Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome
The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8–3.6 Å resolution, captur...
Saved in:
Published in | Nature (London) Vol. 565; no. 7737; pp. 49 - 55 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8–3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate–proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.
Cryo-electron microscopy structures and dynamics of a substrate-engaged human 26S proteasome reveal in atomic detail three principal modes of coordinated ATP hydrolysis that regulate different steps in the degradation of a ubiquitylated protein. |
---|---|
AbstractList | The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate. The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate. The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.Cryo-electron microscopy structures and dynamics of a substrate-engaged human 26S proteasome reveal in atomic detail three principal modes of coordinated ATP hydrolysis that regulate different steps in the degradation of a ubiquitylated protein. The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8–3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate–proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate. Cryo-electron microscopy structures and dynamics of a substrate-engaged human 26S proteasome reveal in atomic detail three principal modes of coordinated ATP hydrolysis that regulate different steps in the degradation of a ubiquitylated protein. The proteasome is an ATP-dependent, 2.5-megadalton machine responsible for selective protein degradation in eukaryotic cells. Here we present cryo-EM structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures visualize a continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. Three principal modes of coordinated hydrolysis are observed, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases, and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, translocation initiation and processive unfolding of substrates, respectively. ATP hydrolysis powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate. The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate. |
Audience | Academic |
Author | Zhu, Yanan Lu, Ying Wu, Zhaolong Wang, Wei Li Stoilova-McPhie, Svetla Zhang, Shuwen Dong, Yuanchen Finley, Daniel Li, Xuemei Mao, Youdong |
AuthorAffiliation | 8 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA 7 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA 6 Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA 3 Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA 1 State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China 4 Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA 5 Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China 2 Center for Quantitative Biology, Peking University, Beijing 100871, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China – name: 3 Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – name: 7 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA – name: 2 Center for Quantitative Biology, Peking University, Beijing 100871, China – name: 6 Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA – name: 4 Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA – name: 5 Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China – name: 8 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA |
Author_xml | – sequence: 1 givenname: Yuanchen surname: Dong fullname: Dong, Yuanchen organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School – sequence: 2 givenname: Shuwen surname: Zhang fullname: Zhang, Shuwen organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Center for Quantitative Biology, Peking University – sequence: 3 givenname: Zhaolong surname: Wu fullname: Wu, Zhaolong organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University – sequence: 4 givenname: Xuemei surname: Li fullname: Li, Xuemei organization: Electron Microscopy Laboratory, School of Physics, Peking University – sequence: 5 givenname: Wei Li surname: Wang fullname: Wang, Wei Li organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School – sequence: 6 givenname: Yanan surname: Zhu fullname: Zhu, Yanan organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Center for Quantitative Biology, Peking University – sequence: 7 givenname: Svetla surname: Stoilova-McPhie fullname: Stoilova-McPhie, Svetla organization: Center for Nanoscale Systems, Harvard University – sequence: 8 givenname: Ying surname: Lu fullname: Lu, Ying organization: Department of Systems Biology, Harvard Medical School – sequence: 9 givenname: Daniel surname: Finley fullname: Finley, Daniel organization: Department of Cell Biology, Harvard Medical School – sequence: 10 givenname: Youdong surname: Mao fullname: Mao, Youdong email: youdong_mao@dfci.harvard.edu organization: State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Center for Quantitative Biology, Peking University, Electron Microscopy Laboratory, School of Physics, Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30479383$$D View this record in MEDLINE/PubMed |
BookMark | eNp9klFv0zAUhS00xLrBD-AFRfACQhl27NjOy6Sq2qDSAIkN8Wg5znWWKbG7OEH0389RN2inDuXBUe53Tmyfc4QOnHeA0GuCTwim8lNgJJc8xUSmWFCesmdoRpiIL1yKAzTDOIsTSfkhOgrhBmOcE8FeoEOKmSiopDO0XPRrn559TcLQj2YYewiJdlVSrZ3uGhMSb5MwlnGqB0jB1bqGKrkeO-2SjF8mq94PoIPv4CV6bnUb4NX9eox-np9dLb6kF98_Lxfzi9QIKofUZtRSa8sqF7nhWcEssZlkZU5YiSm3uWSAbVEIgwETKDGrcl5iEFzQvLCMHqPTje9qLDuoDLi4t1at-qbT_Vp53ajdiWuuVe1_K05FvIDJ4P29Qe9vRwiD6ppgoG21Az8GlREqOZWSTOi7R-iNH3sXjxcpzguaMb5F1boF1Tjr43_NZKrmuaBUFnlWRCrdQ9XgIG4y5mqb-HmHf7uHN6vmVm1DJ3ug-FQQ09vr-mFHEJkB_gy1HkNQy8sfu-zHp9n51a_Ft136zXYufwN56FoExAYwvQ-hB6tMM-ih8VNMTasIVlOr1abVKrZaTa1W0wWTR8oH8_9pso0mRNbV0P-L7mnRHbMJA5g |
CitedBy_id | crossref_primary_10_1016_j_jbc_2024_107861 crossref_primary_10_3390_biom13040704 crossref_primary_10_1016_j_celrep_2023_112701 crossref_primary_10_1038_s41586_021_04035_8 crossref_primary_10_1038_s41598_020_71550_5 crossref_primary_10_1042_BST20220590 crossref_primary_10_1515_bmc_2020_0009 crossref_primary_10_1017_S1431927620023478 crossref_primary_10_1016_j_jmb_2024_168838 crossref_primary_10_1021_acs_chemrev_1c00356 crossref_primary_10_1051_jbio_2021005 crossref_primary_10_1016_j_tibs_2022_06_006 crossref_primary_10_3390_mps5010015 crossref_primary_10_1016_j_xplc_2022_100310 crossref_primary_10_1073_pnas_1821959116 crossref_primary_10_1038_s41592_023_02082_9 crossref_primary_10_1016_j_hoc_2023_12_016 crossref_primary_10_3390_biom11020228 crossref_primary_10_1039_D4NR03599B crossref_primary_10_1016_j_jmb_2020_01_023 crossref_primary_10_1126_sciadv_adr7943 crossref_primary_10_3390_jpm11121309 crossref_primary_10_1021_acs_jcim_0c00087 crossref_primary_10_1038_s41594_020_0409_5 crossref_primary_10_1093_jnen_nlab029 crossref_primary_10_1089_cbr_2024_0002 crossref_primary_10_3390_ijms21197190 crossref_primary_10_3390_ijms21155312 crossref_primary_10_1039_D3CS00344B crossref_primary_10_1038_s41589_021_00823_5 crossref_primary_10_3390_biom11040505 crossref_primary_10_3390_biom12020229 crossref_primary_10_1038_s41467_021_26812_9 crossref_primary_10_1016_j_sbi_2019_10_004 crossref_primary_10_1186_s12859_019_2714_8 crossref_primary_10_1021_acsptsci_4c00408 crossref_primary_10_1016_j_sbi_2025_103001 crossref_primary_10_1038_s41586_022_05121_1 crossref_primary_10_1016_j_molcel_2019_01_018 crossref_primary_10_1038_s42003_023_05123_3 crossref_primary_10_3390_antiox10091483 crossref_primary_10_7554_eLife_61451 crossref_primary_10_1016_j_sbi_2020_10_027 crossref_primary_10_1073_pnas_2014407117 crossref_primary_10_1126_scitranslmed_abo3189 crossref_primary_10_3390_biom11020148 crossref_primary_10_3389_fnmol_2023_1330853 crossref_primary_10_7554_eLife_63505 crossref_primary_10_1126_science_aax1033 crossref_primary_10_1038_s41467_022_34691_x crossref_primary_10_3390_ijms24032221 crossref_primary_10_1002_pro_3805 crossref_primary_10_1021_acscentsci_0c00080 crossref_primary_10_1146_annurev_cellbio_031220_015840 crossref_primary_10_3390_ijms22094519 crossref_primary_10_3390_molecules24152841 crossref_primary_10_1016_j_jbc_2021_101239 crossref_primary_10_1021_acs_analchem_1c02410 crossref_primary_10_1074_jbc_AC119_009890 crossref_primary_10_3390_biom13060992 crossref_primary_10_1073_pnas_2017525118 crossref_primary_10_1360_SSC_2023_0247 crossref_primary_10_1038_s41467_024_45521_7 crossref_primary_10_1042_BST20200382 crossref_primary_10_1021_acs_chemrev_1c00837 crossref_primary_10_1021_acsnano_8b08849 crossref_primary_10_3390_biom10040629 crossref_primary_10_1038_s41557_024_01440_0 crossref_primary_10_1038_s41419_021_04276_5 crossref_primary_10_1016_j_jbc_2023_102894 crossref_primary_10_1038_s41598_020_60598_y crossref_primary_10_1073_pnas_2207200119 crossref_primary_10_1073_pnas_2123406119 crossref_primary_10_1016_j_pbi_2021_102051 crossref_primary_10_3390_cancers12092385 crossref_primary_10_3390_biom12101346 crossref_primary_10_1016_j_bbapap_2020_140583 crossref_primary_10_1111_febs_15638 crossref_primary_10_3390_biom11121789 crossref_primary_10_1038_s41589_022_01218_w crossref_primary_10_1093_jb_mvab157 crossref_primary_10_1016_j_xpro_2020_100278 crossref_primary_10_1098_rsob_200390 crossref_primary_10_1186_s13045_023_01398_5 crossref_primary_10_1016_j_sbi_2020_10_010 crossref_primary_10_1073_pnas_1912033116 crossref_primary_10_1073_pnas_2101004118 crossref_primary_10_1021_acschemneuro_1c00099 crossref_primary_10_3390_ijms23168872 crossref_primary_10_3390_biom12060764 crossref_primary_10_1101_cshperspect_a033951 crossref_primary_10_1016_j_cell_2019_02_031 crossref_primary_10_1038_s12276_024_01385_x crossref_primary_10_1146_annurev_biophys_100121_075228 crossref_primary_10_1016_j_sbi_2019_03_007 crossref_primary_10_1039_D2NR02537J crossref_primary_10_1016_j_bbrc_2023_08_025 crossref_primary_10_1038_s41389_022_00386_7 crossref_primary_10_2174_1385272823666191113161511 crossref_primary_10_1021_acs_jpcb_0c04435 crossref_primary_10_1038_s41580_019_0183_6 crossref_primary_10_3390_biom13030480 crossref_primary_10_1002_cbic_201900017 crossref_primary_10_1002_asia_202000106 crossref_primary_10_1186_s12870_021_03234_9 crossref_primary_10_1038_s41416_022_01829_z crossref_primary_10_1007_s13238_020_00714_w crossref_primary_10_3390_biom13081223 crossref_primary_10_7554_eLife_44071 crossref_primary_10_1002_1873_3468_14436 crossref_primary_10_1080_10409238_2021_1979461 crossref_primary_10_1038_s41467_020_15073_7 crossref_primary_10_1016_j_jmb_2023_167997 crossref_primary_10_1016_j_str_2020_04_013 crossref_primary_10_3390_molecules24122341 crossref_primary_10_1080_10409238_2021_1979460 crossref_primary_10_3389_fmolb_2019_00040 crossref_primary_10_1038_s41586_022_04671_8 crossref_primary_10_3389_fmolb_2019_00034 crossref_primary_10_1016_j_tibs_2019_04_007 crossref_primary_10_1073_pnas_2104245118 crossref_primary_10_1016_j_jmb_2019_04_022 crossref_primary_10_1016_j_jmb_2021_166890 crossref_primary_10_1016_j_bpj_2021_05_027 crossref_primary_10_1038_s41467_021_27787_3 crossref_primary_10_1038_d41586_022_01144_w crossref_primary_10_1111_febs_16539 crossref_primary_10_7554_eLife_46808 crossref_primary_10_1016_j_ejmech_2019_111646 crossref_primary_10_1016_j_str_2020_02_007 crossref_primary_10_3390_ijms23158168 crossref_primary_10_1080_00268976_2019_1705412 crossref_primary_10_1002_ctm2_977 crossref_primary_10_3389_fcimb_2022_985178 crossref_primary_10_3390_biom9090395 crossref_primary_10_1016_j_jmb_2023_168014 crossref_primary_10_1038_s41419_023_06191_3 crossref_primary_10_1038_s41580_022_00543_1 crossref_primary_10_1038_s41594_020_0373_0 crossref_primary_10_1016_j_jmr_2023_107431 crossref_primary_10_1016_j_celrep_2019_05_075 crossref_primary_10_1016_j_gendis_2023_06_037 crossref_primary_10_1038_s42003_023_05082_9 crossref_primary_10_1016_j_jbc_2023_102870 crossref_primary_10_1016_j_jbc_2023_104811 crossref_primary_10_1101_cshperspect_a033985 crossref_primary_10_1038_s41592_021_01220_5 crossref_primary_10_1016_j_bmc_2022_116813 crossref_primary_10_1016_j_molcel_2023_07_023 crossref_primary_10_1016_j_biochi_2024_04_003 crossref_primary_10_1002_pro_5034 crossref_primary_10_1007_s11427_020_1752_1 crossref_primary_10_1038_s41597_023_02280_2 crossref_primary_10_1016_j_celrep_2019_07_104 crossref_primary_10_1038_s41571_023_00789_4 crossref_primary_10_3390_biom13091326 crossref_primary_10_3390_ijms242417486 crossref_primary_10_1021_acs_jmedchem_1c02158 crossref_primary_10_1016_j_bbapap_2019_06_010 crossref_primary_10_1038_s41467_022_30318_3 crossref_primary_10_7554_eLife_71911 crossref_primary_10_1016_j_biochi_2024_04_006 crossref_primary_10_1021_acsomega_4c04316 crossref_primary_10_1016_j_isci_2024_108892 crossref_primary_10_1002_cbic_201900073 crossref_primary_10_1016_j_jsb_2023_107958 crossref_primary_10_1038_s41467_022_28186_y crossref_primary_10_3389_fcell_2024_1531797 crossref_primary_10_1002_pro_3642 crossref_primary_10_1016_j_xpro_2023_102182 crossref_primary_10_3389_fmolb_2020_585643 crossref_primary_10_1016_j_plantsci_2021_110825 crossref_primary_10_1038_s41467_021_27570_4 crossref_primary_10_3389_fimmu_2019_02731 crossref_primary_10_3390_molecules25061439 crossref_primary_10_1038_s41586_020_1964_y crossref_primary_10_1073_pnas_1912531117 crossref_primary_10_1016_j_isci_2024_110961 crossref_primary_10_1021_acschembio_4c00341 crossref_primary_10_3389_fcell_2025_1523382 crossref_primary_10_1515_hsz_2019_0344 crossref_primary_10_1073_pnas_1915534117 crossref_primary_10_1073_pnas_2310664120 crossref_primary_10_1038_s41594_022_00850_3 crossref_primary_10_1016_j_str_2020_07_011 crossref_primary_10_1016_j_pharmthera_2020_107579 crossref_primary_10_1038_s41467_021_26427_0 crossref_primary_10_1002_cbic_202400193 crossref_primary_10_1126_science_aax0486 crossref_primary_10_1002_pro_3629 crossref_primary_10_1016_j_bpj_2020_06_015 crossref_primary_10_1016_j_chembiol_2021_04_003 crossref_primary_10_1038_s41594_024_01268_9 crossref_primary_10_1016_j_cell_2020_09_010 crossref_primary_10_1016_j_neurot_2024_e00499 crossref_primary_10_1093_hmg_ddae085 crossref_primary_10_1038_s41477_020_0721_4 crossref_primary_10_3389_fcell_2019_00170 crossref_primary_10_1002_pro_3743 crossref_primary_10_1126_sciadv_aba8404 crossref_primary_10_1039_C9OB00122K crossref_primary_10_1002_wrna_1541 crossref_primary_10_1016_j_dnarep_2024_103751 crossref_primary_10_3389_fphys_2022_886261 crossref_primary_10_1016_j_tips_2023_05_006 crossref_primary_10_3390_ijms24032091 crossref_primary_10_1126_sciadv_add9520 crossref_primary_10_3390_cells11132067 crossref_primary_10_1016_j_matbio_2020_11_003 crossref_primary_10_7554_eLife_52774 crossref_primary_10_1073_pnas_2122482119 crossref_primary_10_7554_eLife_54031 crossref_primary_10_1038_s41467_024_51835_3 crossref_primary_10_7554_eLife_49806 crossref_primary_10_1111_febs_15576 crossref_primary_10_1016_j_pharmthera_2022_108329 crossref_primary_10_1038_s41580_024_00778_0 crossref_primary_10_3390_biomedicines12092147 |
Cites_doi | 10.1021/bi061994u 10.1016/j.cell.2011.02.005 10.1038/cr.2016.86 10.1016/j.cell.2009.09.034 10.1016/j.jsb.2015.11.003 10.1073/pnas.1120559109 10.1016/j.jsb.2005.07.007 10.1073/pnas.1305782110 10.1038/ncomms9520 10.1073/pnas.1614614113 10.1146/annurev-biochem-062917-011931 10.1016/S1097-2765(01)00308-2 10.1073/pnas.1601561113 10.1016/j.jsb.2005.03.010 10.1038/nmeth.4193 10.1016/S0076-6879(05)99014-9 10.1038/nsmb.1501 10.1073/pnas.1608050113 10.1016/j.celrep.2018.07.004 10.1038/nature10774 10.7554/eLife.13027 10.1073/pnas.1400546111 10.1074/jbc.M702846200 10.7554/eLife.18722 10.1126/science.1075898 10.1038/nmeth.2727 10.1038/nsmb.3273 10.1038/s41467-018-03785-w 10.1002/jcc.20084 10.1016/j.tibs.2015.10.009 10.1126/science.aan1052 10.1186/s12859-017-1757-y 10.1073/pnas.1621129114 10.1016/j.str.2011.12.015 10.1126/science.aad9421 10.7554/eLife.25754 10.1107/S0907444904019158 10.1073/pnas.1213333109 10.1016/j.molcel.2009.04.021 10.1016/j.molcel.2017.07.023 10.1126/science.aao0464 10.1126/sciadv.1701726 10.1038/nature04943 10.1016/j.molcel.2012.03.026 10.1016/j.cell.2004.06.014 10.1126/science.1250834 10.1016/j.jmb.2007.05.022 10.7554/eLife.31324 10.1038/s41467-018-04731-6 10.7554/eLife.24487 10.1038/nsmb.2771 10.1371/journal.pone.0182130 10.1016/j.molcel.2017.06.007 10.1016/j.cell.2009.08.043 10.1038/386463a0 10.1093/emboj/16.19.5847 10.1038/35040607 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2018 COPYRIGHT 2019 Nature Publishing Group Copyright Nature Publishing Group Jan 3, 2019 |
Copyright_xml | – notice: Springer Nature Limited 2018 – notice: COPYRIGHT 2019 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 3, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/s41586-018-0736-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials Biological Science Database eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 55 |
ExternalDocumentID | PMC6370054 A573389529 30479383 10_1038_s41586_018_0736_4 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1541959 – fundername: NIGMS NIH HHS grantid: R01 GM043601 – fundername: NIGMS NIH HHS grantid: R37 GM043601 – fundername: NIAID NIH HHS grantid: UM1 AI100645 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AFANA AGNAY ALPWD ATHPR CITATION NEJ PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGOIJ AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK AEZWR AFHIU AHWEU AIXLP C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c738t-f23f3ffbd575c6294f1f284b514b036f584e0f997c0e01eb04d56b0e767359f43 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:20:15 EDT 2025 Tue Aug 05 10:47:07 EDT 2025 Fri Jul 25 08:58:37 EDT 2025 Tue Jun 17 21:38:37 EDT 2025 Thu Jun 12 23:30:14 EDT 2025 Tue Jun 10 15:32:31 EDT 2025 Tue Jun 10 20:30:46 EDT 2025 Fri Jun 27 05:12:35 EDT 2025 Fri Jun 27 04:36:27 EDT 2025 Thu Apr 03 06:58:53 EDT 2025 Tue Jul 01 00:57:26 EDT 2025 Thu Apr 24 22:50:30 EDT 2025 Fri Feb 21 02:37:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7737 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c738t-f23f3ffbd575c6294f1f284b514b036f584e0f997c0e01eb04d56b0e767359f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions Y.D. purified proteins, conducted biochemical analysis and prepared samples for imaging. Y.D., S.Z., Z.W., X.L., W.L.W., Y.Z. and S.S.M. collected data. S.Z. and Z.W. processed the data and refined the maps. Y.D., S.Z., Y.L. and D.F. contributed to structural analysis and manuscript preparation. Y.M. conceived and supervised this study, devised the methods, performed atomic modeling, analyzed the structures and wrote the manuscript. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6370054 |
PMID | 30479383 |
PQID | 2166932464 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6370054 proquest_miscellaneous_2138638814 proquest_journals_2166932464 gale_infotracmisc_A573389529 gale_infotracgeneralonefile_A573389529 gale_infotraccpiq_573389529 gale_infotracacademiconefile_A573389529 gale_incontextgauss_ISR_A573389529 gale_incontextgauss_ATWCN_A573389529 pubmed_primary_30479383 crossref_citationtrail_10_1038_s41586_018_0736_4 crossref_primary_10_1038_s41586_018_0736_4 springer_journals_10_1038_s41586_018_0736_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-00 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Thomsen, Berger (CR46) 2009; 139 Snoberger, Brettrager, Smith (CR35) 2018; 9 Zhu (CR11) 2018; 9 Suloway (CR48) 2005; 151 Zhang (CR51) 2016; 193 Glynn, Martin, Nager, Baker, Sauer (CR36) 2009; 139 Kim, Snoberger, Schupp, Smith (CR37) 2015; 6 Lasker (CR15) 2012; 109 Eisele (CR12) 2018; 24 Livneh, Cohen-Kaplan, Cohen-Rosenzweig, Avni, Ciechanover (CR1) 2016; 26 Verma, McDonald, Yates, Deshaies (CR24) 2001; 8 Lander (CR16) 2012; 482 Wang (CR47) 2007; 46 Shi (CR6) 2016; 351 Dambacher, Worden, Herzik, Martin, Lander (CR32) 2016; 5 Verma (CR8) 2002; 298 Pettersen (CR58) 2004; 25 Śledź (CR21) 2013; 110 CR4 Gates (CR41) 2017; 357 Worden, Padovani, Martin (CR31) 2014; 21 Kimanius, Forsberg, Scheres, Lindahl (CR53) 2016; 5 He (CR34) 2012; 20 Adams (CR57) 2010 Zhang (CR28) 2009; 34 Smith, Fraga, Reis, Kafri, Goldberg (CR9) 2011; 144 Pathare (CR30) 2014; 111 Beck (CR20) 2012; 109 Monroe, Han, Shen, Sundquist, Hill (CR44) 2017; 6 Bard (CR3) 2018; 87 Wu (CR54) 2017; 12 Huang, Luan, Wu, Shi (CR18) 2016; 23 Chen (CR10) 2016; 113 Schweitzer (CR14) 2016; 113 CR59 Worden, Dong, Martin (CR29) 2017; 67 Horwitz (CR38) 2007; 282 Lu, Lee, King, Finley, Kirschner (CR25) 2015; 348 Enemark, Joshua-Tor (CR45) 2006; 442 Emsley, Cowtan (CR56) 2004; 60 Wehmer (CR13) 2017; 114 Mastronarde (CR49) 2005; 152 Krissinel, Henrick (CR60) 2007; 372 Saeki, Isono, Toh-E (CR23) 2005; 399 Puchades (CR39) 2017; 358 Ripstein, Huang, Augustyniak, Kay, Rubinstein (CR40) 2017; 6 Zheng (CR50) 2017; 14 CR27 CR26 Finley, Chen, Walters (CR2) 2016; 41 Han, Monroe, Sundquist, Shen, Hill (CR42) 2017; 6 CR22 Zhu, Ouyang, Mao (CR52) 2017; 18 Kucukelbir, Sigworth, Tagare (CR55) 2014; 11 Deville (CR43) 2017; 3 Verma, Oania, Graumann, Deshaies (CR7) 2004; 118 Luan (CR19) 2016; 113 Lu (CR5) 2017; 67 Zhang, Wigley (CR33) 2008; 15 da Fonseca, He, Morris (CR17) 2012; 46 Y Shi (736_CR6) 2016; 351 X Wang (736_CR47) 2007; 46 736_CR26 736_CR27 736_CR22 CM Dambacher (736_CR32) 2016; 5 SE Glynn (736_CR36) 2009; 139 F Beck (736_CR20) 2012; 109 GR Pathare (736_CR30) 2014; 111 SN Gates (736_CR41) 2017; 357 PD Adams (736_CR57) 2010 YC Kim (736_CR37) 2015; 6 DN Mastronarde (736_CR49) 2005; 152 R Verma (736_CR7) 2004; 118 I Livneh (736_CR1) 2016; 26 R Verma (736_CR24) 2001; 8 EJ Worden (736_CR31) 2014; 21 J Wu (736_CR54) 2017; 12 Y Lu (736_CR25) 2015; 348 N Monroe (736_CR44) 2017; 6 P Śledź (736_CR21) 2013; 110 C Puchades (736_CR39) 2017; 358 736_CR59 Y Saeki (736_CR23) 2005; 399 ZA Ripstein (736_CR40) 2017; 6 F Zhang (736_CR28) 2009; 34 J He (736_CR34) 2012; 20 A Snoberger (736_CR35) 2018; 9 A Kucukelbir (736_CR55) 2014; 11 Y Zhu (736_CR52) 2017; 18 S Chen (736_CR10) 2016; 113 Y Lu (736_CR5) 2017; 67 Y Zhu (736_CR11) 2018; 9 P Emsley (736_CR56) 2004; 60 MR Eisele (736_CR12) 2018; 24 JAM Bard (736_CR3) 2018; 87 D Finley (736_CR2) 2016; 41 DM Smith (736_CR9) 2011; 144 E Krissinel (736_CR60) 2007; 372 K Lasker (736_CR15) 2012; 109 D Kimanius (736_CR53) 2016; 5 EF Pettersen (736_CR58) 2004; 25 X Zhang (736_CR33) 2008; 15 ND Thomsen (736_CR46) 2009; 139 K Zhang (736_CR51) 2016; 193 A Schweitzer (736_CR14) 2016; 113 PC Fonseca da (736_CR17) 2012; 46 GC Lander (736_CR16) 2012; 482 C Deville (736_CR43) 2017; 3 C Suloway (736_CR48) 2005; 151 736_CR4 AA Horwitz (736_CR38) 2007; 282 X Huang (736_CR18) 2016; 23 SQ Zheng (736_CR50) 2017; 14 M Wehmer (736_CR13) 2017; 114 B Luan (736_CR19) 2016; 113 EJ Worden (736_CR29) 2017; 67 EJ Enemark (736_CR45) 2006; 442 R Verma (736_CR8) 2002; 298 H Han (736_CR42) 2017; 6 |
References_xml | – volume: 46 start-page: 3553 year: 2007 end-page: 3565 ident: CR47 article-title: Mass spectrometric characterization of the affinity-purified human 26S proteasome complex publication-title: Biochemistry doi: 10.1021/bi061994u – ident: CR22 – volume: 144 start-page: 526 year: 2011 end-page: 538 ident: CR9 article-title: ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle publication-title: Cell doi: 10.1016/j.cell.2011.02.005 – volume: 26 start-page: 869 year: 2016 end-page: 885 ident: CR1 article-title: The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death publication-title: Cell Res. doi: 10.1038/cr.2016.86 – volume: 139 start-page: 744 year: 2009 end-page: 756 ident: CR36 article-title: Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine publication-title: Cell doi: 10.1016/j.cell.2009.09.034 – ident: CR4 – volume: 193 start-page: 1 year: 2016 end-page: 12 ident: CR51 article-title: Gctf: Real-time CTF determination and correction publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.11.003 – volume: 109 start-page: 1380 year: 2012 end-page: 1387 ident: CR15 article-title: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1120559109 – volume: 152 start-page: 36 year: 2005 end-page: 51 ident: CR49 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.07.007 – volume: 110 start-page: 7264 year: 2013 end-page: 7269 ident: CR21 article-title: Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1305782110 – volume: 6 year: 2015 ident: CR37 article-title: ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function publication-title: Nat. Commun. doi: 10.1038/ncomms9520 – volume: 113 start-page: 12991 year: 2016 end-page: 12996 ident: CR10 article-title: Structural basis for dynamic regulation of the human 26S proteasome publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1614614113 – volume: 87 start-page: 697 year: 2018 end-page: 724 ident: CR3 article-title: Structure and function of the 26S proteasome publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-011931 – volume: 8 start-page: 439 year: 2001 end-page: 448 ident: CR24 article-title: Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00308-2 – volume: 113 start-page: 2642 year: 2016 end-page: 2647 ident: CR19 article-title: Structure of an endogenous yeast 26S proteasome reveals two major conformational states publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1601561113 – volume: 151 start-page: 41 year: 2005 end-page: 60 ident: CR48 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: CR50 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 399 start-page: 215 year: 2005 end-page: 227 ident: CR23 article-title: Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(05)99014-9 – volume: 15 start-page: 1223 year: 2008 end-page: 1227 ident: CR33 article-title: The ‘glutamate switch’ provides a link between ATPase activity and ligand binding in AAA+ proteins publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1501 – volume: 113 start-page: 7816 year: 2016 end-page: 7821 ident: CR14 article-title: Structure of the human 26S proteasome at a resolution of 3.9 Å publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1608050113 – volume: 24 start-page: 1301 year: 2018 end-page: 1315 ident: CR12 article-title: Expanded coverage of the 26S proteasome conformational landscape reveals mechanisms of peptidase gating publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.07.004 – volume: 482 start-page: 186 year: 2012 end-page: 191 ident: CR16 article-title: Complete subunit architecture of the proteasome regulatory particle publication-title: Nature doi: 10.1038/nature10774 – volume: 5 start-page: e13027 year: 2016 ident: CR32 article-title: Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition publication-title: eLife doi: 10.7554/eLife.13027 – volume: 111 start-page: 2984 year: 2014 end-page: 2989 ident: CR30 article-title: Crystal structure of the proteasomal deubiquitylation module Rpn8–Rpn11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1400546111 – volume: 282 start-page: 22921 year: 2007 end-page: 22929 ident: CR38 article-title: ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702846200 – volume: 5 start-page: e18722 year: 2016 ident: CR53 article-title: Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 publication-title: eLife doi: 10.7554/eLife.18722 – volume: 298 start-page: 611 year: 2002 end-page: 615 ident: CR8 article-title: Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome publication-title: Science doi: 10.1126/science.1075898 – volume: 11 start-page: 63 year: 2014 end-page: 65 ident: CR55 article-title: Quantifying the local resolution of cryo-EM density maps publication-title: Nat. Methods doi: 10.1038/nmeth.2727 – ident: CR26 – volume: 23 start-page: 778 year: 2016 end-page: 785 ident: CR18 article-title: An atomic structure of the human 26S proteasome publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3273 – volume: 9 year: 2018 ident: CR11 article-title: Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome publication-title: Nat. Commun. doi: 10.1038/s41467-018-03785-w – start-page: 213 year: 2010 end-page: 221 ident: CR57 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: CR58 article-title: UCSF Chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 41 start-page: 77 year: 2016 end-page: 93 ident: CR2 article-title: Gates, channels, and switches: elements of the proteasome machine publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.10.009 – volume: 357 start-page: 273 year: 2017 end-page: 279 ident: CR41 article-title: Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104 publication-title: Science doi: 10.1126/science.aan1052 – volume: 18 year: 2017 ident: CR52 article-title: A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1757-y – volume: 114 start-page: 1305 year: 2017 end-page: 1310 ident: CR13 article-title: Structural insights into the functional cycle of the ATPase module of the 26S proteasome publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1621129114 – volume: 20 start-page: 513 year: 2012 end-page: 521 ident: CR34 article-title: The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings publication-title: Structure doi: 10.1016/j.str.2011.12.015 – volume: 351 start-page: aad9421 year: 2016 ident: CR6 article-title: Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome publication-title: Science doi: 10.1126/science.aad9421 – volume: 6 start-page: e25754 year: 2017 ident: CR40 article-title: Structure of a AAA+ unfoldase in the process of unfolding substrate publication-title: eLife doi: 10.7554/eLife.25754 – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: CR56 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 109 start-page: 14870 year: 2012 end-page: 14875 ident: CR20 article-title: Near-atomic resolution structural model of the yeast 26S proteasome publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1213333109 – ident: CR27 – volume: 34 start-page: 473 year: 2009 end-page: 484 ident: CR28 article-title: Structural insights into the regulatory particle of the proteasome from publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.04.021 – volume: 67 start-page: 799 year: 2017 end-page: 811.e8 ident: CR29 article-title: An AAA motor-driven mechanical switch in Rpn11 controls deubiquitination at the 26S proteasome publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.07.023 – volume: 358 start-page: eaao0464 year: 2017 ident: CR39 article-title: Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing publication-title: Science doi: 10.1126/science.aao0464 – volume: 3 start-page: e1701726 year: 2017 ident: CR43 article-title: Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase publication-title: Sci. Adv. doi: 10.1126/sciadv.1701726 – volume: 442 start-page: 270 year: 2006 end-page: 275 ident: CR45 article-title: Mechanism of DNA translocation in a replicative hexameric helicase publication-title: Nature doi: 10.1038/nature04943 – volume: 46 start-page: 54 year: 2012 end-page: 66 ident: CR17 article-title: Molecular model of the human 26S proteasome publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.03.026 – volume: 118 start-page: 99 year: 2004 end-page: 110 ident: CR7 article-title: Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system publication-title: Cell doi: 10.1016/j.cell.2004.06.014 – volume: 348 start-page: 1250834 year: 2015 ident: CR25 article-title: Substrate degradation by the proteasome: a single-molecule kinetic analysis publication-title: Science doi: 10.1126/science.1250834 – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: CR60 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 6 start-page: e31324 year: 2017 ident: CR42 article-title: The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets publication-title: eLife doi: 10.7554/eLife.31324 – ident: CR59 – volume: 9 year: 2018 ident: CR35 article-title: Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing publication-title: Nat. Commun. doi: 10.1038/s41467-018-04731-6 – volume: 6 start-page: e24487 year: 2017 ident: CR44 article-title: Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase publication-title: eLife doi: 10.7554/eLife.24487 – volume: 21 start-page: 220 year: 2014 end-page: 227 ident: CR31 article-title: Structure of the Rpn11–Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2771 – volume: 12 start-page: e0182130 year: 2017 ident: CR54 article-title: Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning publication-title: PLoS One doi: 10.1371/journal.pone.0182130 – volume: 67 start-page: 322 year: 2017 end-page: 333.e6 ident: CR5 article-title: Conformational landscape of the p28-bound human proteasome regulatory particle publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.007 – volume: 139 start-page: 523 year: 2009 end-page: 534 ident: CR46 article-title: Running in reverse: the structural basis for translocation polarity in hexameric helicases publication-title: Cell doi: 10.1016/j.cell.2009.08.043 – volume: 23 start-page: 778 year: 2016 ident: 736_CR18 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3273 – volume: 114 start-page: 1305 year: 2017 ident: 736_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1621129114 – volume: 399 start-page: 215 year: 2005 ident: 736_CR23 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(05)99014-9 – volume: 152 start-page: 36 year: 2005 ident: 736_CR49 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.07.007 – volume: 282 start-page: 22921 year: 2007 ident: 736_CR38 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702846200 – volume: 298 start-page: 611 year: 2002 ident: 736_CR8 publication-title: Science doi: 10.1126/science.1075898 – volume: 358 start-page: eaao0464 year: 2017 ident: 736_CR39 publication-title: Science doi: 10.1126/science.aao0464 – volume: 139 start-page: 744 year: 2009 ident: 736_CR36 publication-title: Cell doi: 10.1016/j.cell.2009.09.034 – volume: 6 start-page: e24487 year: 2017 ident: 736_CR44 publication-title: eLife doi: 10.7554/eLife.24487 – volume: 6 year: 2015 ident: 736_CR37 publication-title: Nat. Commun. doi: 10.1038/ncomms9520 – volume: 351 start-page: aad9421 year: 2016 ident: 736_CR6 publication-title: Science doi: 10.1126/science.aad9421 – volume: 24 start-page: 1301 year: 2018 ident: 736_CR12 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.07.004 – volume: 110 start-page: 7264 year: 2013 ident: 736_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1305782110 – volume: 113 start-page: 7816 year: 2016 ident: 736_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1608050113 – start-page: 213 volume-title: Acta Crystallogr. D Biol. Crystallogr. year: 2010 ident: 736_CR57 – volume: 60 start-page: 2126 year: 2004 ident: 736_CR56 publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – ident: 736_CR4 doi: 10.1038/386463a0 – volume: 3 start-page: e1701726 year: 2017 ident: 736_CR43 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701726 – volume: 46 start-page: 54 year: 2012 ident: 736_CR17 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.03.026 – volume: 67 start-page: 799 year: 2017 ident: 736_CR29 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.07.023 – volume: 25 start-page: 1605 year: 2004 ident: 736_CR58 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 87 start-page: 697 year: 2018 ident: 736_CR3 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-011931 – volume: 5 start-page: e18722 year: 2016 ident: 736_CR53 publication-title: eLife doi: 10.7554/eLife.18722 – volume: 357 start-page: 273 year: 2017 ident: 736_CR41 publication-title: Science doi: 10.1126/science.aan1052 – volume: 11 start-page: 63 year: 2014 ident: 736_CR55 publication-title: Nat. Methods doi: 10.1038/nmeth.2727 – volume: 111 start-page: 2984 year: 2014 ident: 736_CR30 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1400546111 – volume: 442 start-page: 270 year: 2006 ident: 736_CR45 publication-title: Nature doi: 10.1038/nature04943 – volume: 144 start-page: 526 year: 2011 ident: 736_CR9 publication-title: Cell doi: 10.1016/j.cell.2011.02.005 – volume: 8 start-page: 439 year: 2001 ident: 736_CR24 publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00308-2 – volume: 9 year: 2018 ident: 736_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03785-w – volume: 139 start-page: 523 year: 2009 ident: 736_CR46 publication-title: Cell doi: 10.1016/j.cell.2009.08.043 – volume: 151 start-page: 41 year: 2005 ident: 736_CR48 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – volume: 21 start-page: 220 year: 2014 ident: 736_CR31 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2771 – volume: 15 start-page: 1223 year: 2008 ident: 736_CR33 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1501 – volume: 12 start-page: e0182130 year: 2017 ident: 736_CR54 publication-title: PLoS One doi: 10.1371/journal.pone.0182130 – ident: 736_CR26 doi: 10.1093/emboj/16.19.5847 – volume: 14 start-page: 331 year: 2017 ident: 736_CR50 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 109 start-page: 1380 year: 2012 ident: 736_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1120559109 – volume: 34 start-page: 473 year: 2009 ident: 736_CR28 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.04.021 – volume: 67 start-page: 322 year: 2017 ident: 736_CR5 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.007 – ident: 736_CR59 – volume: 26 start-page: 869 year: 2016 ident: 736_CR1 publication-title: Cell Res. doi: 10.1038/cr.2016.86 – volume: 113 start-page: 2642 year: 2016 ident: 736_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1601561113 – volume: 109 start-page: 14870 year: 2012 ident: 736_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1213333109 – volume: 46 start-page: 3553 year: 2007 ident: 736_CR47 publication-title: Biochemistry doi: 10.1021/bi061994u – volume: 348 start-page: 1250834 year: 2015 ident: 736_CR25 publication-title: Science doi: 10.1126/science.1250834 – volume: 41 start-page: 77 year: 2016 ident: 736_CR2 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.10.009 – volume: 5 start-page: e13027 year: 2016 ident: 736_CR32 publication-title: eLife doi: 10.7554/eLife.13027 – ident: 736_CR27 doi: 10.1038/35040607 – volume: 20 start-page: 513 year: 2012 ident: 736_CR34 publication-title: Structure doi: 10.1016/j.str.2011.12.015 – volume: 372 start-page: 774 year: 2007 ident: 736_CR60 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – ident: 736_CR22 – volume: 482 start-page: 186 year: 2012 ident: 736_CR16 publication-title: Nature doi: 10.1038/nature10774 – volume: 6 start-page: e31324 year: 2017 ident: 736_CR42 publication-title: eLife doi: 10.7554/eLife.31324 – volume: 193 start-page: 1 year: 2016 ident: 736_CR51 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.11.003 – volume: 6 start-page: e25754 year: 2017 ident: 736_CR40 publication-title: eLife doi: 10.7554/eLife.25754 – volume: 18 year: 2017 ident: 736_CR52 publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1757-y – volume: 118 start-page: 99 year: 2004 ident: 736_CR7 publication-title: Cell doi: 10.1016/j.cell.2004.06.014 – volume: 9 year: 2018 ident: 736_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04731-6 – volume: 113 start-page: 12991 year: 2016 ident: 736_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1614614113 |
SSID | ssj0005174 |
Score | 2.6477268 |
Snippet | The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present... The proteasome is an ATP-dependent, 2.5-megadalton machine responsible for selective protein degradation in eukaryotic cells. Here we present cryo-EM... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 49 |
SubjectTerms | 101/28 631/45/468 631/535/1258/1259 631/80/474/2085 82/83 Adenosine diphosphate Adenosine triphosphatase Adenosine Triphosphatases - metabolism Adenosine Triphosphate - metabolism Allosteric Regulation ATP ATPases Automation Binding sites Biodegradation Cell cycle Cryoelectron Microscopy Electron microscopy Holoenzymes - chemistry Holoenzymes - metabolism Holoenzymes - ultrastructure Humanities and Social Sciences Humans Hydrolysis Microscopy Models, Molecular Molecular machines multidisciplinary Proteasome 26S Proteasome Endopeptidase Complex - chemistry Proteasome Endopeptidase Complex - metabolism Proteasome Endopeptidase Complex - ultrastructure Protein Conformation Protein research Protein Structure, Quaternary Protein Unfolding Proteins Proteolysis Science Science (multidisciplinary) Substrate Specificity Substrates Synchronism Synchronization Translocation Ubiquitin Ubiquitin-proteasome system Ubiquitination |
Title | Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome |
URI | https://link.springer.com/article/10.1038/s41586-018-0736-4 https://www.ncbi.nlm.nih.gov/pubmed/30479383 https://www.proquest.com/docview/2166932464 https://www.proquest.com/docview/2138638814 https://pubmed.ncbi.nlm.nih.gov/PMC6370054 |
Volume | 565 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYJiReEBtfYaMyaOJT0ZLYcewnVKqWDYkK7UP0zUocu0yCpCPrA_89Z8dpl2rspS_3c5X4zndn-_I7hA6NSilJ8iLMSQkblESZMI9pEWqWCBMJDVHbsX1O2fEF_TpLZ_7ArfFllZ1PdI66rJU9Iz9KYsYg16CMflpchbZrlL1d9S00ttBODJHGlnTxyZd1iccGC3N3q0n4UQOBi9u9NEgywkLai0ub3vlGeNosndy4P3VhafIIPfT5JB62BrCL7ulqD913dZ2q2UO7fu02-J0nmH7_GJ2M_vytw_E33JLHLmHHjfOqxGXbnb7BtcENOBRHXBvqag4-p8Sumx9O2Bl23A55U__WT9DFZHw-Og59S4VQZYRfhyYhhhhTlJClKVAHNbGBAFVA2lRALDOQjujICJGpSEexLiJapqyIdMYykgpDyVO0XdWVfo6wgegOe8dUCEVgUCJYkTNueA7zSfOEByjqJlQqzzdu2178ku7em3DZ6kCCDqTVgaQB-rAasmjJNu4CH1otSUtiUdkqmXm-bBo5PP8xmsqhpXnkIk1EgF7fBjs5O-2B3nqQqeEZVe6_TYA3tfRYPeR-D6kWl1fyhvRNTzpvNXvb3xz0gLCmVV_cmZ70PqWR6xUQoFcrsR1p6-QqXS8thnDwqDwGzLPWUlczaS9YBeEkQFnPhlcAyzTel1SXPx3jOCOZze0D9LGz9vVj_VdBL-5-iX30AJJP0R5nHaBtsHj9EhK862KAtrJZBr98FA_cih6gnc_j6ffTf4XhSwM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxMZX2ACDxreipbbj2A8IVWWjZVsfWCf2ZhLHLpNY0pFVqP8UfyPnfLRLNfa25ztHju_yu7v4_DNCW1aHjJI48WOaQoFCtPXjDkt8w4m0gTQQtUu2zyHvH7Gvx-HxCvrbnIVxbZUNJpZAneba_SPfJh3OIddgnH2anPnu1ii3u9pcoVG5xZ6Z_YGSrfg4-Az2fUXI7s6o1_frWwV8HVFx7ltCLbU2SSFR0TAjZjsWMDqBzCEBOLcQkU1gpYx0YIKOSQKWhjwJTMQjGkrLKDz3BrrJKERydzJ998uipWSJ9bnZRaViu4BAKVztDpKIcp-14uByNLgQDpdbNZf2a8swuHsP3a3zV9ytHG4NrZhsHd0q-0h1sY7Waqwo8Nua0PrdfTTo_Z7l_s4Brshqp1Dh4zhLcTrL4lMYhnOLCwCwkijXN9kYMC7F5e2BmPBDXHJJxEV-ah6go2tZ7IdoNcsz8xhhC9kE1KqhlJrCICJ5EnNhRQzryWIiPBQ0C6p0zW_urtn4pcp9dipUZQMFNlDOBop56P18yKQi97hKectZSTnSjMx15YzjaVGo7uh7b6i6jlZSyJBID728TG1w-K2l9KZWsjnMUcf1WQh4U0fH1dLcaGnqycmZuiB93ZKOK8te9pjNliJgiG6LG9dTNYYVavHFeejFXOxGur68zORTp0MFILjogM6jylPnK-k2dCUV1ENRy4fnCo7ZvC3JTn6WDOecRq6W8NCHxtsX0_qvgZ5c_RLP0e3-6GBf7Q-GexvoDiS-svqVtolWwfvNU0guz5Nn5ReN0Y_rhpB_CHaDzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxMZX2ACDBgxQ1NR2HPsBoapbtTKoENvE3kzi2GUSSzqyCvVf46_jnI-uqcbe9nznyPGdf3cXX35GaMvqkFESJ35MUyhQiLZ-3GWJbziRNpAGonbJ9jnie0fs03F4vIL-Nv_CuLbKBhNLoE5z7b6Rd0iXc8g1GGcdW7dFfN0ZfJyc-e4GKXfS2lynUbnIvpn9gfKt-DDcAVu_ImSwe9jf8-sbBnwdUXHuW0IttTZJIWnRMDtmuxbwOoEsIgFotxCdTWCljHRggq5JApaGPAlMxCMaSssoPPcGuhnRSLg9JvoL7SVLDNDNiSoVnQKCpnB1PEgiyn3WionLkWEhNC63bS6d3ZYhcXAP3a1zWdyrnG8NrZhsHd0qe0p1sY7Watwo8HZNbv32Phr2f89yf_cLrohrp1Dt4zhLcTrL4lMYhnOLCwCzkjTXN9kY8C7F5U2CmPADXPJKxEV-ah6go2tZ7IdoNcsz8xhhC5kF1K2hlJrCICJ5EnNhRQzryWIiPBQ0C6p0zXXurtz4pcozdypUZQMFNlDOBop56N18yKQi-rhKectZSTkCjcy54jieFoXqHX7vj1TPUUwKGRLpoZeXqQ0PvrWU3tRKNoc56rj-LwLe1FFztTQ3Wpp6cnKmFqSvW9JxZdnLHrPZUgQ80W1x43qqxrNCXew-D72Yi91I16OXmXzqdKgANBdd0HlUeep8Jd3hrqSCeihq-fBcwbGctyXZyc-S7ZzTyNUVHnrfePvFtP5roCdXv8RzdBvAQ30ejvY30B3IgWX1VW0TrYLzm6eQZ54nz8oNjdGP60aQfzATh84 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryo-EM+structures+and+dynamics+of+substrate-engaged+human+26S+proteasome&rft.jtitle=Nature+%28London%29&rft.au=Dong%2C+Yuanchen&rft.au=Zhang%2C+Shuwen&rft.au=Wu%2C+Zhaolong&rft.au=Li%2C+Xuemei&rft.date=2019-01-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=565&rft.issue=7737&rft.spage=49&rft_id=info:doi/10.1038%2Fs41586-018-0736-4&rft.externalDBID=ISR&rft.externalDocID=A573389529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |