Characterization of H7N9 influenza A viruses isolated from humans
Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect and/or transmit within various animal models is discussed, as is their relative sensitivity to neuraminidase inhibitors and experimental pol...
Saved in:
Published in | Nature (London) Vol. 501; no. 7468; pp. 551 - 555 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.09.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect and/or transmit within various animal models is discussed, as is their relative sensitivity to neuraminidase inhibitors and experimental polymerase inhibitors compared to an H1N1 pandemic strain.
Transmission of emerging H7N9 virus
By 20 July 2013, there had been 134 laboratory-confirmed human cases of infection with avian influenza A H7N9 virus infection, including 43 deaths.
Yoshihiro Kawaoka and colleagues characterize the biology of two recent isolates of the virus. They provide a wealth of data from infections in mice, pigs, macaques and ferrets. H7N9 virus is shown to be less sensitive to neuraminidase inhibitors than pandemic H1N1 virus, but equally susceptible to an experimental polymerase inhibitor. Terrence Tumpey and colleagues determine the capacity of two clinical H7N9 isolates to cause disease and transmit between mammals. They show that the virus can replicate in human airway cells and in the respiratory tract of ferrets to a higher level than can seasonal H3N2 virus, and show higher lethality in mice than genetically related H7N9 and H9N2 viruses. In transmission studies, the H7N9 virus showed limited transmission in ferrets by respiratory droplets. Ron Fouchier and colleagues investigate the transmissibility of H7N9 virus between ferrets. They show that airborne transmission can occur, but inefficiently. They also show that on passage in ferrets, virus variants that have higher avian receptor binding, higher pH of fusion and lower thermostability are selected, and they suggest that these characteristics may result in reduced transmissibility.
Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission
1
, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential. |
---|---|
AbstractList | Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect and/or transmit within various animal models is discussed, as is their relative sensitivity to neuraminidase inhibitors and experimental polymerase inhibitors compared to an H1N1 pandemic strain.
Transmission of emerging H7N9 virus
By 20 July 2013, there had been 134 laboratory-confirmed human cases of infection with avian influenza A H7N9 virus infection, including 43 deaths.
Yoshihiro Kawaoka and colleagues characterize the biology of two recent isolates of the virus. They provide a wealth of data from infections in mice, pigs, macaques and ferrets. H7N9 virus is shown to be less sensitive to neuraminidase inhibitors than pandemic H1N1 virus, but equally susceptible to an experimental polymerase inhibitor. Terrence Tumpey and colleagues determine the capacity of two clinical H7N9 isolates to cause disease and transmit between mammals. They show that the virus can replicate in human airway cells and in the respiratory tract of ferrets to a higher level than can seasonal H3N2 virus, and show higher lethality in mice than genetically related H7N9 and H9N2 viruses. In transmission studies, the H7N9 virus showed limited transmission in ferrets by respiratory droplets. Ron Fouchier and colleagues investigate the transmissibility of H7N9 virus between ferrets. They show that airborne transmission can occur, but inefficiently. They also show that on passage in ferrets, virus variants that have higher avian receptor binding, higher pH of fusion and lower thermostability are selected, and they suggest that these characteristics may result in reduced transmissibility.
Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission
1
, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential. Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect and/or transmit within various animal models is discussed, as is their relative sensitivity to neuraminidase inhibitors and experimental polymerase inhibitors compared to an H1N1 pandemic strain. Avian influenza A viruses rarely infect humans, but if they do and transmit among them, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern due to the appreciable case fatality rate associated with these infections (>25%), potential instances of human-to-human transmission 1 , and the lack of pre-existing immunity among humans to viruses of this subtype. Here, we therefore characterized two early human A(H7N9) isolates, A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9; hereafter referred to as Anhui/1 and Shanghai/1, respectively). In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011; H7N9; Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/04/2009; H1N1; CA04). Anhui/1, Shanghai/1, and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates (NHPs), Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs upon intranasal inoculation. Most critically, Anhui/1 transmitted via respiratory droplets in one of three pairs of ferrets. Glycan arrays demonstrated that Anhui/1, Shanghai/1, and A/Hangzhou/1/2013 (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was less sensitive than a pandemic 2009 H1N1 virus to neuraminidase inhibitors, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets, and NHPs and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential. Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential. Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential. |
Audience | Academic |
Author | Saito, Takehiko Uraki, Ryuta Uchida, Yuko Yamayoshi, Seiya de Vries, Robert P. Odagiri, Takato Tomita, Yuriko Imai, Masaki Goto, Kazue Tamura, Tomokazu Maher, Eileen A. Okamatsu, Masatoshi McBride, Ryan Sugita, Yukihiko Sakai-Tagawa, Yuko Eisfeld, Amie J. Kishida, Noriko Ito, Mutsumi Yamada, Shinya Fan, Shufang Ozawa, Makoto Murakami, Shin Hanson, Anthony Takashita, Emi Shirakura, Masayuki Kawakami, Eiryo Fujimoto, Naomi Watanabe, Tokiko Nakajima, Noriko Zhong, Gongxun Katsura, Hiroaki Tashiro, Masato Ishikawa, Izumi Sakoda, Yoshihiro Watanabe, Shinji Shichinohe, Shintaro Iwatsuki-Horimoto, Kiyoko Kiso, Maki Fukuyama, Satoshi Noda, Takeshi Imai, Hirotaka Kawaoka, Yoshihiro Hatta, Masato Neumann, Gabriele Zhao, Dongming Yamaji, Reina Paulson, James C. Kida, Hiroshi Hasegawa, Hideki Ping, Jihui |
AuthorAffiliation | 13 Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan 14 Laboratory of Bioresponses Regulation, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan 10 Influenza and Prion Disease Research Center, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856 Japan 9 Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan 12 Transboundary Animal Distance Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan 7 The Scripps Research Institute, 10550 North Torrey Pines Road, SP-3 La Jolla, CA 92037, USA 1 ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan 3 Department of Pathology, National Insti |
AuthorAffiliation_xml | – name: 14 Laboratory of Bioresponses Regulation, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan – name: 9 Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan – name: 11 Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan – name: 1 ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan – name: 5 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan – name: 6 Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan – name: 10 Influenza and Prion Disease Research Center, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856 Japan – name: 3 Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan – name: 7 The Scripps Research Institute, 10550 North Torrey Pines Road, SP-3 La Jolla, CA 92037, USA – name: 12 Transboundary Animal Distance Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan – name: 13 Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan – name: 4 Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan – name: 8 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA – name: 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan |
Author_xml | – sequence: 1 givenname: Tokiko surname: Watanabe fullname: Watanabe, Tokiko organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan – sequence: 2 givenname: Maki surname: Kiso fullname: Kiso, Maki organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 3 givenname: Satoshi surname: Fukuyama fullname: Fukuyama, Satoshi organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan – sequence: 4 givenname: Noriko surname: Nakajima fullname: Nakajima, Noriko organization: Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan – sequence: 5 givenname: Masaki surname: Imai fullname: Imai, Masaki organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan – sequence: 6 givenname: Shinya surname: Yamada fullname: Yamada, Shinya organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 7 givenname: Shin surname: Murakami fullname: Murakami, Shin organization: Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan – sequence: 8 givenname: Seiya surname: Yamayoshi fullname: Yamayoshi, Seiya organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 9 givenname: Kiyoko surname: Iwatsuki-Horimoto fullname: Iwatsuki-Horimoto, Kiyoko organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 10 givenname: Yoshihiro surname: Sakoda fullname: Sakoda, Yoshihiro organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan – sequence: 11 givenname: Emi surname: Takashita fullname: Takashita, Emi organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan – sequence: 12 givenname: Ryan surname: McBride fullname: McBride, Ryan organization: The Scripps Research Institute, 10550 North Torrey Pines Road – sequence: 13 givenname: Takeshi surname: Noda fullname: Noda, Takeshi organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 14 givenname: Masato surname: Hatta fullname: Hatta, Masato organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA – sequence: 15 givenname: Hirotaka surname: Imai fullname: Imai, Hirotaka organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA – sequence: 16 givenname: Dongming surname: Zhao fullname: Zhao, Dongming organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan – sequence: 17 givenname: Noriko surname: Kishida fullname: Kishida, Noriko organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan – sequence: 18 givenname: Masayuki surname: Shirakura fullname: Shirakura, Masayuki organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan – sequence: 19 givenname: Robert P. surname: de Vries fullname: de Vries, Robert P. organization: The Scripps Research Institute, 10550 North Torrey Pines Road – sequence: 20 givenname: Shintaro surname: Shichinohe fullname: Shichinohe, Shintaro organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan – sequence: 21 givenname: Masatoshi surname: Okamatsu fullname: Okamatsu, Masatoshi organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan – sequence: 22 givenname: Tomokazu surname: Tamura fullname: Tamura, Tomokazu organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan – sequence: 23 givenname: Yuriko surname: Tomita fullname: Tomita, Yuriko organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan – sequence: 24 givenname: Naomi surname: Fujimoto fullname: Fujimoto, Naomi organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan – sequence: 25 givenname: Kazue surname: Goto fullname: Goto, Kazue organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan – sequence: 26 givenname: Hiroaki surname: Katsura fullname: Katsura, Hiroaki organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 27 givenname: Eiryo surname: Kawakami fullname: Kawakami, Eiryo organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan – sequence: 28 givenname: Izumi surname: Ishikawa fullname: Ishikawa, Izumi organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan – sequence: 29 givenname: Shinji surname: Watanabe fullname: Watanabe, Shinji organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan, Department of Veterinary Sciences, Laboratory of Veterinary Microbiology, University of Miyazaki, Miyazaki 889-2192, Japan – sequence: 30 givenname: Mutsumi surname: Ito fullname: Ito, Mutsumi organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 31 givenname: Yuko surname: Sakai-Tagawa fullname: Sakai-Tagawa, Yuko organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 32 givenname: Yukihiko surname: Sugita fullname: Sugita, Yukihiko organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 33 givenname: Ryuta surname: Uraki fullname: Uraki, Ryuta organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 34 givenname: Reina surname: Yamaji fullname: Yamaji, Reina organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – sequence: 35 givenname: Amie J. surname: Eisfeld fullname: Eisfeld, Amie J. organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA – sequence: 36 givenname: Gongxun surname: Zhong fullname: Zhong, Gongxun organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA – sequence: 37 givenname: Shufang surname: Fan fullname: Fan, Shufang organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA – sequence: 38 givenname: Jihui surname: Ping fullname: Ping, Jihui organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA – sequence: 39 givenname: Eileen A. surname: Maher fullname: Maher, Eileen A. organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA – sequence: 40 givenname: Anthony surname: Hanson fullname: Hanson, Anthony organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA – sequence: 41 givenname: Yuko surname: Uchida fullname: Uchida, Yuko organization: Influenza and Prion Disease Research Center, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan – sequence: 42 givenname: Takehiko surname: Saito fullname: Saito, Takehiko organization: Influenza and Prion Disease Research Center, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan – sequence: 43 givenname: Makoto surname: Ozawa fullname: Ozawa, Makoto organization: Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan, Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan – sequence: 44 givenname: Gabriele surname: Neumann fullname: Neumann, Gabriele organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA – sequence: 45 givenname: Hiroshi surname: Kida fullname: Kida, Hiroshi organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan – sequence: 46 givenname: Takato surname: Odagiri fullname: Odagiri, Takato organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan – sequence: 47 givenname: James C. surname: Paulson fullname: Paulson, James C. organization: The Scripps Research Institute, 10550 North Torrey Pines Road – sequence: 48 givenname: Hideki surname: Hasegawa fullname: Hasegawa, Hideki organization: Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan – sequence: 49 givenname: Masato surname: Tashiro fullname: Tashiro, Masato organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan – sequence: 50 givenname: Yoshihiro surname: Kawaoka fullname: Kawaoka, Yoshihiro email: kawaokay@svm.vetmed.wisc.edu organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan, Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan, Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA, Department of Biological Responses, Laboratory of Bioresponses Regulation, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23842494$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k1v1DAQBmALFdFt4cQdRXABQYq_kjgXpNUKaKUKJD7OlteeZF0l9tZOKuivx2VLlUUpKIdEzjOv48wcoQPnHSD0lOATgpl469QwBiCU1fQBWhBelTkvRXWAFhhTkWPBykN0FOMFxrggFX-EDikTnPKaL9BytVFB6QGCvVaD9S7zTXZafaoz65puBHetsmV2ZcMYIWY2-k4NYLIm-D7bjL1y8TF62KguwpPb-zH6_uH9t9Vpfv7549lqeZ7ritVDDlSbkhsFFBdMkwqDohQwx01R1wVTZg2V0IaUkJ6J5oURa8GVMcwUFWMNO0bvdrnbcd2D0eCGoDq5DbZX4af0ysr9N85uZOuvJBM1ETVNAS9vA4K_HCEOsrdRQ9cpB36MknBWFYJiUib6Ykdb1YFMf8KnRH3D5bKknJWkxPU_FSvqilHKcFL5jGrBQfrI1MnGpuU9_3zG6629lNOt70XTpJMZlC4DvdWzW7_aK0hmgB9Dq8YY5dnXL_uH_5-d5j6btu6uZ3_GMIHXO6CDjzFAc0cIljdDLidDnjT5S2s7_B7edD7b3VPzZlcTU7JrIcgLPwaXBnaW_wLgEQl4 |
CitedBy_id | crossref_primary_10_3389_fmicb_2020_00144 crossref_primary_10_1155_2018_7485310 crossref_primary_10_1089_vim_2020_0307 crossref_primary_10_1128_mbio_01174_22 crossref_primary_10_1016_j_virol_2016_10_007 crossref_primary_10_1016_j_chom_2017_09_008 crossref_primary_10_1017_S0950268815001570 crossref_primary_10_1093_infdis_jiu353 crossref_primary_10_1016_j_vetmic_2021_109019 crossref_primary_10_1093_infdis_jiu105 crossref_primary_10_1128_JVI_03677_13 crossref_primary_10_1016_j_antiviral_2015_02_011 crossref_primary_10_1016_j_jviromet_2014_08_025 crossref_primary_10_2183_pjab_93_027 crossref_primary_10_1016_j_vaccine_2015_11_050 crossref_primary_10_1097_MCP_0000000000000047 crossref_primary_10_3390_v13040678 crossref_primary_10_1038_ni_2741 crossref_primary_10_1128_JVI_01444_15 crossref_primary_10_1186_s12918_016_0287_y crossref_primary_10_1371_journal_ppat_1008816 crossref_primary_10_1128_JCM_02018_13 crossref_primary_10_1016_j_antiviral_2017_09_014 crossref_primary_10_1097_QCO_0000000000000532 crossref_primary_10_1016_j_jiph_2018_08_005 crossref_primary_10_1016_j_antiviral_2013_09_015 crossref_primary_10_1128_mbio_02540_22 crossref_primary_10_1128_JVI_00049_17 crossref_primary_10_1186_s12866_014_0271_x crossref_primary_10_1111_irv_12386 crossref_primary_10_15252_emmm_201809528 crossref_primary_10_1007_s11684_020_0814_5 crossref_primary_10_3390_ijms18071541 crossref_primary_10_4236_cmb_2015_51001 crossref_primary_10_1128_JVI_01305_15 crossref_primary_10_1016_j_tim_2017_06_008 crossref_primary_10_1128_JVI_01571_14 crossref_primary_10_1007_s10096_013_1984_8 crossref_primary_10_1038_s41541_020_0187_4 crossref_primary_10_1128_JVI_00107_14 crossref_primary_10_1111_1751_7915_14389 crossref_primary_10_1038_ncomms3854 crossref_primary_10_1128_spectrum_01798_22 crossref_primary_10_1128_JVI_01180_19 crossref_primary_10_1007_s11908_018_0643_8 crossref_primary_10_1093_infdis_jiu009 crossref_primary_10_1038_srep17999 crossref_primary_10_3389_fmicb_2018_02685 crossref_primary_10_3390_vaccines5040051 crossref_primary_10_3390_molecules27227857 crossref_primary_10_1128_JVI_03052_15 crossref_primary_10_1186_s12917_014_0203_x crossref_primary_10_1073_pnas_1522643113 crossref_primary_10_1371_journal_pone_0113963 crossref_primary_10_3390_cells11050781 crossref_primary_10_1016_j_jviromet_2015_06_001 crossref_primary_10_17650_1726_9784_2024_23_4_49_60 crossref_primary_10_1038_ni_2764 crossref_primary_10_7554_eLife_07969 crossref_primary_10_1371_journal_pone_0092580 crossref_primary_10_1016_j_tim_2014_08_008 crossref_primary_10_1038_ncomms7553 crossref_primary_10_3389_fmicb_2019_01327 crossref_primary_10_1016_j_bpj_2016_04_035 crossref_primary_10_1371_journal_pone_0107966 crossref_primary_10_1128_JVI_02765_13 crossref_primary_10_1128_JVI_03190_13 crossref_primary_10_1111_1348_0421_12185 crossref_primary_10_1128_AAC_00793_15 crossref_primary_10_1016_j_chom_2024_01_003 crossref_primary_10_1016_j_stemcr_2019_02_013 crossref_primary_10_1186_s12985_020_01341_x crossref_primary_10_7774_cevr_2014_3_2_140 crossref_primary_10_1038_nprot_2014_180 crossref_primary_10_1128_CVI_00272_14 crossref_primary_10_3390_v13020262 crossref_primary_10_1016_j_vaccine_2015_06_047 crossref_primary_10_1128_JVI_01627_18 crossref_primary_10_1128_JVI_02553_15 crossref_primary_10_1016_j_coviro_2015_06_002 crossref_primary_10_1101_cshperspect_a038349 crossref_primary_10_1093_infdis_jiz040 crossref_primary_10_1016_j_bbrc_2013_11_041 crossref_primary_10_3390_microorganisms12112294 crossref_primary_10_1099_vir_0_056184_0 crossref_primary_10_1038_emi_2014_80 crossref_primary_10_1586_14787210_2014_870885 crossref_primary_10_1089_vim_2015_0052 crossref_primary_10_1016_j_meegid_2016_02_022 crossref_primary_10_1016_j_vaccine_2014_04_060 crossref_primary_10_1111_tbed_12805 crossref_primary_10_1038_nprot_2017_112 crossref_primary_10_1128_JVI_00570_19 crossref_primary_10_1016_j_meegid_2014_10_016 crossref_primary_10_1021_acs_langmuir_0c02047 crossref_primary_10_1093_cid_ciu345 crossref_primary_10_1128_JVI_00570_14 crossref_primary_10_1038_s41598_017_10749_5 crossref_primary_10_1016_j_vaccine_2015_08_001 crossref_primary_10_1111_irv_12631 crossref_primary_10_1186_s12985_016_0498_2 crossref_primary_10_1038_s41467_024_55193_y crossref_primary_10_1371_journal_pone_0096984 crossref_primary_10_1016_j_bsheal_2019_03_001 crossref_primary_10_1128_JVI_00134_16 crossref_primary_10_1155_2015_402628 crossref_primary_10_1038_srep22880 crossref_primary_10_1016_j_chom_2018_08_006 crossref_primary_10_1128_JVI_00630_14 crossref_primary_10_1128_JVI_00894_14 crossref_primary_10_1371_journal_pone_0116715 crossref_primary_10_3390_v11020149 crossref_primary_10_1016_j_gene_2014_08_062 crossref_primary_10_1038_srep26742 crossref_primary_10_1128_JVI_03799_13 crossref_primary_10_1128_JVI_01740_18 crossref_primary_10_2139_ssrn_4151711 crossref_primary_10_1038_s44298_024_00026_4 crossref_primary_10_1093_infdis_jiy082 crossref_primary_10_1021_bi500338r crossref_primary_10_3389_fimmu_2018_01812 crossref_primary_10_1111_zph_12393 crossref_primary_10_1093_infdis_jiaa267 crossref_primary_10_1128_JVI_00216_20 crossref_primary_10_1016_j_coviro_2019_01_004 crossref_primary_10_1177_0300060519845488 crossref_primary_10_1007_s00705_016_2872_1 crossref_primary_10_1016_j_vetmic_2016_02_027 crossref_primary_10_3390_biom5031480 crossref_primary_10_1016_j_jvacx_2024_100531 crossref_primary_10_1039_C5IB00041F crossref_primary_10_1080_22221751_2018_1560234 crossref_primary_10_1016_j_antiviral_2019_104591 crossref_primary_10_1128_JVI_03095_14 crossref_primary_10_1128_JVI_03095_13 crossref_primary_10_1007_s11262_015_1214_9 crossref_primary_10_1128_JVI_01408_16 crossref_primary_10_1371_journal_pone_0107235 crossref_primary_10_7717_peerj_655 crossref_primary_10_1128_JVI_02843_13 crossref_primary_10_1186_s12985_021_01683_0 crossref_primary_10_3390_v11111066 crossref_primary_10_1128_mBio_01102_13 crossref_primary_10_1016_j_jim_2014_03_023 crossref_primary_10_1371_journal_ppat_1004642 crossref_primary_10_1128_JVI_01716_16 crossref_primary_10_1016_j_virol_2019_07_012 crossref_primary_10_1128_AAC_01885_15 crossref_primary_10_2807_1560_7917_ES2014_19_25_20840 crossref_primary_10_1021_acs_jctc_1c01044 crossref_primary_10_1111_tbed_13434 crossref_primary_10_3201_eid2401_171240 crossref_primary_10_3389_fmicb_2018_00844 crossref_primary_10_1371_journal_pone_0089529 crossref_primary_10_1128_JVI_03155_13 crossref_primary_10_1371_journal_ppat_1004508 crossref_primary_10_1016_j_chom_2016_05_014 crossref_primary_10_1007_s00705_019_04283_0 crossref_primary_10_1128_JVI_00943_14 crossref_primary_10_1016_j_virol_2017_10_010 crossref_primary_10_1371_journal_pone_0148432 crossref_primary_10_1128_JVI_02959_13 crossref_primary_10_1128_JVI_03183_13 crossref_primary_10_1128_AAC_04431_14 crossref_primary_10_1021_nn5002485 crossref_primary_10_3389_fmicb_2017_00587 crossref_primary_10_1128_JVI_03513_14 crossref_primary_10_1371_journal_pone_0137862 crossref_primary_10_1128_JVI_02761_15 crossref_primary_10_1371_journal_pone_0153674 crossref_primary_10_3389_fcimb_2025_1560250 crossref_primary_10_3390_v13050871 crossref_primary_10_1007_s10393_014_1004_1 crossref_primary_10_4236_ns_2015_72007 crossref_primary_10_1038_ncomms7600 crossref_primary_10_1016_j_molstruc_2024_137709 crossref_primary_10_1089_dna_2024_0283 crossref_primary_10_1371_journal_pone_0101788 crossref_primary_10_1371_journal_pone_0197246 crossref_primary_10_1186_s12918_017_0432_2 crossref_primary_10_1038_nrmicro3362 crossref_primary_10_1074_jbc_REV120_013309 crossref_primary_10_1128_MMBR_00022_16 crossref_primary_10_1126_science_1243761 crossref_primary_10_1128_JVI_01217_18 crossref_primary_10_20965_jdr_2014_p0793 crossref_primary_10_3390_vaccines11061050 crossref_primary_10_1155_2015_805306 crossref_primary_10_3201_eid2104_141703 crossref_primary_10_1093_cid_ciu154 crossref_primary_10_1128_mBio_00601_13 crossref_primary_10_3390_ijms18122706 crossref_primary_10_1128_JVI_01854_13 crossref_primary_10_1111_pin_12472 crossref_primary_10_1038_emi_2014_9 crossref_primary_10_1093_ve_vead004 crossref_primary_10_1016_j_virol_2016_04_013 crossref_primary_10_1093_infdis_jiy317 crossref_primary_10_1038_nature12455 crossref_primary_10_1371_journal_pone_0076047 crossref_primary_10_1093_bioinformatics_btt573 crossref_primary_10_3390_v14081684 crossref_primary_10_1007_s00705_016_3090_6 crossref_primary_10_1128_AAC_00886_15 crossref_primary_10_1016_j_tim_2019_08_010 crossref_primary_10_1016_j_chom_2014_05_006 crossref_primary_10_2222_jsv_74_117 crossref_primary_10_3390_molecules27144515 crossref_primary_10_1128_JVI_02692_15 crossref_primary_10_1111_pin_12385 crossref_primary_10_1186_s12985_015_0304_6 crossref_primary_10_1093_infdis_jit554 crossref_primary_10_1186_s40779_017_0144_3 crossref_primary_10_3201_eid2107_141755 crossref_primary_10_1007_s11427_018_9420_1 crossref_primary_10_1128_jvi_02120_21 crossref_primary_10_3389_fimmu_2020_616595 crossref_primary_10_1016_j_jviromet_2014_03_028 crossref_primary_10_1016_j_arcmed_2014_05_006 crossref_primary_10_1016_j_virol_2025_110511 crossref_primary_10_1101_cshperspect_a038620 crossref_primary_10_1016_j_vaccine_2014_10_023 crossref_primary_10_1038_s41598_020_60048_9 crossref_primary_10_3390_v10090461 crossref_primary_10_1371_journal_pone_0156017 crossref_primary_10_1016_j_cell_2014_02_040 crossref_primary_10_1016_j_virol_2016_03_007 crossref_primary_10_3389_fimmu_2020_559113 crossref_primary_10_1128_JVI_01969_18 crossref_primary_10_1038_emi_2014_75 crossref_primary_10_1093_infdis_jiu662 crossref_primary_10_1016_S2095_3119_17_61655_1 crossref_primary_10_1017_dmp_2018_97 crossref_primary_10_1017_erm_2014_4 crossref_primary_10_1093_infdis_jiy217 crossref_primary_10_1128_JVI_03292_13 crossref_primary_10_1371_journal_pone_0173008 crossref_primary_10_3390_v15071507 crossref_primary_10_1021_acs_jproteome_5b00196 crossref_primary_10_1093_cid_ciu053 crossref_primary_10_1016_j_vetmic_2022_109343 crossref_primary_10_1186_s42826_020_00040_6 crossref_primary_10_1186_s12879_015_0829_8 crossref_primary_10_1586_14760584_2014_938641 crossref_primary_10_1038_srep24154 crossref_primary_10_1038_srep03058 crossref_primary_10_1128_CVI_00085_16 crossref_primary_10_1002_cjce_24197 crossref_primary_10_1371_journal_pone_0096350 crossref_primary_10_1089_vbz_2018_2299 crossref_primary_10_1186_s12879_014_0698_6 crossref_primary_10_1016_j_vaccine_2014_09_049 crossref_primary_10_1016_j_virol_2015_03_017 crossref_primary_10_1038_s41598_019_39683_4 crossref_primary_10_1016_j_lanmic_2024_100973 crossref_primary_10_1038_srep11233 crossref_primary_10_3390_jcm10020273 crossref_primary_10_1089_bsp_2013_0089 crossref_primary_10_1093_infdis_jiw608 crossref_primary_10_1139_cjm_2014_0186 crossref_primary_10_1101_cshperspect_a038323 crossref_primary_10_1128_CVI_00443_15 crossref_primary_10_1093_infdis_jiv099 crossref_primary_10_1016_j_virol_2019_01_015 crossref_primary_10_1016_S1473_3099_14_70821_7 crossref_primary_10_1016_j_antiviral_2023_105701 crossref_primary_10_1016_j_virol_2015_03_009 crossref_primary_10_1038_ncomms6600 crossref_primary_10_1371_journal_pone_0149149 crossref_primary_10_2217_fvl_13_132 crossref_primary_10_1038_s41541_017_0016_6 crossref_primary_10_1016_j_virol_2014_07_048 crossref_primary_10_1371_journal_pone_0151333 crossref_primary_10_3201_eid2005_131364 crossref_primary_10_3389_fimmu_2022_974210 crossref_primary_10_1007_s00705_014_2143_y crossref_primary_10_1016_j_antiviral_2016_06_007 crossref_primary_10_1128_JCM_00985_18 crossref_primary_10_1371_journal_ppat_1012427 crossref_primary_10_1080_14787210_2017_1353419 crossref_primary_10_1089_vim_2015_0103 crossref_primary_10_1073_pnas_1806265115 crossref_primary_10_1080_17460441_2018_1540586 crossref_primary_10_3390_v11040346 crossref_primary_10_3389_fmicb_2015_00140 crossref_primary_10_1016_j_meegid_2018_08_028 crossref_primary_10_1016_j_jaci_2015_11_016 crossref_primary_10_1016_j_jinf_2013_12_014 crossref_primary_10_1128_JVI_02192_17 crossref_primary_10_1016_j_micinf_2014_11_010 crossref_primary_10_1093_infdis_jiac135 crossref_primary_10_1155_2019_4161287 crossref_primary_10_1002_jmv_25330 crossref_primary_10_1016_j_humimm_2015_03_022 crossref_primary_10_1128_JVI_01693_17 crossref_primary_10_1371_journal_pone_0102618 crossref_primary_10_1126_science_342_6156_310_b crossref_primary_10_2217_fvl_14_30 crossref_primary_10_1093_infdis_jiu447 crossref_primary_10_1080_03602532_2020_1803907 crossref_primary_10_1007_s11356_021_14625_8 crossref_primary_10_3390_pathogens3040845 crossref_primary_10_1007_s00705_018_4102_5 crossref_primary_10_1016_j_virol_2018_08_009 crossref_primary_10_1128_AAC_01825_20 crossref_primary_10_1038_s41426_018_0154_6 crossref_primary_10_1128_mBio_01331_14 crossref_primary_10_1016_j_bpj_2015_10_045 crossref_primary_10_1038_srep08039 crossref_primary_10_1016_j_ajpath_2016_12_017 crossref_primary_10_1016_j_jiac_2019_02_023 crossref_primary_10_7883_yoken_JJID_2021_751 crossref_primary_10_1016_j_jinf_2014_03_006 crossref_primary_10_1016_j_vaccine_2023_07_061 crossref_primary_10_1056_NEJMoa1304617 crossref_primary_10_1093_infdis_jix296 crossref_primary_10_1128_JVI_01241_14 crossref_primary_10_1016_j_virol_2014_01_016 crossref_primary_10_1038_cr_2017_129 crossref_primary_10_1586_14760584_2013_850036 crossref_primary_10_1080_22221751_2024_2337673 crossref_primary_10_1016_j_cnsns_2024_107981 crossref_primary_10_3390_pathogens11111385 crossref_primary_10_1016_j_tim_2014_07_002 crossref_primary_10_32607_actanaturae_11652 crossref_primary_10_1111_tbed_13282 crossref_primary_10_1016_j_jcpa_2014_01_004 crossref_primary_10_1016_j_arcmed_2014_12_002 crossref_primary_10_1038_ncomms14751 crossref_primary_10_1172_JCI74374 crossref_primary_10_1021_acs_langmuir_8b01605 |
Cites_doi | 10.1126/science.1239844 10.1038/nbt1375 10.1073/pnas.0801259105 10.1126/science.1115273 10.1016/S0042-6822(03)00094-1 10.1126/science.1177238 10.1165/rcmb.2007-0050OC 10.1126/science.1062882 10.1128/JVI.00534-09 10.1056/NEJMoa1304459 10.1016/j.virol.2010.09.009 10.1038/nature10831 10.1371/journal.pone.0059550 10.1016/j.virol.2011.10.006 10.1038/nsmb.2500 10.1128/JVI.02737-09 10.1038/nature08260 10.1038/304076a0 10.1038/nature04378 10.1128/JVI.72.3.2456-2462.1998 10.1128/JCM.41.2.742-750.2003 10.1126/science.1213362 10.2807/ese.18.15.20453-en 10.1016/0378-1119(91)90434-D 10.1126/science.1177127 10.1016/j.micinf.2013.04.004 10.1038/nature05264 10.1073/pnas.0605134103 10.1128/JVI.67.12.7223-7228.1993 10.1073/pnas.96.16.9345 10.1086/651132 10.1128/JVI.79.18.12058-12064.2005 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 COPYRIGHT 2013 Nature Publishing Group |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: COPYRIGHT 2013 Nature Publishing Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1038/nature12392 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 555 |
ExternalDocumentID | PMC3891892 A624361609 A359732230 23842494 10_1038_nature12392 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Japan China |
GeographicLocations_xml | – name: China – name: Japan |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI058113 – fundername: PHS HHS grantid: HHSN266200700010C – fundername: NIAID NIH HHS grantid: AI058113 – fundername: NIAID NIH HHS grantid: HHSN266200700010C – fundername: NIAID NIH HHS grantid: T32 AI078985 – fundername: NIAID NIH HHS grantid: AI099274 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AEZWR AFANA AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7X8 PJZUB PPXIY PQGLB 5PM |
ID | FETCH-LOGICAL-c739t-e2cd64dae2053c170ea22e040f59953adbe78cd16e3ad1c45d8b84add3d5733f3 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:32:38 EDT 2025 Tue Aug 05 10:58:45 EDT 2025 Tue Jun 17 21:37:49 EDT 2025 Tue Jun 17 21:49:48 EDT 2025 Thu Jun 12 23:36:14 EDT 2025 Tue Jun 10 15:33:00 EDT 2025 Tue Jun 10 15:36:28 EDT 2025 Tue Jun 10 20:24:02 EDT 2025 Fri Jun 27 04:43:57 EDT 2025 Fri Jun 27 05:03:40 EDT 2025 Wed Feb 19 02:31:14 EST 2025 Tue Jul 01 02:57:02 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 Fri Feb 21 02:37:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7468 |
Language | English |
License | Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c739t-e2cd64dae2053c170ea22e040f59953adbe78cd16e3ad1c45d8b84add3d5733f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3891892 |
PMID | 23842494 |
PQID | 1437582016 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891892 proquest_miscellaneous_1437582016 gale_infotracmisc_A624361609 gale_infotracmisc_A359732230 gale_infotracgeneralonefile_A359732230 gale_infotraccpiq_624361609 gale_infotraccpiq_359732230 gale_infotracacademiconefile_A359732230 gale_incontextgauss_ISR_A624361609 gale_incontextgauss_ISR_A359732230 pubmed_primary_23842494 crossref_primary_10_1038_nature12392 crossref_citationtrail_10_1038_nature12392 springer_journals_10_1038_nature12392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-26 |
PublicationDateYYYYMMDD | 2013-09-26 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | MainesTRTransmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and miceScience20093254844871:CAS:528:DC%2BD1MXovVCgtLw%3D2009Sci...325..484M10.1126/science.1177238 ImaiMExperimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferretsNature20124864204281:CAS:528:DC%2BC38XovFyrsLY%3D2012Natur.486..420I10.1038/nature10831 ChutinimitkulSIn vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificityJ. Virol.201084682568331:CAS:528:DC%2BC3cXptVegs78%3D10.1128/JVI.02737-09 RogersGNSingle amino acid substitutions in influenza haemagglutinin change receptor binding specificityNature198330476781:CAS:528:DyaL3sXkvVKnsLs%3D1983Natur.304...76R10.1038/304076a0 NiwaHYamamuraKMiyazakiJEfficient selection for high-expression transfectants with a novel eukaryotic vectorGene19911081931991:CAS:528:DyaK38Xlt1GksA%3D%3D10.1016/0378-1119(91)90434-D World Health Organization Number of confirmed human cases of avian influenza A(H7N9) reported to WHO. Report 8 – data in WHO/HQ as of 30 May 2013, 15:45 GMT+1. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/08_ReportWebH7N9Number.pdf (2013) KageyamaTGenetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013Euro Surveill.201318204531:STN:280:DC%2BC3srmtF2isQ%3D%3D235945756296756 GaoRHuman infection with a novel avian-origin influenza A (H7N9) virusN. Engl. J. Med.2013368188818971:CAS:528:DC%2BC3sXnsl2gsrc%3D10.1056/NEJMoa1304459 Liu, Q. et al. Genomic signature and protein sequence analysis of a novel influenza A (H7N9) virus that causes an outbreak in humans in China. Microbes Infect. (2013) NodaTArchitecture of ribonucleoprotein complexes in influenza A virus particlesNature20064394904921:CAS:528:DC%2BD28XntFWlsQ%3D%3D2006Natur.439..490N10.1038/nature04378 LiuXPoor responses to oseltamivir treatment in a patient with influenza A (H7N9) virus infectionEmerg. Microbes & Infections20132e27 MunsterVJPathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferretsScience20093254814831:CAS:528:DC%2BD1MXovVCgtL8%3D2009Sci...325..481M10.1126/science.1177127 LiZMolecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse modelJ. Virol.20057912058120641:CAS:528:DC%2BD2MXhtVWktLzL10.1128/JVI.79.18.12058-12064.2005 Zhu, H. et al. Infectivity, transmission, and pathology of human H7N9 influenza in ferrets and pigs. Sciencehttp://dx.doi.org/10.1126/science.1239844 (2013) McKimm-BreschkinJLMutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitorsJ. Virol.199872245624621:CAS:528:DyaK1cXhtFegtrk%3D9499107109546 WetherallNTEvaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: report of the neuraminidase inhibitor susceptibility networkJ. Clin. Microbiol.2003417427501:CAS:528:DC%2BD3sXhslGitLk%3D10.1128/JCM.41.2.742-750.2003 MinJYClassical swine H1N1 influenza viruses confer cross protection from swine-origin 2009 pandemic H1N1 influenza virus infection in mice and ferretsVirology20104081281331:CAS:528:DC%2BC3cXhtlKhtLzJ10.1016/j.virol.2010.09.009 ChandrasekaranAGlycan topology determines human adaptation of avian H5N1 virus hemagglutininNature Biotechnol.2008261071131:CAS:528:DC%2BD1cXisFGmtA%3D%3D10.1038/nbt1375 BelserJAContemporary North American influenza H7 viruses possess human receptor specificity: implications for virus transmissibilityProc. Natl Acad. Sci. USA2008105755875631:CAS:528:DC%2BD1cXmvFKksLc%3D2008PNAS..105.7558B10.1073/pnas.0801259105 JacksonSReassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessmentJ. Virol.200983813181401:CAS:528:DC%2BD1MXpsFOltL0%3D10.1128/JVI.00534-09 HattaMGaoPHalfmannPKawaokaYMolecular basis for high virulence of Hong Kong H5N1 influenza A virusesScience2001293184018421:CAS:528:DC%2BD3MXmvVSktrw%3D2001Sci...293.1840H10.1126/science.1062882 MakarovaNVOzakiHKidaHWebsterRGPerezDRReplication and transmission of influenza viruses in Japanese quailVirology20033108151:CAS:528:DC%2BD3sXkt1yjtrY%3D10.1016/S0042-6822(03)00094-1 YamadaSHaemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptorsNature20064443783821:CAS:528:DC%2BD28Xht1Sgtb7J2006Natur.444..378Y10.1038/nature05264 SubbaraoEKKawaokaYMurphyBRRescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutationJ. Virol.199367722372281:CAS:528:DyaK2cXitV2mtbk%3D8230444238184 ItohYIn vitro and in vivo characterization of new swine-origin H1N1 influenza virusesNature2009460102110251:CAS:528:DC%2BD1MXhtVWhsbvJ2009Natur.460.1021I10.1038/nature08260 ChenLMIn vitro evolution of H5N1 avian influenza virus toward human-type receptor specificityVirology201242210311310.1016/j.virol.2011.10.006 MainesTRLack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret modelProc. Natl Acad. Sci. USA200610312121121261:CAS:528:DC%2BD28XotlyitL4%3D2006PNAS..10312121M10.1073/pnas.0605134103 JakielaBBrockman-SchneiderRAminevaSLeeWMGernJEBasal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infectionAm. J. Respir. Cell Mol. Biol.2008385175231:CAS:528:DC%2BD1cXlvFWksrg%3D10.1165/rcmb.2007-0050OC NeumannGGeneration of influenza A viruses entirely from cloned cDNAsProc. Natl Acad. Sci. USA199996934593501:CAS:528:DyaK1MXltVCjsrk%3D1999PNAS...96.9345N10.1073/pnas.96.16.9345 van den BrandJMSeverity of pneumonia due to new H1N1 influenza virus in ferrets is intermediate between that due to seasonal H1N1 virus and highly pathogenic avian influenza H5N1 virusJ. Infect. Dis.201020199399910.1086/651132 Centers for Disease Control & PreventionEmergence of avian influenza A(H7N9) virus causing severe human illness - China, February–April 2013MMWR Morb. Mortal. Wkly Rep.201362366371 LiuJHighly pathogenic H5N1 influenza virus infection in migratory birdsScience200530912061:CAS:528:DC%2BD2MXovV2itrk%3D2005Sci...309.1210L10.1126/science.1115273 World Health Organization China–WHO Joint Mission on Human Infection with Avian Influenza A(H7N9) Virus. 18–24 April 2013, Mission Report. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/ChinaH7N9JointMissionReport2013.pdf (2013) SrinivasanKRamanRJayaramanAViswanathanKSasisekharanRQuantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutininPLoS ONE20138e595501:CAS:528:DC%2BC3sXntVKrsLc%3D2013PLoSO...859550S10.1371/journal.pone.0059550 HerfstSAirborne transmission of influenza A/H5N1 virus between ferretsScience2012336153415411:CAS:528:DC%2BC38Xoslaksbw%3D2012Sci...336.1534H10.1126/science.1213362 XuRA recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutininNature Struct. Mol. Biol.2013203633701:CAS:528:DC%2BC3sXit1aiu7w%3D2013sg2..book.....X10.1038/nsmb.2500 JL McKimm-Breschkin (BFnature12392_CR25) 1998; 72 Y Itoh (BFnature12392_CR10) 2009; 460 K Srinivasan (BFnature12392_CR21) 2013; 8 TR Maines (BFnature12392_CR17) 2006; 103 J Liu (BFnature12392_CR33) 2005; 309 JM van den Brand (BFnature12392_CR11) 2010; 201 NT Wetherall (BFnature12392_CR27) 2003; 41 T Noda (BFnature12392_CR36) 2006; 439 H Niwa (BFnature12392_CR31) 1991; 108 R Gao (BFnature12392_CR2) 2013; 368 S Herfst (BFnature12392_CR18) 2012; 336 JY Min (BFnature12392_CR12) 2010; 408 TR Maines (BFnature12392_CR13) 2009; 325 M Hatta (BFnature12392_CR7) 2001; 293 A Chandrasekaran (BFnature12392_CR22) 2008; 26 BFnature12392_CR34 BFnature12392_CR1 T Kageyama (BFnature12392_CR4) 2013; 18 M Imai (BFnature12392_CR15) 2012; 486 B Jakiela (BFnature12392_CR29) 2008; 38 NV Makarova (BFnature12392_CR32) 2003; 310 R Xu (BFnature12392_CR35) 2013; 20 Z Li (BFnature12392_CR9) 2005; 79 BFnature12392_CR5 BFnature12392_CR3 X Liu (BFnature12392_CR28) 2013; 2 LM Chen (BFnature12392_CR23) 2012; 422 VJ Munster (BFnature12392_CR14) 2009; 325 S Jackson (BFnature12392_CR16) 2009; 83 G Neumann (BFnature12392_CR30) 1999; 96 S Yamada (BFnature12392_CR19) 2006; 444 EK Subbarao (BFnature12392_CR8) 1993; 67 Centers for Disease Control & Preve (BFnature12392_CR26) 2013; 62 GN Rogers (BFnature12392_CR6) 1983; 304 JA Belser (BFnature12392_CR24) 2008; 105 S Chutinimitkul (BFnature12392_CR20) 2010; 84 |
References_xml | – reference: LiZMolecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse modelJ. Virol.20057912058120641:CAS:528:DC%2BD2MXhtVWktLzL10.1128/JVI.79.18.12058-12064.2005 – reference: MinJYClassical swine H1N1 influenza viruses confer cross protection from swine-origin 2009 pandemic H1N1 influenza virus infection in mice and ferretsVirology20104081281331:CAS:528:DC%2BC3cXhtlKhtLzJ10.1016/j.virol.2010.09.009 – reference: GaoRHuman infection with a novel avian-origin influenza A (H7N9) virusN. Engl. J. Med.2013368188818971:CAS:528:DC%2BC3sXnsl2gsrc%3D10.1056/NEJMoa1304459 – reference: WetherallNTEvaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: report of the neuraminidase inhibitor susceptibility networkJ. Clin. Microbiol.2003417427501:CAS:528:DC%2BD3sXhslGitLk%3D10.1128/JCM.41.2.742-750.2003 – reference: ChandrasekaranAGlycan topology determines human adaptation of avian H5N1 virus hemagglutininNature Biotechnol.2008261071131:CAS:528:DC%2BD1cXisFGmtA%3D%3D10.1038/nbt1375 – reference: LiuXPoor responses to oseltamivir treatment in a patient with influenza A (H7N9) virus infectionEmerg. Microbes & Infections20132e27 – reference: MainesTRTransmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and miceScience20093254844871:CAS:528:DC%2BD1MXovVCgtLw%3D2009Sci...325..484M10.1126/science.1177238 – reference: McKimm-BreschkinJLMutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitorsJ. Virol.199872245624621:CAS:528:DyaK1cXhtFegtrk%3D9499107109546 – reference: JakielaBBrockman-SchneiderRAminevaSLeeWMGernJEBasal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infectionAm. J. Respir. Cell Mol. Biol.2008385175231:CAS:528:DC%2BD1cXlvFWksrg%3D10.1165/rcmb.2007-0050OC – reference: ItohYIn vitro and in vivo characterization of new swine-origin H1N1 influenza virusesNature2009460102110251:CAS:528:DC%2BD1MXhtVWhsbvJ2009Natur.460.1021I10.1038/nature08260 – reference: HerfstSAirborne transmission of influenza A/H5N1 virus between ferretsScience2012336153415411:CAS:528:DC%2BC38Xoslaksbw%3D2012Sci...336.1534H10.1126/science.1213362 – reference: MakarovaNVOzakiHKidaHWebsterRGPerezDRReplication and transmission of influenza viruses in Japanese quailVirology20033108151:CAS:528:DC%2BD3sXkt1yjtrY%3D10.1016/S0042-6822(03)00094-1 – reference: World Health Organization Number of confirmed human cases of avian influenza A(H7N9) reported to WHO. Report 8 – data in WHO/HQ as of 30 May 2013, 15:45 GMT+1. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/08_ReportWebH7N9Number.pdf (2013) – reference: YamadaSHaemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptorsNature20064443783821:CAS:528:DC%2BD28Xht1Sgtb7J2006Natur.444..378Y10.1038/nature05264 – reference: NiwaHYamamuraKMiyazakiJEfficient selection for high-expression transfectants with a novel eukaryotic vectorGene19911081931991:CAS:528:DyaK38Xlt1GksA%3D%3D10.1016/0378-1119(91)90434-D – reference: HattaMGaoPHalfmannPKawaokaYMolecular basis for high virulence of Hong Kong H5N1 influenza A virusesScience2001293184018421:CAS:528:DC%2BD3MXmvVSktrw%3D2001Sci...293.1840H10.1126/science.1062882 – reference: Zhu, H. et al. Infectivity, transmission, and pathology of human H7N9 influenza in ferrets and pigs. Sciencehttp://dx.doi.org/10.1126/science.1239844 (2013) – reference: World Health Organization China–WHO Joint Mission on Human Infection with Avian Influenza A(H7N9) Virus. 18–24 April 2013, Mission Report. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/ChinaH7N9JointMissionReport2013.pdf (2013) – reference: KageyamaTGenetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013Euro Surveill.201318204531:STN:280:DC%2BC3srmtF2isQ%3D%3D235945756296756 – reference: Liu, Q. et al. Genomic signature and protein sequence analysis of a novel influenza A (H7N9) virus that causes an outbreak in humans in China. Microbes Infect. (2013) – reference: LiuJHighly pathogenic H5N1 influenza virus infection in migratory birdsScience200530912061:CAS:528:DC%2BD2MXovV2itrk%3D2005Sci...309.1210L10.1126/science.1115273 – reference: BelserJAContemporary North American influenza H7 viruses possess human receptor specificity: implications for virus transmissibilityProc. Natl Acad. Sci. USA2008105755875631:CAS:528:DC%2BD1cXmvFKksLc%3D2008PNAS..105.7558B10.1073/pnas.0801259105 – reference: XuRA recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutininNature Struct. Mol. Biol.2013203633701:CAS:528:DC%2BC3sXit1aiu7w%3D2013sg2..book.....X10.1038/nsmb.2500 – reference: Centers for Disease Control & PreventionEmergence of avian influenza A(H7N9) virus causing severe human illness - China, February–April 2013MMWR Morb. Mortal. Wkly Rep.201362366371 – reference: MunsterVJPathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferretsScience20093254814831:CAS:528:DC%2BD1MXovVCgtL8%3D2009Sci...325..481M10.1126/science.1177127 – reference: SrinivasanKRamanRJayaramanAViswanathanKSasisekharanRQuantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutininPLoS ONE20138e595501:CAS:528:DC%2BC3sXntVKrsLc%3D2013PLoSO...859550S10.1371/journal.pone.0059550 – reference: NodaTArchitecture of ribonucleoprotein complexes in influenza A virus particlesNature20064394904921:CAS:528:DC%2BD28XntFWlsQ%3D%3D2006Natur.439..490N10.1038/nature04378 – reference: ChutinimitkulSIn vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificityJ. Virol.201084682568331:CAS:528:DC%2BC3cXptVegs78%3D10.1128/JVI.02737-09 – reference: SubbaraoEKKawaokaYMurphyBRRescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutationJ. Virol.199367722372281:CAS:528:DyaK2cXitV2mtbk%3D8230444238184 – reference: van den BrandJMSeverity of pneumonia due to new H1N1 influenza virus in ferrets is intermediate between that due to seasonal H1N1 virus and highly pathogenic avian influenza H5N1 virusJ. Infect. Dis.201020199399910.1086/651132 – reference: ChenLMIn vitro evolution of H5N1 avian influenza virus toward human-type receptor specificityVirology201242210311310.1016/j.virol.2011.10.006 – reference: ImaiMExperimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferretsNature20124864204281:CAS:528:DC%2BC38XovFyrsLY%3D2012Natur.486..420I10.1038/nature10831 – reference: MainesTRLack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret modelProc. Natl Acad. Sci. USA200610312121121261:CAS:528:DC%2BD28XotlyitL4%3D2006PNAS..10312121M10.1073/pnas.0605134103 – reference: NeumannGGeneration of influenza A viruses entirely from cloned cDNAsProc. Natl Acad. Sci. USA199996934593501:CAS:528:DyaK1MXltVCjsrk%3D1999PNAS...96.9345N10.1073/pnas.96.16.9345 – reference: RogersGNSingle amino acid substitutions in influenza haemagglutinin change receptor binding specificityNature198330476781:CAS:528:DyaL3sXkvVKnsLs%3D1983Natur.304...76R10.1038/304076a0 – reference: JacksonSReassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessmentJ. Virol.200983813181401:CAS:528:DC%2BD1MXpsFOltL0%3D10.1128/JVI.00534-09 – ident: BFnature12392_CR34 doi: 10.1126/science.1239844 – volume: 26 start-page: 107 year: 2008 ident: BFnature12392_CR22 publication-title: Nature Biotechnol. doi: 10.1038/nbt1375 – volume: 105 start-page: 7558 year: 2008 ident: BFnature12392_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0801259105 – volume: 309 start-page: 1206 year: 2005 ident: BFnature12392_CR33 publication-title: Science doi: 10.1126/science.1115273 – volume: 310 start-page: 8 year: 2003 ident: BFnature12392_CR32 publication-title: Virology doi: 10.1016/S0042-6822(03)00094-1 – volume: 325 start-page: 484 year: 2009 ident: BFnature12392_CR13 publication-title: Science doi: 10.1126/science.1177238 – volume: 38 start-page: 517 year: 2008 ident: BFnature12392_CR29 publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2007-0050OC – volume: 293 start-page: 1840 year: 2001 ident: BFnature12392_CR7 publication-title: Science doi: 10.1126/science.1062882 – volume: 83 start-page: 8131 year: 2009 ident: BFnature12392_CR16 publication-title: J. Virol. doi: 10.1128/JVI.00534-09 – volume: 368 start-page: 1888 year: 2013 ident: BFnature12392_CR2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1304459 – volume: 408 start-page: 128 year: 2010 ident: BFnature12392_CR12 publication-title: Virology doi: 10.1016/j.virol.2010.09.009 – volume: 486 start-page: 420 year: 2012 ident: BFnature12392_CR15 publication-title: Nature doi: 10.1038/nature10831 – volume: 8 start-page: e59550 year: 2013 ident: BFnature12392_CR21 publication-title: PLoS ONE doi: 10.1371/journal.pone.0059550 – volume: 422 start-page: 103 year: 2012 ident: BFnature12392_CR23 publication-title: Virology doi: 10.1016/j.virol.2011.10.006 – volume: 20 start-page: 363 year: 2013 ident: BFnature12392_CR35 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2500 – volume: 84 start-page: 6825 year: 2010 ident: BFnature12392_CR20 publication-title: J. Virol. doi: 10.1128/JVI.02737-09 – volume: 460 start-page: 1021 year: 2009 ident: BFnature12392_CR10 publication-title: Nature doi: 10.1038/nature08260 – volume: 62 start-page: 366 year: 2013 ident: BFnature12392_CR26 publication-title: MMWR Morb. Mortal. Wkly Rep. – volume: 304 start-page: 76 year: 1983 ident: BFnature12392_CR6 publication-title: Nature doi: 10.1038/304076a0 – volume: 439 start-page: 490 year: 2006 ident: BFnature12392_CR36 publication-title: Nature doi: 10.1038/nature04378 – volume: 72 start-page: 2456 year: 1998 ident: BFnature12392_CR25 publication-title: J. Virol. doi: 10.1128/JVI.72.3.2456-2462.1998 – volume: 41 start-page: 742 year: 2003 ident: BFnature12392_CR27 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.41.2.742-750.2003 – volume: 336 start-page: 1534 year: 2012 ident: BFnature12392_CR18 publication-title: Science doi: 10.1126/science.1213362 – ident: BFnature12392_CR1 – volume: 18 start-page: 20453 year: 2013 ident: BFnature12392_CR4 publication-title: Euro Surveill. doi: 10.2807/ese.18.15.20453-en – ident: BFnature12392_CR3 – volume: 108 start-page: 193 year: 1991 ident: BFnature12392_CR31 publication-title: Gene doi: 10.1016/0378-1119(91)90434-D – volume: 2 start-page: e27 year: 2013 ident: BFnature12392_CR28 publication-title: Emerg. Microbes & Infections – volume: 325 start-page: 481 year: 2009 ident: BFnature12392_CR14 publication-title: Science doi: 10.1126/science.1177127 – ident: BFnature12392_CR5 doi: 10.1016/j.micinf.2013.04.004 – volume: 444 start-page: 378 year: 2006 ident: BFnature12392_CR19 publication-title: Nature doi: 10.1038/nature05264 – volume: 103 start-page: 12121 year: 2006 ident: BFnature12392_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0605134103 – volume: 67 start-page: 7223 year: 1993 ident: BFnature12392_CR8 publication-title: J. Virol. doi: 10.1128/JVI.67.12.7223-7228.1993 – volume: 96 start-page: 9345 year: 1999 ident: BFnature12392_CR30 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.16.9345 – volume: 201 start-page: 993 year: 2010 ident: BFnature12392_CR11 publication-title: J. Infect. Dis. doi: 10.1086/651132 – volume: 79 start-page: 12058 year: 2005 ident: BFnature12392_CR9 publication-title: J. Virol. doi: 10.1128/JVI.79.18.12058-12064.2005 |
SSID | ssj0005174 |
Score | 2.5758495 |
Snippet | Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect... Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks... Avian influenza A viruses rarely infect humans, but if they do and transmit among them, worldwide outbreaks (pandemics) can result. The recent sporadic... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 551 |
SubjectTerms | 631/326/596/1578 Analysis Animals Antiviral Agents - pharmacology Avian influenza viruses Cells, Cultured Chickens - virology Comparative analysis DNA-Directed RNA Polymerases - antagonists & inhibitors Dogs Enzyme Inhibitors - pharmacology Female Ferrets - virology Genetic aspects Humanities and Social Sciences Humans Identification and classification Influenza A virus - chemistry Influenza A virus - drug effects Influenza A virus - isolation & purification Influenza A virus - pathogenicity Influenza A Virus, H1N1 Subtype - drug effects Influenza A Virus, H1N1 Subtype - enzymology Influenza viruses Influenza, Human - drug therapy Influenza, Human - virology letter Macaca fascicularis - virology Madin Darby Canine Kidney Cells Male Mice Mice, Inbred BALB C Models, Molecular Monkey Diseases - pathology Monkey Diseases - virology multidisciplinary Neuraminidase - antagonists & inhibitors Neuraminidase inhibitors Orthomyxoviridae Infections - pathology Orthomyxoviridae Infections - transmission Orthomyxoviridae Infections - virology Pathology Patient outcomes Physiological aspects Quail - virology Science Swine - virology Swine, Miniature - virology Virus Replication - drug effects Zoonoses |
Title | Characterization of H7N9 influenza A viruses isolated from humans |
URI | https://link.springer.com/article/10.1038/nature12392 https://www.ncbi.nlm.nih.gov/pubmed/23842494 https://www.proquest.com/docview/1437582016 https://pubmed.ncbi.nlm.nih.gov/PMC3891892 |
Volume | 501 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5RAEN9c25j4Ymz9OlsvaOp3UI5vHs9L66mRmNrGeyO7C7R4CvU4mnh_vTPsQoGQWn0hHDMsHDPMziwzvyFknzm6hslPahwbEKDo7lj1Ys1VXddiMQs1N_awUPizb89OzI9zaz4YXDSylooVe8PXvXUl_yNVOAZyxSrZf5BsPSgcgH2QL2xBwrC9loynNdryuvb8Zo7vYYoVth5ZU3jvL5JlkWPaFdwLRf-yrCgpe_PlTdfULyE-my0-6jWCbxRcSMoEQG-2SBbZ5af7PBMlP4ukVoViUfymP6lYcF5l-VlN8umCfk8Eyc-W1UBy1QE7QHiqKG2vQLvxlrpLZa9PPjWNrQS_FlONsK-mY6umLedYaYAtuZwhNM0xRZ8daVEtiUcbyV9Wr90XKO8CCxXmYtFerwOkXX5uN9ygwbVBtnQIL9A-utNGalAHvVvWdcLJbxsntzyZ7nzecGi6ybadL-6lI3N8m9ySEYgyEeq0TQZRukNulJnAPN8h29La58oLCUn-8g6ZdDVNyWIFNU2pNU2ZKFLTlErTFNQ0RWjaXXJyeHA8namy-YbKHcNbqZHOQ9sMaQTvssHHjhZRXY_A5McIUWfQkEWOy8OxHcH-mJtW6DLXhNnSCBFiMzbukc00S6MHRKFeHNmUMlND9EcLXF5uW0xnIYt1g9nxkLyqHmTAJTI9Nkj5EfSIbEj2a-ZzAcjSz_YEJRIgxEmKOVSntMjz4MPXo2BiWAhRBbH3VUy2bhr22Na8IXkumeIM7opTWbcC_w2h01rD7bY4-XnyK7ia2rjKsxb1VEi47yJ7LUaYDfhfyY3LPK40NEASZlimUVbkAcRNjoXhgD0k94XG1s8X3HpTNz1zSJyWLtcMiFHfpqTJWYlVj2kQLorjaaX1gTSgeZ_YHl6Tb5fcvLRKe2RztSyiRxAdrNiIbDhzZ1S-0Lg9fD8iW-8O_C9HfwBULhNi |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+H7N9+influenza+A+viruses+isolated+from+humans&rft.jtitle=Nature+%28London%29&rft.au=Watanabe%2C+Tokiko&rft.au=Kiso%2C+Maki&rft.au=Fukuyama%2C+Satoshi&rft.au=Nakajima%2C+Noriko&rft.date=2013-09-26&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=501&rft.issue=7468&rft.spage=551&rft.epage=555&rft_id=info:doi/10.1038%2Fnature12392&rft.externalDocID=10_1038_nature12392 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |