Stability Order of Caffeine Co-crystals Determined by Co-crystal Former Exchange Reaction and Its Application for the Validation of in Silico Models

The purpose of the present study was to determine the thermodynamic stability orders of co-crystals by co-crystal former (CCF) exchange reactions. Caffeine (CA) was employed as a model drug. The CCF exchange reaction was performed by liquid-assisted grinding using ethanol. When oxalic acid (OX) was...

Full description

Saved in:
Bibliographic Details
Published inChemical & pharmaceutical bulletin Vol. 63; no. 1; pp. 18 - 24
Main Authors Mukaida, Makoto, Sugano, Kiyohiko, Terada, Katsuhide
Format Journal Article
LanguageEnglish
Published Japan The Pharmaceutical Society of Japan 01.01.2015
Pharmaceutical Society of Japan
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The purpose of the present study was to determine the thermodynamic stability orders of co-crystals by co-crystal former (CCF) exchange reactions. Caffeine (CA) was employed as a model drug. The CCF exchange reaction was performed by liquid-assisted grinding using ethanol. When oxalic acid (OX) was added to CA–citric acid co-crystal (CA–CI), CA–CI converted to CA–OX, suggesting that CA–OX is more stable than CA–CI. The stability orders of other co-crystals were determined in the same manner. The stability order of CA co-crystals was determined as CA–OX≈CA–p-hydroxybenzoic acid (HY)>CA–CI>CA–malonic acid>CA–maleic acid. The stability order correlated with the difference in hydrogen bond energy estimated in silico, except for CA–HY. The π–π stacking in CA–HY was suggested as a reason for this discrepancy. The CCF exchange reaction was demonstrated as a useful method to determine the stability order of co-crystals, which can be used for the validation of in silico parameters to predict co-crystal formation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-2363
1347-5223
DOI:10.1248/cpb.c14-00480