Characterization of H7N9 influenza A viruses isolated from humans

Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect and/or transmit within various animal models is discussed, as is their relative sensitivity to neuraminidase inhibitors and experimental pol...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 501; no. 7468; pp. 551 - 555
Main Authors Watanabe, Tokiko, Kiso, Maki, Fukuyama, Satoshi, Nakajima, Noriko, Imai, Masaki, Yamada, Shinya, Murakami, Shin, Yamayoshi, Seiya, Iwatsuki-Horimoto, Kiyoko, Sakoda, Yoshihiro, Takashita, Emi, McBride, Ryan, Noda, Takeshi, Hatta, Masato, Imai, Hirotaka, Zhao, Dongming, Kishida, Noriko, Shirakura, Masayuki, de Vries, Robert P., Shichinohe, Shintaro, Okamatsu, Masatoshi, Tamura, Tomokazu, Tomita, Yuriko, Fujimoto, Naomi, Goto, Kazue, Katsura, Hiroaki, Kawakami, Eiryo, Ishikawa, Izumi, Watanabe, Shinji, Ito, Mutsumi, Sakai-Tagawa, Yuko, Sugita, Yukihiko, Uraki, Ryuta, Yamaji, Reina, Eisfeld, Amie J., Zhong, Gongxun, Fan, Shufang, Ping, Jihui, Maher, Eileen A., Hanson, Anthony, Uchida, Yuko, Saito, Takehiko, Ozawa, Makoto, Neumann, Gabriele, Kida, Hiroshi, Odagiri, Takato, Paulson, James C., Hasegawa, Hideki, Tashiro, Masato, Kawaoka, Yoshihiro
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.09.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect and/or transmit within various animal models is discussed, as is their relative sensitivity to neuraminidase inhibitors and experimental polymerase inhibitors compared to an H1N1 pandemic strain. Transmission of emerging H7N9 virus By 20 July 2013, there had been 134 laboratory-confirmed human cases of infection with avian influenza A H7N9 virus infection, including 43 deaths. Yoshihiro Kawaoka and colleagues characterize the biology of two recent isolates of the virus. They provide a wealth of data from infections in mice, pigs, macaques and ferrets. H7N9 virus is shown to be less sensitive to neuraminidase inhibitors than pandemic H1N1 virus, but equally susceptible to an experimental polymerase inhibitor. Terrence Tumpey and colleagues determine the capacity of two clinical H7N9 isolates to cause disease and transmit between mammals. They show that the virus can replicate in human airway cells and in the respiratory tract of ferrets to a higher level than can seasonal H3N2 virus, and show higher lethality in mice than genetically related H7N9 and H9N2 viruses. In transmission studies, the H7N9 virus showed limited transmission in ferrets by respiratory droplets. Ron Fouchier and colleagues investigate the transmissibility of H7N9 virus between ferrets. They show that airborne transmission can occur, but inefficiently. They also show that on passage in ferrets, virus variants that have higher avian receptor binding, higher pH of fusion and lower thermostability are selected, and they suggest that these characteristics may result in reduced transmissibility. Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission 1 , and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
AbstractList Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect and/or transmit within various animal models is discussed, as is their relative sensitivity to neuraminidase inhibitors and experimental polymerase inhibitors compared to an H1N1 pandemic strain. Transmission of emerging H7N9 virus By 20 July 2013, there had been 134 laboratory-confirmed human cases of infection with avian influenza A H7N9 virus infection, including 43 deaths. Yoshihiro Kawaoka and colleagues characterize the biology of two recent isolates of the virus. They provide a wealth of data from infections in mice, pigs, macaques and ferrets. H7N9 virus is shown to be less sensitive to neuraminidase inhibitors than pandemic H1N1 virus, but equally susceptible to an experimental polymerase inhibitor. Terrence Tumpey and colleagues determine the capacity of two clinical H7N9 isolates to cause disease and transmit between mammals. They show that the virus can replicate in human airway cells and in the respiratory tract of ferrets to a higher level than can seasonal H3N2 virus, and show higher lethality in mice than genetically related H7N9 and H9N2 viruses. In transmission studies, the H7N9 virus showed limited transmission in ferrets by respiratory droplets. Ron Fouchier and colleagues investigate the transmissibility of H7N9 virus between ferrets. They show that airborne transmission can occur, but inefficiently. They also show that on passage in ferrets, virus variants that have higher avian receptor binding, higher pH of fusion and lower thermostability are selected, and they suggest that these characteristics may result in reduced transmissibility. Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission 1 , and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect and/or transmit within various animal models is discussed, as is their relative sensitivity to neuraminidase inhibitors and experimental polymerase inhibitors compared to an H1N1 pandemic strain.
Avian influenza A viruses rarely infect humans, but if they do and transmit among them, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern due to the appreciable case fatality rate associated with these infections (>25%), potential instances of human-to-human transmission 1 , and the lack of pre-existing immunity among humans to viruses of this subtype. Here, we therefore characterized two early human A(H7N9) isolates, A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9; hereafter referred to as Anhui/1 and Shanghai/1, respectively). In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011; H7N9; Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/04/2009; H1N1; CA04). Anhui/1, Shanghai/1, and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates (NHPs), Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs upon intranasal inoculation. Most critically, Anhui/1 transmitted via respiratory droplets in one of three pairs of ferrets. Glycan arrays demonstrated that Anhui/1, Shanghai/1, and A/Hangzhou/1/2013 (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was less sensitive than a pandemic 2009 H1N1 virus to neuraminidase inhibitors, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets, and NHPs and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
Audience Academic
Author Saito, Takehiko
Uraki, Ryuta
Uchida, Yuko
Yamayoshi, Seiya
de Vries, Robert P.
Odagiri, Takato
Tomita, Yuriko
Imai, Masaki
Goto, Kazue
Tamura, Tomokazu
Maher, Eileen A.
Okamatsu, Masatoshi
McBride, Ryan
Sugita, Yukihiko
Sakai-Tagawa, Yuko
Eisfeld, Amie J.
Kishida, Noriko
Ito, Mutsumi
Yamada, Shinya
Fan, Shufang
Ozawa, Makoto
Murakami, Shin
Hanson, Anthony
Takashita, Emi
Shirakura, Masayuki
Kawakami, Eiryo
Fujimoto, Naomi
Watanabe, Tokiko
Nakajima, Noriko
Zhong, Gongxun
Katsura, Hiroaki
Tashiro, Masato
Ishikawa, Izumi
Sakoda, Yoshihiro
Watanabe, Shinji
Shichinohe, Shintaro
Iwatsuki-Horimoto, Kiyoko
Kiso, Maki
Fukuyama, Satoshi
Noda, Takeshi
Imai, Hirotaka
Kawaoka, Yoshihiro
Hatta, Masato
Neumann, Gabriele
Zhao, Dongming
Yamaji, Reina
Paulson, James C.
Kida, Hiroshi
Hasegawa, Hideki
Ping, Jihui
AuthorAffiliation 13 Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
14 Laboratory of Bioresponses Regulation, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
10 Influenza and Prion Disease Research Center, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856 Japan
9 Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan
12 Transboundary Animal Distance Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
7 The Scripps Research Institute, 10550 North Torrey Pines Road, SP-3 La Jolla, CA 92037, USA
1 ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
3 Department of Pathology, National Insti
AuthorAffiliation_xml – name: 14 Laboratory of Bioresponses Regulation, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
– name: 9 Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan
– name: 11 Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
– name: 1 ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
– name: 5 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
– name: 6 Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
– name: 10 Influenza and Prion Disease Research Center, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856 Japan
– name: 3 Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
– name: 7 The Scripps Research Institute, 10550 North Torrey Pines Road, SP-3 La Jolla, CA 92037, USA
– name: 12 Transboundary Animal Distance Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
– name: 13 Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
– name: 4 Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
– name: 8 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
– name: 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
Author_xml – sequence: 1
  givenname: Tokiko
  surname: Watanabe
  fullname: Watanabe, Tokiko
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
– sequence: 2
  givenname: Maki
  surname: Kiso
  fullname: Kiso, Maki
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 3
  givenname: Satoshi
  surname: Fukuyama
  fullname: Fukuyama, Satoshi
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
– sequence: 4
  givenname: Noriko
  surname: Nakajima
  fullname: Nakajima, Noriko
  organization: Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
– sequence: 5
  givenname: Masaki
  surname: Imai
  fullname: Imai, Masaki
  organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 6
  givenname: Shinya
  surname: Yamada
  fullname: Yamada, Shinya
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 7
  givenname: Shin
  surname: Murakami
  fullname: Murakami, Shin
  organization: Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
– sequence: 8
  givenname: Seiya
  surname: Yamayoshi
  fullname: Yamayoshi, Seiya
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 9
  givenname: Kiyoko
  surname: Iwatsuki-Horimoto
  fullname: Iwatsuki-Horimoto, Kiyoko
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 10
  givenname: Yoshihiro
  surname: Sakoda
  fullname: Sakoda, Yoshihiro
  organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
– sequence: 11
  givenname: Emi
  surname: Takashita
  fullname: Takashita, Emi
  organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 12
  givenname: Ryan
  surname: McBride
  fullname: McBride, Ryan
  organization: The Scripps Research Institute, 10550 North Torrey Pines Road
– sequence: 13
  givenname: Takeshi
  surname: Noda
  fullname: Noda, Takeshi
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 14
  givenname: Masato
  surname: Hatta
  fullname: Hatta, Masato
  organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA
– sequence: 15
  givenname: Hirotaka
  surname: Imai
  fullname: Imai, Hirotaka
  organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA
– sequence: 16
  givenname: Dongming
  surname: Zhao
  fullname: Zhao, Dongming
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
– sequence: 17
  givenname: Noriko
  surname: Kishida
  fullname: Kishida, Noriko
  organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 18
  givenname: Masayuki
  surname: Shirakura
  fullname: Shirakura, Masayuki
  organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 19
  givenname: Robert P.
  surname: de Vries
  fullname: de Vries, Robert P.
  organization: The Scripps Research Institute, 10550 North Torrey Pines Road
– sequence: 20
  givenname: Shintaro
  surname: Shichinohe
  fullname: Shichinohe, Shintaro
  organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
– sequence: 21
  givenname: Masatoshi
  surname: Okamatsu
  fullname: Okamatsu, Masatoshi
  organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
– sequence: 22
  givenname: Tomokazu
  surname: Tamura
  fullname: Tamura, Tomokazu
  organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
– sequence: 23
  givenname: Yuriko
  surname: Tomita
  fullname: Tomita, Yuriko
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
– sequence: 24
  givenname: Naomi
  surname: Fujimoto
  fullname: Fujimoto, Naomi
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
– sequence: 25
  givenname: Kazue
  surname: Goto
  fullname: Goto, Kazue
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
– sequence: 26
  givenname: Hiroaki
  surname: Katsura
  fullname: Katsura, Hiroaki
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 27
  givenname: Eiryo
  surname: Kawakami
  fullname: Kawakami, Eiryo
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
– sequence: 28
  givenname: Izumi
  surname: Ishikawa
  fullname: Ishikawa, Izumi
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
– sequence: 29
  givenname: Shinji
  surname: Watanabe
  fullname: Watanabe, Shinji
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan, Department of Veterinary Sciences, Laboratory of Veterinary Microbiology, University of Miyazaki, Miyazaki 889-2192, Japan
– sequence: 30
  givenname: Mutsumi
  surname: Ito
  fullname: Ito, Mutsumi
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 31
  givenname: Yuko
  surname: Sakai-Tagawa
  fullname: Sakai-Tagawa, Yuko
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 32
  givenname: Yukihiko
  surname: Sugita
  fullname: Sugita, Yukihiko
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 33
  givenname: Ryuta
  surname: Uraki
  fullname: Uraki, Ryuta
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 34
  givenname: Reina
  surname: Yamaji
  fullname: Yamaji, Reina
  organization: Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– sequence: 35
  givenname: Amie J.
  surname: Eisfeld
  fullname: Eisfeld, Amie J.
  organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA
– sequence: 36
  givenname: Gongxun
  surname: Zhong
  fullname: Zhong, Gongxun
  organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA
– sequence: 37
  givenname: Shufang
  surname: Fan
  fullname: Fan, Shufang
  organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA
– sequence: 38
  givenname: Jihui
  surname: Ping
  fullname: Ping, Jihui
  organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA
– sequence: 39
  givenname: Eileen A.
  surname: Maher
  fullname: Maher, Eileen A.
  organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA
– sequence: 40
  givenname: Anthony
  surname: Hanson
  fullname: Hanson, Anthony
  organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA
– sequence: 41
  givenname: Yuko
  surname: Uchida
  fullname: Uchida, Yuko
  organization: Influenza and Prion Disease Research Center, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan
– sequence: 42
  givenname: Takehiko
  surname: Saito
  fullname: Saito, Takehiko
  organization: Influenza and Prion Disease Research Center, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan
– sequence: 43
  givenname: Makoto
  surname: Ozawa
  fullname: Ozawa, Makoto
  organization: Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan, Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
– sequence: 44
  givenname: Gabriele
  surname: Neumann
  fullname: Neumann, Gabriele
  organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA
– sequence: 45
  givenname: Hiroshi
  surname: Kida
  fullname: Kida, Hiroshi
  organization: Department of Disease Control, Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
– sequence: 46
  givenname: Takato
  surname: Odagiri
  fullname: Odagiri, Takato
  organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 47
  givenname: James C.
  surname: Paulson
  fullname: Paulson, James C.
  organization: The Scripps Research Institute, 10550 North Torrey Pines Road
– sequence: 48
  givenname: Hideki
  surname: Hasegawa
  fullname: Hasegawa, Hideki
  organization: Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
– sequence: 49
  givenname: Masato
  surname: Tashiro
  fullname: Tashiro, Masato
  organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 50
  givenname: Yoshihiro
  surname: Kawaoka
  fullname: Kawaoka, Yoshihiro
  email: kawaokay@svm.vetmed.wisc.edu
  organization: ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan, Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan, Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, Wisconsin 53711, USA, Department of Biological Responses, Laboratory of Bioresponses Regulation, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23842494$$D View this record in MEDLINE/PubMed
BookMark eNqF0k1v1DAQBmALFdFt4cQdRXABQYq_kjgXpNUKaKUKJD7OlteeZF0l9tZOKuivx2VLlUUpKIdEzjOv48wcoQPnHSD0lOATgpl469QwBiCU1fQBWhBelTkvRXWAFhhTkWPBykN0FOMFxrggFX-EDikTnPKaL9BytVFB6QGCvVaD9S7zTXZafaoz65puBHetsmV2ZcMYIWY2-k4NYLIm-D7bjL1y8TF62KguwpPb-zH6_uH9t9Vpfv7549lqeZ7ritVDDlSbkhsFFBdMkwqDohQwx01R1wVTZg2V0IaUkJ6J5oURa8GVMcwUFWMNO0bvdrnbcd2D0eCGoDq5DbZX4af0ysr9N85uZOuvJBM1ETVNAS9vA4K_HCEOsrdRQ9cpB36MknBWFYJiUib6Ykdb1YFMf8KnRH3D5bKknJWkxPU_FSvqilHKcFL5jGrBQfrI1MnGpuU9_3zG6629lNOt70XTpJMZlC4DvdWzW7_aK0hmgB9Dq8YY5dnXL_uH_5-d5j6btu6uZ3_GMIHXO6CDjzFAc0cIljdDLidDnjT5S2s7_B7edD7b3VPzZlcTU7JrIcgLPwaXBnaW_wLgEQl4
CitedBy_id crossref_primary_10_3389_fmicb_2020_00144
crossref_primary_10_1155_2018_7485310
crossref_primary_10_1089_vim_2020_0307
crossref_primary_10_1128_mbio_01174_22
crossref_primary_10_1016_j_virol_2016_10_007
crossref_primary_10_1016_j_chom_2017_09_008
crossref_primary_10_1017_S0950268815001570
crossref_primary_10_1093_infdis_jiu353
crossref_primary_10_1016_j_vetmic_2021_109019
crossref_primary_10_1093_infdis_jiu105
crossref_primary_10_1128_JVI_03677_13
crossref_primary_10_1016_j_antiviral_2015_02_011
crossref_primary_10_1016_j_jviromet_2014_08_025
crossref_primary_10_2183_pjab_93_027
crossref_primary_10_1016_j_vaccine_2015_11_050
crossref_primary_10_1097_MCP_0000000000000047
crossref_primary_10_3390_v13040678
crossref_primary_10_1038_ni_2741
crossref_primary_10_1128_JVI_01444_15
crossref_primary_10_1186_s12918_016_0287_y
crossref_primary_10_1371_journal_ppat_1008816
crossref_primary_10_1128_JCM_02018_13
crossref_primary_10_1016_j_antiviral_2017_09_014
crossref_primary_10_1097_QCO_0000000000000532
crossref_primary_10_1016_j_jiph_2018_08_005
crossref_primary_10_1016_j_antiviral_2013_09_015
crossref_primary_10_1128_mbio_02540_22
crossref_primary_10_1128_JVI_00049_17
crossref_primary_10_1186_s12866_014_0271_x
crossref_primary_10_1111_irv_12386
crossref_primary_10_15252_emmm_201809528
crossref_primary_10_1007_s11684_020_0814_5
crossref_primary_10_3390_ijms18071541
crossref_primary_10_4236_cmb_2015_51001
crossref_primary_10_1128_JVI_01305_15
crossref_primary_10_1016_j_tim_2017_06_008
crossref_primary_10_1128_JVI_01571_14
crossref_primary_10_1007_s10096_013_1984_8
crossref_primary_10_1038_s41541_020_0187_4
crossref_primary_10_1128_JVI_00107_14
crossref_primary_10_1111_1751_7915_14389
crossref_primary_10_1038_ncomms3854
crossref_primary_10_1128_spectrum_01798_22
crossref_primary_10_1128_JVI_01180_19
crossref_primary_10_1007_s11908_018_0643_8
crossref_primary_10_1093_infdis_jiu009
crossref_primary_10_1038_srep17999
crossref_primary_10_3389_fmicb_2018_02685
crossref_primary_10_3390_vaccines5040051
crossref_primary_10_3390_molecules27227857
crossref_primary_10_1128_JVI_03052_15
crossref_primary_10_1186_s12917_014_0203_x
crossref_primary_10_1073_pnas_1522643113
crossref_primary_10_1371_journal_pone_0113963
crossref_primary_10_3390_cells11050781
crossref_primary_10_1016_j_jviromet_2015_06_001
crossref_primary_10_17650_1726_9784_2024_23_4_49_60
crossref_primary_10_1038_ni_2764
crossref_primary_10_7554_eLife_07969
crossref_primary_10_1371_journal_pone_0092580
crossref_primary_10_1016_j_tim_2014_08_008
crossref_primary_10_1038_ncomms7553
crossref_primary_10_3389_fmicb_2019_01327
crossref_primary_10_1016_j_bpj_2016_04_035
crossref_primary_10_1371_journal_pone_0107966
crossref_primary_10_1128_JVI_02765_13
crossref_primary_10_1128_JVI_03190_13
crossref_primary_10_1111_1348_0421_12185
crossref_primary_10_1128_AAC_00793_15
crossref_primary_10_1016_j_chom_2024_01_003
crossref_primary_10_1016_j_stemcr_2019_02_013
crossref_primary_10_1186_s12985_020_01341_x
crossref_primary_10_7774_cevr_2014_3_2_140
crossref_primary_10_1038_nprot_2014_180
crossref_primary_10_1128_CVI_00272_14
crossref_primary_10_3390_v13020262
crossref_primary_10_1016_j_vaccine_2015_06_047
crossref_primary_10_1128_JVI_01627_18
crossref_primary_10_1128_JVI_02553_15
crossref_primary_10_1016_j_coviro_2015_06_002
crossref_primary_10_1101_cshperspect_a038349
crossref_primary_10_1093_infdis_jiz040
crossref_primary_10_1016_j_bbrc_2013_11_041
crossref_primary_10_3390_microorganisms12112294
crossref_primary_10_1099_vir_0_056184_0
crossref_primary_10_1038_emi_2014_80
crossref_primary_10_1586_14787210_2014_870885
crossref_primary_10_1089_vim_2015_0052
crossref_primary_10_1016_j_meegid_2016_02_022
crossref_primary_10_1016_j_vaccine_2014_04_060
crossref_primary_10_1111_tbed_12805
crossref_primary_10_1038_nprot_2017_112
crossref_primary_10_1128_JVI_00570_19
crossref_primary_10_1016_j_meegid_2014_10_016
crossref_primary_10_1021_acs_langmuir_0c02047
crossref_primary_10_1093_cid_ciu345
crossref_primary_10_1128_JVI_00570_14
crossref_primary_10_1038_s41598_017_10749_5
crossref_primary_10_1016_j_vaccine_2015_08_001
crossref_primary_10_1111_irv_12631
crossref_primary_10_1186_s12985_016_0498_2
crossref_primary_10_1038_s41467_024_55193_y
crossref_primary_10_1371_journal_pone_0096984
crossref_primary_10_1016_j_bsheal_2019_03_001
crossref_primary_10_1128_JVI_00134_16
crossref_primary_10_1155_2015_402628
crossref_primary_10_1038_srep22880
crossref_primary_10_1016_j_chom_2018_08_006
crossref_primary_10_1128_JVI_00630_14
crossref_primary_10_1128_JVI_00894_14
crossref_primary_10_1371_journal_pone_0116715
crossref_primary_10_3390_v11020149
crossref_primary_10_1016_j_gene_2014_08_062
crossref_primary_10_1038_srep26742
crossref_primary_10_1128_JVI_03799_13
crossref_primary_10_1128_JVI_01740_18
crossref_primary_10_2139_ssrn_4151711
crossref_primary_10_1038_s44298_024_00026_4
crossref_primary_10_1093_infdis_jiy082
crossref_primary_10_1021_bi500338r
crossref_primary_10_3389_fimmu_2018_01812
crossref_primary_10_1111_zph_12393
crossref_primary_10_1093_infdis_jiaa267
crossref_primary_10_1128_JVI_00216_20
crossref_primary_10_1016_j_coviro_2019_01_004
crossref_primary_10_1177_0300060519845488
crossref_primary_10_1007_s00705_016_2872_1
crossref_primary_10_1016_j_vetmic_2016_02_027
crossref_primary_10_3390_biom5031480
crossref_primary_10_1016_j_jvacx_2024_100531
crossref_primary_10_1039_C5IB00041F
crossref_primary_10_1080_22221751_2018_1560234
crossref_primary_10_1016_j_antiviral_2019_104591
crossref_primary_10_1128_JVI_03095_14
crossref_primary_10_1128_JVI_03095_13
crossref_primary_10_1007_s11262_015_1214_9
crossref_primary_10_1128_JVI_01408_16
crossref_primary_10_1371_journal_pone_0107235
crossref_primary_10_7717_peerj_655
crossref_primary_10_1128_JVI_02843_13
crossref_primary_10_1186_s12985_021_01683_0
crossref_primary_10_3390_v11111066
crossref_primary_10_1128_mBio_01102_13
crossref_primary_10_1016_j_jim_2014_03_023
crossref_primary_10_1371_journal_ppat_1004642
crossref_primary_10_1128_JVI_01716_16
crossref_primary_10_1016_j_virol_2019_07_012
crossref_primary_10_1128_AAC_01885_15
crossref_primary_10_2807_1560_7917_ES2014_19_25_20840
crossref_primary_10_1021_acs_jctc_1c01044
crossref_primary_10_1111_tbed_13434
crossref_primary_10_3201_eid2401_171240
crossref_primary_10_3389_fmicb_2018_00844
crossref_primary_10_1371_journal_pone_0089529
crossref_primary_10_1128_JVI_03155_13
crossref_primary_10_1371_journal_ppat_1004508
crossref_primary_10_1016_j_chom_2016_05_014
crossref_primary_10_1007_s00705_019_04283_0
crossref_primary_10_1128_JVI_00943_14
crossref_primary_10_1016_j_virol_2017_10_010
crossref_primary_10_1371_journal_pone_0148432
crossref_primary_10_1128_JVI_02959_13
crossref_primary_10_1128_JVI_03183_13
crossref_primary_10_1128_AAC_04431_14
crossref_primary_10_1021_nn5002485
crossref_primary_10_3389_fmicb_2017_00587
crossref_primary_10_1128_JVI_03513_14
crossref_primary_10_1371_journal_pone_0137862
crossref_primary_10_1128_JVI_02761_15
crossref_primary_10_1371_journal_pone_0153674
crossref_primary_10_3389_fcimb_2025_1560250
crossref_primary_10_3390_v13050871
crossref_primary_10_1007_s10393_014_1004_1
crossref_primary_10_4236_ns_2015_72007
crossref_primary_10_1038_ncomms7600
crossref_primary_10_1016_j_molstruc_2024_137709
crossref_primary_10_1089_dna_2024_0283
crossref_primary_10_1371_journal_pone_0101788
crossref_primary_10_1371_journal_pone_0197246
crossref_primary_10_1186_s12918_017_0432_2
crossref_primary_10_1038_nrmicro3362
crossref_primary_10_1074_jbc_REV120_013309
crossref_primary_10_1128_MMBR_00022_16
crossref_primary_10_1126_science_1243761
crossref_primary_10_1128_JVI_01217_18
crossref_primary_10_20965_jdr_2014_p0793
crossref_primary_10_3390_vaccines11061050
crossref_primary_10_1155_2015_805306
crossref_primary_10_3201_eid2104_141703
crossref_primary_10_1093_cid_ciu154
crossref_primary_10_1128_mBio_00601_13
crossref_primary_10_3390_ijms18122706
crossref_primary_10_1128_JVI_01854_13
crossref_primary_10_1111_pin_12472
crossref_primary_10_1038_emi_2014_9
crossref_primary_10_1093_ve_vead004
crossref_primary_10_1016_j_virol_2016_04_013
crossref_primary_10_1093_infdis_jiy317
crossref_primary_10_1038_nature12455
crossref_primary_10_1371_journal_pone_0076047
crossref_primary_10_1093_bioinformatics_btt573
crossref_primary_10_3390_v14081684
crossref_primary_10_1007_s00705_016_3090_6
crossref_primary_10_1128_AAC_00886_15
crossref_primary_10_1016_j_tim_2019_08_010
crossref_primary_10_1016_j_chom_2014_05_006
crossref_primary_10_2222_jsv_74_117
crossref_primary_10_3390_molecules27144515
crossref_primary_10_1128_JVI_02692_15
crossref_primary_10_1111_pin_12385
crossref_primary_10_1186_s12985_015_0304_6
crossref_primary_10_1093_infdis_jit554
crossref_primary_10_1186_s40779_017_0144_3
crossref_primary_10_3201_eid2107_141755
crossref_primary_10_1007_s11427_018_9420_1
crossref_primary_10_1128_jvi_02120_21
crossref_primary_10_3389_fimmu_2020_616595
crossref_primary_10_1016_j_jviromet_2014_03_028
crossref_primary_10_1016_j_arcmed_2014_05_006
crossref_primary_10_1016_j_virol_2025_110511
crossref_primary_10_1101_cshperspect_a038620
crossref_primary_10_1016_j_vaccine_2014_10_023
crossref_primary_10_1038_s41598_020_60048_9
crossref_primary_10_3390_v10090461
crossref_primary_10_1371_journal_pone_0156017
crossref_primary_10_1016_j_cell_2014_02_040
crossref_primary_10_1016_j_virol_2016_03_007
crossref_primary_10_3389_fimmu_2020_559113
crossref_primary_10_1128_JVI_01969_18
crossref_primary_10_1038_emi_2014_75
crossref_primary_10_1093_infdis_jiu662
crossref_primary_10_1016_S2095_3119_17_61655_1
crossref_primary_10_1017_dmp_2018_97
crossref_primary_10_1017_erm_2014_4
crossref_primary_10_1093_infdis_jiy217
crossref_primary_10_1128_JVI_03292_13
crossref_primary_10_1371_journal_pone_0173008
crossref_primary_10_3390_v15071507
crossref_primary_10_1021_acs_jproteome_5b00196
crossref_primary_10_1093_cid_ciu053
crossref_primary_10_1016_j_vetmic_2022_109343
crossref_primary_10_1186_s42826_020_00040_6
crossref_primary_10_1186_s12879_015_0829_8
crossref_primary_10_1586_14760584_2014_938641
crossref_primary_10_1038_srep24154
crossref_primary_10_1038_srep03058
crossref_primary_10_1128_CVI_00085_16
crossref_primary_10_1002_cjce_24197
crossref_primary_10_1371_journal_pone_0096350
crossref_primary_10_1089_vbz_2018_2299
crossref_primary_10_1186_s12879_014_0698_6
crossref_primary_10_1016_j_vaccine_2014_09_049
crossref_primary_10_1016_j_virol_2015_03_017
crossref_primary_10_1038_s41598_019_39683_4
crossref_primary_10_1016_j_lanmic_2024_100973
crossref_primary_10_1038_srep11233
crossref_primary_10_3390_jcm10020273
crossref_primary_10_1089_bsp_2013_0089
crossref_primary_10_1093_infdis_jiw608
crossref_primary_10_1139_cjm_2014_0186
crossref_primary_10_1101_cshperspect_a038323
crossref_primary_10_1128_CVI_00443_15
crossref_primary_10_1093_infdis_jiv099
crossref_primary_10_1016_j_virol_2019_01_015
crossref_primary_10_1016_S1473_3099_14_70821_7
crossref_primary_10_1016_j_antiviral_2023_105701
crossref_primary_10_1016_j_virol_2015_03_009
crossref_primary_10_1038_ncomms6600
crossref_primary_10_1371_journal_pone_0149149
crossref_primary_10_2217_fvl_13_132
crossref_primary_10_1038_s41541_017_0016_6
crossref_primary_10_1016_j_virol_2014_07_048
crossref_primary_10_1371_journal_pone_0151333
crossref_primary_10_3201_eid2005_131364
crossref_primary_10_3389_fimmu_2022_974210
crossref_primary_10_1007_s00705_014_2143_y
crossref_primary_10_1016_j_antiviral_2016_06_007
crossref_primary_10_1128_JCM_00985_18
crossref_primary_10_1371_journal_ppat_1012427
crossref_primary_10_1080_14787210_2017_1353419
crossref_primary_10_1089_vim_2015_0103
crossref_primary_10_1073_pnas_1806265115
crossref_primary_10_1080_17460441_2018_1540586
crossref_primary_10_3390_v11040346
crossref_primary_10_3389_fmicb_2015_00140
crossref_primary_10_1016_j_meegid_2018_08_028
crossref_primary_10_1016_j_jaci_2015_11_016
crossref_primary_10_1016_j_jinf_2013_12_014
crossref_primary_10_1128_JVI_02192_17
crossref_primary_10_1016_j_micinf_2014_11_010
crossref_primary_10_1093_infdis_jiac135
crossref_primary_10_1155_2019_4161287
crossref_primary_10_1002_jmv_25330
crossref_primary_10_1016_j_humimm_2015_03_022
crossref_primary_10_1128_JVI_01693_17
crossref_primary_10_1371_journal_pone_0102618
crossref_primary_10_1126_science_342_6156_310_b
crossref_primary_10_2217_fvl_14_30
crossref_primary_10_1093_infdis_jiu447
crossref_primary_10_1080_03602532_2020_1803907
crossref_primary_10_1007_s11356_021_14625_8
crossref_primary_10_3390_pathogens3040845
crossref_primary_10_1007_s00705_018_4102_5
crossref_primary_10_1016_j_virol_2018_08_009
crossref_primary_10_1128_AAC_01825_20
crossref_primary_10_1038_s41426_018_0154_6
crossref_primary_10_1128_mBio_01331_14
crossref_primary_10_1016_j_bpj_2015_10_045
crossref_primary_10_1038_srep08039
crossref_primary_10_1016_j_ajpath_2016_12_017
crossref_primary_10_1016_j_jiac_2019_02_023
crossref_primary_10_7883_yoken_JJID_2021_751
crossref_primary_10_1016_j_jinf_2014_03_006
crossref_primary_10_1016_j_vaccine_2023_07_061
crossref_primary_10_1056_NEJMoa1304617
crossref_primary_10_1093_infdis_jix296
crossref_primary_10_1128_JVI_01241_14
crossref_primary_10_1016_j_virol_2014_01_016
crossref_primary_10_1038_cr_2017_129
crossref_primary_10_1586_14760584_2013_850036
crossref_primary_10_1080_22221751_2024_2337673
crossref_primary_10_1016_j_cnsns_2024_107981
crossref_primary_10_3390_pathogens11111385
crossref_primary_10_1016_j_tim_2014_07_002
crossref_primary_10_32607_actanaturae_11652
crossref_primary_10_1111_tbed_13282
crossref_primary_10_1016_j_jcpa_2014_01_004
crossref_primary_10_1016_j_arcmed_2014_12_002
crossref_primary_10_1038_ncomms14751
crossref_primary_10_1172_JCI74374
crossref_primary_10_1021_acs_langmuir_8b01605
Cites_doi 10.1126/science.1239844
10.1038/nbt1375
10.1073/pnas.0801259105
10.1126/science.1115273
10.1016/S0042-6822(03)00094-1
10.1126/science.1177238
10.1165/rcmb.2007-0050OC
10.1126/science.1062882
10.1128/JVI.00534-09
10.1056/NEJMoa1304459
10.1016/j.virol.2010.09.009
10.1038/nature10831
10.1371/journal.pone.0059550
10.1016/j.virol.2011.10.006
10.1038/nsmb.2500
10.1128/JVI.02737-09
10.1038/nature08260
10.1038/304076a0
10.1038/nature04378
10.1128/JVI.72.3.2456-2462.1998
10.1128/JCM.41.2.742-750.2003
10.1126/science.1213362
10.2807/ese.18.15.20453-en
10.1016/0378-1119(91)90434-D
10.1126/science.1177127
10.1016/j.micinf.2013.04.004
10.1038/nature05264
10.1073/pnas.0605134103
10.1128/JVI.67.12.7223-7228.1993
10.1073/pnas.96.16.9345
10.1086/651132
10.1128/JVI.79.18.12058-12064.2005
ContentType Journal Article
Copyright Springer Nature Limited 2013
COPYRIGHT 2013 Nature Publishing Group
Copyright_xml – notice: Springer Nature Limited 2013
– notice: COPYRIGHT 2013 Nature Publishing Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1038/nature12392
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList



MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 555
ExternalDocumentID PMC3891892
A624361609
A359732230
23842494
10_1038_nature12392
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Japan
China
GeographicLocations_xml – name: China
– name: Japan
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI058113
– fundername: PHS HHS
  grantid: HHSN266200700010C
– fundername: NIAID NIH HHS
  grantid: AI058113
– fundername: NIAID NIH HHS
  grantid: HHSN266200700010C
– fundername: NIAID NIH HHS
  grantid: T32 AI078985
– fundername: NIAID NIH HHS
  grantid: AI099274
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AEZWR
AFANA
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7X8
PJZUB
PPXIY
PQGLB
5PM
ID FETCH-LOGICAL-c739t-e2cd64dae2053c170ea22e040f59953adbe78cd16e3ad1c45d8b84add3d5733f3
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:32:38 EDT 2025
Tue Aug 05 10:58:45 EDT 2025
Tue Jun 17 21:37:49 EDT 2025
Tue Jun 17 21:49:48 EDT 2025
Thu Jun 12 23:36:14 EDT 2025
Tue Jun 10 15:33:00 EDT 2025
Tue Jun 10 15:36:28 EDT 2025
Tue Jun 10 20:24:02 EDT 2025
Fri Jun 27 04:43:57 EDT 2025
Fri Jun 27 05:03:40 EDT 2025
Wed Feb 19 02:31:14 EST 2025
Tue Jul 01 02:57:02 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
Fri Feb 21 02:37:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7468
Language English
License Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c739t-e2cd64dae2053c170ea22e040f59953adbe78cd16e3ad1c45d8b84add3d5733f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3891892
PMID 23842494
PQID 1437582016
PQPubID 23479
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891892
proquest_miscellaneous_1437582016
gale_infotracmisc_A624361609
gale_infotracmisc_A359732230
gale_infotracgeneralonefile_A359732230
gale_infotraccpiq_624361609
gale_infotraccpiq_359732230
gale_infotracacademiconefile_A359732230
gale_incontextgauss_ISR_A624361609
gale_incontextgauss_ISR_A359732230
pubmed_primary_23842494
crossref_primary_10_1038_nature12392
crossref_citationtrail_10_1038_nature12392
springer_journals_10_1038_nature12392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-26
PublicationDateYYYYMMDD 2013-09-26
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References MainesTRTransmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and miceScience20093254844871:CAS:528:DC%2BD1MXovVCgtLw%3D2009Sci...325..484M10.1126/science.1177238
ImaiMExperimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferretsNature20124864204281:CAS:528:DC%2BC38XovFyrsLY%3D2012Natur.486..420I10.1038/nature10831
ChutinimitkulSIn vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificityJ. Virol.201084682568331:CAS:528:DC%2BC3cXptVegs78%3D10.1128/JVI.02737-09
RogersGNSingle amino acid substitutions in influenza haemagglutinin change receptor binding specificityNature198330476781:CAS:528:DyaL3sXkvVKnsLs%3D1983Natur.304...76R10.1038/304076a0
NiwaHYamamuraKMiyazakiJEfficient selection for high-expression transfectants with a novel eukaryotic vectorGene19911081931991:CAS:528:DyaK38Xlt1GksA%3D%3D10.1016/0378-1119(91)90434-D
World Health Organization Number of confirmed human cases of avian influenza A(H7N9) reported to WHO. Report 8 – data in WHO/HQ as of 30 May 2013, 15:45 GMT+1. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/08_ReportWebH7N9Number.pdf (2013)
KageyamaTGenetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013Euro Surveill.201318204531:STN:280:DC%2BC3srmtF2isQ%3D%3D235945756296756
GaoRHuman infection with a novel avian-origin influenza A (H7N9) virusN. Engl. J. Med.2013368188818971:CAS:528:DC%2BC3sXnsl2gsrc%3D10.1056/NEJMoa1304459
Liu, Q. et al. Genomic signature and protein sequence analysis of a novel influenza A (H7N9) virus that causes an outbreak in humans in China. Microbes Infect. (2013)
NodaTArchitecture of ribonucleoprotein complexes in influenza A virus particlesNature20064394904921:CAS:528:DC%2BD28XntFWlsQ%3D%3D2006Natur.439..490N10.1038/nature04378
LiuXPoor responses to oseltamivir treatment in a patient with influenza A (H7N9) virus infectionEmerg. Microbes & Infections20132e27
MunsterVJPathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferretsScience20093254814831:CAS:528:DC%2BD1MXovVCgtL8%3D2009Sci...325..481M10.1126/science.1177127
LiZMolecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse modelJ. Virol.20057912058120641:CAS:528:DC%2BD2MXhtVWktLzL10.1128/JVI.79.18.12058-12064.2005
Zhu, H. et al. Infectivity, transmission, and pathology of human H7N9 influenza in ferrets and pigs. Sciencehttp://dx.doi.org/10.1126/science.1239844 (2013)
McKimm-BreschkinJLMutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitorsJ. Virol.199872245624621:CAS:528:DyaK1cXhtFegtrk%3D9499107109546
WetherallNTEvaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: report of the neuraminidase inhibitor susceptibility networkJ. Clin. Microbiol.2003417427501:CAS:528:DC%2BD3sXhslGitLk%3D10.1128/JCM.41.2.742-750.2003
MinJYClassical swine H1N1 influenza viruses confer cross protection from swine-origin 2009 pandemic H1N1 influenza virus infection in mice and ferretsVirology20104081281331:CAS:528:DC%2BC3cXhtlKhtLzJ10.1016/j.virol.2010.09.009
ChandrasekaranAGlycan topology determines human adaptation of avian H5N1 virus hemagglutininNature Biotechnol.2008261071131:CAS:528:DC%2BD1cXisFGmtA%3D%3D10.1038/nbt1375
BelserJAContemporary North American influenza H7 viruses possess human receptor specificity: implications for virus transmissibilityProc. Natl Acad. Sci. USA2008105755875631:CAS:528:DC%2BD1cXmvFKksLc%3D2008PNAS..105.7558B10.1073/pnas.0801259105
JacksonSReassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessmentJ. Virol.200983813181401:CAS:528:DC%2BD1MXpsFOltL0%3D10.1128/JVI.00534-09
HattaMGaoPHalfmannPKawaokaYMolecular basis for high virulence of Hong Kong H5N1 influenza A virusesScience2001293184018421:CAS:528:DC%2BD3MXmvVSktrw%3D2001Sci...293.1840H10.1126/science.1062882
MakarovaNVOzakiHKidaHWebsterRGPerezDRReplication and transmission of influenza viruses in Japanese quailVirology20033108151:CAS:528:DC%2BD3sXkt1yjtrY%3D10.1016/S0042-6822(03)00094-1
YamadaSHaemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptorsNature20064443783821:CAS:528:DC%2BD28Xht1Sgtb7J2006Natur.444..378Y10.1038/nature05264
SubbaraoEKKawaokaYMurphyBRRescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutationJ. Virol.199367722372281:CAS:528:DyaK2cXitV2mtbk%3D8230444238184
ItohYIn vitro and in vivo characterization of new swine-origin H1N1 influenza virusesNature2009460102110251:CAS:528:DC%2BD1MXhtVWhsbvJ2009Natur.460.1021I10.1038/nature08260
ChenLMIn vitro evolution of H5N1 avian influenza virus toward human-type receptor specificityVirology201242210311310.1016/j.virol.2011.10.006
MainesTRLack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret modelProc. Natl Acad. Sci. USA200610312121121261:CAS:528:DC%2BD28XotlyitL4%3D2006PNAS..10312121M10.1073/pnas.0605134103
JakielaBBrockman-SchneiderRAminevaSLeeWMGernJEBasal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infectionAm. J. Respir. Cell Mol. Biol.2008385175231:CAS:528:DC%2BD1cXlvFWksrg%3D10.1165/rcmb.2007-0050OC
NeumannGGeneration of influenza A viruses entirely from cloned cDNAsProc. Natl Acad. Sci. USA199996934593501:CAS:528:DyaK1MXltVCjsrk%3D1999PNAS...96.9345N10.1073/pnas.96.16.9345
van den BrandJMSeverity of pneumonia due to new H1N1 influenza virus in ferrets is intermediate between that due to seasonal H1N1 virus and highly pathogenic avian influenza H5N1 virusJ. Infect. Dis.201020199399910.1086/651132
Centers for Disease Control & PreventionEmergence of avian influenza A(H7N9) virus causing severe human illness - China, February–April 2013MMWR Morb. Mortal. Wkly Rep.201362366371
LiuJHighly pathogenic H5N1 influenza virus infection in migratory birdsScience200530912061:CAS:528:DC%2BD2MXovV2itrk%3D2005Sci...309.1210L10.1126/science.1115273
World Health Organization China–WHO Joint Mission on Human Infection with Avian Influenza A(H7N9) Virus. 18–24 April 2013, Mission Report. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/ChinaH7N9JointMissionReport2013.pdf (2013)
SrinivasanKRamanRJayaramanAViswanathanKSasisekharanRQuantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutininPLoS ONE20138e595501:CAS:528:DC%2BC3sXntVKrsLc%3D2013PLoSO...859550S10.1371/journal.pone.0059550
HerfstSAirborne transmission of influenza A/H5N1 virus between ferretsScience2012336153415411:CAS:528:DC%2BC38Xoslaksbw%3D2012Sci...336.1534H10.1126/science.1213362
XuRA recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutininNature Struct. Mol. Biol.2013203633701:CAS:528:DC%2BC3sXit1aiu7w%3D2013sg2..book.....X10.1038/nsmb.2500
JL McKimm-Breschkin (BFnature12392_CR25) 1998; 72
Y Itoh (BFnature12392_CR10) 2009; 460
K Srinivasan (BFnature12392_CR21) 2013; 8
TR Maines (BFnature12392_CR17) 2006; 103
J Liu (BFnature12392_CR33) 2005; 309
JM van den Brand (BFnature12392_CR11) 2010; 201
NT Wetherall (BFnature12392_CR27) 2003; 41
T Noda (BFnature12392_CR36) 2006; 439
H Niwa (BFnature12392_CR31) 1991; 108
R Gao (BFnature12392_CR2) 2013; 368
S Herfst (BFnature12392_CR18) 2012; 336
JY Min (BFnature12392_CR12) 2010; 408
TR Maines (BFnature12392_CR13) 2009; 325
M Hatta (BFnature12392_CR7) 2001; 293
A Chandrasekaran (BFnature12392_CR22) 2008; 26
BFnature12392_CR34
BFnature12392_CR1
T Kageyama (BFnature12392_CR4) 2013; 18
M Imai (BFnature12392_CR15) 2012; 486
B Jakiela (BFnature12392_CR29) 2008; 38
NV Makarova (BFnature12392_CR32) 2003; 310
R Xu (BFnature12392_CR35) 2013; 20
Z Li (BFnature12392_CR9) 2005; 79
BFnature12392_CR5
BFnature12392_CR3
X Liu (BFnature12392_CR28) 2013; 2
LM Chen (BFnature12392_CR23) 2012; 422
VJ Munster (BFnature12392_CR14) 2009; 325
S Jackson (BFnature12392_CR16) 2009; 83
G Neumann (BFnature12392_CR30) 1999; 96
S Yamada (BFnature12392_CR19) 2006; 444
EK Subbarao (BFnature12392_CR8) 1993; 67
Centers for Disease Control & Preve (BFnature12392_CR26) 2013; 62
GN Rogers (BFnature12392_CR6) 1983; 304
JA Belser (BFnature12392_CR24) 2008; 105
S Chutinimitkul (BFnature12392_CR20) 2010; 84
References_xml – reference: LiZMolecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse modelJ. Virol.20057912058120641:CAS:528:DC%2BD2MXhtVWktLzL10.1128/JVI.79.18.12058-12064.2005
– reference: MinJYClassical swine H1N1 influenza viruses confer cross protection from swine-origin 2009 pandemic H1N1 influenza virus infection in mice and ferretsVirology20104081281331:CAS:528:DC%2BC3cXhtlKhtLzJ10.1016/j.virol.2010.09.009
– reference: GaoRHuman infection with a novel avian-origin influenza A (H7N9) virusN. Engl. J. Med.2013368188818971:CAS:528:DC%2BC3sXnsl2gsrc%3D10.1056/NEJMoa1304459
– reference: WetherallNTEvaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: report of the neuraminidase inhibitor susceptibility networkJ. Clin. Microbiol.2003417427501:CAS:528:DC%2BD3sXhslGitLk%3D10.1128/JCM.41.2.742-750.2003
– reference: ChandrasekaranAGlycan topology determines human adaptation of avian H5N1 virus hemagglutininNature Biotechnol.2008261071131:CAS:528:DC%2BD1cXisFGmtA%3D%3D10.1038/nbt1375
– reference: LiuXPoor responses to oseltamivir treatment in a patient with influenza A (H7N9) virus infectionEmerg. Microbes & Infections20132e27
– reference: MainesTRTransmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and miceScience20093254844871:CAS:528:DC%2BD1MXovVCgtLw%3D2009Sci...325..484M10.1126/science.1177238
– reference: McKimm-BreschkinJLMutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitorsJ. Virol.199872245624621:CAS:528:DyaK1cXhtFegtrk%3D9499107109546
– reference: JakielaBBrockman-SchneiderRAminevaSLeeWMGernJEBasal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infectionAm. J. Respir. Cell Mol. Biol.2008385175231:CAS:528:DC%2BD1cXlvFWksrg%3D10.1165/rcmb.2007-0050OC
– reference: ItohYIn vitro and in vivo characterization of new swine-origin H1N1 influenza virusesNature2009460102110251:CAS:528:DC%2BD1MXhtVWhsbvJ2009Natur.460.1021I10.1038/nature08260
– reference: HerfstSAirborne transmission of influenza A/H5N1 virus between ferretsScience2012336153415411:CAS:528:DC%2BC38Xoslaksbw%3D2012Sci...336.1534H10.1126/science.1213362
– reference: MakarovaNVOzakiHKidaHWebsterRGPerezDRReplication and transmission of influenza viruses in Japanese quailVirology20033108151:CAS:528:DC%2BD3sXkt1yjtrY%3D10.1016/S0042-6822(03)00094-1
– reference: World Health Organization Number of confirmed human cases of avian influenza A(H7N9) reported to WHO. Report 8 – data in WHO/HQ as of 30 May 2013, 15:45 GMT+1. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/08_ReportWebH7N9Number.pdf (2013)
– reference: YamadaSHaemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptorsNature20064443783821:CAS:528:DC%2BD28Xht1Sgtb7J2006Natur.444..378Y10.1038/nature05264
– reference: NiwaHYamamuraKMiyazakiJEfficient selection for high-expression transfectants with a novel eukaryotic vectorGene19911081931991:CAS:528:DyaK38Xlt1GksA%3D%3D10.1016/0378-1119(91)90434-D
– reference: HattaMGaoPHalfmannPKawaokaYMolecular basis for high virulence of Hong Kong H5N1 influenza A virusesScience2001293184018421:CAS:528:DC%2BD3MXmvVSktrw%3D2001Sci...293.1840H10.1126/science.1062882
– reference: Zhu, H. et al. Infectivity, transmission, and pathology of human H7N9 influenza in ferrets and pigs. Sciencehttp://dx.doi.org/10.1126/science.1239844 (2013)
– reference: World Health Organization China–WHO Joint Mission on Human Infection with Avian Influenza A(H7N9) Virus. 18–24 April 2013, Mission Report. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/ChinaH7N9JointMissionReport2013.pdf (2013)
– reference: KageyamaTGenetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013Euro Surveill.201318204531:STN:280:DC%2BC3srmtF2isQ%3D%3D235945756296756
– reference: Liu, Q. et al. Genomic signature and protein sequence analysis of a novel influenza A (H7N9) virus that causes an outbreak in humans in China. Microbes Infect. (2013)
– reference: LiuJHighly pathogenic H5N1 influenza virus infection in migratory birdsScience200530912061:CAS:528:DC%2BD2MXovV2itrk%3D2005Sci...309.1210L10.1126/science.1115273
– reference: BelserJAContemporary North American influenza H7 viruses possess human receptor specificity: implications for virus transmissibilityProc. Natl Acad. Sci. USA2008105755875631:CAS:528:DC%2BD1cXmvFKksLc%3D2008PNAS..105.7558B10.1073/pnas.0801259105
– reference: XuRA recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutininNature Struct. Mol. Biol.2013203633701:CAS:528:DC%2BC3sXit1aiu7w%3D2013sg2..book.....X10.1038/nsmb.2500
– reference: Centers for Disease Control & PreventionEmergence of avian influenza A(H7N9) virus causing severe human illness - China, February–April 2013MMWR Morb. Mortal. Wkly Rep.201362366371
– reference: MunsterVJPathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferretsScience20093254814831:CAS:528:DC%2BD1MXovVCgtL8%3D2009Sci...325..481M10.1126/science.1177127
– reference: SrinivasanKRamanRJayaramanAViswanathanKSasisekharanRQuantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutininPLoS ONE20138e595501:CAS:528:DC%2BC3sXntVKrsLc%3D2013PLoSO...859550S10.1371/journal.pone.0059550
– reference: NodaTArchitecture of ribonucleoprotein complexes in influenza A virus particlesNature20064394904921:CAS:528:DC%2BD28XntFWlsQ%3D%3D2006Natur.439..490N10.1038/nature04378
– reference: ChutinimitkulSIn vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificityJ. Virol.201084682568331:CAS:528:DC%2BC3cXptVegs78%3D10.1128/JVI.02737-09
– reference: SubbaraoEKKawaokaYMurphyBRRescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutationJ. Virol.199367722372281:CAS:528:DyaK2cXitV2mtbk%3D8230444238184
– reference: van den BrandJMSeverity of pneumonia due to new H1N1 influenza virus in ferrets is intermediate between that due to seasonal H1N1 virus and highly pathogenic avian influenza H5N1 virusJ. Infect. Dis.201020199399910.1086/651132
– reference: ChenLMIn vitro evolution of H5N1 avian influenza virus toward human-type receptor specificityVirology201242210311310.1016/j.virol.2011.10.006
– reference: ImaiMExperimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferretsNature20124864204281:CAS:528:DC%2BC38XovFyrsLY%3D2012Natur.486..420I10.1038/nature10831
– reference: MainesTRLack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret modelProc. Natl Acad. Sci. USA200610312121121261:CAS:528:DC%2BD28XotlyitL4%3D2006PNAS..10312121M10.1073/pnas.0605134103
– reference: NeumannGGeneration of influenza A viruses entirely from cloned cDNAsProc. Natl Acad. Sci. USA199996934593501:CAS:528:DyaK1MXltVCjsrk%3D1999PNAS...96.9345N10.1073/pnas.96.16.9345
– reference: RogersGNSingle amino acid substitutions in influenza haemagglutinin change receptor binding specificityNature198330476781:CAS:528:DyaL3sXkvVKnsLs%3D1983Natur.304...76R10.1038/304076a0
– reference: JacksonSReassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessmentJ. Virol.200983813181401:CAS:528:DC%2BD1MXpsFOltL0%3D10.1128/JVI.00534-09
– ident: BFnature12392_CR34
  doi: 10.1126/science.1239844
– volume: 26
  start-page: 107
  year: 2008
  ident: BFnature12392_CR22
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt1375
– volume: 105
  start-page: 7558
  year: 2008
  ident: BFnature12392_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0801259105
– volume: 309
  start-page: 1206
  year: 2005
  ident: BFnature12392_CR33
  publication-title: Science
  doi: 10.1126/science.1115273
– volume: 310
  start-page: 8
  year: 2003
  ident: BFnature12392_CR32
  publication-title: Virology
  doi: 10.1016/S0042-6822(03)00094-1
– volume: 325
  start-page: 484
  year: 2009
  ident: BFnature12392_CR13
  publication-title: Science
  doi: 10.1126/science.1177238
– volume: 38
  start-page: 517
  year: 2008
  ident: BFnature12392_CR29
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2007-0050OC
– volume: 293
  start-page: 1840
  year: 2001
  ident: BFnature12392_CR7
  publication-title: Science
  doi: 10.1126/science.1062882
– volume: 83
  start-page: 8131
  year: 2009
  ident: BFnature12392_CR16
  publication-title: J. Virol.
  doi: 10.1128/JVI.00534-09
– volume: 368
  start-page: 1888
  year: 2013
  ident: BFnature12392_CR2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1304459
– volume: 408
  start-page: 128
  year: 2010
  ident: BFnature12392_CR12
  publication-title: Virology
  doi: 10.1016/j.virol.2010.09.009
– volume: 486
  start-page: 420
  year: 2012
  ident: BFnature12392_CR15
  publication-title: Nature
  doi: 10.1038/nature10831
– volume: 8
  start-page: e59550
  year: 2013
  ident: BFnature12392_CR21
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0059550
– volume: 422
  start-page: 103
  year: 2012
  ident: BFnature12392_CR23
  publication-title: Virology
  doi: 10.1016/j.virol.2011.10.006
– volume: 20
  start-page: 363
  year: 2013
  ident: BFnature12392_CR35
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2500
– volume: 84
  start-page: 6825
  year: 2010
  ident: BFnature12392_CR20
  publication-title: J. Virol.
  doi: 10.1128/JVI.02737-09
– volume: 460
  start-page: 1021
  year: 2009
  ident: BFnature12392_CR10
  publication-title: Nature
  doi: 10.1038/nature08260
– volume: 62
  start-page: 366
  year: 2013
  ident: BFnature12392_CR26
  publication-title: MMWR Morb. Mortal. Wkly Rep.
– volume: 304
  start-page: 76
  year: 1983
  ident: BFnature12392_CR6
  publication-title: Nature
  doi: 10.1038/304076a0
– volume: 439
  start-page: 490
  year: 2006
  ident: BFnature12392_CR36
  publication-title: Nature
  doi: 10.1038/nature04378
– volume: 72
  start-page: 2456
  year: 1998
  ident: BFnature12392_CR25
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.3.2456-2462.1998
– volume: 41
  start-page: 742
  year: 2003
  ident: BFnature12392_CR27
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.41.2.742-750.2003
– volume: 336
  start-page: 1534
  year: 2012
  ident: BFnature12392_CR18
  publication-title: Science
  doi: 10.1126/science.1213362
– ident: BFnature12392_CR1
– volume: 18
  start-page: 20453
  year: 2013
  ident: BFnature12392_CR4
  publication-title: Euro Surveill.
  doi: 10.2807/ese.18.15.20453-en
– ident: BFnature12392_CR3
– volume: 108
  start-page: 193
  year: 1991
  ident: BFnature12392_CR31
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90434-D
– volume: 2
  start-page: e27
  year: 2013
  ident: BFnature12392_CR28
  publication-title: Emerg. Microbes & Infections
– volume: 325
  start-page: 481
  year: 2009
  ident: BFnature12392_CR14
  publication-title: Science
  doi: 10.1126/science.1177127
– ident: BFnature12392_CR5
  doi: 10.1016/j.micinf.2013.04.004
– volume: 444
  start-page: 378
  year: 2006
  ident: BFnature12392_CR19
  publication-title: Nature
  doi: 10.1038/nature05264
– volume: 103
  start-page: 12121
  year: 2006
  ident: BFnature12392_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0605134103
– volume: 67
  start-page: 7223
  year: 1993
  ident: BFnature12392_CR8
  publication-title: J. Virol.
  doi: 10.1128/JVI.67.12.7223-7228.1993
– volume: 96
  start-page: 9345
  year: 1999
  ident: BFnature12392_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.16.9345
– volume: 201
  start-page: 993
  year: 2010
  ident: BFnature12392_CR11
  publication-title: J. Infect. Dis.
  doi: 10.1086/651132
– volume: 79
  start-page: 12058
  year: 2005
  ident: BFnature12392_CR9
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.18.12058-12064.2005
SSID ssj0005174
Score 2.5758495
Snippet Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect...
Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks...
Avian influenza A viruses rarely infect humans, but if they do and transmit among them, worldwide outbreaks (pandemics) can result. The recent sporadic...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 551
SubjectTerms 631/326/596/1578
Analysis
Animals
Antiviral Agents - pharmacology
Avian influenza viruses
Cells, Cultured
Chickens - virology
Comparative analysis
DNA-Directed RNA Polymerases - antagonists & inhibitors
Dogs
Enzyme Inhibitors - pharmacology
Female
Ferrets - virology
Genetic aspects
Humanities and Social Sciences
Humans
Identification and classification
Influenza A virus - chemistry
Influenza A virus - drug effects
Influenza A virus - isolation & purification
Influenza A virus - pathogenicity
Influenza A Virus, H1N1 Subtype - drug effects
Influenza A Virus, H1N1 Subtype - enzymology
Influenza viruses
Influenza, Human - drug therapy
Influenza, Human - virology
letter
Macaca fascicularis - virology
Madin Darby Canine Kidney Cells
Male
Mice
Mice, Inbred BALB C
Models, Molecular
Monkey Diseases - pathology
Monkey Diseases - virology
multidisciplinary
Neuraminidase - antagonists & inhibitors
Neuraminidase inhibitors
Orthomyxoviridae Infections - pathology
Orthomyxoviridae Infections - transmission
Orthomyxoviridae Infections - virology
Pathology
Patient outcomes
Physiological aspects
Quail - virology
Science
Swine - virology
Swine, Miniature - virology
Virus Replication - drug effects
Zoonoses
Title Characterization of H7N9 influenza A viruses isolated from humans
URI https://link.springer.com/article/10.1038/nature12392
https://www.ncbi.nlm.nih.gov/pubmed/23842494
https://www.proquest.com/docview/1437582016
https://pubmed.ncbi.nlm.nih.gov/PMC3891892
Volume 501
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5RAEN9c25j4Ymz9OlsvaOp3UI5vHs9L66mRmNrGeyO7C7R4CvU4mnh_vTPsQoGQWn0hHDMsHDPMziwzvyFknzm6hslPahwbEKDo7lj1Ys1VXddiMQs1N_awUPizb89OzI9zaz4YXDSylooVe8PXvXUl_yNVOAZyxSrZf5BsPSgcgH2QL2xBwrC9loynNdryuvb8Zo7vYYoVth5ZU3jvL5JlkWPaFdwLRf-yrCgpe_PlTdfULyE-my0-6jWCbxRcSMoEQG-2SBbZ5af7PBMlP4ukVoViUfymP6lYcF5l-VlN8umCfk8Eyc-W1UBy1QE7QHiqKG2vQLvxlrpLZa9PPjWNrQS_FlONsK-mY6umLedYaYAtuZwhNM0xRZ8daVEtiUcbyV9Wr90XKO8CCxXmYtFerwOkXX5uN9ygwbVBtnQIL9A-utNGalAHvVvWdcLJbxsntzyZ7nzecGi6ybadL-6lI3N8m9ySEYgyEeq0TQZRukNulJnAPN8h29La58oLCUn-8g6ZdDVNyWIFNU2pNU2ZKFLTlErTFNQ0RWjaXXJyeHA8namy-YbKHcNbqZHOQ9sMaQTvssHHjhZRXY_A5McIUWfQkEWOy8OxHcH-mJtW6DLXhNnSCBFiMzbukc00S6MHRKFeHNmUMlND9EcLXF5uW0xnIYt1g9nxkLyqHmTAJTI9Nkj5EfSIbEj2a-ZzAcjSz_YEJRIgxEmKOVSntMjz4MPXo2BiWAhRBbH3VUy2bhr22Na8IXkumeIM7opTWbcC_w2h01rD7bY4-XnyK7ia2rjKsxb1VEi47yJ7LUaYDfhfyY3LPK40NEASZlimUVbkAcRNjoXhgD0k94XG1s8X3HpTNz1zSJyWLtcMiFHfpqTJWYlVj2kQLorjaaX1gTSgeZ_YHl6Tb5fcvLRKe2RztSyiRxAdrNiIbDhzZ1S-0Lg9fD8iW-8O_C9HfwBULhNi
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+H7N9+influenza+A+viruses+isolated+from+humans&rft.jtitle=Nature+%28London%29&rft.au=Watanabe%2C+Tokiko&rft.au=Kiso%2C+Maki&rft.au=Fukuyama%2C+Satoshi&rft.au=Nakajima%2C+Noriko&rft.date=2013-09-26&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=501&rft.issue=7468&rft.spage=551&rft.epage=555&rft_id=info:doi/10.1038%2Fnature12392&rft.externalDocID=10_1038_nature12392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon