Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome

The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8–3.6 Å resolution, captur...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 565; no. 7737; pp. 49 - 55
Main Authors Dong, Yuanchen, Zhang, Shuwen, Wu, Zhaolong, Li, Xuemei, Wang, Wei Li, Zhu, Yanan, Stoilova-McPhie, Svetla, Lu, Ying, Finley, Daniel, Mao, Youdong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8–3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate–proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate. Cryo-electron microscopy structures and dynamics of a substrate-engaged human 26S proteasome reveal in atomic detail three principal modes of coordinated ATP hydrolysis that regulate different steps in the degradation of a ubiquitylated protein.
AbstractList The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.
The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.
The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.Cryo-electron microscopy structures and dynamics of a substrate-engaged human 26S proteasome reveal in atomic detail three principal modes of coordinated ATP hydrolysis that regulate different steps in the degradation of a ubiquitylated protein.
The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8–3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate–proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate. Cryo-electron microscopy structures and dynamics of a substrate-engaged human 26S proteasome reveal in atomic detail three principal modes of coordinated ATP hydrolysis that regulate different steps in the degradation of a ubiquitylated protein.
The proteasome is an ATP-dependent, 2.5-megadalton machine responsible for selective protein degradation in eukaryotic cells. Here we present cryo-EM structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures visualize a continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. Three principal modes of coordinated hydrolysis are observed, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases, and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, translocation initiation and processive unfolding of substrates, respectively. ATP hydrolysis powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.
The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.
Audience Academic
Author Zhu, Yanan
Lu, Ying
Wu, Zhaolong
Wang, Wei Li
Stoilova-McPhie, Svetla
Zhang, Shuwen
Dong, Yuanchen
Finley, Daniel
Li, Xuemei
Mao, Youdong
AuthorAffiliation 8 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
7 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
6 Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA
3 Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
1 State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
4 Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
5 Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
2 Center for Quantitative Biology, Peking University, Beijing 100871, China
AuthorAffiliation_xml – name: 1 State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
– name: 3 Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– name: 7 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
– name: 2 Center for Quantitative Biology, Peking University, Beijing 100871, China
– name: 6 Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA
– name: 4 Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
– name: 5 Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
– name: 8 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
Author_xml – sequence: 1
  givenname: Yuanchen
  surname: Dong
  fullname: Dong, Yuanchen
  organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School
– sequence: 2
  givenname: Shuwen
  surname: Zhang
  fullname: Zhang, Shuwen
  organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Center for Quantitative Biology, Peking University
– sequence: 3
  givenname: Zhaolong
  surname: Wu
  fullname: Wu, Zhaolong
  organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University
– sequence: 4
  givenname: Xuemei
  surname: Li
  fullname: Li, Xuemei
  organization: Electron Microscopy Laboratory, School of Physics, Peking University
– sequence: 5
  givenname: Wei Li
  surname: Wang
  fullname: Wang, Wei Li
  organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School
– sequence: 6
  givenname: Yanan
  surname: Zhu
  fullname: Zhu, Yanan
  organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Center for Quantitative Biology, Peking University
– sequence: 7
  givenname: Svetla
  surname: Stoilova-McPhie
  fullname: Stoilova-McPhie, Svetla
  organization: Center for Nanoscale Systems, Harvard University
– sequence: 8
  givenname: Ying
  surname: Lu
  fullname: Lu, Ying
  organization: Department of Systems Biology, Harvard Medical School
– sequence: 9
  givenname: Daniel
  surname: Finley
  fullname: Finley, Daniel
  organization: Department of Cell Biology, Harvard Medical School
– sequence: 10
  givenname: Youdong
  surname: Mao
  fullname: Mao, Youdong
  email: youdong_mao@dfci.harvard.edu
  organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Center for Quantitative Biology, Peking University, Electron Microscopy Laboratory, School of Physics, Peking University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30479383$$D View this record in MEDLINE/PubMed
BookMark eNp9klFv0zAUhS00xLrBD-AFRfACQhl27NjOy6Sq2qDSAIkN8Wg5znWWKbG7OEH0389RN2inDuXBUe53Tmyfc4QOnHeA0GuCTwim8lNgJJc8xUSmWFCesmdoRpiIL1yKAzTDOIsTSfkhOgrhBmOcE8FeoEOKmSiopDO0XPRrn559TcLQj2YYewiJdlVSrZ3uGhMSb5MwlnGqB0jB1bqGKrkeO-2SjF8mq94PoIPv4CV6bnUb4NX9eox-np9dLb6kF98_Lxfzi9QIKofUZtRSa8sqF7nhWcEssZlkZU5YiSm3uWSAbVEIgwETKDGrcl5iEFzQvLCMHqPTje9qLDuoDLi4t1at-qbT_Vp53ajdiWuuVe1_K05FvIDJ4P29Qe9vRwiD6ppgoG21Az8GlREqOZWSTOi7R-iNH3sXjxcpzguaMb5F1boF1Tjr43_NZKrmuaBUFnlWRCrdQ9XgIG4y5mqb-HmHf7uHN6vmVm1DJ3ug-FQQ09vr-mFHEJkB_gy1HkNQy8sfu-zHp9n51a_Ft136zXYufwN56FoExAYwvQ-hB6tMM-ih8VNMTasIVlOr1abVKrZaTa1W0wWTR8oH8_9pso0mRNbV0P-L7mnRHbMJA5g
CitedBy_id crossref_primary_10_1016_j_jbc_2024_107861
crossref_primary_10_3390_biom13040704
crossref_primary_10_1016_j_celrep_2023_112701
crossref_primary_10_1038_s41586_021_04035_8
crossref_primary_10_1038_s41598_020_71550_5
crossref_primary_10_1042_BST20220590
crossref_primary_10_1515_bmc_2020_0009
crossref_primary_10_1017_S1431927620023478
crossref_primary_10_1016_j_jmb_2024_168838
crossref_primary_10_1021_acs_chemrev_1c00356
crossref_primary_10_1051_jbio_2021005
crossref_primary_10_1016_j_tibs_2022_06_006
crossref_primary_10_3390_mps5010015
crossref_primary_10_1016_j_xplc_2022_100310
crossref_primary_10_1073_pnas_1821959116
crossref_primary_10_1038_s41592_023_02082_9
crossref_primary_10_1016_j_hoc_2023_12_016
crossref_primary_10_3390_biom11020228
crossref_primary_10_1039_D4NR03599B
crossref_primary_10_1016_j_jmb_2020_01_023
crossref_primary_10_1126_sciadv_adr7943
crossref_primary_10_3390_jpm11121309
crossref_primary_10_1021_acs_jcim_0c00087
crossref_primary_10_1038_s41594_020_0409_5
crossref_primary_10_1093_jnen_nlab029
crossref_primary_10_1089_cbr_2024_0002
crossref_primary_10_3390_ijms21197190
crossref_primary_10_3390_ijms21155312
crossref_primary_10_1039_D3CS00344B
crossref_primary_10_1038_s41589_021_00823_5
crossref_primary_10_3390_biom11040505
crossref_primary_10_3390_biom12020229
crossref_primary_10_1038_s41467_021_26812_9
crossref_primary_10_1016_j_sbi_2019_10_004
crossref_primary_10_1186_s12859_019_2714_8
crossref_primary_10_1021_acsptsci_4c00408
crossref_primary_10_1016_j_sbi_2025_103001
crossref_primary_10_1038_s41586_022_05121_1
crossref_primary_10_1016_j_molcel_2019_01_018
crossref_primary_10_1038_s42003_023_05123_3
crossref_primary_10_3390_antiox10091483
crossref_primary_10_7554_eLife_61451
crossref_primary_10_1016_j_sbi_2020_10_027
crossref_primary_10_1073_pnas_2014407117
crossref_primary_10_1126_scitranslmed_abo3189
crossref_primary_10_3390_biom11020148
crossref_primary_10_3389_fnmol_2023_1330853
crossref_primary_10_7554_eLife_63505
crossref_primary_10_1126_science_aax1033
crossref_primary_10_1038_s41467_022_34691_x
crossref_primary_10_3390_ijms24032221
crossref_primary_10_1002_pro_3805
crossref_primary_10_1021_acscentsci_0c00080
crossref_primary_10_1146_annurev_cellbio_031220_015840
crossref_primary_10_3390_ijms22094519
crossref_primary_10_3390_molecules24152841
crossref_primary_10_1016_j_jbc_2021_101239
crossref_primary_10_1021_acs_analchem_1c02410
crossref_primary_10_1074_jbc_AC119_009890
crossref_primary_10_3390_biom13060992
crossref_primary_10_1073_pnas_2017525118
crossref_primary_10_1360_SSC_2023_0247
crossref_primary_10_1038_s41467_024_45521_7
crossref_primary_10_1042_BST20200382
crossref_primary_10_1021_acs_chemrev_1c00837
crossref_primary_10_1021_acsnano_8b08849
crossref_primary_10_3390_biom10040629
crossref_primary_10_1038_s41557_024_01440_0
crossref_primary_10_1038_s41419_021_04276_5
crossref_primary_10_1016_j_jbc_2023_102894
crossref_primary_10_1038_s41598_020_60598_y
crossref_primary_10_1073_pnas_2207200119
crossref_primary_10_1073_pnas_2123406119
crossref_primary_10_1016_j_pbi_2021_102051
crossref_primary_10_3390_cancers12092385
crossref_primary_10_3390_biom12101346
crossref_primary_10_1016_j_bbapap_2020_140583
crossref_primary_10_1111_febs_15638
crossref_primary_10_3390_biom11121789
crossref_primary_10_1038_s41589_022_01218_w
crossref_primary_10_1093_jb_mvab157
crossref_primary_10_1016_j_xpro_2020_100278
crossref_primary_10_1098_rsob_200390
crossref_primary_10_1186_s13045_023_01398_5
crossref_primary_10_1016_j_sbi_2020_10_010
crossref_primary_10_1073_pnas_1912033116
crossref_primary_10_1073_pnas_2101004118
crossref_primary_10_1021_acschemneuro_1c00099
crossref_primary_10_3390_ijms23168872
crossref_primary_10_3390_biom12060764
crossref_primary_10_1101_cshperspect_a033951
crossref_primary_10_1016_j_cell_2019_02_031
crossref_primary_10_1038_s12276_024_01385_x
crossref_primary_10_1146_annurev_biophys_100121_075228
crossref_primary_10_1016_j_sbi_2019_03_007
crossref_primary_10_1039_D2NR02537J
crossref_primary_10_1016_j_bbrc_2023_08_025
crossref_primary_10_1038_s41389_022_00386_7
crossref_primary_10_2174_1385272823666191113161511
crossref_primary_10_1021_acs_jpcb_0c04435
crossref_primary_10_1038_s41580_019_0183_6
crossref_primary_10_3390_biom13030480
crossref_primary_10_1002_cbic_201900017
crossref_primary_10_1002_asia_202000106
crossref_primary_10_1186_s12870_021_03234_9
crossref_primary_10_1038_s41416_022_01829_z
crossref_primary_10_1007_s13238_020_00714_w
crossref_primary_10_3390_biom13081223
crossref_primary_10_7554_eLife_44071
crossref_primary_10_1002_1873_3468_14436
crossref_primary_10_1080_10409238_2021_1979461
crossref_primary_10_1038_s41467_020_15073_7
crossref_primary_10_1016_j_jmb_2023_167997
crossref_primary_10_1016_j_str_2020_04_013
crossref_primary_10_3390_molecules24122341
crossref_primary_10_1080_10409238_2021_1979460
crossref_primary_10_3389_fmolb_2019_00040
crossref_primary_10_1038_s41586_022_04671_8
crossref_primary_10_3389_fmolb_2019_00034
crossref_primary_10_1016_j_tibs_2019_04_007
crossref_primary_10_1073_pnas_2104245118
crossref_primary_10_1016_j_jmb_2019_04_022
crossref_primary_10_1016_j_jmb_2021_166890
crossref_primary_10_1016_j_bpj_2021_05_027
crossref_primary_10_1038_s41467_021_27787_3
crossref_primary_10_1038_d41586_022_01144_w
crossref_primary_10_1111_febs_16539
crossref_primary_10_7554_eLife_46808
crossref_primary_10_1016_j_ejmech_2019_111646
crossref_primary_10_1016_j_str_2020_02_007
crossref_primary_10_3390_ijms23158168
crossref_primary_10_1080_00268976_2019_1705412
crossref_primary_10_1002_ctm2_977
crossref_primary_10_3389_fcimb_2022_985178
crossref_primary_10_3390_biom9090395
crossref_primary_10_1016_j_jmb_2023_168014
crossref_primary_10_1038_s41419_023_06191_3
crossref_primary_10_1038_s41580_022_00543_1
crossref_primary_10_1038_s41594_020_0373_0
crossref_primary_10_1016_j_jmr_2023_107431
crossref_primary_10_1016_j_celrep_2019_05_075
crossref_primary_10_1016_j_gendis_2023_06_037
crossref_primary_10_1038_s42003_023_05082_9
crossref_primary_10_1016_j_jbc_2023_102870
crossref_primary_10_1016_j_jbc_2023_104811
crossref_primary_10_1101_cshperspect_a033985
crossref_primary_10_1038_s41592_021_01220_5
crossref_primary_10_1016_j_bmc_2022_116813
crossref_primary_10_1016_j_molcel_2023_07_023
crossref_primary_10_1016_j_biochi_2024_04_003
crossref_primary_10_1002_pro_5034
crossref_primary_10_1007_s11427_020_1752_1
crossref_primary_10_1038_s41597_023_02280_2
crossref_primary_10_1016_j_celrep_2019_07_104
crossref_primary_10_1038_s41571_023_00789_4
crossref_primary_10_3390_biom13091326
crossref_primary_10_3390_ijms242417486
crossref_primary_10_1021_acs_jmedchem_1c02158
crossref_primary_10_1016_j_bbapap_2019_06_010
crossref_primary_10_1038_s41467_022_30318_3
crossref_primary_10_7554_eLife_71911
crossref_primary_10_1016_j_biochi_2024_04_006
crossref_primary_10_1021_acsomega_4c04316
crossref_primary_10_1016_j_isci_2024_108892
crossref_primary_10_1002_cbic_201900073
crossref_primary_10_1016_j_jsb_2023_107958
crossref_primary_10_1038_s41467_022_28186_y
crossref_primary_10_3389_fcell_2024_1531797
crossref_primary_10_1002_pro_3642
crossref_primary_10_1016_j_xpro_2023_102182
crossref_primary_10_3389_fmolb_2020_585643
crossref_primary_10_1016_j_plantsci_2021_110825
crossref_primary_10_1038_s41467_021_27570_4
crossref_primary_10_3389_fimmu_2019_02731
crossref_primary_10_3390_molecules25061439
crossref_primary_10_1038_s41586_020_1964_y
crossref_primary_10_1073_pnas_1912531117
crossref_primary_10_1016_j_isci_2024_110961
crossref_primary_10_1021_acschembio_4c00341
crossref_primary_10_3389_fcell_2025_1523382
crossref_primary_10_1515_hsz_2019_0344
crossref_primary_10_1073_pnas_1915534117
crossref_primary_10_1073_pnas_2310664120
crossref_primary_10_1038_s41594_022_00850_3
crossref_primary_10_1016_j_str_2020_07_011
crossref_primary_10_1016_j_pharmthera_2020_107579
crossref_primary_10_1038_s41467_021_26427_0
crossref_primary_10_1002_cbic_202400193
crossref_primary_10_1126_science_aax0486
crossref_primary_10_1002_pro_3629
crossref_primary_10_1016_j_bpj_2020_06_015
crossref_primary_10_1016_j_chembiol_2021_04_003
crossref_primary_10_1038_s41594_024_01268_9
crossref_primary_10_1016_j_cell_2020_09_010
crossref_primary_10_1016_j_neurot_2024_e00499
crossref_primary_10_1093_hmg_ddae085
crossref_primary_10_1038_s41477_020_0721_4
crossref_primary_10_3389_fcell_2019_00170
crossref_primary_10_1002_pro_3743
crossref_primary_10_1126_sciadv_aba8404
crossref_primary_10_1039_C9OB00122K
crossref_primary_10_1002_wrna_1541
crossref_primary_10_1016_j_dnarep_2024_103751
crossref_primary_10_3389_fphys_2022_886261
crossref_primary_10_1016_j_tips_2023_05_006
crossref_primary_10_3390_ijms24032091
crossref_primary_10_1126_sciadv_add9520
crossref_primary_10_3390_cells11132067
crossref_primary_10_1016_j_matbio_2020_11_003
crossref_primary_10_7554_eLife_52774
crossref_primary_10_1073_pnas_2122482119
crossref_primary_10_7554_eLife_54031
crossref_primary_10_1038_s41467_024_51835_3
crossref_primary_10_7554_eLife_49806
crossref_primary_10_1111_febs_15576
crossref_primary_10_1016_j_pharmthera_2022_108329
crossref_primary_10_1038_s41580_024_00778_0
crossref_primary_10_3390_biomedicines12092147
Cites_doi 10.1021/bi061994u
10.1016/j.cell.2011.02.005
10.1038/cr.2016.86
10.1016/j.cell.2009.09.034
10.1016/j.jsb.2015.11.003
10.1073/pnas.1120559109
10.1016/j.jsb.2005.07.007
10.1073/pnas.1305782110
10.1038/ncomms9520
10.1073/pnas.1614614113
10.1146/annurev-biochem-062917-011931
10.1016/S1097-2765(01)00308-2
10.1073/pnas.1601561113
10.1016/j.jsb.2005.03.010
10.1038/nmeth.4193
10.1016/S0076-6879(05)99014-9
10.1038/nsmb.1501
10.1073/pnas.1608050113
10.1016/j.celrep.2018.07.004
10.1038/nature10774
10.7554/eLife.13027
10.1073/pnas.1400546111
10.1074/jbc.M702846200
10.7554/eLife.18722
10.1126/science.1075898
10.1038/nmeth.2727
10.1038/nsmb.3273
10.1038/s41467-018-03785-w
10.1002/jcc.20084
10.1016/j.tibs.2015.10.009
10.1126/science.aan1052
10.1186/s12859-017-1757-y
10.1073/pnas.1621129114
10.1016/j.str.2011.12.015
10.1126/science.aad9421
10.7554/eLife.25754
10.1107/S0907444904019158
10.1073/pnas.1213333109
10.1016/j.molcel.2009.04.021
10.1016/j.molcel.2017.07.023
10.1126/science.aao0464
10.1126/sciadv.1701726
10.1038/nature04943
10.1016/j.molcel.2012.03.026
10.1016/j.cell.2004.06.014
10.1126/science.1250834
10.1016/j.jmb.2007.05.022
10.7554/eLife.31324
10.1038/s41467-018-04731-6
10.7554/eLife.24487
10.1038/nsmb.2771
10.1371/journal.pone.0182130
10.1016/j.molcel.2017.06.007
10.1016/j.cell.2009.08.043
10.1038/386463a0
10.1093/emboj/16.19.5847
10.1038/35040607
ContentType Journal Article
Copyright Springer Nature Limited 2018
COPYRIGHT 2019 Nature Publishing Group
Copyright Nature Publishing Group Jan 3, 2019
Copyright_xml – notice: Springer Nature Limited 2018
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 3, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-018-0736-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
Biological Science Database
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database
MEDLINE - Academic




MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 55
ExternalDocumentID PMC6370054
A573389529
30479383
10_1038_s41586_018_0736_4
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1541959
– fundername: NIGMS NIH HHS
  grantid: R01 GM043601
– fundername: NIGMS NIH HHS
  grantid: R37 GM043601
– fundername: NIAID NIH HHS
  grantid: UM1 AI100645
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AFANA
AGNAY
ALPWD
ATHPR
CITATION
NEJ
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGOIJ
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
AEZWR
AFHIU
AHWEU
AIXLP
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c738t-f23f3ffbd575c6294f1f284b514b036f584e0f997c0e01eb04d56b0e767359f43
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:20:15 EDT 2025
Tue Aug 05 10:47:07 EDT 2025
Fri Jul 25 08:58:37 EDT 2025
Tue Jun 17 21:38:37 EDT 2025
Thu Jun 12 23:30:14 EDT 2025
Tue Jun 10 15:32:31 EDT 2025
Tue Jun 10 20:30:46 EDT 2025
Fri Jun 27 05:12:35 EDT 2025
Fri Jun 27 04:36:27 EDT 2025
Thu Apr 03 06:58:53 EDT 2025
Tue Jul 01 00:57:26 EDT 2025
Thu Apr 24 22:50:30 EDT 2025
Fri Feb 21 02:37:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7737
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c738t-f23f3ffbd575c6294f1f284b514b036f584e0f997c0e01eb04d56b0e767359f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions Y.D. purified proteins, conducted biochemical analysis and prepared samples for imaging. Y.D., S.Z., Z.W., X.L., W.L.W., Y.Z. and S.S.M. collected data. S.Z. and Z.W. processed the data and refined the maps. Y.D., S.Z., Y.L. and D.F. contributed to structural analysis and manuscript preparation. Y.M. conceived and supervised this study, devised the methods, performed atomic modeling, analyzed the structures and wrote the manuscript.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6370054
PMID 30479383
PQID 2166932464
PQPubID 40569
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6370054
proquest_miscellaneous_2138638814
proquest_journals_2166932464
gale_infotracmisc_A573389529
gale_infotracgeneralonefile_A573389529
gale_infotraccpiq_573389529
gale_infotracacademiconefile_A573389529
gale_incontextgauss_ISR_A573389529
gale_incontextgauss_ATWCN_A573389529
pubmed_primary_30479383
crossref_citationtrail_10_1038_s41586_018_0736_4
crossref_primary_10_1038_s41586_018_0736_4
springer_journals_10_1038_s41586_018_0736_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-00
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Thomsen, Berger (CR46) 2009; 139
Snoberger, Brettrager, Smith (CR35) 2018; 9
Zhu (CR11) 2018; 9
Suloway (CR48) 2005; 151
Zhang (CR51) 2016; 193
Glynn, Martin, Nager, Baker, Sauer (CR36) 2009; 139
Kim, Snoberger, Schupp, Smith (CR37) 2015; 6
Lasker (CR15) 2012; 109
Eisele (CR12) 2018; 24
Livneh, Cohen-Kaplan, Cohen-Rosenzweig, Avni, Ciechanover (CR1) 2016; 26
Verma, McDonald, Yates, Deshaies (CR24) 2001; 8
Lander (CR16) 2012; 482
Wang (CR47) 2007; 46
Shi (CR6) 2016; 351
Dambacher, Worden, Herzik, Martin, Lander (CR32) 2016; 5
Verma (CR8) 2002; 298
Pettersen (CR58) 2004; 25
Śledź (CR21) 2013; 110
CR4
Gates (CR41) 2017; 357
Worden, Padovani, Martin (CR31) 2014; 21
Kimanius, Forsberg, Scheres, Lindahl (CR53) 2016; 5
He (CR34) 2012; 20
Adams (CR57) 2010
Zhang (CR28) 2009; 34
Smith, Fraga, Reis, Kafri, Goldberg (CR9) 2011; 144
Pathare (CR30) 2014; 111
Beck (CR20) 2012; 109
Monroe, Han, Shen, Sundquist, Hill (CR44) 2017; 6
Bard (CR3) 2018; 87
Wu (CR54) 2017; 12
Huang, Luan, Wu, Shi (CR18) 2016; 23
Chen (CR10) 2016; 113
Schweitzer (CR14) 2016; 113
CR59
Worden, Dong, Martin (CR29) 2017; 67
Horwitz (CR38) 2007; 282
Lu, Lee, King, Finley, Kirschner (CR25) 2015; 348
Enemark, Joshua-Tor (CR45) 2006; 442
Emsley, Cowtan (CR56) 2004; 60
Wehmer (CR13) 2017; 114
Mastronarde (CR49) 2005; 152
Krissinel, Henrick (CR60) 2007; 372
Saeki, Isono, Toh-E (CR23) 2005; 399
Puchades (CR39) 2017; 358
Ripstein, Huang, Augustyniak, Kay, Rubinstein (CR40) 2017; 6
Zheng (CR50) 2017; 14
CR27
CR26
Finley, Chen, Walters (CR2) 2016; 41
Han, Monroe, Sundquist, Shen, Hill (CR42) 2017; 6
CR22
Zhu, Ouyang, Mao (CR52) 2017; 18
Kucukelbir, Sigworth, Tagare (CR55) 2014; 11
Deville (CR43) 2017; 3
Verma, Oania, Graumann, Deshaies (CR7) 2004; 118
Luan (CR19) 2016; 113
Lu (CR5) 2017; 67
Zhang, Wigley (CR33) 2008; 15
da Fonseca, He, Morris (CR17) 2012; 46
Y Shi (736_CR6) 2016; 351
X Wang (736_CR47) 2007; 46
736_CR26
736_CR27
736_CR22
CM Dambacher (736_CR32) 2016; 5
SE Glynn (736_CR36) 2009; 139
F Beck (736_CR20) 2012; 109
GR Pathare (736_CR30) 2014; 111
SN Gates (736_CR41) 2017; 357
PD Adams (736_CR57) 2010
YC Kim (736_CR37) 2015; 6
DN Mastronarde (736_CR49) 2005; 152
R Verma (736_CR7) 2004; 118
I Livneh (736_CR1) 2016; 26
R Verma (736_CR24) 2001; 8
EJ Worden (736_CR31) 2014; 21
J Wu (736_CR54) 2017; 12
Y Lu (736_CR25) 2015; 348
N Monroe (736_CR44) 2017; 6
P Śledź (736_CR21) 2013; 110
C Puchades (736_CR39) 2017; 358
736_CR59
Y Saeki (736_CR23) 2005; 399
ZA Ripstein (736_CR40) 2017; 6
F Zhang (736_CR28) 2009; 34
J He (736_CR34) 2012; 20
A Snoberger (736_CR35) 2018; 9
A Kucukelbir (736_CR55) 2014; 11
Y Zhu (736_CR52) 2017; 18
S Chen (736_CR10) 2016; 113
Y Lu (736_CR5) 2017; 67
Y Zhu (736_CR11) 2018; 9
P Emsley (736_CR56) 2004; 60
MR Eisele (736_CR12) 2018; 24
JAM Bard (736_CR3) 2018; 87
D Finley (736_CR2) 2016; 41
DM Smith (736_CR9) 2011; 144
E Krissinel (736_CR60) 2007; 372
K Lasker (736_CR15) 2012; 109
D Kimanius (736_CR53) 2016; 5
EF Pettersen (736_CR58) 2004; 25
X Zhang (736_CR33) 2008; 15
ND Thomsen (736_CR46) 2009; 139
K Zhang (736_CR51) 2016; 193
A Schweitzer (736_CR14) 2016; 113
PC Fonseca da (736_CR17) 2012; 46
GC Lander (736_CR16) 2012; 482
C Deville (736_CR43) 2017; 3
C Suloway (736_CR48) 2005; 151
736_CR4
AA Horwitz (736_CR38) 2007; 282
X Huang (736_CR18) 2016; 23
SQ Zheng (736_CR50) 2017; 14
M Wehmer (736_CR13) 2017; 114
B Luan (736_CR19) 2016; 113
EJ Worden (736_CR29) 2017; 67
EJ Enemark (736_CR45) 2006; 442
R Verma (736_CR8) 2002; 298
H Han (736_CR42) 2017; 6
References_xml – volume: 46
  start-page: 3553
  year: 2007
  end-page: 3565
  ident: CR47
  article-title: Mass spectrometric characterization of the affinity-purified human 26S proteasome complex
  publication-title: Biochemistry
  doi: 10.1021/bi061994u
– ident: CR22
– volume: 144
  start-page: 526
  year: 2011
  end-page: 538
  ident: CR9
  article-title: ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.005
– volume: 26
  start-page: 869
  year: 2016
  end-page: 885
  ident: CR1
  article-title: The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.86
– volume: 139
  start-page: 744
  year: 2009
  end-page: 756
  ident: CR36
  article-title: Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
  publication-title: Cell
  doi: 10.1016/j.cell.2009.09.034
– ident: CR4
– volume: 193
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR51
  article-title: Gctf: Real-time CTF determination and correction
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.11.003
– volume: 109
  start-page: 1380
  year: 2012
  end-page: 1387
  ident: CR15
  article-title: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1120559109
– volume: 152
  start-page: 36
  year: 2005
  end-page: 51
  ident: CR49
  article-title: Automated electron microscope tomography using robust prediction of specimen movements
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.07.007
– volume: 110
  start-page: 7264
  year: 2013
  end-page: 7269
  ident: CR21
  article-title: Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1305782110
– volume: 6
  year: 2015
  ident: CR37
  article-title: ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9520
– volume: 113
  start-page: 12991
  year: 2016
  end-page: 12996
  ident: CR10
  article-title: Structural basis for dynamic regulation of the human 26S proteasome
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1614614113
– volume: 87
  start-page: 697
  year: 2018
  end-page: 724
  ident: CR3
  article-title: Structure and function of the 26S proteasome
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-062917-011931
– volume: 8
  start-page: 439
  year: 2001
  end-page: 448
  ident: CR24
  article-title: Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00308-2
– volume: 113
  start-page: 2642
  year: 2016
  end-page: 2647
  ident: CR19
  article-title: Structure of an endogenous yeast 26S proteasome reveals two major conformational states
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1601561113
– volume: 151
  start-page: 41
  year: 2005
  end-page: 60
  ident: CR48
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  ident: CR50
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 399
  start-page: 215
  year: 2005
  end-page: 227
  ident: CR23
  article-title: Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(05)99014-9
– volume: 15
  start-page: 1223
  year: 2008
  end-page: 1227
  ident: CR33
  article-title: The ‘glutamate switch’ provides a link between ATPase activity and ligand binding in AAA+ proteins
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1501
– volume: 113
  start-page: 7816
  year: 2016
  end-page: 7821
  ident: CR14
  article-title: Structure of the human 26S proteasome at a resolution of 3.9 Å
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1608050113
– volume: 24
  start-page: 1301
  year: 2018
  end-page: 1315
  ident: CR12
  article-title: Expanded coverage of the 26S proteasome conformational landscape reveals mechanisms of peptidase gating
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.07.004
– volume: 482
  start-page: 186
  year: 2012
  end-page: 191
  ident: CR16
  article-title: Complete subunit architecture of the proteasome regulatory particle
  publication-title: Nature
  doi: 10.1038/nature10774
– volume: 5
  start-page: e13027
  year: 2016
  ident: CR32
  article-title: Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
  publication-title: eLife
  doi: 10.7554/eLife.13027
– volume: 111
  start-page: 2984
  year: 2014
  end-page: 2989
  ident: CR30
  article-title: Crystal structure of the proteasomal deubiquitylation module Rpn8–Rpn11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1400546111
– volume: 282
  start-page: 22921
  year: 2007
  end-page: 22929
  ident: CR38
  article-title: ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702846200
– volume: 5
  start-page: e18722
  year: 2016
  ident: CR53
  article-title: Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2
  publication-title: eLife
  doi: 10.7554/eLife.18722
– volume: 298
  start-page: 611
  year: 2002
  end-page: 615
  ident: CR8
  article-title: Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
  publication-title: Science
  doi: 10.1126/science.1075898
– volume: 11
  start-page: 63
  year: 2014
  end-page: 65
  ident: CR55
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2727
– ident: CR26
– volume: 23
  start-page: 778
  year: 2016
  end-page: 785
  ident: CR18
  article-title: An atomic structure of the human 26S proteasome
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3273
– volume: 9
  year: 2018
  ident: CR11
  article-title: Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03785-w
– start-page: 213
  year: 2010
  end-page: 221
  ident: CR57
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: CR58
  article-title: UCSF Chimera—a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 41
  start-page: 77
  year: 2016
  end-page: 93
  ident: CR2
  article-title: Gates, channels, and switches: elements of the proteasome machine
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.10.009
– volume: 357
  start-page: 273
  year: 2017
  end-page: 279
  ident: CR41
  article-title: Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104
  publication-title: Science
  doi: 10.1126/science.aan1052
– volume: 18
  year: 2017
  ident: CR52
  article-title: A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1757-y
– volume: 114
  start-page: 1305
  year: 2017
  end-page: 1310
  ident: CR13
  article-title: Structural insights into the functional cycle of the ATPase module of the 26S proteasome
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1621129114
– volume: 20
  start-page: 513
  year: 2012
  end-page: 521
  ident: CR34
  article-title: The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings
  publication-title: Structure
  doi: 10.1016/j.str.2011.12.015
– volume: 351
  start-page: aad9421
  year: 2016
  ident: CR6
  article-title: Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
  publication-title: Science
  doi: 10.1126/science.aad9421
– volume: 6
  start-page: e25754
  year: 2017
  ident: CR40
  article-title: Structure of a AAA+ unfoldase in the process of unfolding substrate
  publication-title: eLife
  doi: 10.7554/eLife.25754
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: CR56
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 109
  start-page: 14870
  year: 2012
  end-page: 14875
  ident: CR20
  article-title: Near-atomic resolution structural model of the yeast 26S proteasome
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1213333109
– ident: CR27
– volume: 34
  start-page: 473
  year: 2009
  end-page: 484
  ident: CR28
  article-title: Structural insights into the regulatory particle of the proteasome from
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.04.021
– volume: 67
  start-page: 799
  year: 2017
  end-page: 811.e8
  ident: CR29
  article-title: An AAA motor-driven mechanical switch in Rpn11 controls deubiquitination at the 26S proteasome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.07.023
– volume: 358
  start-page: eaao0464
  year: 2017
  ident: CR39
  article-title: Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing
  publication-title: Science
  doi: 10.1126/science.aao0464
– volume: 3
  start-page: e1701726
  year: 2017
  ident: CR43
  article-title: Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701726
– volume: 442
  start-page: 270
  year: 2006
  end-page: 275
  ident: CR45
  article-title: Mechanism of DNA translocation in a replicative hexameric helicase
  publication-title: Nature
  doi: 10.1038/nature04943
– volume: 46
  start-page: 54
  year: 2012
  end-page: 66
  ident: CR17
  article-title: Molecular model of the human 26S proteasome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.03.026
– volume: 118
  start-page: 99
  year: 2004
  end-page: 110
  ident: CR7
  article-title: Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system
  publication-title: Cell
  doi: 10.1016/j.cell.2004.06.014
– volume: 348
  start-page: 1250834
  year: 2015
  ident: CR25
  article-title: Substrate degradation by the proteasome: a single-molecule kinetic analysis
  publication-title: Science
  doi: 10.1126/science.1250834
– volume: 372
  start-page: 774
  year: 2007
  end-page: 797
  ident: CR60
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
– volume: 6
  start-page: e31324
  year: 2017
  ident: CR42
  article-title: The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets
  publication-title: eLife
  doi: 10.7554/eLife.31324
– ident: CR59
– volume: 9
  year: 2018
  ident: CR35
  article-title: Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04731-6
– volume: 6
  start-page: e24487
  year: 2017
  ident: CR44
  article-title: Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase
  publication-title: eLife
  doi: 10.7554/eLife.24487
– volume: 21
  start-page: 220
  year: 2014
  end-page: 227
  ident: CR31
  article-title: Structure of the Rpn11–Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2771
– volume: 12
  start-page: e0182130
  year: 2017
  ident: CR54
  article-title: Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0182130
– volume: 67
  start-page: 322
  year: 2017
  end-page: 333.e6
  ident: CR5
  article-title: Conformational landscape of the p28-bound human proteasome regulatory particle
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.007
– volume: 139
  start-page: 523
  year: 2009
  end-page: 534
  ident: CR46
  article-title: Running in reverse: the structural basis for translocation polarity in hexameric helicases
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.043
– volume: 23
  start-page: 778
  year: 2016
  ident: 736_CR18
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3273
– volume: 114
  start-page: 1305
  year: 2017
  ident: 736_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1621129114
– volume: 399
  start-page: 215
  year: 2005
  ident: 736_CR23
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(05)99014-9
– volume: 152
  start-page: 36
  year: 2005
  ident: 736_CR49
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.07.007
– volume: 282
  start-page: 22921
  year: 2007
  ident: 736_CR38
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702846200
– volume: 298
  start-page: 611
  year: 2002
  ident: 736_CR8
  publication-title: Science
  doi: 10.1126/science.1075898
– volume: 358
  start-page: eaao0464
  year: 2017
  ident: 736_CR39
  publication-title: Science
  doi: 10.1126/science.aao0464
– volume: 139
  start-page: 744
  year: 2009
  ident: 736_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2009.09.034
– volume: 6
  start-page: e24487
  year: 2017
  ident: 736_CR44
  publication-title: eLife
  doi: 10.7554/eLife.24487
– volume: 6
  year: 2015
  ident: 736_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9520
– volume: 351
  start-page: aad9421
  year: 2016
  ident: 736_CR6
  publication-title: Science
  doi: 10.1126/science.aad9421
– volume: 24
  start-page: 1301
  year: 2018
  ident: 736_CR12
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.07.004
– volume: 110
  start-page: 7264
  year: 2013
  ident: 736_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1305782110
– volume: 113
  start-page: 7816
  year: 2016
  ident: 736_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1608050113
– start-page: 213
  volume-title: Acta Crystallogr. D Biol. Crystallogr.
  year: 2010
  ident: 736_CR57
– volume: 60
  start-page: 2126
  year: 2004
  ident: 736_CR56
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– ident: 736_CR4
  doi: 10.1038/386463a0
– volume: 3
  start-page: e1701726
  year: 2017
  ident: 736_CR43
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701726
– volume: 46
  start-page: 54
  year: 2012
  ident: 736_CR17
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.03.026
– volume: 67
  start-page: 799
  year: 2017
  ident: 736_CR29
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.07.023
– volume: 25
  start-page: 1605
  year: 2004
  ident: 736_CR58
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 87
  start-page: 697
  year: 2018
  ident: 736_CR3
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-062917-011931
– volume: 5
  start-page: e18722
  year: 2016
  ident: 736_CR53
  publication-title: eLife
  doi: 10.7554/eLife.18722
– volume: 357
  start-page: 273
  year: 2017
  ident: 736_CR41
  publication-title: Science
  doi: 10.1126/science.aan1052
– volume: 11
  start-page: 63
  year: 2014
  ident: 736_CR55
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2727
– volume: 111
  start-page: 2984
  year: 2014
  ident: 736_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1400546111
– volume: 442
  start-page: 270
  year: 2006
  ident: 736_CR45
  publication-title: Nature
  doi: 10.1038/nature04943
– volume: 144
  start-page: 526
  year: 2011
  ident: 736_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.005
– volume: 8
  start-page: 439
  year: 2001
  ident: 736_CR24
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00308-2
– volume: 9
  year: 2018
  ident: 736_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03785-w
– volume: 139
  start-page: 523
  year: 2009
  ident: 736_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.043
– volume: 151
  start-page: 41
  year: 2005
  ident: 736_CR48
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– volume: 21
  start-page: 220
  year: 2014
  ident: 736_CR31
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2771
– volume: 15
  start-page: 1223
  year: 2008
  ident: 736_CR33
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1501
– volume: 12
  start-page: e0182130
  year: 2017
  ident: 736_CR54
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0182130
– ident: 736_CR26
  doi: 10.1093/emboj/16.19.5847
– volume: 14
  start-page: 331
  year: 2017
  ident: 736_CR50
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 109
  start-page: 1380
  year: 2012
  ident: 736_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1120559109
– volume: 34
  start-page: 473
  year: 2009
  ident: 736_CR28
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.04.021
– volume: 67
  start-page: 322
  year: 2017
  ident: 736_CR5
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.007
– ident: 736_CR59
– volume: 26
  start-page: 869
  year: 2016
  ident: 736_CR1
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.86
– volume: 113
  start-page: 2642
  year: 2016
  ident: 736_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1601561113
– volume: 109
  start-page: 14870
  year: 2012
  ident: 736_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1213333109
– volume: 46
  start-page: 3553
  year: 2007
  ident: 736_CR47
  publication-title: Biochemistry
  doi: 10.1021/bi061994u
– volume: 348
  start-page: 1250834
  year: 2015
  ident: 736_CR25
  publication-title: Science
  doi: 10.1126/science.1250834
– volume: 41
  start-page: 77
  year: 2016
  ident: 736_CR2
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.10.009
– volume: 5
  start-page: e13027
  year: 2016
  ident: 736_CR32
  publication-title: eLife
  doi: 10.7554/eLife.13027
– ident: 736_CR27
  doi: 10.1038/35040607
– volume: 20
  start-page: 513
  year: 2012
  ident: 736_CR34
  publication-title: Structure
  doi: 10.1016/j.str.2011.12.015
– volume: 372
  start-page: 774
  year: 2007
  ident: 736_CR60
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
– ident: 736_CR22
– volume: 482
  start-page: 186
  year: 2012
  ident: 736_CR16
  publication-title: Nature
  doi: 10.1038/nature10774
– volume: 6
  start-page: e31324
  year: 2017
  ident: 736_CR42
  publication-title: eLife
  doi: 10.7554/eLife.31324
– volume: 193
  start-page: 1
  year: 2016
  ident: 736_CR51
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.11.003
– volume: 6
  start-page: e25754
  year: 2017
  ident: 736_CR40
  publication-title: eLife
  doi: 10.7554/eLife.25754
– volume: 18
  year: 2017
  ident: 736_CR52
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1757-y
– volume: 118
  start-page: 99
  year: 2004
  ident: 736_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2004.06.014
– volume: 9
  year: 2018
  ident: 736_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04731-6
– volume: 113
  start-page: 12991
  year: 2016
  ident: 736_CR10
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1614614113
SSID ssj0005174
Score 2.6477268
Snippet The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present...
The proteasome is an ATP-dependent, 2.5-megadalton machine responsible for selective protein degradation in eukaryotic cells. Here we present cryo-EM...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms 101/28
631/45/468
631/535/1258/1259
631/80/474/2085
82/83
Adenosine diphosphate
Adenosine triphosphatase
Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - metabolism
Allosteric Regulation
ATP
ATPases
Automation
Binding sites
Biodegradation
Cell cycle
Cryoelectron Microscopy
Electron microscopy
Holoenzymes - chemistry
Holoenzymes - metabolism
Holoenzymes - ultrastructure
Humanities and Social Sciences
Humans
Hydrolysis
Microscopy
Models, Molecular
Molecular machines
multidisciplinary
Proteasome 26S
Proteasome Endopeptidase Complex - chemistry
Proteasome Endopeptidase Complex - metabolism
Proteasome Endopeptidase Complex - ultrastructure
Protein Conformation
Protein research
Protein Structure, Quaternary
Protein Unfolding
Proteins
Proteolysis
Science
Science (multidisciplinary)
Substrate Specificity
Substrates
Synchronism
Synchronization
Translocation
Ubiquitin
Ubiquitin-proteasome system
Ubiquitination
Title Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome
URI https://link.springer.com/article/10.1038/s41586-018-0736-4
https://www.ncbi.nlm.nih.gov/pubmed/30479383
https://www.proquest.com/docview/2166932464
https://www.proquest.com/docview/2138638814
https://pubmed.ncbi.nlm.nih.gov/PMC6370054
Volume 565
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYJiReEBtfYaMyaOJT0ZLYcewnVKqWDYkK7UP0zUocu0yCpCPrA_89Z8dpl2rspS_3c5X4zndn-_I7hA6NSilJ8iLMSQkblESZMI9pEWqWCBMJDVHbsX1O2fEF_TpLZ_7ArfFllZ1PdI66rJU9Iz9KYsYg16CMflpchbZrlL1d9S00ttBODJHGlnTxyZd1iccGC3N3q0n4UQOBi9u9NEgywkLai0ub3vlGeNosndy4P3VhafIIPfT5JB62BrCL7ulqD913dZ2q2UO7fu02-J0nmH7_GJ2M_vytw_E33JLHLmHHjfOqxGXbnb7BtcENOBRHXBvqag4-p8Sumx9O2Bl23A55U__WT9DFZHw-Og59S4VQZYRfhyYhhhhTlJClKVAHNbGBAFVA2lRALDOQjujICJGpSEexLiJapqyIdMYykgpDyVO0XdWVfo6wgegOe8dUCEVgUCJYkTNueA7zSfOEByjqJlQqzzdu2178ku7em3DZ6kCCDqTVgaQB-rAasmjJNu4CH1otSUtiUdkqmXm-bBo5PP8xmsqhpXnkIk1EgF7fBjs5O-2B3nqQqeEZVe6_TYA3tfRYPeR-D6kWl1fyhvRNTzpvNXvb3xz0gLCmVV_cmZ70PqWR6xUQoFcrsR1p6-QqXS8thnDwqDwGzLPWUlczaS9YBeEkQFnPhlcAyzTel1SXPx3jOCOZze0D9LGz9vVj_VdBL-5-iX30AJJP0R5nHaBtsHj9EhK862KAtrJZBr98FA_cih6gnc_j6ffTf4XhSwM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxMZX2ACDxreipbbj2A8IVWWjZVsfWCf2ZhLHLpNY0pFVqP8UfyPnfLRLNfa25ztHju_yu7v4_DNCW1aHjJI48WOaQoFCtPXjDkt8w4m0gTQQtUu2zyHvH7Gvx-HxCvrbnIVxbZUNJpZAneba_SPfJh3OIddgnH2anPnu1ii3u9pcoVG5xZ6Z_YGSrfg4-Az2fUXI7s6o1_frWwV8HVFx7ltCLbU2SSFR0TAjZjsWMDqBzCEBOLcQkU1gpYx0YIKOSQKWhjwJTMQjGkrLKDz3BrrJKERydzJ998uipWSJ9bnZRaViu4BAKVztDpKIcp-14uByNLgQDpdbNZf2a8swuHsP3a3zV9ytHG4NrZhsHd0q-0h1sY7Waqwo8Nua0PrdfTTo_Z7l_s4Brshqp1Dh4zhLcTrL4lMYhnOLCwCwkijXN9kYMC7F5e2BmPBDXHJJxEV-ah6go2tZ7IdoNcsz8xhhC9kE1KqhlJrCICJ5EnNhRQzryWIiPBQ0C6p0zW_urtn4pcp9dipUZQMFNlDOBop56P18yKQi97hKectZSTnSjMx15YzjaVGo7uh7b6i6jlZSyJBID728TG1w-K2l9KZWsjnMUcf1WQh4U0fH1dLcaGnqycmZuiB93ZKOK8te9pjNliJgiG6LG9dTNYYVavHFeejFXOxGur68zORTp0MFILjogM6jylPnK-k2dCUV1ENRy4fnCo7ZvC3JTn6WDOecRq6W8NCHxtsX0_qvgZ5c_RLP0e3-6GBf7Q-GexvoDiS-svqVtolWwfvNU0guz5Nn5ReN0Y_rhpB_CHaDzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxMZX2ACDBgxQ1NR2HPsBoapbtTKoENvE3kzi2GUSSzqyCvVf46_jnI-uqcbe9nznyPGdf3cXX35GaMvqkFESJ35MUyhQiLZ-3GWJbziRNpAGonbJ9jnie0fs03F4vIL-Nv_CuLbKBhNLoE5z7b6Rd0iXc8g1GGcdW7dFfN0ZfJyc-e4GKXfS2lynUbnIvpn9gfKt-DDcAVu_ImSwe9jf8-sbBnwdUXHuW0IttTZJIWnRMDtmuxbwOoEsIgFotxCdTWCljHRggq5JApaGPAlMxCMaSssoPPcGuhnRSLg9JvoL7SVLDNDNiSoVnQKCpnB1PEgiyn3WionLkWEhNC63bS6d3ZYhcXAP3a1zWdyrnG8NrZhsHd0qe0p1sY7Watwo8HZNbv32Phr2f89yf_cLrohrp1Dt4zhLcTrL4lMYhnOLCwCzkjTXN9kY8C7F5U2CmPADXPJKxEV-ah6go2tZ7IdoNcsz8xhhC5kF1K2hlJrCICJ5EnNhRQzryWIiPBQ0C6p0zXXurtz4pcozdypUZQMFNlDOBop56N18yKQi-rhKectZSTkCjcy54jieFoXqHX7vj1TPUUwKGRLpoZeXqQ0PvrWU3tRKNoc56rj-LwLe1FFztTQ3Wpp6cnKmFqSvW9JxZdnLHrPZUgQ80W1x43qqxrNCXew-D72Yi91I16OXmXzqdKgANBdd0HlUeep8Jd3hrqSCeihq-fBcwbGctyXZyc-S7ZzTyNUVHnrfePvFtP5roCdXv8RzdBvAQ30ejvY30B3IgWX1VW0TrYLzm6eQZ54nz8oNjdGP60aQfzATh84
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryo-EM+structures+and+dynamics+of+substrate-engaged+human+26S+proteasome&rft.jtitle=Nature+%28London%29&rft.au=Dong%2C+Yuanchen&rft.au=Zhang%2C+Shuwen&rft.au=Wu%2C+Zhaolong&rft.au=Li%2C+Xuemei&rft.date=2019-01-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=565&rft.issue=7737&rft.spage=49&rft_id=info:doi/10.1038%2Fs41586-018-0736-4&rft.externalDBID=ISR&rft.externalDocID=A573389529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon