_1 crossref_primary_10_3390_ijms24087079 crossref_primary_10_1038_s41392_024_01737_z crossref_primary_10_3390_ijms22062805 crossref_primary_10_7554_eLife_66676 crossref_primary_10_1016_j_tcb_2020_12_009 crossref_primary_10_1016_j_cell_2021_09_033 crossref_primary_10_1002_elsc_202400005 crossref_primary_10_3390_biomedicines11020532 crossref_primary_10_1242_dmm_048912 crossref_primary_10_2174_1570159X20666220810114644 crossref_primary_10_3892_ijmm_2022_5182 crossref_primary_10_1016_j_molcel_2022_08_011 crossref_primary_10_2337_db23_0430 crossref_primary_10_3390_pharmaceutics14061287 crossref_primary_10_1038_s12276_023_00973_7 crossref_primary_10_1016_j_scib_2023_10_025 crossref_primary_10_1002_adtp_202100040 crossref_primary_10_3390_horticulturae9121338 crossref_primary_10_1093_lifemedi_lnad028 crossref_primary_10_1093_plphys_kiab315 crossref_primary_10_1080_14712598_2022_2070427 crossref_primary_10_1007_s12038_020_00094_7 crossref_primary_10_1016_j_abb_2020_108689 crossref_primary_10_1016_j_omtn_2021_11_016 crossref_primary_10_1038_s41392_023_01546_w crossref_primary_10_1186_s13059_022_02782_z crossref_primary_10_1038_s41596_020_00450_9 crossref_primary_10_1021_acs_accounts_3c00279 crossref_primary_10_1038_s42003_023_05500_y crossref_primary_10_1016_j_cell_2025_02_009 crossref_primary_10_3390_cells12202494 crossref_primary_10_3390_ijms232416053 crossref_primary_10_1007_s00299_024_03150_w crossref_primary_10_1002_mrd_23615 crossref_primary_10_3390_ijms23052548 crossref_primary_10_3390_microorganisms11041040 crossref_primary_10_1360_SSV_2023_0149 crossref_primary_10_1016_j_cell_2023_05_041 crossref_primary_10_1186_s13073_022_01093_z crossref_primary_10_1038_s12276_024_01178_2 crossref_primary_10_1111_pbi_14358 crossref_primary_10_3389_fphys_2022_883459 crossref_primary_10_1016_j_cell_2022_03_039 crossref_primary_10_1093_nar_gkaa1032 crossref_primary_10_1038_s41598_022_21794_0 crossref_primary_10_34133_2021_9898769 crossref_primary_10_1038_s41592_021_01172_w crossref_primary_10_1093_nar_gkaa804 crossref_primary_10_1371_journal_ppat_1010182 crossref_primary_10_1016_j_mito_2023_09_004 crossref_primary_10_1016_j_cj_2021_03_011 crossref_primary_10_1038_s41477_024_01808_7 crossref_primary_10_1016_j_jacc_2022_08_716 crossref_primary_10_3389_fpls_2022_847169 crossref_primary_10_53053_TEDM6840 crossref_primary_10_1038_s41467_024_45663_8 crossref_primary_10_1038_s41576_020_00284_x crossref_primary_10_1093_plphys_kiad678 crossref_primary_10_1016_S1474_4422_21_00098_3 crossref_primary_10_1016_j_cell_2022_03_045 crossref_primary_10_1016_j_omtn_2023_102062 crossref_primary_10_1038_s41467_022_34551_8 crossref_primary_10_1111_pbi_14246 crossref_primary_10_1038_s41467_022_27962_0 crossref_primary_10_1111_nyas_14675 crossref_primary_10_3389_fmolb_2021_711436 crossref_primary_10_1093_humupd_dmab046 crossref_primary_10_1016_j_gendis_2023_06_026 crossref_primary_10_1038_s41467_021_21464_1 crossref_primary_10_1007_s11248_021_00253_y crossref_primary_10_1016_j_molcel_2023_04_012 crossref_primary_10_1016_j_molcel_2022_09_010 crossref_primary_10_3389_fgene_2021_627050 crossref_primary_10_1002_advs_202304113 crossref_primary_10_1007_s40265_020_01428_3 crossref_primary_10_1016_j_tig_2022_08_004 crossref_primary_10_52601_bpr_2023_230029 crossref_primary_10_1038_s41467_023_35886_6 crossref_primary_10_1038_s41477_022_01279_8 crossref_primary_10_1038_s41589_021_00880_w crossref_primary_10_1093_plphys_kiab591 crossref_primary_10_3390_cells12152013 crossref_primary_10_1099_mic_0_001367 crossref_primary_10_2144_btn_2020_0114 crossref_primary_10_3390_ijms25052662 crossref_primary_10_1038_s41467_022_31543_6 crossref_primary_10_2217_epi_2023_0322 crossref_primary_10_1007_s11427_022_2214_2 crossref_primary_10_52601_bpr_2024_240010 crossref_primary_10_1016_j_xplc_2024_101220 crossref_primary_10_1016_j_xinn_2022_100329 crossref_primary_10_1021_acs_nanolett_2c03958 crossref_primary_10_1007_s11910_022_01246_y crossref_primary_10_1093_nar_gkac098 crossref_primary_10_1038_s41477_021_01059_w crossref_primary_10_1002_jimd_12521 crossref_primary_10_1021_acs_chemrev_1c01063 crossref_primary_10_1016_j_omtm_2024_101253 crossref_primary_10_1111_pbi_14268 crossref_primary_10_1038_s43018_023_00722_9 crossref_primary_10_7554_eLife_63102 crossref_primary_10_1038_s41434_022_00333_6 crossref_primary_10_1038_s41584_021_00637_8 crossref_primary_10_1021_jacsau_2c00654 crossref_primary_10_1109_RBME_2024_3494715 crossref_primary_10_1242_jcs_248468 crossref_primary_10_1002_jimd_12319 crossref_primary_10_1073_pnas_2302490120 crossref_primary_10_1186_s13578_022_00805_7 crossref_primary_10_1016_j_cell_2021_02_036 crossref_primary_10_1016_j_fertnstert_2021_04_017 crossref_primary_10_1038_s41576_021_00432_x crossref_primary_10_1038_s41587_023_01820_w crossref_primary_10_3389_fgene_2023_1085024 crossref_primary_10_1128_aem_01305_22 crossref_primary_10_3390_life11070633 crossref_primary_10_1080_14647273_2021_1925168 crossref_primary_10_3390_cells11162593 crossref_primary_10_2174_0113892029308327240612110334 crossref_primary_10_1016_j_tim_2023_03_005 crossref_primary_10_1038_s41467_022_31927_8 crossref_primary_10_1270_jsbbr_26_W02 crossref_primary_10_1016_j_arr_2021_101378 crossref_primary_10_1038_s42255_021_00378_8 crossref_primary_10_24072_pcjournal_385 crossref_primary_10_3390_ijms23031467 crossref_primary_10_3390_pharmaceutics13060810 crossref_primary_10_1002_jimd_12699 crossref_primary_10_1089_crispr_2021_0043 crossref_primary_10_1186_s13007_023_01124_9 crossref_primary_10_1016_j_bbagen_2021_130011 crossref_primary_10_1039_D3CC01778H crossref_primary_10_17537_2023_18_621 crossref_primary_10_1016_j_trecan_2022_08_001 crossref_primary_10_1186_s12967_023_04610_9 crossref_primary_10_1007_s11427_022_2172_x crossref_primary_10_1002_smll_202411583 crossref_primary_10_1515_medgen_2024_2066 crossref_primary_10_1002_advs_202305353 crossref_primary_10_1016_j_ymthe_2021_09_002 crossref_primary_10_1038_d41586_020_03560_2 crossref_primary_10_1002_jimd_12324 crossref_primary_10_31083_j_fbl2708241 crossref_primary_10_1186_s40035_024_00409_w crossref_primary_10_1111_tpj_16311 crossref_primary_10_1038_s41580_023_00663_2 crossref_primary_10_1111_tpj_15107 crossref_primary_10_1016_j_tcb_2024_05_001 crossref_primary_10_1186_s12967_024_05957_3 crossref_primary_10_1007_s12015_024_10715_5 crossref_primary_10_1021_acs_analchem_4c05251 crossref_primary_10_1002_mco2_639 crossref_primary_10_1038_s41477_023_01538_2 crossref_primary_10_1016_j_tem_2024_01_002 crossref_primary_10_1038_s41582_022_00715_9 crossref_primary_10_1089_hs_2021_0109 crossref_primary_10_3390_ijms24065798 crossref_primary_10_1007_s10565_020_09549_x crossref_primary_10_1038_s43018_020_00128_x crossref_primary_10_3390_life11020076 crossref_primary_10_1016_j_ijbiomac_2022_09_110 crossref_primary_10_3389_fcell_2021_800529 |
Cites_doi | 10.1016/j.tibs.2018.04.013 10.1101/gr.129684.111 10.1038/s41587-020-0414-6 10.1093/bib/bbx129 10.1099/mic.0.000789 10.1107/S0907444906005270 10.1126/science.aaf8729 10.1101/cshperspect.a012583 10.1126/sciadv.aao4774 10.1038/nature17946 10.1093/nar/gkr367 10.1016/j.cell.2019.01.022 10.1016/S0014-4827(03)00249-0 10.1002/mbo3.774 10.7554/eLife.02008 10.1038/s41587-020-0412-8 10.1016/j.cell.2015.08.007 10.1107/S0907444909042073 10.1093/nar/25.4.750 10.1038/nbt.4172 10.1126/sciadv.aax5717 10.1038/s41591-018-0166-8 10.1038/s41467-018-04895-1 10.1073/pnas.1522325113 10.1038/nrg3966 10.1093/nar/gkz542 10.1038/nature24644 10.1038/s41587-019-0032-3 10.1002/emmm.201303672 10.1093/bioinformatics/btp324 10.1038/s41586-019-1711-4 10.1038/nbt.3404 10.1038/nmeth.2019 10.1016/j.cell.2017.04.005 10.1038/s41467-018-04131-w 10.1093/nar/gkr691 10.7554/eLife.10575 10.1016/j.ccell.2018.06.013 10.1038/nprot.2006.25 10.1038/s41576-018-0059-1 10.1038/nature11707 10.1016/j.tig.2017.11.001 10.1038/nprot.2015.123 10.1038/nrm3486 10.1016/j.chom.2009.12.007 10.1038/nm.3261 10.1038/nrg2842 10.1093/nar/gkx342 10.1073/pnas.1711888115 10.1128/AEM.03909-14 10.1107/S0907444904019158 10.1016/j.cell.2013.02.022 10.1016/S0076-6879(97)76066-X 10.1038/nbt.2909 10.1107/S0907444909052925 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 COPYRIGHT 2020 Nature Publishing Group Copyright Nature Publishing Group Jul 23, 2020 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: Copyright Nature Publishing Group Jul 23, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/s41586-020-2477-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 637 |
ExternalDocumentID | PMC7381381 A630327462 32641830 10_1038_s41586_020_2477_4 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM118062 – fundername: NIAID NIH HHS grantid: U01 AI142756 – fundername: NIDDK NIH HHS grantid: P30 DK089507 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: T32 GM095450 – fundername: NHGRI NIH HHS grantid: RM1 HG009490 – fundername: NIGMS NIH HHS grantid: R35 GM122455 – fundername: NIAID NIH HHS grantid: R01 AI080609 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS PUEGO Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c739t-e40fa95b70ad58a96803056912e717ba642ed7afb98413790d4046a71b9c5d973 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:20:56 EDT 2025 Mon Jul 21 11:27:43 EDT 2025 Sat Aug 23 14:23:55 EDT 2025 Tue Jun 17 20:57:00 EDT 2025 Thu Jun 12 23:37:48 EDT 2025 Tue Jun 10 15:32:26 EDT 2025 Tue Jun 10 20:49:51 EDT 2025 Fri Jun 27 04:59:36 EDT 2025 Mon Jul 21 05:34:02 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Tue Jul 01 02:32:13 EDT 2025 Fri Feb 21 02:37:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7817 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c739t-e40fa95b70ad58a96803056912e717ba642ed7afb98413790d4046a71b9c5d973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally: Beverly Y. Mok, Marcos H. de Moraes. Author contributions B.Y.M., M.H.d.M., S.B.P., V.K.M., J.D.M. and D.R.L. designed the study; M.H.d.M., J.Z. and D.E.B. designed, performed and analysed experiments to characterize DddA; B.Y.M. designed, performed and analysed nuclear and mitochondrial editing experiments; B.Y.M., M.H.d.M., A.R. and M.C.R. performed sequence analyses; F.H. performed microscopy; A.V.K. designed, performed and analysed mitochondrial biology experiments; B.Y.M., M.H.d.M., S.B.P., A.V.K., V.K.M., J.D.M. and D.R.L. wrote the manuscript. |
ORCID | 0000-0002-9943-7557 0000-0002-7430-2939 0000-0003-4983-1414 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7381381 |
PMID | 32641830 |
PQID | 2427314179 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7381381 proquest_miscellaneous_2422005063 proquest_journals_2427314179 gale_infotracmisc_A630327462 gale_infotracgeneralonefile_A630327462 gale_infotraccpiq_630327462 gale_infotracacademiconefile_A630327462 gale_incontextgauss_ISR_A630327462 pubmed_primary_32641830 crossref_primary_10_1038_s41586_020_2477_4 crossref_citationtrail_10_1038_s41586_020_2477_4 springer_journals_10_1038_s41586_020_2477_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-23 |
PublicationDateYYYYMMDD | 2020-07-23 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Magnusson, Orth, Lestienne, Taanman (CR32) 2003; 289 Anzalone (CR26) 2019; 576 Li, Durbin (CR49) 2009; 25 Komor (CR28) 2017; 3 Nissanka, Bacman, Plastini, Moraes (CR11) 2018; 9 Stewart, Chinnery (CR7) 2015; 16 Finn, Clements, Eddy (CR36) 2011; 39 Emsley, Cowtan (CR43) 2004; 60 Bao (CR31) 2016; 5 Miller (CR51) 2020; 38 Gaudelli (CR13) 2017; 551 Rees, Liu (CR1) 2018; 19 Gopal (CR33) 2018; 34 Gopal (CR6) 2018; 115 Urnov, Rebar, Holmes, Zhang, Gregory (CR20) 2010; 11 Choi, DeShazer, Schweizer (CR39) 2006; 1 Fazli, Harrison, Gambino, Givskov, Tolker-Nielsen (CR37) 2015; 81 Komor, Kim, Packer, Zuris, Liu (CR14) 2016; 533 Koboldt (CR50) 2012; 22 Coulthurst (CR16) 2019; 165 Bacman (CR8) 2018; 24 Rees, Wilson, Doman, Liu (CR40) 2019; 5 Chen (CR45) 2010; 66 Salter, Smith (CR3) 2018; 43 Iyer, Zhang, Rogozin, Aravind (CR15) 2011; 39 Ludwig (CR54) 2019; 176 Hood (CR17) 2010; 7 Kleinstiver (CR24) 2015; 33 Vaser, Adusumalli, Leng, Sikic, Ng (CR57) 2016; 11 Spiewak (CR38) 2019; 8 Guilinger, Thompson, Liu (CR22) 2014; 32 Diroma, Ciaccia, Pesole, Picardi (CR55) 2019; 20 Kotrys (CR47) 2019; 47 Gammage, Rorbach, Vincent, Rebar, Minczuk (CR10) 2014; 6 Nishimasu (CR25) 2015; 162 Schindelin (CR48) 2012; 9 Koblan (CR30) 2018; 36 Bacman, Williams, Pinto, Peralta, Moraes (CR9) 2013; 19 Bhagwat (CR46) 2016; 113 Richardson, Narvaiza, Planegger, Weitzman, Moran (CR18) 2014; 3 Yang (CR35) 2016; 7 Peeva (CR12) 2018; 9 Vafai, Mootha (CR5) 2012; 491 Qi (CR23) 2013; 152 Otwinowski, Minor (CR41) 1997; 276 Nishida (CR27) 2016; 353 Krokan, Bjørås (CR19) 2013; 5 Joung, Sander (CR21) 2013; 14 Gammage, Moraes, Minczuk (CR4) 2018; 34 Komor, Badran, Liu (CR2) 2017; 169 Rinaldi, Doyle, Stoddard, Bogdanove (CR34) 2017; 45 Clement (CR53) 2019; 37 Rees (CR52) 2017; 8 Doman, Raguram, Newby, Liu (CR56) 2020; 38 Adams (CR42) 2010; 66 Painter, Merritt (CR44) 2006; 62 Nilsen (CR29) 1997; 25 RK Gopal (2477_CR6) 2018; 115 XR Bao (2477_CR31) 2016; 5 M Fazli (2477_CR37) 2015; 81 PA Gammage (2477_CR4) 2018; 34 L Yang (2477_CR35) 2016; 7 MA Diroma (2477_CR55) 2019; 20 VB Chen (2477_CR45) 2010; 66 HA Rees (2477_CR1) 2018; 19 AC Komor (2477_CR14) 2016; 533 NM Gaudelli (2477_CR13) 2017; 551 Z Otwinowski (2477_CR41) 1997; 276 P Emsley (2477_CR43) 2004; 60 SB Vafai (2477_CR5) 2012; 491 RK Gopal (2477_CR33) 2018; 34 JP Guilinger (2477_CR22) 2014; 32 SR Bacman (2477_CR8) 2018; 24 JK Joung (2477_CR21) 2013; 14 HE Krokan (2477_CR19) 2013; 5 PA Gammage (2477_CR10) 2014; 6 N Nissanka (2477_CR11) 2018; 9 H Li (2477_CR49) 2009; 25 J Schindelin (2477_CR48) 2012; 9 KH Choi (2477_CR39) 2006; 1 JL Doman (2477_CR56) 2020; 38 JD Salter (2477_CR3) 2018; 43 V Peeva (2477_CR12) 2018; 9 K Nishida (2477_CR27) 2016; 353 AS Bhagwat (2477_CR46) 2016; 113 R Vaser (2477_CR57) 2016; 11 HA Rees (2477_CR40) 2019; 5 AC Komor (2477_CR28) 2017; 3 AC Komor (2477_CR2) 2017; 169 HA Rees (2477_CR52) 2017; 8 BP Kleinstiver (2477_CR24) 2015; 33 DC Koboldt (2477_CR50) 2012; 22 LS Qi (2477_CR23) 2013; 152 K Clement (2477_CR53) 2019; 37 HL Spiewak (2477_CR38) 2019; 8 SM Miller (2477_CR51) 2020; 38 RD Finn (2477_CR36) 2011; 39 H Nilsen (2477_CR29) 1997; 25 SR Richardson (2477_CR18) 2014; 3 LS Ludwig (2477_CR54) 2019; 176 FD Urnov (2477_CR20) 2010; 11 AV Kotrys (2477_CR47) 2019; 47 LM Iyer (2477_CR15) 2011; 39 J Magnusson (2477_CR32) 2003; 289 RD Hood (2477_CR17) 2010; 7 H Nishimasu (2477_CR25) 2015; 162 J Painter (2477_CR44) 2006; 62 S Coulthurst (2477_CR16) 2019; 165 AV Anzalone (2477_CR26) 2019; 576 LW Koblan (2477_CR30) 2018; 36 JB Stewart (2477_CR7) 2015; 16 FC Rinaldi (2477_CR34) 2017; 45 PD Adams (2477_CR42) 2010; 66 SR Bacman (2477_CR9) 2013; 19 32641792 - Nature. 2020 Jul;583(7816):343 33027575 - N Engl J Med. 2020 Oct 8;383(15):1489-1491 32819722 - Trends Genet. 2020 Nov;36(11):809-810 32888436 - Mol Cell. 2020 Sep 3;79(5):708-709 32641789 - Nature. 2020 Jul;583(7817):521-522 |
References_xml | – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: CR43 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D – volume: 37 start-page: 224 year: 2019 end-page: 226 ident: CR53 article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis publication-title: Nat. Biotechnol. – volume: 24 start-page: 1696 year: 2018 end-page: 1700 ident: CR8 article-title: MitoTALEN reduces mutant mtDNA load and restores tRNA levels in a mouse model of heteroplasmic mtDNA mutation publication-title: Nat. Med. – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: CR45 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D – volume: 576 start-page: 149 year: 2019 end-page: 157 ident: CR26 article-title: Search-and-replace genome editing without double-strand breaks or donor DNA publication-title: Nature – volume: 289 start-page: 133 year: 2003 end-page: 142 ident: CR32 article-title: Replication of mitochondrial DNA occurs throughout the mitochondria of cultured human cells publication-title: Exp. Cell Res. – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: CR41 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. – volume: 9 year: 2018 ident: CR11 article-title: The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions publication-title: Nat. Commun. – volume: 36 start-page: 843 year: 2018 end-page: 846 ident: CR30 article-title: Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction publication-title: Nat. Biotechnol. – volume: 533 start-page: 420 year: 2016 end-page: 424 ident: CR14 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature – volume: 115 start-page: E6283 year: 2018 end-page: E6290 ident: CR6 article-title: Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma publication-title: Proc. Natl Acad. Sci. USA – volume: 165 start-page: 503 year: 2019 end-page: 515 ident: CR16 article-title: The type VI secretion system: a versatile bacterial weapon publication-title: Microbiology – volume: 81 start-page: 3623 year: 2015 end-page: 3630 ident: CR37 article-title: In-frame and unmarked gene deletions in via an allelic exchange system compatible with gateway technology publication-title: Appl. Environ. Microbiol. – volume: 3 start-page: e02008 year: 2014 ident: CR18 article-title: APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition publication-title: eLife – volume: 113 start-page: 2176 year: 2016 end-page: 2181 ident: CR46 article-title: Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in publication-title: Proc. Natl Acad. Sci. USA – volume: 5 start-page: e10575 year: 2016 ident: CR31 article-title: Mitochondrial dysfunction remodels one-carbon metabolism in human cells publication-title: eLife – volume: 1 start-page: 162 year: 2006 end-page: 169 ident: CR39 article-title: P. mini-Tn7 insertion in bacteria with multiple S-linked Tn7 sites: example ATCC 23344 publication-title: Nat. Protoc. – volume: 176 start-page: 1325 year: 2019 end-page: 1339.e22 ident: CR54 article-title: Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics publication-title: Cell – volume: 11 start-page: 1 year: 2016 end-page: 9 ident: CR57 article-title: SIFT missense predictions for genomes publication-title: Nat. Protoc. – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: CR48 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 19 start-page: 1111 year: 2013 end-page: 1113 ident: CR9 article-title: Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs publication-title: Nat. Med. – volume: 5 start-page: eaax5717 year: 2019 ident: CR40 article-title: Analysis and minimization of cellular RNA editing by DNA adenine base editors publication-title: Sci. Adv. – volume: 62 start-page: 439 year: 2006 end-page: 450 ident: CR44 article-title: Optimal description of a protein structure in terms of multiple groups undergoing TLS motion publication-title: Acta Crystallogr. D – volume: 11 start-page: 636 year: 2010 end-page: 646 ident: CR20 article-title: Genome editing with engineered zinc finger nucleases publication-title: Nat. Rev. Genet. – volume: 19 start-page: 770 year: 2018 end-page: 788 ident: CR1 article-title: Base editing: precision chemistry on the genome and transcriptome of living cells publication-title: Nat. Rev. Genet. – volume: 47 start-page: 7502 year: 2019 end-page: 7517 ident: CR47 article-title: Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria publication-title: Nucleic Acids Res. – volume: 14 start-page: 49 year: 2013 end-page: 55 ident: CR21 article-title: TALENs: a widely applicable technology for targeted genome editing publication-title: Nat. Rev. Mol. Cell Biol. – volume: 34 start-page: 242 year: 2018 end-page: 255.e5 ident: CR33 article-title: Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hürthle cell carcinoma publication-title: Cancer Cell – volume: 353 start-page: aaf8729 year: 2016 ident: CR27 article-title: Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems publication-title: Science – volume: 34 start-page: 101 year: 2018 end-page: 110 ident: CR4 article-title: Mitochondrial genome engineering: the revolution may not be CRISPR-ized publication-title: Trends Genet. – volume: 5 start-page: a012583 year: 2013 ident: CR19 article-title: Base excision repair publication-title: Cold Spring Harb. Perspect. Biol. – volume: 38 start-page: 620 year: 2020 end-page: 628 ident: CR56 article-title: Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors publication-title: Nat. Biotechnol. – volume: 38 start-page: 471 year: 2020 end-page: 481 ident: CR51 article-title: Continuous evolution of SpCas9 variants compatible with non-G PAMs publication-title: Nat. Biotechnol. – volume: 6 start-page: 458 year: 2014 end-page: 466 ident: CR10 article-title: Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations publication-title: EMBO Mol. Med. – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: CR42 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D – volume: 9 year: 2018 ident: CR12 article-title: Linear mitochondrial DNA is rapidly degraded by components of the replication machinery publication-title: Nat. Commun. – volume: 3 start-page: eaao4774 year: 2017 ident: CR28 article-title: Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity publication-title: Sci. Adv. – volume: 22 start-page: 568 year: 2012 end-page: 576 ident: CR50 article-title: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing publication-title: Genome Res. – volume: 20 start-page: 436 year: 2019 end-page: 447 ident: CR55 article-title: Elucidating the editome: bioinformatics approaches for RNA editing detection publication-title: Brief. Bioinform. – volume: 39 start-page: W29 year: 2011 end-page: W37 ident: CR36 article-title: HMMER web server: interactive sequence similarity searching publication-title: Nucleic Acids Res. – volume: 45 start-page: 6960 year: 2017 end-page: 6970 ident: CR34 article-title: The effect of increasing numbers of repeats on TAL effector DNA binding specificity publication-title: Nucleic Acids Res. – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: CR49 article-title: Fast and accurate short read alignment with Burrows–Wheeler transform publication-title: Bioinformatics – volume: 491 start-page: 374 year: 2012 end-page: 383 ident: CR5 article-title: Mitochondrial disorders as windows into an ancient organelle publication-title: Nature – volume: 162 start-page: 1113 year: 2015 end-page: 1126 ident: CR25 article-title: Crystal structure of Cas9 publication-title: Cell – volume: 152 start-page: 1173 year: 2013 end-page: 1183 ident: CR23 article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression publication-title: Cell – volume: 25 start-page: 750 year: 1997 end-page: 755 ident: CR29 article-title: Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the gene publication-title: Nucleic Acids Res. – volume: 32 start-page: 577 year: 2014 end-page: 582 ident: CR22 article-title: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification publication-title: Nat. Biotechnol. – volume: 551 start-page: 464 year: 2017 end-page: 471 ident: CR13 article-title: Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage publication-title: Nature – volume: 33 start-page: 1293 year: 2015 end-page: 1298 ident: CR24 article-title: Broadening the targeting range of CRISPR–Cas9 by modifying PAM recognition publication-title: Nat. Biotechnol. – volume: 7 year: 2016 ident: CR35 article-title: Engineering and optimising deaminase fusions for genome editing publication-title: Nat. Commun. – volume: 8 year: 2017 ident: CR52 article-title: Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery publication-title: Nat. Commun. – volume: 16 start-page: 530 year: 2015 end-page: 542 ident: CR7 article-title: The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease publication-title: Nat. Rev. Genet. – volume: 169 start-page: 559 year: 2017 ident: CR2 article-title: CRISPR-based technologies for the manipulation of eukaryotic genomes publication-title: Cell – volume: 7 start-page: 25 year: 2010 end-page: 37 ident: CR17 article-title: A type VI secretion system of targets a toxin to bacteria publication-title: Cell Host Microbe – volume: 43 start-page: 606 year: 2018 end-page: 622 ident: CR3 article-title: Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands publication-title: Trends Biochem. Sci. – volume: 39 start-page: 9473 year: 2011 end-page: 9497 ident: CR15 article-title: Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems publication-title: Nucleic Acids Res. – volume: 8 start-page: e774 year: 2019 ident: CR38 article-title: utilizes a type VI secretion system for bacterial competition publication-title: MicrobiologyOpen – volume: 43 start-page: 606 year: 2018 ident: 2477_CR3 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2018.04.013 – volume: 22 start-page: 568 year: 2012 ident: 2477_CR50 publication-title: Genome Res. doi: 10.1101/gr.129684.111 – volume: 38 start-page: 620 year: 2020 ident: 2477_CR56 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0414-6 – volume: 20 start-page: 436 year: 2019 ident: 2477_CR55 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx129 – volume: 165 start-page: 503 year: 2019 ident: 2477_CR16 publication-title: Microbiology doi: 10.1099/mic.0.000789 – volume: 62 start-page: 439 year: 2006 ident: 2477_CR44 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444906005270 – volume: 353 start-page: aaf8729 year: 2016 ident: 2477_CR27 publication-title: Science doi: 10.1126/science.aaf8729 – volume: 5 start-page: a012583 year: 2013 ident: 2477_CR19 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a012583 – volume: 3 start-page: eaao4774 year: 2017 ident: 2477_CR28 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao4774 – volume: 533 start-page: 420 year: 2016 ident: 2477_CR14 publication-title: Nature doi: 10.1038/nature17946 – volume: 39 start-page: W29 year: 2011 ident: 2477_CR36 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr367 – volume: 176 start-page: 1325 year: 2019 ident: 2477_CR54 publication-title: Cell doi: 10.1016/j.cell.2019.01.022 – volume: 289 start-page: 133 year: 2003 ident: 2477_CR32 publication-title: Exp. Cell Res. doi: 10.1016/S0014-4827(03)00249-0 – volume: 8 start-page: e774 year: 2019 ident: 2477_CR38 publication-title: MicrobiologyOpen doi: 10.1002/mbo3.774 – volume: 3 start-page: e02008 year: 2014 ident: 2477_CR18 publication-title: eLife doi: 10.7554/eLife.02008 – volume: 38 start-page: 471 year: 2020 ident: 2477_CR51 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0412-8 – volume: 162 start-page: 1113 year: 2015 ident: 2477_CR25 publication-title: Cell doi: 10.1016/j.cell.2015.08.007 – volume: 66 start-page: 12 year: 2010 ident: 2477_CR45 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909042073 – volume: 25 start-page: 750 year: 1997 ident: 2477_CR29 publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.4.750 – volume: 36 start-page: 843 year: 2018 ident: 2477_CR30 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4172 – volume: 5 start-page: eaax5717 year: 2019 ident: 2477_CR40 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax5717 – volume: 24 start-page: 1696 year: 2018 ident: 2477_CR8 publication-title: Nat. Med. doi: 10.1038/s41591-018-0166-8 – volume: 9 year: 2018 ident: 2477_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04895-1 – volume: 113 start-page: 2176 year: 2016 ident: 2477_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1522325113 – volume: 16 start-page: 530 year: 2015 ident: 2477_CR7 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3966 – volume: 47 start-page: 7502 year: 2019 ident: 2477_CR47 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz542 – volume: 551 start-page: 464 year: 2017 ident: 2477_CR13 publication-title: Nature doi: 10.1038/nature24644 – volume: 37 start-page: 224 year: 2019 ident: 2477_CR53 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0032-3 – volume: 7 year: 2016 ident: 2477_CR35 publication-title: Nat. Commun. – volume: 6 start-page: 458 year: 2014 ident: 2477_CR10 publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201303672 – volume: 25 start-page: 1754 year: 2009 ident: 2477_CR49 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 576 start-page: 149 year: 2019 ident: 2477_CR26 publication-title: Nature doi: 10.1038/s41586-019-1711-4 – volume: 33 start-page: 1293 year: 2015 ident: 2477_CR24 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3404 – volume: 9 start-page: 676 year: 2012 ident: 2477_CR48 publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 169 start-page: 559 year: 2017 ident: 2477_CR2 publication-title: Cell doi: 10.1016/j.cell.2017.04.005 – volume: 9 year: 2018 ident: 2477_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04131-w – volume: 39 start-page: 9473 year: 2011 ident: 2477_CR15 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr691 – volume: 5 start-page: e10575 year: 2016 ident: 2477_CR31 publication-title: eLife doi: 10.7554/eLife.10575 – volume: 34 start-page: 242 year: 2018 ident: 2477_CR33 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.06.013 – volume: 1 start-page: 162 year: 2006 ident: 2477_CR39 publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.25 – volume: 19 start-page: 770 year: 2018 ident: 2477_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0059-1 – volume: 491 start-page: 374 year: 2012 ident: 2477_CR5 publication-title: Nature doi: 10.1038/nature11707 – volume: 34 start-page: 101 year: 2018 ident: 2477_CR4 publication-title: Trends Genet. doi: 10.1016/j.tig.2017.11.001 – volume: 11 start-page: 1 year: 2016 ident: 2477_CR57 publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.123 – volume: 14 start-page: 49 year: 2013 ident: 2477_CR21 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3486 – volume: 7 start-page: 25 year: 2010 ident: 2477_CR17 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.12.007 – volume: 19 start-page: 1111 year: 2013 ident: 2477_CR9 publication-title: Nat. Med. doi: 10.1038/nm.3261 – volume: 11 start-page: 636 year: 2010 ident: 2477_CR20 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2842 – volume: 45 start-page: 6960 year: 2017 ident: 2477_CR34 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx342 – volume: 115 start-page: E6283 year: 2018 ident: 2477_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1711888115 – volume: 81 start-page: 3623 year: 2015 ident: 2477_CR37 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03909-14 – volume: 60 start-page: 2126 year: 2004 ident: 2477_CR43 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444904019158 – volume: 152 start-page: 1173 year: 2013 ident: 2477_CR23 publication-title: Cell doi: 10.1016/j.cell.2013.02.022 – volume: 276 start-page: 307 year: 1997 ident: 2477_CR41 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – volume: 32 start-page: 577 year: 2014 ident: 2477_CR22 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2909 – volume: 66 start-page: 213 year: 2010 ident: 2477_CR42 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909052925 – volume: 8 year: 2017 ident: 2477_CR52 publication-title: Nat. Commun. – reference: 32641792 - Nature. 2020 Jul;583(7816):343 – reference: 33027575 - N Engl J Med. 2020 Oct 8;383(15):1489-1491 – reference: 32888436 - Mol Cell. 2020 Sep 3;79(5):708-709 – reference: 32819722 - Trends Genet. 2020 Nov;36(11):809-810 – reference: 32641789 - Nature. 2020 Jul;583(7817):521-522 |
SSID | ssj0005174 |
Score | 2.7081435 |
Snippet | Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 631 |
SubjectTerms | 45/41 45/70 631/1647/1511 631/326/1320 631/61/201/2110 631/80/642/333 Bacterial toxins Bacterial Toxins - chemistry Bacterial Toxins - genetics Bacterial Toxins - metabolism Base Sequence Biocompatibility Biomedical materials Burkholderia cenocepacia - enzymology Burkholderia cenocepacia - genetics Cell Respiration - genetics Chemical properties CRISPR Crystal structure Cytidine - metabolism Cytidine deaminase Cytidine Deaminase - chemistry Cytidine Deaminase - genetics Cytidine Deaminase - metabolism Cytosine Deamination Deoxyribonucleic acid DNA DNA, Mitochondrial - genetics DNA-binding protein E coli Enzymes Gene Editing - methods Genes, Mitochondrial - genetics Genetic aspects Genetic modification Genome editing Genome, Mitochondrial - genetics Genomes HEK293 Cells Humanities and Social Sciences Humans Methods Microbial enzymes Mitochondria Mitochondria - genetics Mitochondrial Diseases - genetics Mitochondrial Diseases - therapy Mitochondrial DNA multidisciplinary Mutation Nuclease Oxidative Phosphorylation Phosphorylation Protein Engineering Proteins Ribonucleic acid RNA RNA, Guide, CRISPR-Cas Systems - genetics Science Science (multidisciplinary) Substrate Specificity Therapeutic applications Toxins Transcription Type VI Secretion Systems - metabolism Unwinding Uracil |
Title | A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing |
URI | https://link.springer.com/article/10.1038/s41586-020-2477-4 https://www.ncbi.nlm.nih.gov/pubmed/32641830 https://www.proquest.com/docview/2427314179 https://www.proquest.com/docview/2422005063 https://pubmed.ncbi.nlm.nih.gov/PMC7381381 |
Volume | 583 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY-2-vHbFG2OfiCq2HFlPIwvN2sFKSVbIm5AluQu0TlonsP33u5OVpA5bIfhFJ8fWne6nk86_I-St5hpwLIUwVeqScmEzqkUnoVaWXe0ybqWvPPfjtHt8zr-Ps3HYcKtDWuXSJ3pHbacG98gPAUpE2sF6WV9m1xSrRuHpaiihcZ9sI3UZpnSJsVineGywMC9PNdP8sAbgyjH9ltGEC0F5C5c2vfMteNpMndw4P_WwNHhMHoX1ZNxrDGCH3HPVLnng8zpNvUt2wtyt4w-BYPrjEzLqxUVD0gw9zZ_5BPDLxdZpTIupXTyf_p5UsfNfVdVxf3gyOhvS8sa5-ArmP_jLyvquiIAxgB9mTj8l54Ojn_1jGoorUCNSOaeOs1LLrBBM2yzXspv7aEJ2EgcRXqEhLnFW6LKQOeCckMxyCKVBj4U0mZUifUa2qmnlXpDYmZQxnRirE8sTJnSmRVKy1NoOslbKiLDl0CoTmMexAMal8ifgaa4abSjQhkJtKB6RT6sus4Z24y7hN6gvhXQWFebLXOhFXauT0VD1ugDREHh3k4i8D0LlFP7c6PD5AbwCMmC1JPdakmY2uVa3Wt-1Wi8a5f3rNvstQZi2pt28tC4V3Eat1kYekderZuyJqXCVmy68DO4EwtIyIs8bY1wNEazFOfhoFhHRMtOVAJKJt1uqyS9PKi5g6Qa_iHxeGvT6sf478i_vfok98jDBGcYETdJ9sjW_WbhXsIabFwd-osI173fwOvh2QLa_Hp2eDf8C5Q5BgA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcReEBsfCxsQEN_ImuskdfyAUDWYWvYh1G5S34wTO6MSpN3SCvZP8TdydpJ2qWBvk_p256T2ne93F5_vAF6oUCGOBRimCpWRkOuIKN5iRIusrUwUauE6zx0etbsn4ZdhNFyBP_VdGJtWWdtEZ6j1OLXfyHcQSnjQsv2yPk7OiO0aZU9X6xYapVrsm4tfGLIVH3qfUL4vGdv7fLzbJVVXAZLyQEyJCWmmRJRwqnQUK9GOnRstWsxgaJModMiN5ipLRIwGnguqQ4whcQKJSCMteIDPvQE3EXip3VF8yBcpJUtVn-tT1CDeKRAoY5vuSwkLOSdhAweX0eASHC6nai6d1zoY3LsLdyr_1e-UCrcOKybfgFsujzQtNmC9shWF_6YqaP32Hgw6flIWhcaR6cV0hHhpfG2UTcMpjD8d_x7lvnG3uAp_t98bfO2T7NwY_yfaG7TPuXZDLeL6CLY2U_s-nFzLsj-A1Xycm03wTRpQqliqFdMho1xFirOMBlq3bJVM4QGtl1amVaVz23Djh3Qn7kEsS2lIlIa00pChB-_mQyZlmY-rmJ9beUlbPiO3-TmnalYUsjfoy04bXQIM9NvMg9cVUzbGl6equu6AU7AVtxqcWw3OdDI6k5eorxrU01J4_3rMdoMRzUTaJNfaJSszVcjFpvLg2ZxsR9rUu9yMZ47HfnlEV9aDh6UyzpcIff8QMYF6wBtqOmewxcublHz03RUx5-gq4s-D97VCL_7Wf1f-0dWTeAq3u8eHB_Kgd7S_BWvM7jbKCQu2YXV6PjOP0X-cJk_cpvXh23Vbib9TXnl6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviI2vsAEG8Y2iuk5Sxw8IVRvVymCa2k3qm3FiZ1SCtFtawf41_jrOTtIuFextUt_unNS-8_3u4vMdwAsVKsSxAMNUoTI_5DryFW8zX4uso0wUauE6z3096Owdh59H0WgN_tR3YWxaZW0TnaHWk9R-I28hlPCgbftltbIqLeJwt_dxeurbDlL2pLVup1GqyL45_4XhW_Ghv4uyfslY79PRzp5fdRjwUx6ImW9CmikRJZwqHcVKdGLnUos2MxjmJAqdc6O5yhIRo7HnguoQ40mcTCLSSAse4HOvwXUeRG27x_iIL9NLVipA1yeqQdwqEDRjm_pLfRZy7ocNTFxFhgvQuJq2uXJ26yCxdwduV74s6ZbKtwFrJt-EGy6nNC02YaOyGwV5UxW3fnsXhl2SlAWicWR6PhsjdhqijbIpOYUhs8nvcU6Mu9FVkJ1Bf3g48LMzY8hPtD1oq3Pthlr0JQi8Nmv7HhxfybLfh_V8kpuHQEwaUKpYqhXTIaNcRYqzjAZat23FTOEBrZdWplXVc9t844d0p-9BLEtpSJSGtNKQoQfvFkOmZcmPy5ifW3lJW0ojt0p5ouZFIfvDgex20D3AoL_DPHhdMWUTfHmqqqsPOAVbfavBudXgTKfjU3mB-qpBPSmF96_HbDcY0WSkTXKtXbIyWYVcbjAPni3IdqRNw8vNZO547FdIdGs9eFAq42KJMA4IER-oB7yhpgsGW8i8ScnH311Bc45uI_48eF8r9PJv_XflH10-iadwE-2D_NI_2N-CW8xuNsp9FmzD-uxsbh6jKzlLnrg9S-DbVRuJv3w3fbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bacterial+cytidine+deaminase+toxin+enables+CRISPR-free+mitochondrial+base+editing&rft.jtitle=Nature+%28London%29&rft.au=Mok%2C+Beverly+Y.&rft.au=de+Moraes%2C+Marcos+H.&rft.au=Zeng%2C+Jun&rft.au=Bosch%2C+Dustin+E.&rft.date=2020-07-23&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=583&rft.issue=7817&rft.spage=631&rft.epage=637&rft_id=info:doi/10.1038%2Fs41586-020-2477-4&rft_id=info%3Apmid%2F32641830&rft.externalDocID=PMC7381381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |