The application of a workflow integrating the variable reproducibility and harmonizability of radiomic features on a phantom dataset

Radiomics–the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the subject of active and extensive research. Although the field shows promise, the generalizability of radiomic signatures is affected significantly...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 5; p. e0251147
Main Authors Ibrahim, Abdalla, Refaee, Turkey, Leijenaar, Ralph T. H., Primakov, Sergey, Hustinx, Roland, Mottaghy, Felix M., Woodruff, Henry C., Maidment, Andrew D. A., Lambin, Philippe
Format Journal Article Web Resource
LanguageEnglish
Published United States Public Library of Science 07.05.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0251147

Cover

Loading…
Abstract Radiomics–the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the subject of active and extensive research. Although the field shows promise, the generalizability of radiomic signatures is affected significantly by differences in scan acquisition and reconstruction settings. Previous studies reported on the sensitivity of radiomic features (RFs) to test-retest variability, inter-observer segmentation variability, and intra-scanner variability. A framework involving robust radiomics analysis and the application of a post-reconstruction feature harmonization method using ComBat was recently proposed to address these challenges. In this study, we investigated the reproducibility of RFs across different scanners and scanning parameters using this framework. We analysed thirteen scans of a ten-layer phantom that were acquired differently. Each layer was subdivided into sixteen regions of interest (ROIs), and the scans were compared in a pairwise manner, resulting in seventy-eight different scenarios. Ninety-one RFs were extracted from each ROI. As hypothesized, we demonstrate that the reproducibility of a given RF is not a constant but is dependent on the heterogeneity found in the data under analysis. The number (%) of reproducible RFs varied across the pairwise scenarios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) RFs. Furthermore, in contrast to what has been previously reported, and as hypothesized in the robust radiomics analysis framework, our results demonstrate that ComBat cannot be applied to all RFs but rather on a percentage of those–the “ComBatable” RFs–which differed depending on the data being harmonized. The number (%) of reproducible RFs following ComBat harmonization varied across the pairwise scenarios investigated, ranging from 14 (15.4%) to 80 (87.9%) RFs, and was found to depend on the heterogeneity in the data. We conclude that the standardization of image acquisition protocols remains the cornerstone for improving the reproducibility of RFs, and the generalizability of the signatures developed. Our proposed approach helps identify the reproducible RFs across different datasets.
AbstractList Radiomics-the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the subject of active and extensive research. Although the field shows promise, the generalizability of radiomic signatures is affected significantly by differences in scan acquisition and reconstruction settings. Previous studies reported on the sensitivity of radiomic features (RFs) to test-retest variability, inter-observer segmentation variability, and intra-scanner variability. A framework involving robust radiomics analysis and the application of a post-reconstruction feature harmonization method using ComBat was recently proposed to address these challenges. In this study, we investigated the reproducibility of RFs across different scanners and scanning parameters using this framework. We analysed thirteen scans of a ten-layer phantom that were acquired differently. Each layer was subdivided into sixteen regions of interest (ROIs), and the scans were compared in a pairwise manner, resulting in seventy-eight different scenarios. Ninety-one RFs were extracted from each ROI. As hypothesized, we demonstrate that the reproducibility of a given RF is not a constant but is dependent on the heterogeneity found in the data under analysis. The number (%) of reproducible RFs varied across the pairwise scenarios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) RFs. Furthermore, in contrast to what has been previously reported, and as hypothesized in the robust radiomics analysis framework, our results demonstrate that ComBat cannot be applied to all RFs but rather on a percentage of those-the "ComBatable" RFs-which differed depending on the data being harmonized. The number (%) of reproducible RFs following ComBat harmonization varied across the pairwise scenarios investigated, ranging from 14 (15.4%) to 80 (87.9%) RFs, and was found to depend on the heterogeneity in the data. We conclude that the standardization of image acquisition protocols remains the cornerstone for improving the reproducibility of RFs, and the generalizability of the signatures developed. Our proposed approach helps identify the reproducible RFs across different datasets.
Radiomics-the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the subject of active and extensive research. Although the field shows promise, the generalizability of radiomic signatures is affected significantly by differences in scan acquisition and reconstruction settings. Previous studies reported on the sensitivity of radiomic features (RFs) to test-retest variability, inter-observer segmentation variability, and intra-scanner variability. A framework involving robust radiomics analysis and the application of a post-reconstruction feature harmonization method using ComBat was recently proposed to address these challenges. In this study, we investigated the reproducibility of RFs across different scanners and scanning parameters using this framework. We analysed thirteen scans of a ten-layer phantom that were acquired differently. Each layer was subdivided into sixteen regions of interest (ROIs), and the scans were compared in a pairwise manner, resulting in seventy-eight different scenarios. Ninety-one RFs were extracted from each ROI. As hypothesized, we demonstrate that the reproducibility of a given RF is not a constant but is dependent on the heterogeneity found in the data under analysis. The number (%) of reproducible RFs varied across the pairwise scenarios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) RFs. Furthermore, in contrast to what has been previously reported, and as hypothesized in the robust radiomics analysis framework, our results demonstrate that ComBat cannot be applied to all RFs but rather on a percentage of those-the "ComBatable" RFs-which differed depending on the data being harmonized. The number (%) of reproducible RFs following ComBat harmonization varied across the pairwise scenarios investigated, ranging from 14 (15.4%) to 80 (87.9%) RFs, and was found to depend on the heterogeneity in the data. We conclude that the standardization of image acquisition protocols remains the cornerstone for improving the reproducibility of RFs, and the generalizability of the signatures developed. Our proposed approach helps identify the reproducible RFs across different datasets.Radiomics-the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the subject of active and extensive research. Although the field shows promise, the generalizability of radiomic signatures is affected significantly by differences in scan acquisition and reconstruction settings. Previous studies reported on the sensitivity of radiomic features (RFs) to test-retest variability, inter-observer segmentation variability, and intra-scanner variability. A framework involving robust radiomics analysis and the application of a post-reconstruction feature harmonization method using ComBat was recently proposed to address these challenges. In this study, we investigated the reproducibility of RFs across different scanners and scanning parameters using this framework. We analysed thirteen scans of a ten-layer phantom that were acquired differently. Each layer was subdivided into sixteen regions of interest (ROIs), and the scans were compared in a pairwise manner, resulting in seventy-eight different scenarios. Ninety-one RFs were extracted from each ROI. As hypothesized, we demonstrate that the reproducibility of a given RF is not a constant but is dependent on the heterogeneity found in the data under analysis. The number (%) of reproducible RFs varied across the pairwise scenarios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) RFs. Furthermore, in contrast to what has been previously reported, and as hypothesized in the robust radiomics analysis framework, our results demonstrate that ComBat cannot be applied to all RFs but rather on a percentage of those-the "ComBatable" RFs-which differed depending on the data being harmonized. The number (%) of reproducible RFs following ComBat harmonization varied across the pairwise scenarios investigated, ranging from 14 (15.4%) to 80 (87.9%) RFs, and was found to depend on the heterogeneity in the data. We conclude that the standardization of image acquisition protocols remains the cornerstone for improving the reproducibility of RFs, and the generalizability of the signatures developed. Our proposed approach helps identify the reproducible RFs across different datasets.
Audience Academic
Author Woodruff, Henry C.
Primakov, Sergey
Mottaghy, Felix M.
Hustinx, Roland
Leijenaar, Ralph T. H.
Lambin, Philippe
Refaee, Turkey
Maidment, Andrew D. A.
Ibrahim, Abdalla
AuthorAffiliation 3 Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège and GIGA CRC-in vivo imaging, University of Liège, Liege, Belgium
7 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
4 Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
5 Faculty of Applied Medical Sciences, Department of Diagnostic Radiology, Jazan University, Jazan, Saudi Arabia
6 Oncoradiomics SA, Liege, Belgium
1 The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
2 Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
Washington University in St. Louis, UNITED STATES
AuthorAffiliation_xml – name: 1 The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
– name: 2 Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
– name: 5 Faculty of Applied Medical Sciences, Department of Diagnostic Radiology, Jazan University, Jazan, Saudi Arabia
– name: 3 Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège and GIGA CRC-in vivo imaging, University of Liège, Liege, Belgium
– name: 7 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
– name: Washington University in St. Louis, UNITED STATES
– name: 4 Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
– name: 6 Oncoradiomics SA, Liege, Belgium
Author_xml – sequence: 1
  givenname: Abdalla
  orcidid: 0000-0003-4138-5755
  surname: Ibrahim
  fullname: Ibrahim, Abdalla
– sequence: 2
  givenname: Turkey
  surname: Refaee
  fullname: Refaee, Turkey
– sequence: 3
  givenname: Ralph T. H.
  surname: Leijenaar
  fullname: Leijenaar, Ralph T. H.
– sequence: 4
  givenname: Sergey
  surname: Primakov
  fullname: Primakov, Sergey
– sequence: 5
  givenname: Roland
  surname: Hustinx
  fullname: Hustinx, Roland
– sequence: 6
  givenname: Felix M.
  surname: Mottaghy
  fullname: Mottaghy, Felix M.
– sequence: 7
  givenname: Henry C.
  surname: Woodruff
  fullname: Woodruff, Henry C.
– sequence: 8
  givenname: Andrew D. A.
  surname: Maidment
  fullname: Maidment, Andrew D. A.
– sequence: 9
  givenname: Philippe
  surname: Lambin
  fullname: Lambin, Philippe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33961646$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tu1DAQhiNURA_wBggiISG42MWHxEm4QKoqDpUqVYLCrTV27KyLNw62s6Vc8-B4d1PUrSpEfBFr_P3_2B7PYbbXu15l2VOM5phW-M2lG30Pdj6k8ByREuOiepAd4IaSGSOI7t2a72eHIVwiVNKasUfZPqUNw6xgB9nvi4XKYRiskRCN63Onc8ivnP-urbvKTR9V59NK3-UxkSvwBoRVuVeDd-0ojTDWxOsc-jZfgF-63vyCKZasPLTGLY3MtYI4ehXylALyYQF9dMu8hQhBxcfZQw02qCfT_yj7-uH9xcmn2dn5x9OT47OZrCiLM5CSNG2lhVBtw5AGVLcMY9ZKTFlR1KzUDWCNKaWkKUpATSEx07KqW8UqTehR9nzrO1gX-HSBgZOSUNSgpq4TcbolWgeXfPBmCf6aOzB8E3C-4-CjkVZxLVBNRMrR1qKgTNSCEYm0UAXIFoRMXu-mbKNYqlaqPnqwO6a7K71Z8M6teI1RkQqUDOjWwBrVqZRcGL4iG-FmPtq0G8mF4oSwmpM6fU1SvZrSevdjVCHypQlSWQu9cuPmtAUtqxqXCX1xB73_Tiaqg3Rs02uXdivXpvyYMYxYemXrzc7vodJoVap_eqPapPiO4PWOIDFR_YwdjCHw0y-f_589_7bLvrzFLhTYuAjOjuvXHXbBZ7fr87cwN82RgLdbQHoXgleaSxM3XZKOZizHiK878ebS-LoT-dSJSVzcEd_4_1P2BxqPOfc
CitedBy_id crossref_primary_10_3390_app12199824
crossref_primary_10_1186_s40779_023_00458_8
crossref_primary_10_1007_s00330_022_09229_w
crossref_primary_10_1111_jdv_18963
crossref_primary_10_1088_2057_1976_ad41e7
crossref_primary_10_1002_mp_16399
crossref_primary_10_1002_jmri_28027
crossref_primary_10_1088_1361_6560_ac7fd7
crossref_primary_10_1016_j_ejmp_2022_10_009
crossref_primary_10_3390_cancers14071599
crossref_primary_10_1016_j_inffus_2022_01_001
crossref_primary_10_1177_17588359221116605
crossref_primary_10_2147_JHC_S493227
crossref_primary_10_3390_cancers13123080
crossref_primary_10_3390_jpm11090842
crossref_primary_10_3390_jimaging8110303
crossref_primary_10_3390_cancers13102447
crossref_primary_10_1186_s12880_024_01306_4
crossref_primary_10_1186_s13244_024_01833_2
crossref_primary_10_3390_jpm12040553
crossref_primary_10_1007_s00330_022_09255_8
crossref_primary_10_3390_cancers13184638
crossref_primary_10_1038_s41598_022_26083_4
crossref_primary_10_3390_jcm12010140
crossref_primary_10_3390_jpm12030373
crossref_primary_10_3390_jpm13071172
crossref_primary_10_3390_cancers16152668
crossref_primary_10_3390_app122412599
crossref_primary_10_1007_s00432_025_06119_8
Cites_doi 10.1093/bioinformatics/bts034
10.1371/journal.pone.0166550
10.1038/nrclinonc.2017.141
10.1038/s41598-020-66110-w
10.1371/journal.pone.0217536
10.1016/j.neuroimage.2017.11.024
10.1213/ANE.0000000000002924
10.1016/j.ctro.2019.07.003
10.1117/1.JMI.6.2.024008
10.1007/s00330-020-07174-0
10.2967/jnumed.117.199935
10.1016/j.ijrobp.2018.05.053
10.18383/j.tom.2016.00208
10.1088/1361-6560/abb172
10.1016/j.ejca.2011.11.036
10.1148/radiol.2015151169
10.1007/s10278-013-9622-7
10.1371/journal.pone.0164924
10.1200/CCI.18.00001
10.1016/j.neuroimage.2017.08.047
10.3109/0284186X.2013.812798
10.1097/RLI.0000000000000180
10.1038/ncomms5006
10.1093/biostatistics/kxj037
ContentType Journal Article
Web Resource
Copyright COPYRIGHT 2021 Public Library of Science
2021 Ibrahim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Ibrahim et al 2021 Ibrahim et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Ibrahim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Ibrahim et al 2021 Ibrahim et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
Q33
5PM
DOA
DOI 10.1371/journal.pone.0251147
DatabaseName CrossRef
PubMed
Gale Opposing Viewpoints in Context
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic




CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Physics
DocumentTitleAlternate The reproducibility and harmonizability of radiomics features
EISSN 1932-6203
ExternalDocumentID 2523090988
oai_doaj_org_article_fb082b094d8b436b8b62c0fbe4acdabc
PMC8104396
oai_orbi_ulg_ac_be_2268_288889
A661069326
33961646
10_1371_journal_pone_0251147
Genre Journal Article
GeographicLocations Netherlands
Aachen Germany
Belgium
Germany
GeographicLocations_xml – name: Netherlands
– name: Aachen Germany
– name: Germany
– name: Belgium
GrantInformation_xml – fundername: ;
  grantid: 95765
– fundername: ;
  grantid: 733008
– fundername: ;
  grantid: 694812
– fundername: ;
  grantid: 12085/2018-2
– fundername: ;
  grantid: 952103
– fundername: ;
  grantid: 766276
– fundername: ;
  grantid: UM2017-8295
– fundername: ;
  grantid: 12053
– fundername: ;
  grantid: 673780
– fundername: ;
  grantid: 952172
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
BBORY
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
Q33
5PM
PUEGO
AAPBV
ABPTK
ESTFP
ID FETCH-LOGICAL-c736t-acc29d7fbbed960fa08d6116dc13644865f9a1f13332945a094c16fc78de67f23
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:33 EDT 2023
Wed Aug 27 01:16:19 EDT 2025
Thu Aug 21 17:34:27 EDT 2025
Fri Jul 25 15:32:31 EDT 2025
Wed Jul 30 10:23:15 EDT 2025
Fri Jul 25 10:13:06 EDT 2025
Tue Jun 17 21:30:18 EDT 2025
Tue Jun 10 20:45:16 EDT 2025
Fri Jun 27 04:59:57 EDT 2025
Fri Jun 27 04:41:58 EDT 2025
Thu May 22 21:26:15 EDT 2025
Thu Apr 03 06:55:10 EDT 2025
Tue Jul 01 03:14:28 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c736t-acc29d7fbbed960fa08d6116dc13644865f9a1f13332945a094c16fc78de67f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-85105526896
Competing Interests: Dr. Philippe Lambin reports, within and outside the submitted work, grants/sponsored research agreements from Varian medical, Oncoradiomics, ptTheragnostic and Health Innovation Ventures. He received an advisor/presenter fee and/or reimbursement of travel costs/external grant writing fee and/or in kind manpower contribution from Oncoradiomics, BHV, Merck, Varian, Elekta and Convert pharmaceuticals. Dr. Lambin has (minority) shares in the company Oncoradiomics, MedC2, LivingMed Biotech and Convert pharmaceuticals and is co-inventor of two issued patents with royalties on radiomics (PCT/NL2014/050248, PCT/NL2014/050728) licensed to Oncoradiomics and one issue patent on mtDNA (PCT/EP2014/059089) licensed to ptTheragnostic/DNAmito, three nonpatentable invention (softwares) licensed to ptTheragnostic/DNAmito, Oncoradiomics and Health Innovation Ventures. Dr. Woodruff, and Dr. Leijenaar have (minority) shares in the company Oncoradiomics. Dr. Mottaghy received an advisor fee and reimbursement of travel costs from Oncoradiomics. He reports institutional grants from GE and Nanomab outside the submitted work. The rest of authors declare no competing interest. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ORCID 0000-0003-4138-5755
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0251147
PMID 33961646
PQID 2523090988
PQPubID 1436336
PageCount e0251147
ParticipantIDs plos_journals_2523090988
doaj_primary_oai_doaj_org_article_fb082b094d8b436b8b62c0fbe4acdabc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8104396
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_288889
proquest_miscellaneous_2524357815
proquest_journals_2523090988
gale_infotracmisc_A661069326
gale_infotracacademiconefile_A661069326
gale_incontextgauss_ISR_A661069326
gale_incontextgauss_IOV_A661069326
gale_healthsolutions_A661069326
pubmed_primary_33961646
crossref_citationtrail_10_1371_journal_pone_0251147
crossref_primary_10_1371_journal_pone_0251147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-07
PublicationDateYYYYMMDD 2021-05-07
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References I Zhovannik (pone.0251147.ref010) 2019; 19
L Lu (pone.0251147.ref032) 2016; 11
F Orlhac (pone.0251147.ref017) 2018; 59
RC Team (pone.0251147.ref026) 2013
JJ Foy (pone.0251147.ref016) 2020; 65
I Lawrence (pone.0251147.ref028) 1989
H Kim (pone.0251147.ref031) 2016; 11
JE van Timmeren (pone.0251147.ref008) 2016; 2
V Andrearczyk (pone.0251147.ref036) 2019; 6
D Mackin (pone.0251147.ref023) 2017
R Team (pone.0251147.ref027) 2015
WE Johnson (pone.0251147.ref014) 2007; 8
M Stevenson (pone.0251147.ref025) 2013
JT Leek (pone.0251147.ref030) 2012; 28
P Lambin (pone.0251147.ref013) 2017; 14
pone.0251147.ref012
HJ Aerts (pone.0251147.ref002) 2014; 5
M Ligero (pone.0251147.ref015) 2021; 31
JE van Timmeren (pone.0251147.ref006) 2019; 14
F Orlhac (pone.0251147.ref021) 2019
F Prayer (pone.0251147.ref009) 2020
J-P Fortin (pone.0251147.ref019) 2018; 167
RT Leijenaar (pone.0251147.ref034) 2013; 52
F Orlhac (pone.0251147.ref020) 2018; 59
S Walsh (pone.0251147.ref001) 2019; 3
R Da-ano (pone.0251147.ref035) 2020; 10
A Traverso (pone.0251147.ref007) 2018; 102
pone.0251147.ref029
P Lambin (pone.0251147.ref003) 2012; 48
R Reiazi (pone.0251147.ref005) 2020
K Clark (pone.0251147.ref024) 2013; 26
TR Vetter (pone.0251147.ref033) 2018; 126
RJ Gillies (pone.0251147.ref004) 2015; 278
D Mackin (pone.0251147.ref011) 2015; 50
A Ibrahim (pone.0251147.ref022) 2020
J-P Fortin (pone.0251147.ref018) 2017; 161
S Marcadent (pone.0251147.ref037) 2020; 2
References_xml – year: 2013
  ident: pone.0251147.ref025
  article-title: epiR: An R package for the analysis of epidemiological data
  publication-title: R package version 09–43
– volume: 28
  start-page: 882
  issue: 6
  year: 2012
  ident: pone.0251147.ref030
  article-title: The sva package for removing batch effects and other unwanted variation in high-throughput experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts034
– ident: pone.0251147.ref029
– volume: 59
  start-page: 288
  issue: supplement 1
  year: 2018
  ident: pone.0251147.ref020
  article-title: Validation of a harmonization method to correct for SUV and radiomic features variability in multi-center studies
  publication-title: Journal of Nuclear Medicine
– volume: 11
  start-page: e0166550
  issue: 12
  year: 2016
  ident: pone.0251147.ref032
  article-title: Assessing agreement between radiomic features computed for multiple CT imaging settings
  publication-title: PloS one
  doi: 10.1371/journal.pone.0166550
– volume: 14
  start-page: 749
  issue: 12
  year: 2017
  ident: pone.0251147.ref013
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nature reviews Clinical oncology
  doi: 10.1038/nrclinonc.2017.141
– volume: 10
  start-page: 10248
  issue: 1
  year: 2020
  ident: pone.0251147.ref035
  article-title: Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-66110-w
– volume: 14
  start-page: e0217536
  issue: 6
  year: 2019
  ident: pone.0251147.ref006
  article-title: Challenges and caveats of a multi-center retrospective radiomics study: an example of early treatment response assessment for NSCLC patients using FDG-PET/CT radiomics
  publication-title: PloS one
  doi: 10.1371/journal.pone.0217536
– year: 2020
  ident: pone.0251147.ref005
  article-title: The Impact of the Variation of Imaging Factors on the Robustness of Computed Tomography Radiomic Features: A Review
  publication-title: medRxiv
– volume: 167
  start-page: 104
  year: 2018
  ident: pone.0251147.ref019
  article-title: Harmonization of cortical thickness measurements across scanners and sites
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.11.024
– volume: 126
  start-page: 2123
  issue: 6
  year: 2018
  ident: pone.0251147.ref033
  article-title: Agreement analysis: what he said, she said versus you said
  publication-title: Anesthesia & Analgesia
  doi: 10.1213/ANE.0000000000002924
– volume: 19
  start-page: 33
  year: 2019
  ident: pone.0251147.ref010
  article-title: Learning from scanners: Bias reduction and feature correction in radiomics
  publication-title: Clinical and translational radiation oncology
  doi: 10.1016/j.ctro.2019.07.003
– ident: pone.0251147.ref012
– volume: 6
  start-page: 024008
  issue: 2
  year: 2019
  ident: pone.0251147.ref036
  article-title: Neural network training for cross-protocol radiomic feature standardization in computed tomography
  publication-title: Journal of Medical Imaging
  doi: 10.1117/1.JMI.6.2.024008
– volume: 31
  start-page: 1460
  issue: 3
  year: 2021
  ident: pone.0251147.ref015
  article-title: Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis
  publication-title: European radiology
  doi: 10.1007/s00330-020-07174-0
– volume: 59
  start-page: 1321
  issue: 8
  year: 2018
  ident: pone.0251147.ref017
  article-title: A postreconstruction harmonization method for multicenter radiomic studies in PET
  publication-title: Journal of Nuclear Medicine
  doi: 10.2967/jnumed.117.199935
– volume: 102
  start-page: 1143
  issue: 4
  year: 2018
  ident: pone.0251147.ref007
  article-title: Repeatability and reproducibility of radiomic features: a systematic review
  publication-title: International Journal of Radiation Oncology* Biology* Physics
  doi: 10.1016/j.ijrobp.2018.05.053
– volume: 2
  start-page: 361
  issue: 4
  year: 2016
  ident: pone.0251147.ref008
  article-title: Test–retest data for radiomics feature stability analysis: Generalizable or study-specific?
  publication-title: Tomography
  doi: 10.18383/j.tom.2016.00208
– volume: 65
  start-page: 205008
  issue: 20
  year: 2020
  ident: pone.0251147.ref016
  article-title: Harmonization of radiomic feature variability resulting from differences in CT image acquisition and reconstruction: assessment in a cadaveric liver
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/1361-6560/abb172
– volume: 2
  start-page: e190035
  issue: 3
  year: 2020
  ident: pone.0251147.ref037
  article-title: Generative Adversarial Networks Improve the Reproducibility and Discriminative Power of Radiomic Features
  publication-title: Radiology: Artificial Intelligence
– start-page: 182023
  year: 2019
  ident: pone.0251147.ref021
  article-title: Validation of a method to compensate multicenter effects affecting CT Radiomics
  publication-title: Radiology
– volume: 48
  start-page: 441
  issue: 4
  year: 2012
  ident: pone.0251147.ref003
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: European journal of cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 278
  start-page: 563
  issue: 2
  year: 2015
  ident: pone.0251147.ref004
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  ident: pone.0251147.ref024
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: Journal of digital imaging
  doi: 10.1007/s10278-013-9622-7
– year: 2017
  ident: pone.0251147.ref023
  article-title: Data From Credence Cartridge Radiomics Phantom CT Scans
  publication-title: The Cancer Imaging Archive
– volume-title: RStudio: Integrated Development for R
  year: 2015
  ident: pone.0251147.ref027
– volume: 11
  start-page: e0164924
  issue: 10
  year: 2016
  ident: pone.0251147.ref031
  article-title: Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra-and inter-reader variability and inter-reconstruction algorithm variability.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164924
– volume: 3
  start-page: 1
  year: 2019
  ident: pone.0251147.ref001
  article-title: Decision support systems in oncology
  publication-title: JCO clinical cancer informatics
  doi: 10.1200/CCI.18.00001
– volume: 161
  start-page: 149
  year: 2017
  ident: pone.0251147.ref018
  article-title: Harmonization of multi-site diffusion tensor imaging data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.047
– volume: 52
  start-page: 1391
  issue: 7
  year: 2013
  ident: pone.0251147.ref034
  article-title: Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability
  publication-title: Acta oncologica
  doi: 10.3109/0284186X.2013.812798
– year: 2013
  ident: pone.0251147.ref026
  publication-title: R: A language and environment for statistical computing
– volume: 50
  start-page: 757
  issue: 11
  year: 2015
  ident: pone.0251147.ref011
  article-title: Measuring CT scanner variability of radiomics features
  publication-title: Investigative radiology
  doi: 10.1097/RLI.0000000000000180
– year: 2020
  ident: pone.0251147.ref022
  article-title: Radiomics for precision medicine: current challenges, future prospects, and the proposal of a new framework
  publication-title: Methods
– volume: 5
  start-page: 4006
  year: 2014
  ident: pone.0251147.ref002
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nature communications
  doi: 10.1038/ncomms5006
– year: 2020
  ident: pone.0251147.ref009
  article-title: Variability of computed tomography radiomics features of fibrosing interstitial lung disease: A test-retest study
  publication-title: Methods
– start-page: 255
  year: 1989
  ident: pone.0251147.ref028
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 8
  start-page: 118
  issue: 1
  year: 2007
  ident: pone.0251147.ref014
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
RestrictionsOnAccess open access
SSID ssj0053866
Score 2.5003934
Snippet Radiomics–the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the...
Radiomics-the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the...
SourceID plos
doaj
pubmedcentral
liege
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0251147
SubjectTerms Algorithms
Analysis
Artificial intelligence
Biology and Life Sciences
Biomarkers
Computer and Information Sciences
Data analysis
Deep learning
Diagnostic imaging
Drafting software
Editing
Equipment and supplies
Gene expression
Health care facilities
Health physics
Human health sciences
Humans
Image Processing, Computer-Assisted
Image Processing, Computer-Assisted/methods
Medical imaging
Medical research
Medicine
Modems
Multidisciplinary
Nuclear medicine
Oncology
Phantoms, Imaging
Physics
Precision medicine
Radiographic Image Interpretation, Computer-Assisted
Radiographic Image Interpretation, Computer-Assisted/methods
Radiologie, médecine & imagerie nucléaire
Radiology
Radiology, nuclear medicine & imaging
Radiomics
Reproducibility
Reproducibility of Results
Research and Analysis Methods
Scanners
Sciences de la santé humaine
Social Sciences
Software
Standardization
Visualization
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBlFcDLRiEBEikzdNxjgVRFQ4gAUW9WX7SlUKyanZbceeHM-M40QZVKgf2FMWTTewZz0Mz85mQFykYxQTsemyV5nEhWRFzZsCRcyzRhVMgIr7K9xM7Pik-npanG0d9YU3YAA88LNyBU2CkFAQhhqsiZ4orlunEKVtIbaTSqH3B5o3B1KCDYRczFhrl8io9CHzZX3at3fdeNR6nsmGIPF7_pJVvNpiwRrjTpuuvcj3_rqDcMElHd8jt4EvSw2EO2-SGbe-S7bBbe_oqQEq_vkd-gzTQjVw17RyVFGuyXNNd0hEzAswYBYeQXkAAjS1VFCEvERF2KKH9RWVrKGJdd9i-Ge7BX51Ls8DuZuqsxwntKbxC0uUZnlD8k2IVam9X98nJ0ftv747jcP5CrKucrWKpdVabyillDQQ6TibcsDRlRqc5hnWsdLVMHUS5eVYXpQQm6RR7h7ixrHJZ_oBstbDiO4QaTBzXVpXg_hUVZ9JIx5SxpStqV5skIvnIDKEDODmekdEIn3GrIEgZ1lQgC0VgYUTi6anlAM5xDf1b5PNEi9Da_gYInAgCJ64TuIg8RSkRQ5_qpCDEIXg6CUN3OCLPPQXCa7RYv_NDrvtefPj8_R-Ivn6ZEb0MRK6D5dAy9EzAnBC2a0a5O6MEJaFnw2-8TMNM1UJcZH7q_nrdwNS1UFaAI85FxuFXR2QHRX9cxF5kmDyok5pzeNG4Ha4efjYN4zdgCV9ru7WnKRBaKS0j8nDYPRMj8rxmCHQXkWq2r2acmo-0izMPhs5TbO5mj_4Hax-TWxmWLGE9a7VLtlbna7sHPudKPfHq5Q9ULoQ9
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagvXBBlFdTChiEBEikzdNxTqggqsIBJKBob5af7UpLsmx2i7jzw5lxvGGDKmBPq3h2E3senolnviHkSQqbYgL7emyV5nEhWRFzZsCRcyzRhVMgIj7L9z07OS3eTcpJeOHWhbTKtU30htq0Gt-RH2b4-rJOas5fzr_F2DUKT1dDC42rZBuhyzClq5oMARfoMmOhXC6v0sPAnYN529gD71tjU5WN7cij9g-2eXuGx9YIejpru8sc0D_zKDc2puMb5HrwKOlRLwI75IptbpKdoLMdfRaApZ_fIj9BJujGiTVtHZUUM7PcrP1O18gRsJlRcAvpBYTRWFhFEfgScWH7RNofVDaGIuJ1i0Wc4Rr81UKaKdY4U2c9WmhH4RaSzs-xT_FXirmonV3eJqfHbz6_PolDF4ZYVzlbxlLrrDaVU8oaCHecTLhhacqMTnMM7ljpapk6iHXzrC5KCfGiTrGCiBvLKpfld8hWAyu-S6jB4-PaqhKcwKLiTBrpmDK2dEXtapNEJF8zQ-gAUY6dMmbCn7tVEKr0ayqQhSKwMCLx8Kt5D9HxD_pXyOeBFgG2_YV2cSaCvgqnwDdSMBfDVZEzxRXLdOKULaQ2UumIPEQpEX216mAmxBH4OwlDpzgijz0Fgmw0mMVzJlddJ95--PIfRJ8-joieBiLXwnJoGSonYE4I3jWi3B9RgqnQo-EXXqZhpmoqLjI_df99NYOpa6GsAHeci4zDp47ILor-ehE78VsH4UZrdbh8-NEwjM-AiXyNbVeepkCApbSMyN1eewZG5HnNEO4uItVIr0acGo8003MPic5TLPFme39_rHvkWoYpSZivWu2TreViZe-DT7lUD7zh-AVXsnnw
  priority: 102
  providerName: ProQuest
Title The application of a workflow integrating the variable reproducibility and harmonizability of radiomic features on a phantom dataset
URI https://www.ncbi.nlm.nih.gov/pubmed/33961646
https://www.proquest.com/docview/2523090988
https://www.proquest.com/docview/2524357815
http://orbi.ulg.ac.be/handle/2268/288889
https://pubmed.ncbi.nlm.nih.gov/PMC8104396
https://doaj.org/article/fb082b094d8b436b8b62c0fbe4acdabc
http://dx.doi.org/10.1371/journal.pone.0251147
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELb6uHBBlFdTymIQEiCRVV7rOAeE2qpLQaKgwqLeLD_bSiEpm91C7_xwZrzZqEFFQA5RFE-StT3jmdmZ-UzI0xiUYgR6PbRK8zCTLAs5M2DIORbpzClgEZ_le8gOJtm749HxClnu2doOYHOta4f7SU2m5fDHt8vXIPCv_K4Nebx8aHheV3bobeYsXyXroJtyFNX3WRdXAOn20Uu0WkKWRGlbTPent_SUlcf071bu9RKD2giJWtbNdebp71mWV9TW-Ba52dqbdGfBIBtkxVa3yUYr0Q193sJOv7hDfgLH0CvxbFo7Kinmbbmy_k6XuBKg6igYjfQCnGwsu6IIi4mosYs020sqK0MRD7vGEs_2HrxqKs0ZVkBTZz2WaEPhE5Ken-Iuxl8pZqo2dnaXTMb7n_cOwnaPhlDnKZuFUuukMLlTyhpwhpyMuGFxzIyOU3T92MgVMnbgCadJkY0keJM6xvoibizLXZLeI2sVjPgmoQaDy4VVIzARs5wzaaRjytiRywpXmCgg6XIyhG4BzHEfjVL4qFwOjsxiTAVOoWinMCBh99T5AsDjL_S7OM8dLcJv-xv19ES00iycAstJQV8MV1nKFFcs0ZFTNpPaSKUD8gi5RCxqWbtFROyANRQxNJkD8sRTIARHhTk-J3LeNOLthy__QPTpqEf0rCVyNQyHlm1dBfQJob16lNs9SlhIdK_5pedp6Kk6ExeJ77q_npfQdS2UFWCsc5FwOIqAbCLrLwexEQkGGIqo4Bw-tBSH65sfd834GzDNr7L13NNkCL8UjwJyfyE93USkacEQDC8geU-uejPVb6nOTj1gOo-xAJxt_ScrPCA3EsxgwvTWfJuszaZz-xBM0JkakNX8OIcz34vxPH4zIOu7-4cfjwb-T52BX3V-AXjCjO0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuiPKqodAFgQAJt35lbR8QKo8qpaVI0KLcln22lYId6qRV7_wefiMz6wcxqoBLc4q8k9i7MzsP78w3hDwOwSgGYNd9I1XmJ4IlfsY0OHKWBSqxEkTEZfnuseFB8n40GC2Qn20tDKZVtjrRKWpdKnxHvhHh68s8yLPs1eS7j12j8HS1baFRi8WOOT-DkK16uf0W-Pskirbe7b8Z-k1XAV-lMZv6Qqko16mV0mhw360IMs3CkGkVxhissIHNRWghdoujPBkIiH9UiBUxmTYstQh0ACp_CQxvgDsqHXUBHugOxpryvDgNNxppWJ-UhVl3vjw2cZkzf65LQGcLlsZ4TI4gq-Oyusjh_TNvc84Qbl0n1xoPlm7WIrdMFkxxgyw3OqKizxog6-c3yQ-QQTp3Qk5LSwXFTDA7Ls9oi1QBxpOCG0pPIWzHQi6KQJuIQ1sn7p5TUWiKCNslFo021-CvToQ-xppqao1DJ60o3ELQyRH2Rf5GMfe1MtNb5OBS-HObLBaw4iuEajyuzo0cgNOZpBkTWlgmtRnYJLe5DjwSt8zgqoFEx84cY-7O-VIIjeo15chC3rDQI373q0kNCfIP-tfI544WAb3dhfLkkDf6gVsJvpiEuehMJjGTmWSRCqw0iVBaSOWRNZQSXlfHdmqJb4J_FTB0wj3yyFEgqEeBWUOHYlZVfPvjl_8g-vypR_S0IbIlLIcSTaUGzAnBwnqUqz1KUE2qN_zCyTTMVB7z08hN3X2fjWHqikvDwf3PeJTBJ_fICop-u4gV_73n4Ubtdrh4-GE3jM-AiYOFKWeOJkFAp3DgkTv17ukYEcc5Q3g9j6S9fdXjVH-kOD5yEOxZiCXl7O7fH2uNXBnuf9jlu9t7O_fI1QjToTBXNl0li9OTmbkP_uxUPnBKhJKvl621fgHN6rar
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN8QSIwvRvyiirIajZpY6Oe2fTAGRQJi0KiQe1v3E0jO9qR3EN79q_zrnNl-SA1RX7inS3fu2t2ZnY_uzG8IeRyCUQzArvtGqtxPBEv8nGlw5CwLVGIliIjL8t1lW3vJu1E6miM_u1oYTKvsdKJT1LpS-I58LcLXl0VQQMBm27SIjxubrybffewghSetXTuNRkR2zNkphG_1y-0N4PWTKNp8--XNlt92GPBVFrOpL5SKCp1ZKY0GV96KINcsDJlWYYyBC0ttIUILcVwcFUkqIBZSIVbH5NqwzCLoAaj_hSxOQ9xj2agP9kCPMNaW6sVZuNZKxuqkKs2q8-uxocs5U-g6BvR2YWGMR-YIuDqu6ouc3z9zOM8Zxc3r5FrrzdL1RvwWyZwpb5DFVl_U9FkLav38JvkB8kjPnZbTylJBMSvMjqtT2qFWgCGl4JLSEwjhsaiLIugmYtI2SbxnVJSaItp2hQWk7TX4q2Ohj7C-mlrjkEprCrcQdHKIPZK_UcyDrc30Ftm7FP7cJvMlrPgSoRqPrgsjU3BAkyxnQgvLpDapTQpb6MAjcccMrlp4dOzSMebuzC-DMKlZU44s5C0LPeL3v5o08CD_oH-NfO5pEdzbXaiOD3irK7iV4JdJmIvOZRIzmUsWqcBKkwilhVQeWUEp4U2lbK-i-Dr4WgFDh9wjjxwFAnyUuFUOxKyu-faH_f8g-vxpQPS0JbIVLIcSbdUGzAmBwwaUywNKUFNqMPzCyTTMVB7xk8hN3X2fjWHqikvDIRTIeZTDp_DIEop-t4g1_73_4Ubddrh4-GE_jM-ASYSlqWaOJkFwpzD1yJ1m9_SMiOOCIdSeR7LBvhpwajhSHh06OPY8xPJydvfvj7VCroC-4u-3d3fukasRZkZh2my2TOanxzNzH1zbqXzgdAglXy9baf0CSBq64Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+application+of+a+workflow+integrating+the+variable+reproducibility+and+harmonizability+of+radiomic+features+on+a+phantom+dataset&rft.jtitle=PloS+one&rft.au=Ibrahim%2C+Abdalla&rft.au=Refaee%2C+Turkey&rft.au=Leijenaar%2C+Ralph+T.+H.&rft.au=Primakov%2C+Sergey&rft.date=2021-05-07&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=5&rft.spage=e0251147&rft_id=info:doi/10.1371%2Fjournal.pone.0251147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0251147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon