Commonality despite exceptional diversity in the baseline human antibody repertoire
In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure 1 . The di...
Saved in:
Published in | Nature (London) Vol. 566; no. 7744; pp. 393 - 397 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure
1
. The diversity of the naive antibody repertoire in humans is estimated to be at least 10
12
unique antibodies
2
. Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 10
9
, the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person—the ‘genome’ of the adaptive immune system—exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells
3
. Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire.
A genetic study of the baseline human antibody repertoire, based on the circulating B cell populations of ten subjects, reveals universally shared antibody clonotypes within repertoires that are largely unique to the individual. |
---|---|
AbstractList | In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure1. The diversity of the naive antibody repertoire in humans is estimated to be at least 1012 unique antibodies2. Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 109, the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person-the 'genome' of the adaptive immune system-exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells3. Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire.In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure1. The diversity of the naive antibody repertoire in humans is estimated to be at least 1012 unique antibodies2. Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 109, the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person-the 'genome' of the adaptive immune system-exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells3. Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire. In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure . The diversity of the naive antibody repertoire in humans is estimated to be at least 10 unique antibodies . Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 10 , the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person-the 'genome' of the adaptive immune system-exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells . Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire. In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure. The diversity of the naive antibody repertoire in humans is estimated to be at least 1012 unique antibodies. Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 109, the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person-the 'genome' of the adaptive immune system-exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells. Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire. In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure.sup.1. The diversity of the naive antibody repertoire in humans is estimated to be at least 10.sup.12 unique antibodies.sup.2. Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 10.sup.9, the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person--the 'genome' of the adaptive immune system--exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells.sup.3. Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire. In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure.sup.1. The diversity of the naive antibody repertoire in humans is estimated to be at least 10.sup.12 unique antibodies.sup.2. Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 10.sup.9, the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person--the 'genome' of the adaptive immune system--exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells.sup.3. Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire. A genetic study of the baseline human antibody repertoire, based on the circulating B cell populations of ten subjects, reveals universally shared antibody clonotypes within repertoires that are largely unique to the individual. In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure 1 . The diversity of the naive antibody repertoire in humans is estimated to be at least 10 12 unique antibodies 2 . Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 10 9 , the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person—the ‘genome’ of the adaptive immune system—exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells 3 . Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire. A genetic study of the baseline human antibody repertoire, based on the circulating B cell populations of ten subjects, reveals universally shared antibody clonotypes within repertoires that are largely unique to the individual. |
Audience | Academic |
Author | Inderbitzin, Anne Briney, Bryan Burton, Dennis R. Joyce, Collin |
AuthorAffiliation | 4 IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA 2 Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA 3 Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA 6 Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA 1 Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA 5 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland |
AuthorAffiliation_xml | – name: 2 Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA – name: 6 Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA – name: 1 Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA – name: 5 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland – name: 3 Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA – name: 4 IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA |
Author_xml | – sequence: 1 givenname: Bryan surname: Briney fullname: Briney, Bryan email: briney@scripps.edu organization: Department of Immunology and Microbiology, The Scripps Research Institute, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, Center for Viral Systems Biology, The Scripps Research Institute, IAVI Neutralizing Antibody Center, The Scripps Research Institute, Human Vaccines Project – sequence: 2 givenname: Anne surname: Inderbitzin fullname: Inderbitzin, Anne organization: Department of Immunology and Microbiology, The Scripps Research Institute, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich – sequence: 3 givenname: Collin surname: Joyce fullname: Joyce, Collin organization: Department of Immunology and Microbiology, The Scripps Research Institute, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, Center for Viral Systems Biology, The Scripps Research Institute, IAVI Neutralizing Antibody Center, The Scripps Research Institute – sequence: 4 givenname: Dennis R. surname: Burton fullname: Burton, Dennis R. email: burton@scripps.edu organization: Department of Immunology and Microbiology, The Scripps Research Institute, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, IAVI Neutralizing Antibody Center, The Scripps Research Institute, Human Vaccines Project, Ragon Institute of MGH, MIT and Harvard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30664748$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JaSZpf0A3xbSbluJUsl72pjAMfQRCC01Kl0KW78wo2JIjySHz7yszaZIJk6KFQPc750q65yg7sM5Clr3G6AQjUn0KFLOKFwjXBapEXWyeZTNMBS8or8RBNkOorFKF8MPsKIRLhBDDgr7IDgninApazbLzhet7Z1Vn4iZvIQwmQg43GoZopuO8Ndfgw1Q1No9ryBsVoDMW8vXYK5srG03j2k3uYQAfnfHwMnu-VF2AV7f7cfb765eLxffi7Oe308X8rNCCVLFYag7pbiUnZNk0lRAorbYVra5pIjCudUNKypiquQZWC8ZZSajmmpVIc06Os89b32Fsemg12OhVJwdveuU30ikjdyvWrOXKXUtOMSbVZPD-1sC7qxFClL0JGrpOWXBjkCUWNSV1XVcJffcIvXSjTx80UZVglAlS31Mr1YE0dulSXz2ZyjkTDDFe4okq9lArsJAumSa8NOl4h3-7h9eDuZIPoZM9UFot9Ebvdf2wI0hMhJu4UmMI8vT81y778Wl2fvFn8WOXfvNwLncD-Ze6BOAtoL0LwcPyDsFITsmW22TLlGw5JVtukkY80mgT1RTS9E7T_VdZbpUhdbEr8Peje1r0F6F3CU4 |
CitedBy_id | crossref_primary_10_1021_acs_jafc_2c09180 crossref_primary_10_1016_j_celrep_2022_110485 crossref_primary_10_3389_fimmu_2020_01734 crossref_primary_10_1186_s40364_024_00710_w crossref_primary_10_4049_jimmunol_2101193 crossref_primary_10_1016_j_immuni_2021_03_023 crossref_primary_10_3389_fimmu_2021_778559 crossref_primary_10_4049_jimmunol_2000496 crossref_primary_10_1016_j_isci_2023_107526 crossref_primary_10_1038_s41586_020_2456_9 crossref_primary_10_1038_s42256_021_00413_z crossref_primary_10_1093_abt_tbab010 crossref_primary_10_1084_jem_20210236 crossref_primary_10_1080_19420862_2021_1996732 crossref_primary_10_1016_j_jim_2023_113576 crossref_primary_10_1080_19420862_2021_2020082 crossref_primary_10_1073_pnas_2216612120 crossref_primary_10_1111_imr_12861 crossref_primary_10_1126_scitranslmed_abi9215 crossref_primary_10_1371_journal_pcbi_1009675 crossref_primary_10_1016_j_tins_2024_08_004 crossref_primary_10_1134_S0006297922140127 crossref_primary_10_1093_bioadv_vbab021 crossref_primary_10_1097_COH_0000000000000558 crossref_primary_10_1103_PRXLife_1_011001 crossref_primary_10_1126_sciadv_add2032 crossref_primary_10_3389_fimmu_2021_706136 crossref_primary_10_1126_science_abn2688 crossref_primary_10_1038_s41541_023_00788_7 crossref_primary_10_3724_abbs_2022062 crossref_primary_10_1002_cyto_a_24542 crossref_primary_10_1073_pnas_2406474122 crossref_primary_10_3389_fimmu_2019_02365 crossref_primary_10_1016_j_celrep_2020_107882 crossref_primary_10_1080_19420862_2022_2079449 crossref_primary_10_1016_j_coi_2020_06_003 crossref_primary_10_1136_jitc_2021_003887 crossref_primary_10_1038_s41467_023_37926_7 crossref_primary_10_1016_j_bbi_2023_06_020 crossref_primary_10_1093_bib_bbz095 crossref_primary_10_1073_pnas_2113766119 crossref_primary_10_1093_bib_bbac567 crossref_primary_10_1016_j_celrep_2023_112370 crossref_primary_10_1016_j_copbio_2024_103082 crossref_primary_10_1371_journal_ppat_1011416 crossref_primary_10_1002_biot_201900308 crossref_primary_10_1016_j_ijbiomac_2025_140037 crossref_primary_10_3389_fimmu_2021_730471 crossref_primary_10_3389_fimmu_2021_680687 crossref_primary_10_3389_fimmu_2021_668328 crossref_primary_10_1016_j_crmeth_2022_100269 crossref_primary_10_1016_j_ymthe_2021_10_027 crossref_primary_10_1039_C9ME00021F crossref_primary_10_1080_19420862_2024_2361928 crossref_primary_10_1016_j_immuni_2023_10_007 crossref_primary_10_1016_j_biotechadv_2023_108143 crossref_primary_10_1016_j_celrep_2023_113450 crossref_primary_10_1007_s00253_021_11570_x crossref_primary_10_1002_bewi_202200022 crossref_primary_10_1136_ard_2023_224779 crossref_primary_10_1038_s41590_024_01833_w crossref_primary_10_1093_bioadv_vbad109 crossref_primary_10_1111_jvh_13290 crossref_primary_10_1371_journal_ppat_1011401 crossref_primary_10_1038_s44222_023_00101_0 crossref_primary_10_1126_science_adj8321 crossref_primary_10_1126_sciimmunol_abj1181 crossref_primary_10_1016_j_csbj_2020_05_005 crossref_primary_10_1590_0102_311x00128819 crossref_primary_10_1039_C9ME00034H crossref_primary_10_1038_s41388_021_01811_8 crossref_primary_10_1371_journal_pgen_1009301 crossref_primary_10_1371_journal_pgen_1010652 crossref_primary_10_3389_fimmu_2023_1135841 crossref_primary_10_1002_jmv_29743 crossref_primary_10_1371_journal_pcbi_1009323 crossref_primary_10_1097_COH_0000000000000548 crossref_primary_10_1038_s41467_023_37083_x crossref_primary_10_2217_imt_2019_0118 crossref_primary_10_1016_j_coi_2019_03_003 crossref_primary_10_1016_j_ymeth_2023_07_003 crossref_primary_10_1016_j_csbj_2023_11_056 crossref_primary_10_1038_s41598_023_38108_7 crossref_primary_10_1039_D3CS00693J crossref_primary_10_1016_j_celrep_2022_111650 crossref_primary_10_1158_1055_9965_EPI_22_1257 crossref_primary_10_1016_j_celrep_2021_109173 crossref_primary_10_1016_j_csbj_2022_04_036 crossref_primary_10_1038_s42003_020_0931_3 crossref_primary_10_1128_mbio_01206_23 crossref_primary_10_3389_fimmu_2021_708882 crossref_primary_10_1016_j_celrep_2020_108122 crossref_primary_10_1039_D2CS00943A crossref_primary_10_1080_19420862_2020_1869406 crossref_primary_10_1016_j_ab_2022_114871 crossref_primary_10_1002_jmv_70073 crossref_primary_10_1152_physrev_00040_2021 crossref_primary_10_1016_j_cell_2023_10_028 crossref_primary_10_1016_j_celrep_2020_107831 crossref_primary_10_1039_C9ME00071B crossref_primary_10_15252_emmm_202012739 crossref_primary_10_1371_journal_pcbi_1008781 crossref_primary_10_1080_22221751_2022_2030197 crossref_primary_10_4110_in_2021_21_e34 crossref_primary_10_4049_jimmunol_2100868 crossref_primary_10_1016_j_coi_2020_03_013 crossref_primary_10_1038_s41590_022_01240_z crossref_primary_10_1186_s12865_024_00600_8 crossref_primary_10_1126_sciimmunol_abl5842 crossref_primary_10_1126_science_abd2321 crossref_primary_10_1038_s41408_020_00389_w crossref_primary_10_3389_fimmu_2024_1473486 crossref_primary_10_1016_j_isci_2023_107579 crossref_primary_10_1038_s43586_023_00284_1 crossref_primary_10_1371_journal_pcbi_1010052 crossref_primary_10_1016_j_immuni_2021_02_013 crossref_primary_10_1002_pro_4205 crossref_primary_10_1007_s12551_022_01031_8 crossref_primary_10_7554_eLife_79254 crossref_primary_10_1038_s41467_023_39690_0 crossref_primary_10_1016_j_celrep_2021_109604 crossref_primary_10_3389_fimmu_2020_01887 crossref_primary_10_3389_fcell_2022_924848 crossref_primary_10_1038_s41598_021_93019_9 crossref_primary_10_1038_s41467_022_32232_0 crossref_primary_10_1126_sciimmunol_ado9572 crossref_primary_10_1093_nar_gkz387 crossref_primary_10_1371_journal_pcbi_1010167 crossref_primary_10_3390_biomedicines12112530 crossref_primary_10_1038_s41467_023_40070_x crossref_primary_10_1016_j_it_2022_11_001 crossref_primary_10_1016_j_immuni_2022_07_006 crossref_primary_10_3389_fimmu_2020_560244 crossref_primary_10_3390_biom12091285 crossref_primary_10_1038_s41586_020_2852_1 crossref_primary_10_3233_HAB_240001 crossref_primary_10_1111_tri_13475 crossref_primary_10_1038_s41586_022_05371_z crossref_primary_10_1016_j_immuni_2024_07_022 crossref_primary_10_1128_IAI_00116_21 crossref_primary_10_1016_j_beha_2020_101149 crossref_primary_10_1073_pnas_2113512119 crossref_primary_10_1128_mbio_01560_24 crossref_primary_10_1016_j_coisb_2019_10_001 crossref_primary_10_3389_fmolb_2024_1352508 crossref_primary_10_1073_pnas_2203505119 crossref_primary_10_1038_s41423_022_00954_2 crossref_primary_10_7554_eLife_85145 crossref_primary_10_1128_msystems_00722_23 crossref_primary_10_1186_s12859_020_03649_5 crossref_primary_10_1080_19420862_2019_1633884 crossref_primary_10_1016_j_isci_2024_109495 crossref_primary_10_1016_j_celrep_2024_114502 crossref_primary_10_1016_j_immuni_2022_03_019 crossref_primary_10_1101_pdb_over107759 crossref_primary_10_1016_j_molimm_2022_03_011 crossref_primary_10_3390_s22103962 crossref_primary_10_1371_journal_ppat_1008793 crossref_primary_10_1007_s11538_023_01190_z crossref_primary_10_1093_bioinformatics_btaa1028 crossref_primary_10_1172_jci_insight_174976 crossref_primary_10_1080_19420862_2021_1892366 crossref_primary_10_1126_science_abc5902 crossref_primary_10_3389_fimmu_2023_1223802 crossref_primary_10_1080_19420862_2022_2068212 crossref_primary_10_1073_pnas_2418918121 crossref_primary_10_3389_fimmu_2021_728694 crossref_primary_10_4049_jimmunol_1900666 crossref_primary_10_1016_j_addr_2020_04_005 crossref_primary_10_3389_fimmu_2023_1142634 crossref_primary_10_1016_j_crmeth_2023_100601 crossref_primary_10_1038_s41590_022_01222_1 crossref_primary_10_1097_NAN_0000000000000491 crossref_primary_10_1098_rspb_2020_2793 crossref_primary_10_31631_2073_3046_2023_22_6_183_200 crossref_primary_10_3390_biology11020161 crossref_primary_10_1016_j_immuni_2020_06_001 crossref_primary_10_1103_PhysRevX_14_031026 crossref_primary_10_1093_bib_bbab403 crossref_primary_10_1016_j_celrep_2023_113194 crossref_primary_10_1101_gr_275373_121 crossref_primary_10_1038_s41375_024_02260_4 crossref_primary_10_4049_jimmunol_2300156 crossref_primary_10_1016_j_celrep_2023_112780 crossref_primary_10_1016_j_cell_2019_03_016 crossref_primary_10_1126_sciimmunol_abg6916 crossref_primary_10_1093_nar_gkaf025 crossref_primary_10_1128_mBio_02473_21 crossref_primary_10_1080_22221751_2021_1925594 crossref_primary_10_2174_0929867327666200219142231 crossref_primary_10_3389_fimmu_2021_701085 crossref_primary_10_1016_j_immuno_2023_100028 crossref_primary_10_2139_ssrn_3805158 crossref_primary_10_1371_journal_ppat_1009624 crossref_primary_10_1186_s10020_020_00151_9 crossref_primary_10_1038_s41467_023_42906_y crossref_primary_10_3389_fcimb_2022_962945 crossref_primary_10_1016_j_patter_2024_100967 crossref_primary_10_3390_v15061253 crossref_primary_10_1016_j_immuni_2024_03_022 crossref_primary_10_3389_fimmu_2023_1167235 crossref_primary_10_1038_s41598_020_57764_7 crossref_primary_10_1038_s41467_023_38345_4 crossref_primary_10_3389_fmolb_2023_1214424 crossref_primary_10_1016_j_cell_2020_06_025 crossref_primary_10_1016_j_celrep_2024_114307 crossref_primary_10_1016_j_immuni_2022_07_020 crossref_primary_10_3390_ijms25105487 crossref_primary_10_1093_bioinformatics_btae618 crossref_primary_10_1002_eji_202250116 crossref_primary_10_1080_19420862_2020_1729683 crossref_primary_10_1038_s41540_024_00402_z crossref_primary_10_1089_vim_2019_0136 crossref_primary_10_1128_mSphere_00726_21 crossref_primary_10_1016_j_molmed_2022_05_004 crossref_primary_10_1016_j_cell_2022_11_016 crossref_primary_10_3389_fbinf_2022_1044975 crossref_primary_10_1007_s12308_020_00436_2 crossref_primary_10_1016_j_cell_2019_11_003 crossref_primary_10_1214_24_AOAS1985 crossref_primary_10_1073_pnas_1921388117 crossref_primary_10_1146_annurev_chembioeng_101420_125021 crossref_primary_10_1016_j_cell_2024_06_015 crossref_primary_10_1126_sciadv_abd8180 crossref_primary_10_3389_fimmu_2019_01452 crossref_primary_10_1074_jbc_REV120_010181 crossref_primary_10_1371_journal_pone_0236477 crossref_primary_10_1038_s41467_024_52442_y crossref_primary_10_1016_j_celrep_2021_108856 crossref_primary_10_1016_j_cels_2021_08_008 crossref_primary_10_1089_vim_2019_0149 crossref_primary_10_1002_ajh_25641 crossref_primary_10_1073_pnas_2401058121 crossref_primary_10_1080_1744666X_2021_1905527 crossref_primary_10_1016_j_jim_2021_113089 crossref_primary_10_1016_j_patter_2022_100513 crossref_primary_10_1021_acs_analchem_3c03712 crossref_primary_10_1186_s12859_024_05659_z crossref_primary_10_1182_blood_2024025010 crossref_primary_10_1126_scitranslmed_abd6990 crossref_primary_10_3389_fimmu_2023_1137069 crossref_primary_10_7554_eLife_92718 crossref_primary_10_1126_science_aax4380 crossref_primary_10_1038_s41591_021_01409_3 crossref_primary_10_1016_j_jmb_2023_168113 crossref_primary_10_1016_j_it_2021_01_001 crossref_primary_10_1016_j_immuni_2023_07_003 crossref_primary_10_1039_D3LC00749A crossref_primary_10_1159_000533610 crossref_primary_10_1016_j_celrep_2020_108088 crossref_primary_10_1080_22221751_2023_2290841 crossref_primary_10_1093_bib_bbac267 crossref_primary_10_1016_j_mcpro_2023_100690 crossref_primary_10_1073_pnas_2106203118 crossref_primary_10_1038_s41392_021_00610_7 crossref_primary_10_1038_s41467_021_22300_2 crossref_primary_10_3390_v13050833 crossref_primary_10_1002_pro_70090 crossref_primary_10_1016_j_molimm_2022_09_011 crossref_primary_10_1016_j_cels_2024_11_006 crossref_primary_10_1038_s42003_022_03700_6 crossref_primary_10_3389_fimmu_2022_952650 crossref_primary_10_1074_mcp_RA119_001633 crossref_primary_10_1111_imm_13299 crossref_primary_10_1093_bib_bbae431 crossref_primary_10_1080_19420862_2020_1722541 crossref_primary_10_3389_fimmu_2021_689472 crossref_primary_10_1016_j_it_2023_03_006 crossref_primary_10_1016_j_immuni_2022_09_001 crossref_primary_10_1016_j_it_2023_03_002 crossref_primary_10_1038_s41586_021_03324_6 crossref_primary_10_1126_sciimmunol_abq3511 crossref_primary_10_1016_j_coi_2019_05_012 crossref_primary_10_1016_j_jim_2024_113768 crossref_primary_10_1038_s42003_024_07441_6 crossref_primary_10_1126_scitranslmed_abl9605 crossref_primary_10_1126_scitranslmed_adr2218 crossref_primary_10_1126_sciadv_adj5640 crossref_primary_10_7554_eLife_86181 crossref_primary_10_1371_journal_ppat_1008165 crossref_primary_10_1016_j_isci_2020_101519 crossref_primary_10_3389_fimmu_2024_1272493 crossref_primary_10_1002_ijch_202300128 crossref_primary_10_1016_j_celrep_2021_109110 crossref_primary_10_1016_j_celrep_2022_111391 crossref_primary_10_3389_fimmu_2021_815680 crossref_primary_10_1016_j_chom_2022_10_010 crossref_primary_10_3390_ijms23158590 crossref_primary_10_1084_jem_20221220 crossref_primary_10_1016_j_immuni_2023_02_005 crossref_primary_10_1093_nar_gkaa825 crossref_primary_10_1172_JCI148763 crossref_primary_10_1016_j_exphem_2020_09_194 crossref_primary_10_1002_2211_5463_13467 crossref_primary_10_25259_IJTMRPH_12_2024 crossref_primary_10_1002_smtd_202000451 crossref_primary_10_3389_fimmu_2021_653189 crossref_primary_10_1177_14690667231208530 crossref_primary_10_1007_s13167_020_00230_1 crossref_primary_10_1126_science_adp2407 crossref_primary_10_3390_biom14080983 crossref_primary_10_1084_jem_20220367 crossref_primary_10_3390_toxins11060346 crossref_primary_10_1038_s41592_021_01169_5 crossref_primary_10_1158_0008_5472_CAN_19_1457 crossref_primary_10_1371_journal_pcbi_1007977 crossref_primary_10_3389_fimmu_2020_01344 crossref_primary_10_1093_bioinformatics_btab154 crossref_primary_10_3389_fmolb_2021_679130 crossref_primary_10_3390_vaccines8010013 crossref_primary_10_1016_j_isci_2023_108009 crossref_primary_10_1016_j_celrep_2021_109109 crossref_primary_10_3390_ijms24065680 crossref_primary_10_1016_j_immuni_2021_10_017 crossref_primary_10_1016_j_cell_2021_07_025 crossref_primary_10_3390_ijms252211968 crossref_primary_10_1038_s41590_022_01230_1 crossref_primary_10_1080_19420862_2020_1758291 crossref_primary_10_1073_pnas_2412787122 crossref_primary_10_1016_j_isci_2021_103564 crossref_primary_10_3389_fmolb_2023_1237621 crossref_primary_10_7759_cureus_36809 crossref_primary_10_1038_s41587_020_0577_1 |
Cites_doi | 10.1016/j.chom.2018.05.001 10.2307/2531532 10.1186/1471-2105-13-31 10.1371/journal.pone.0022365 10.1371/journal.pone.0100839 10.14806/ej.17.1.200 10.1038/381751a0 10.1038/s41467-018-02832-w 10.1111/j.1365-2249.2010.04206.x 10.1371/journal.pone.0154811 10.1086/282436 10.1126/sciimmunol.aan6809 10.1093/nar/18.7.1687 10.1371/journal.pone.0034179 10.1038/ncomms11881 10.1038/sj.leu.2403202 10.1016/j.coi.2016.03.008 10.1038/srep23901 10.1038/nm.3743 10.1006/jmbi.1997.1442 10.1002/9780470015902.a0026329 10.1101/447813 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2019 COPYRIGHT 2019 Nature Publishing Group Copyright Nature Publishing Group Feb 21, 2019 |
Copyright_xml | – notice: Springer Nature Limited 2019 – notice: COPYRIGHT 2019 Nature Publishing Group – notice: Copyright Nature Publishing Group Feb 21, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/s41586-019-0879-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 397 |
ExternalDocumentID | PMC6411386 A575056219 30664748 10_1038_s41586_019_0879_y |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: UM1 AI100663 – fundername: NIAID NIH HHS grantid: U19 AI135995 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 0B8 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFFDN AFHKK AGCDD AGGDT AGNAY AGOIJ AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c738t-fc6e8362633fbb8770707dd7dc94c73119cb32455a96ce597565234c6c520c663 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 13:42:25 EDT 2025 Fri Jul 11 07:51:21 EDT 2025 Sat Aug 23 14:49:16 EDT 2025 Tue Jun 17 21:08:47 EDT 2025 Thu Jun 12 23:08:58 EDT 2025 Tue Jun 10 15:34:41 EDT 2025 Tue Jun 10 20:17:43 EDT 2025 Fri Jun 27 03:53:38 EDT 2025 Fri Jun 27 04:33:35 EDT 2025 Wed Feb 19 02:30:44 EST 2025 Tue Jul 01 01:20:44 EDT 2025 Thu Apr 24 22:53:04 EDT 2025 Fri Feb 21 02:38:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7744 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c738t-fc6e8362633fbb8770707dd7dc94c73119cb32455a96ce597565234c6c520c663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AUTHOR CONTRIBUTIONS BB and DRB planned and designed the experiments. BB, AI and CJ performed experiments. BB analyzed data. BB and DRB wrote the manuscript. All authors contributed to manuscript revisions. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6411386 |
PMID | 30664748 |
PQID | 2187545739 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6411386 proquest_miscellaneous_2179439998 proquest_journals_2187545739 gale_infotracmisc_A575056219 gale_infotracgeneralonefile_A575056219 gale_infotraccpiq_575056219 gale_infotracacademiconefile_A575056219 gale_incontextgauss_ISR_A575056219 gale_incontextgauss_ATWCN_A575056219 pubmed_primary_30664748 crossref_primary_10_1038_s41586_019_0879_y crossref_citationtrail_10_1038_s41586_019_0879_y springer_journals_10_1038_s41586_019_0879_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-00 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-00 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Martin (CR23) 2011; 17 Alberts (CR2) 2002 Setliff (CR9) 2018; 23 Chao (CR10) 1987; 43 Horn (CR8) 1966; 100 DeKosky (CR14) 2015; 21 Masella, Bartram, Truszkowski, Brown, Neufeld (CR21) 2012; 13 CR4 Finn (CR18) 2016; 11 Rogers (CR24) 2017; 2 Morbach, Eichhorn, Liese, Girschick (CR6) 2010; 162 Eren, Chao, Hwang, Colwell (CR13) 2012; 7 Meyerhans, Vartanian, Wain-Hobson (CR22) 1990; 18 Kaplinsky, Arnaout (CR11) 2016; 7 Briney, Willis, Finn, McKinney, Crowe (CR19) 2014; 9 CR12 Morea, Tramontano, Rustici, Chothia, Lesk (CR17) 1998; 275 Rajewsky (CR1) 1996; 381 Boyd, Crowe (CR3) 2016; 40 Morisita (CR7) 1959; 2 Arnaout (CR15) 2011; 6 van Dongen (CR20) 2003; 17 Marcou, Mora, Walczak (CR16) 2018; 9 Briney, Le, Zhu, Burton (CR5) 2016; 6 M Morisita (879_CR7) 1959; 2 879_CR12 SD Boyd (879_CR3) 2016; 40 879_CR4 MI Eren (879_CR13) 2012; 7 R Arnaout (879_CR15) 2011; 6 B Alberts (879_CR2) 2002 BJ DeKosky (879_CR14) 2015; 21 TF Rogers (879_CR24) 2017; 2 M Martin (879_CR23) 2011; 17 K Rajewsky (879_CR1) 1996; 381 HS Horn (879_CR8) 1966; 100 JJM Dongen van (879_CR20) 2003; 17 B Briney (879_CR5) 2016; 6 JA Finn (879_CR18) 2016; 11 J Kaplinsky (879_CR11) 2016; 7 BS Briney (879_CR19) 2014; 9 H Morbach (879_CR6) 2010; 162 I Setliff (879_CR9) 2018; 23 A Chao (879_CR10) 1987; 43 V Morea (879_CR17) 1998; 275 A Meyerhans (879_CR22) 1990; 18 Q Marcou (879_CR16) 2018; 9 AP Masella (879_CR21) 2012; 13 |
References_xml | – volume: 23 start-page: 845 year: 2018 end-page: 854.e6 ident: CR9 article-title: Multi-donor longitudinal antibody repertoire sequencing reveals the existence of public antibody clonotypes in HIV-1 infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.05.001 – volume: 43 start-page: 783 year: 1987 end-page: 791 ident: CR10 article-title: Estimating the population size for capture–recapture data with unequal catchability publication-title: Biometrics doi: 10.2307/2531532 – volume: 13 year: 2012 ident: CR21 article-title: PANDAseq: paired-end assembler for Illumina sequences publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-31 – volume: 2 start-page: 5 year: 1959 end-page: 235 ident: CR7 article-title: Measuring of the dispersion of individuals and analysis of the distributional patterns publication-title: Mem. Fac. Sci. Kyushu Univ. Ser. E – ident: CR4 – volume: 6 start-page: e22365 year: 2011 ident: CR15 article-title: High-resolution description of antibody heavy-chain repertoires in humans publication-title: PLoS ONE doi: 10.1371/journal.pone.0022365 – volume: 9 start-page: e100839 year: 2014 ident: CR19 article-title: Tissue-specific expressed antibody variable gene repertoires publication-title: PLoS ONE doi: 10.1371/journal.pone.0100839 – volume: 17 start-page: 10 year: 2011 end-page: 12 ident: CR23 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J. doi: 10.14806/ej.17.1.200 – ident: CR12 – volume: 381 start-page: 751 year: 1996 end-page: 758 ident: CR1 article-title: Clonal selection and learning in the antibody system publication-title: Nature doi: 10.1038/381751a0 – volume: 9 year: 2018 ident: CR16 article-title: High-throughput immune repertoire analysis with IGoR publication-title: Nat. Commun. doi: 10.1038/s41467-018-02832-w – volume: 162 start-page: 271 year: 2010 end-page: 279 ident: CR6 article-title: Reference values for B cell subpopulations from infancy to adulthood publication-title: Clin. Exp. Immunol. doi: 10.1111/j.1365-2249.2010.04206.x – volume: 11 start-page: e0154811 year: 2016 ident: CR18 article-title: Improving loop modeling of the antibody complementarity-determining region 3 using knowledge-based restraints publication-title: PLoS ONE doi: 10.1371/journal.pone.0154811 – volume: 100 start-page: 419 year: 1966 end-page: 424 ident: CR8 article-title: Measurement of ‘overlap’ in comparative ecological studies publication-title: Am. Nat. doi: 10.1086/282436 – volume: 2 start-page: eaan6809 year: 2017 ident: CR24 article-title: Zika virus activates de novo and cross-reactive memory B cell responses in dengue-experienced donors publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aan6809 – year: 2002 ident: CR2 publication-title: The Generation of Antibody Diversity – volume: 18 start-page: 1687 year: 1990 end-page: 1691 ident: CR22 article-title: DNA recombination during PCR publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.7.1687 – volume: 7 start-page: e34179 year: 2012 ident: CR13 article-title: Estimating the richness of a population when the maximum number of classes is fixed: a nonparametric solution to an archaeological problem publication-title: PLoS ONE doi: 10.1371/journal.pone.0034179 – volume: 7 year: 2016 ident: CR11 article-title: Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples publication-title: Nat. Commun. doi: 10.1038/ncomms11881 – volume: 17 start-page: 2257 year: 2003 end-page: 2317 ident: CR20 article-title: Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936 publication-title: Leukemia doi: 10.1038/sj.leu.2403202 – volume: 40 start-page: 103 year: 2016 end-page: 109 ident: CR3 article-title: Deep sequencing and human antibody repertoire analysis publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2016.03.008 – volume: 6 year: 2016 ident: CR5 article-title: Clonify: unseeded antibody lineage assignment from next-generation sequencing data publication-title: Sci. Rep. doi: 10.1038/srep23901 – volume: 21 start-page: 86 year: 2015 end-page: 91 ident: CR14 article-title: In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire publication-title: Nat. Med. doi: 10.1038/nm.3743 – volume: 275 start-page: 269 year: 1998 end-page: 294 ident: CR17 article-title: Conformations of the third hypervariable region in the VH domain of immunoglobulins publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1442 – volume: 21 start-page: 86 year: 2015 ident: 879_CR14 publication-title: Nat. Med. doi: 10.1038/nm.3743 – volume-title: The Generation of Antibody Diversity year: 2002 ident: 879_CR2 – volume: 9 start-page: e100839 year: 2014 ident: 879_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0100839 – volume: 381 start-page: 751 year: 1996 ident: 879_CR1 publication-title: Nature doi: 10.1038/381751a0 – volume: 2 start-page: 5 year: 1959 ident: 879_CR7 publication-title: Mem. Fac. Sci. Kyushu Univ. Ser. E – volume: 7 start-page: e34179 year: 2012 ident: 879_CR13 publication-title: PLoS ONE doi: 10.1371/journal.pone.0034179 – volume: 17 start-page: 2257 year: 2003 ident: 879_CR20 publication-title: Leukemia doi: 10.1038/sj.leu.2403202 – ident: 879_CR12 doi: 10.1002/9780470015902.a0026329 – volume: 18 start-page: 1687 year: 1990 ident: 879_CR22 publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.7.1687 – volume: 275 start-page: 269 year: 1998 ident: 879_CR17 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1442 – ident: 879_CR4 doi: 10.1101/447813 – volume: 9 year: 2018 ident: 879_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02832-w – volume: 13 year: 2012 ident: 879_CR21 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-31 – volume: 6 year: 2016 ident: 879_CR5 publication-title: Sci. Rep. doi: 10.1038/srep23901 – volume: 17 start-page: 10 year: 2011 ident: 879_CR23 publication-title: EMBnet J. doi: 10.14806/ej.17.1.200 – volume: 100 start-page: 419 year: 1966 ident: 879_CR8 publication-title: Am. Nat. doi: 10.1086/282436 – volume: 6 start-page: e22365 year: 2011 ident: 879_CR15 publication-title: PLoS ONE doi: 10.1371/journal.pone.0022365 – volume: 40 start-page: 103 year: 2016 ident: 879_CR3 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2016.03.008 – volume: 43 start-page: 783 year: 1987 ident: 879_CR10 publication-title: Biometrics doi: 10.2307/2531532 – volume: 7 year: 2016 ident: 879_CR11 publication-title: Nat. Commun. doi: 10.1038/ncomms11881 – volume: 23 start-page: 845 year: 2018 ident: 879_CR9 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.05.001 – volume: 2 start-page: eaan6809 year: 2017 ident: 879_CR24 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aan6809 – volume: 11 start-page: e0154811 year: 2016 ident: 879_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0154811 – volume: 162 start-page: 271 year: 2010 ident: 879_CR6 publication-title: Clin. Exp. Immunol. doi: 10.1111/j.1365-2249.2010.04206.x |
SSID | ssj0005174 |
Score | 2.6834192 |
Snippet | In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 393 |
SubjectTerms | 45/23 45/77 631/250/2152/2153/1291 631/250/2152/2497 Adaptive systems Analysis Antibodies Antibodies - chemistry Antibodies - genetics Antibodies - immunology Antibody response Antigens Antigens - immunology Autoantigens B cells B-Lymphocytes - cytology B-Lymphocytes - immunology B-Lymphocytes - metabolism Base Sequence Clone Cells - cytology Clone Cells - immunology Clone Cells - metabolism Commonality Estimates Gene sequencing Genes Genetic research Genetic Variation - genetics Genomes Genomics Human genome Human physiology Humanities and Social Sciences Humans Immune system Letter Library collections Lymphocytes Lymphocytes B Lymphocytes T Multiculturalism & pluralism multidisciplinary Organs Peripheral blood Population Science Science (multidisciplinary) Sequence Analysis, DNA Somatic hypermutation T cell receptors T cells |
Title | Commonality despite exceptional diversity in the baseline human antibody repertoire |
URI | https://link.springer.com/article/10.1038/s41586-019-0879-y https://www.ncbi.nlm.nih.gov/pubmed/30664748 https://www.proquest.com/docview/2187545739 https://www.proquest.com/docview/2179439998 https://pubmed.ncbi.nlm.nih.gov/PMC6411386 |
Volume | 566 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZby2AvY-1ubruijbIrpollS_LTyEKzbrAwemF5E5Ysd4Fip7EDy7_fObac1KHri1_OsbF1bp-lo0-EHCVc95mQ1mcsFX4oeQQxl8RgEAHVQGSBrqcufo756WX4YxJN3IRb6doq25xYJ-q0MDhHfgylSEC1Fyz-Mrvx8dQoXF11R2g8JNtIXYYtXWIi1i0eGyzM7aomk8clFC6J_9IxSETsLzt1aTM73ypPm62TG-undVkaPSVPHJ6kg8YBdsgDm--SR3Vfpyl3yY6L3ZJ-cATTH5-Rc9wV4hA4TXGtvbLU_nUNLvC0tG3WoNOcAkKkWOsQj9L6SD8K1pjqIl3SuZ3ZeVVA2nxOLkcnF8NT3x2u4BvBZOVnhltZc9GwTGspBPL-pKlITRyCBgyn0QC2oiiJOW7VEoD8AhYabqKgZwCnvCBbeZHbV4RGnFmeaik1i8Is6ckUhlYncdALAZ9I45FeO7TKOOZxPADjWtUr4EyqxhoKrKHQGmrpkU-rW2YN7cZ9ykdoL4V0Fjn2y1wli7JUg4vfw7EaAB5FkNePPfL2LrXv52cdpfdOKSvgHU3idinAlyJRVkdzv6NpZtMbdUv6riO9amx812MOOooQ3aYrbp1QuexSqnUseOTNSox3YsdcbosF6iD1H8B_6ZGXjc-uRhJ-EzmYBiSi480rBeQc70ry6Z-ae5yH_T6T3COfW79fv9Z_DbR3_0fsk8dBHYjYJHRAtqr5wr4GqFfpwzqe4SqHfbyOvh2S7a8n419n_wCPm1A5 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXRMvLtMCCyqvIauy1vesDQlGhSmibA01Fblt7vSmRkJ3GiSB_it_IjB9JHZXeep7xyt6ZnW_WM_stwE4UxA4X0ticJ8L2ZODjmotCNIhANBBDNy5-XRz3gs6p923gD9bgb30Whtoq65hYBOok0_SPfA-hSCDaCx5-Hl_YdGsUVVfrKzRKtzg089-4Zcs_db-gfd-47sHX_n7Hrm4VsLXgcmoPdWBkQcLCh3EshSDCmyQRiQ491HCcUMeYZfh-FAZ0RklgyuNyTwfad1saARrHvQW3EXhbtKLEQCxbSlZYn-sqKpd7OQKlpL17iBIR2vMGDq6iwSU4XG3VXKnXFjB48ADuV_kra5cOtwFrJt2EO0Ufqc43YaOKFTl7XxFaf3gIJ3QKpcr4WUK1_alh5k_VUIOjJXVzCBulDDNSRthK-S8rrhBkaP1RnCVzNjFjM5lmGKYfwemNTPtjWE-z1DwF5gfcBEksZcx9bxi1ZIJTG0eh2_IwH5LaglY9tUpXTOd04cYvVVTcuVSlNRRaQ5E11NyC3cUj45Lm4zrlHbKXIvqMlPpzzqNZnqt2_8d-T7Ux_6Wk0gkteH2VWvfke0PpXaU0zPAddVSdisAvJWKuhuZWQ1OPRxfqkvRtQ3pe2viqYbYbihhNdFNcO6GqolmulmvPglcLMT1JHXqpyWakQ1SDuN2QFjwpfXYxk7gtDdA0KBENb14oEMd5U5KOfhZc54HnOFwGFnys_X75Wv810LPrP-Il3O30j4_UUbd3uAX33GJRUoPSNqxPJzPzHNPMafyiWNsMzm46mPwDFNaH5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxMZX2ACDxreiNnFiOw8IVRvTyqBCbBN9M4njjEoo6ZpW0H-Nv467xGmXauxtz3exEt-nc-ffEbIT88RjQhqXsVS4geQh2FwcgUAERAOR-Un16-LLgB-cBJ-G4XCN_G3uwmBbZeMTK0edFhr_kXcgFAmI9oJFncy2RXzd2_8wPnNxghRWWptxGrWKHJr5bzi-le_7eyDrF76___F498C1EwZcLZicupnmRlaALCxLEikEgt-kqUh1FACH50U6gYwjDOOI430lAemPzwLNdeh3NQRrWPcauS5Y6KGNiaFYtpesIEA3FVUmOyUETYnn-AgoInLnrZi4GhnOhcbVts2V2m0VEvfvkNs2l6W9Wvk2yJrJN8mNqqdUl5tkw_qNkr624NZv7pIjvJFis3-aYp1_aqj5Y5trYLW0aRSho5xCdkoxzmIuTKtxghQ0YZQU6ZxOzNhMpgW47Hvk5Eq2_T5Zz4vcPCQ05MzwNJEyYWGQxV2ZwtYmceR3A8iNpHZIt9lapS3qOQ7f-KWq6juTqpaGAmkolIaaO-Tt4pFxDflxGfMOykshlEaOSnkaz8pS9Y6_7w5UD3JhTDC9yCHPL2LrH31rMb2yTFkB76hje0MCvhRBulqcWy1OPR6dqXPUly3qaS3ji5bZbjGCZ9FtcqOEynq2Ui3t0CHPFmR8Erv1clPMkAdhB-HoIR3yoNbZxU7CEZWDaIAiWtq8YEC88zYlH_2scM954HlMcoe8a_R--Vr_FdCjyz_iKbkJbkR97g8Ot8gtv7JJ7FXaJuvTycw8hoxzmjypTJuSH1ftS_4B2cKMGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Commonality+despite+exceptional+diversity+in+the+baseline+human+antibody+repertoire&rft.jtitle=Nature+%28London%29&rft.au=Briney%2C+Bryan&rft.au=Inderbitzin%2C+Anne&rft.au=Joyce%2C+Collin&rft.au=Burton%2C+Dennis+R&rft.date=2019-02-01&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=566&rft.issue=7744&rft.spage=393&rft_id=info:doi/10.1038%2Fs41586-019-0879-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |