Comparative performance of two automated machine learning platforms for COVID-19 detection by MALDI-TOF-MS
The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to...
Saved in:
Published in | PloS one Vol. 17; no. 7; p. e0263954 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
29.07.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-cost alternative to molecular methods. Automated ML is a novel approach that could move mass spectrometry techniques beyond the confines of traditional laboratory settings. However, it remains unknown how different automated ML platforms perform for COVID-19 MS analysis. To this end, the goal of our study is to compare algorithms produced by two commercial automated ML platforms (Platforms A and B). Our study consisted of MS data derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-CoV-2 variants. The top optimized ML model with respect to positive percent agreement (PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative percent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%, respectively. These results illustrate the MS method’s robustness against SARS-CoV-2 variants and highlight similarities and differences in automated ML platforms in producing optimal predictive algorithms for a given dataset. |
---|---|
AbstractList | The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-cost alternative to molecular methods. Automated ML is a novel approach that could move mass spectrometry techniques beyond the confines of traditional laboratory settings. However, it remains unknown how different automated ML platforms perform for COVID-19 MS analysis. To this end, the goal of our study is to compare algorithms produced by two commercial automated ML platforms (Platforms A and B). Our study consisted of MS data derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-CoV-2 variants. The top optimized ML model with respect to positive percent agreement (PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative percent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%, respectively. These results illustrate the MS method's robustness against SARS-CoV-2 variants and highlight similarities and differences in automated ML platforms in producing optimal predictive algorithms for a given dataset. The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-cost alternative to molecular methods. Automated ML is a novel approach that could move mass spectrometry techniques beyond the confines of traditional laboratory settings. However, it remains unknown how different automated ML platforms perform for COVID-19 MS analysis. To this end, the goal of our study is to compare algorithms produced by two commercial automated ML platforms (Platforms A and B). Our study consisted of MS data derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-CoV-2 variants. The top optimized ML model with respect to positive percent agreement (PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative percent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%, respectively. These results illustrate the MS method's robustness against SARS-CoV-2 variants and highlight similarities and differences in automated ML platforms in producing optimal predictive algorithms for a given dataset.The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-cost alternative to molecular methods. Automated ML is a novel approach that could move mass spectrometry techniques beyond the confines of traditional laboratory settings. However, it remains unknown how different automated ML platforms perform for COVID-19 MS analysis. To this end, the goal of our study is to compare algorithms produced by two commercial automated ML platforms (Platforms A and B). Our study consisted of MS data derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-CoV-2 variants. The top optimized ML model with respect to positive percent agreement (PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative percent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%, respectively. These results illustrate the MS method's robustness against SARS-CoV-2 variants and highlight similarities and differences in automated ML platforms in producing optimal predictive algorithms for a given dataset. |
Audience | Academic |
Author | Phinney, Brett May, Larissa Tran, Nam K. Klein, Karina Rashidi, Hooman H. Albahra, Samer Howard, Taylor Salemi, Michelle R. Pepper, John |
AuthorAffiliation | 3 Dept. of Pathology and Laboratory Medicine, UC Davis, Davis, California, United States of America 1 Robert. J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America 2 Spectra Pass LLC & Allegiant Airlines, Las Vegas, Nevada, United States of America 4 Dept. of Emergency Medicine, UC Davis, Davis, California, United States of America Kathmandu Institute of Applied Sciences, NEPAL 5 Proteomics Core, UC Davis, Davis, California, United States of America |
AuthorAffiliation_xml | – name: 1 Robert. J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America – name: 4 Dept. of Emergency Medicine, UC Davis, Davis, California, United States of America – name: 2 Spectra Pass LLC & Allegiant Airlines, Las Vegas, Nevada, United States of America – name: Kathmandu Institute of Applied Sciences, NEPAL – name: 3 Dept. of Pathology and Laboratory Medicine, UC Davis, Davis, California, United States of America – name: 5 Proteomics Core, UC Davis, Davis, California, United States of America |
Author_xml | – sequence: 1 givenname: Hooman H. surname: Rashidi fullname: Rashidi, Hooman H. – sequence: 2 givenname: John surname: Pepper fullname: Pepper, John – sequence: 3 givenname: Taylor surname: Howard fullname: Howard, Taylor – sequence: 4 givenname: Karina surname: Klein fullname: Klein, Karina – sequence: 5 givenname: Larissa surname: May fullname: May, Larissa – sequence: 6 givenname: Samer surname: Albahra fullname: Albahra, Samer – sequence: 7 givenname: Brett surname: Phinney fullname: Phinney, Brett – sequence: 8 givenname: Michelle R. surname: Salemi fullname: Salemi, Michelle R. – sequence: 9 givenname: Nam K. orcidid: 0000-0003-1565-0025 surname: Tran fullname: Tran, Nam K. |
BookMark | eNqNk12L1DAUhousuB_6DwQLguhFx6Zpk8YLYZh1dWCWAXfd25CmyUyGNKlJurr_3tQZZbssIoU2nD7vm5yTc06TI2ONSJKXIJ8BiMH7nR2cYXrWx_AsLxAkVfkkOQEEFhkqcnh0b32cnHq_y_MK1gg9S45hRfIqJ8VJslvYrmeOBXUr0l44aV3HDBeplWn4YVM2BNuxINq0Y3yrjEi1YM4os0l7zcKI-zS-08X6ZnmeAZK2IggelDVpc5dezlfny-x6fZFdXj1PnkqmvXhx-J4l3y4-XS--ZKv15-Vivso4hlXICGYtlrjNoeAclLJEiABBZNMwggqJEK5EAypQkbYGGCApq6bkkpO8bBpYVvAsebX37bX19FAmTwtEUImLuioisdwTrWU72jvVMXdHLVP0d8C6DWUuKK4FzZuqBg2CTY1ZSTAmLcKiBiwej3BZNNHr42G3oelEy4UJjumJ6fSPUVu6sbeUQIgRBNHg7cHA2e-D8IF2ynOhNTPCDvtz1_G-6hF9_QB9PLsDtWExAWWkjfvy0ZTOMYg9Ea--jtTsESo-regUjz0lVYxPBO8mgsgE8TNs2OA9XV59_X92fTNl39xjt4LpsPVWD2ML-SlY7kHurPdOyL9FBjkdR-JPNeg4EvQwElH24YGMq8BG95iw0v8W_wLXsxFX |
CitedBy_id | crossref_primary_10_1016_j_jtha_2022_12_019 crossref_primary_10_1038_s41541_024_00946_5 crossref_primary_10_1097_QCO_0000000000000935 crossref_primary_10_1177_10406387241270071 crossref_primary_10_4265_jmc_29_4_143 crossref_primary_10_1186_s12903_024_04347_x |
Cites_doi | 10.1038/s41598-021-87463-w 10.1001/jamainternmed.2018.3763 10.1371/journal.pone.0235502 10.1016/S1473-3099(20)30303-0 10.1056/NEJMp2025631 10.1021/acs.jproteome.0c00535 10.1373/clinchem.2014.221770 10.3390/vaccines9020160 10.1038/s41598-020-69433-w 10.5858/arpa.2020-0110-OA 10.1097/JAC.0000000000000360 10.1038/s41587-020-0644-7 10.1177/2374289519873088 10.1016/S0140-6736(21)00306-8 10.1145/3292500.3330667 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Public Library of Science 2022 Rashidi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Rashidi et al 2022 Rashidi et al |
Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Rashidi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Rashidi et al 2022 Rashidi et al |
DBID | AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0263954 |
DatabaseName | CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Public Health |
DocumentTitleAlternate | Comparative performance automated machine learning platforms for COVID-19 detection by MALDI-TOF-MS |
EISSN | 1932-6203 |
ExternalDocumentID | 2696472852 oai_doaj_org_article_0b581b63b87a49779d67e81ad039cf2b PMC9337631 A711930508 10_1371_journal_pone_0263954 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c735t-97ad7f7d03ecc14f46691e9fbba962f6675eb15159d81716ff5b4cfc904bb3453 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Jul 31 00:47:56 EDT 2022 Wed Aug 27 01:24:16 EDT 2025 Thu Aug 21 18:35:21 EDT 2025 Fri Jul 11 13:32:20 EDT 2025 Fri Jul 25 09:28:36 EDT 2025 Tue Jun 17 20:56:59 EDT 2025 Tue Jun 10 20:24:07 EDT 2025 Fri Jun 27 04:07:11 EDT 2025 Fri Jun 27 03:36:54 EDT 2025 Thu May 22 21:16:52 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 03:29:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c735t-97ad7f7d03ecc14f46691e9fbba962f6675eb15159d81716ff5b4cfc904bb3453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: N.T. is a consultant for Roche Diagnostics and Roche Molecular Systems. He is also a co-inventor / co-owner of MILO-ML, LLC. H.R. is also a co-inventor / co-owner of MILO-ML, LLC. J.P. is a co-founder and employee of SpectraPass, LLC. L.M. is a consultant for Roche Diagnostics and Roche Molecular Systems. S.A. is a co-inventor / co-owner of MILO-ML, LLC. T.H., K.K., B.P., and M.S. have no competing interests. |
ORCID | 0000-0003-1565-0025 |
OpenAccessLink | https://www.proquest.com/docview/2696472852?pq-origsite=%requestingapplication% |
PMID | 35905092 |
PQID | 2696472852 |
PQPubID | 1436336 |
PageCount | e0263954 |
ParticipantIDs | plos_journals_2696472852 doaj_primary_oai_doaj_org_article_0b581b63b87a49779d67e81ad039cf2b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337631 proquest_miscellaneous_2696859081 proquest_journals_2696472852 gale_infotracmisc_A711930508 gale_infotracacademiconefile_A711930508 gale_incontextgauss_ISR_A711930508 gale_incontextgauss_IOV_A711930508 gale_healthsolutions_A711930508 crossref_primary_10_1371_journal_pone_0263954 crossref_citationtrail_10_1371_journal_pone_0263954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-29 |
PublicationDateYYYYMMDD | 2022-07-29 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | San Francisco |
PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Coustasse (pone.0263954.ref016) 2021; 44 NK Tran (pone.0263954.ref003) 2021; 11 OJ Wouters (pone.0263954.ref015) 2021; 397 G Hanson (pone.0263954.ref019) 2020 S Wenlong (pone.0263954.ref009) 2020; 15 CM Cutillo (pone.0263954.ref007) 2020; 47 Z Du (pone.0263954.ref020) 2021; 6 pone.0263954.ref011 NK Tran (pone.0263954.ref022) 2020; 10 pone.0263954.ref001 pone.0263954.ref012 pone.0263954.ref002 M Mina (pone.0263954.ref018) 2020; 383 FM Nachtigall (pone.0263954.ref004) 2020; 38 D Gouvia (pone.0263954.ref006) 2020; 19 Shivangi (pone.0263954.ref013) 2021; 12 B. Talha (pone.0263954.ref014) 2020; 20 HR Rashidi (pone.0263954.ref010) 2019; 6 M. Sallam (pone.0263954.ref017) 2021; 16 MA Gianfrancesco (pone.0263954.ref008) 2018; 178 R. Patel (pone.0263954.ref005) 2015; 61 HH Rashidi (pone.0263954.ref021) 2021; 145 |
References_xml | – volume: 11 start-page: 8219 year: 2021 ident: pone.0263954.ref003 article-title: Novel Application of Automated Machine Learning With Maldi-Tof-Ms For Rapid High-Throughput Screening of Covid-19 publication-title: Sci Rep doi: 10.1038/s41598-021-87463-w – volume: 6 start-page: E184 year: 2021 ident: pone.0263954.ref020 article-title: Comparative cost-effectiveness of SARS-CoV-2 testing strategies in the USA: A modelling study publication-title: Lancet – volume: 178 start-page: 1544 year: 2018 ident: pone.0263954.ref008 article-title: Potential biases in machine learning algorithms using electronic health record data publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2018.3763 – year: 2020 ident: pone.0263954.ref019 article-title: Clinical performance of the point-of-care cobas Liat for detection of SARS-CoV-2 in 20 minutes: A multicenter study publication-title: J Clin Microbiol – volume: 15 start-page: e0235502 year: 2020 ident: pone.0263954.ref009 article-title: Evolution and impact of bias in human and machine learning algorithm interaction publication-title: PLoS One doi: 10.1371/journal.pone.0235502 – volume: 20 start-page: 547 year: 2020 ident: pone.0263954.ref014 article-title: COVID-19 in Latin America publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(20)30303-0 – volume: 383 start-page: e120 year: 2020 ident: pone.0263954.ref018 article-title: COVID-19 test sensitivity—a strategy for containment publication-title: N Engl J Med doi: 10.1056/NEJMp2025631 – ident: pone.0263954.ref011 – volume: 19 start-page: 4407 year: 2020 ident: pone.0263954.ref006 article-title: Proteotyping SARS-CoV-2 virus from nasopharyngeal swabs: A proof-of-concept focused on a 3 min mass spectrometry window publication-title: J Proteom Res doi: 10.1021/acs.jproteome.0c00535 – volume: 61 start-page: 100 year: 2015 ident: pone.0263954.ref005 article-title: MALDI-TOF-MS for the diagnosis of infectious diseases publication-title: Clin Chem doi: 10.1373/clinchem.2014.221770 – volume: 16 start-page: 160 year: 2021 ident: pone.0263954.ref017 article-title: COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates publication-title: Vaccines doi: 10.3390/vaccines9020160 – volume: 10 start-page: 12354 issue: 1 year: 2020 ident: pone.0263954.ref022 article-title: Novel application of an automated-machine learning development tool for predicting burn sepsis: proof of concept publication-title: Nature’s Sci Rep doi: 10.1038/s41598-020-69433-w – volume: 145 start-page: 320 issue: 3 year: 2021 ident: pone.0263954.ref021 article-title: Enhancing Military Burn- and Trauma-Related Acute Kidney Injury Prediction Through an Automated Machine Learning Platform and Point-of-Care Testing publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2020-0110-OA – volume: 44 start-page: 71 year: 2021 ident: pone.0263954.ref016 article-title: COVID-19 and vaccine hesitancy: A challenge the United States must overcome publication-title: J Ambul Care Manage doi: 10.1097/JAC.0000000000000360 – volume: 38 start-page: 1168 year: 2020 ident: pone.0263954.ref004 article-title: Detection of SARS-CoV-2 in nasal swabs using MALDI-MS publication-title: Nat Biotech doi: 10.1038/s41587-020-0644-7 – volume: 6 start-page: 2374289519873088 year: 2019 ident: pone.0263954.ref010 article-title: Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods publication-title: Acad Pathol doi: 10.1177/2374289519873088 – volume: 47 start-page: 1 year: 2020 ident: pone.0263954.ref007 article-title: Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency publication-title: Digital Med – volume: 397 start-page: 1023 year: 2021 ident: pone.0263954.ref015 article-title: Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and development publication-title: Lancet doi: 10.1016/S0140-6736(21)00306-8 – ident: pone.0263954.ref001 – volume: 12 start-page: 10 year: 2021 ident: pone.0263954.ref013 article-title: A comprehensive review of COVID-19 in India: A frequent catch of information publication-title: Biotechnol Appl Biochem – ident: pone.0263954.ref002 – ident: pone.0263954.ref012 doi: 10.1145/3292500.3330667 |
SSID | ssj0053866 |
Score | 2.438577 |
Snippet | The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are... |
SourceID | plos doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e0263954 |
SubjectTerms | Algorithms Analysis Automation Biology and life sciences Computer and Information Sciences Coronaviruses COVID-19 COVID-19 vaccines Datasets Evaluation Infectious diseases Innovations Learning algorithms Machine learning Mass spectrometry Mass spectroscopy Medical tests Medicine and Health Sciences Pandemics Physical Sciences Platforms Public health Research and Analysis Methods Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Spectroscopy Viral diseases |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdQT1wQ40MrDDAICThkS-LEjo-lo1oRpRL70G6RndgDVJKIpEL897yXuNksIY0Dlx7iX6Lmfdg_K-_9TMhrgSJeUREGlmkVJNxYSCkscrQZL0uVatNr6a0-85Pz5ONlennjqC-sCRvkgQfDHYU6BWbFmc6ESoCsyJILk0WqDJksbKxx9oU1b7eZGuZgyGLOXaMcE9GR88thU1fmEHYdTKaJtxD1ev3jrDxpNnXrUU6_YPLGCrS4T-456khnw1_eI3dM9YDsueRs6VunIP3uIfk-v9b0ps11awCtLe1-1VRtuxqYqinpj76W0lB3eMQVbTaqQ3hL4ZfO1xfL4yCStDRdX7NVUf2brmafjpfB2XoRrE4fkfPFh7P5SeAOVQgKwdIukEKVwgowHzgvSmzCuYyMtForyWPLYQMB0zeynDJDKR1rU50UtpBhojVLUvaYTCow4z6hGpJXKCAgZagSnhVKsyzGz34WvG3CcErYzsJ54RTH8eCLTd5_RhOw8xgsl6NfcueXKQnGu5pBceMW_Ht03ohFvez-AkRR7qIovy2KpuQFuj4fmk_HrM9nIgKGGwKLnZJXPQI1MyosyrlS27bNl-uLfwCdfvFAbxzI1mCOQrlGCHgn1OLykAceEjK_8Ib3MVB3VmnzmGNfcZylMdy5C96_D78ch_GhWGhXmXo7YLJUAlGcEuEFvWdgf6T69rUXJpcMl6voyf_wyFNyN8ZOk1AEsTwgk-7n1jwD_tfp532q_wGtsVhW priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXLggloe2yy4YhAQcspvEiR2fUOlSbRGlEvtQb5Gd2AVUkuwmFeLfM5O6KZEQcOkh_pIqM57xOJ75hpCXAkm8gsz3LNPKi7ixYFKY5GgTnucq1qbl0pt94meX0YdFvHAf3GqXVrn1ia2jzssMv5GfhBxrJsMkDt9W1x52jcLTVddC4za5g9RlmNIlFt2GC2yZc1cux0Rw4rRzXJWFOYa9B5Nx1FuOWtb-zjcPqlVZ9wLPftrkb-vQ5D655wJIOtpofI_cMsUDsudMtKavHY_0m4fk23jH7E2rXYEALS1tfpRUrZsS4lWT0-9tRqWhroXEklYr1SC8pvBLx_Or6akXSJqbps3cKqj-SWejj6dT72I-8Wbnj8jl5P3F-MxzrRW8TLC48aRQubAi9xmoMIhsxLkMjLRaK8lDy2EbAU4cY508QUIda2MdZTaTfqQ1i2L2mAwKEOM-oRpMWCgIQ3JfRTzJlGZJiId_FnRufH9I2FbCaeZ4x7H9xSptD9ME7D82kktRL6nTy5B43V3VhnfjH_h3qLwOi6zZ7YXyZpk6I0x9HUOUzplOhIog8JU5FyYJFIhBZjbUQ_IMVZ9uSlA7209HAmYXOEY_GZIXLQKZMwpMzVmqdV2n0_nVf4DOP_dArxzIliCOTLlyCHgnZOTqIQ97SLD_rDe8jxN1K5U63VkK3LmdvH8eft4N40Mx3a4w5XqDSWIJ4eKQiN6k7wm4P1J8_dLSk0uGi1Zw8Pc_f0LuhlhJ4gsvlIdk0NyszRHEd41-2hrxL5k2UBs priority: 102 providerName: ProQuest |
Title | Comparative performance of two automated machine learning platforms for COVID-19 detection by MALDI-TOF-MS |
URI | https://www.proquest.com/docview/2696472852 https://www.proquest.com/docview/2696859081 https://pubmed.ncbi.nlm.nih.gov/PMC9337631 https://doaj.org/article/0b581b63b87a49779d67e81ad039cf2b http://dx.doi.org/10.1371/journal.pone.0263954 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPjQCqMYhAQ8pMqnHT8g1HUrK6Ir2tapb5Gd2AVUktKkgv333LlpR6Qh9uKH-Bwp5zv75_jud4S85kji5aWuYwIlnZBpAy6FQY4mZlkmI6Utl97ojJ1Owk_TaLpDNjVbawWWtx7tsJ7UZDnv_v55_QEc_r2t2sC9zaDuosh1F84UgYjCXbIHexNHVx2F23sF8G57e4moxWG-G9TJdP96S2Ozspz-25W7tZgXZQOWNoMq_9qlBg_I_Rpe0t7aHvbJjs4fkv3agUv6tmaZfveIfO_f8H7TxU36AC0MrX4VVK6qAtCszugPG2-paV1gYkYXc1mheEmhpf3x1fDY8QTNdGXjunKqrumo9_l46FyOB87o4jGZDE4u-6dOXXjBSXkQVY7gMuOGZ24AE-yFJmRMeFoYpaRgvmFwyIAlHpFQFiPdjjGRClOTCjdUKgij4Alp5aDGA0IVODiXAFIyV4YsTqUKYh-vBg1YhHbdNgk2Gk7SmpUci2PME3vVxuF0stZcgvOS1PPSJs521GLNyvEf-SOcvK0scmrbB8VyltQumrgqAgzPAhVzGQIsFhnjOvYkqEGkxldt8gKnPlknqG5XhqTHPbAnF5Bum7yyEsirkWPgzkyuyjIZjq_uIHRx3hB6UwuZAtSRyjpZAr4J-boakocNSVgd0kb3ARrqRitl4jPMPfbjyIeRG-O9vfvlthtfisF4uS5Wa5k4EgAm24Q3jL6h4GZP_u2rJS8XAW5p3tO7qOoZuedjtonLHV8ckla1XOnngAEr1SG7fMqhjfsetoOPHbJ3dHL25bxj_6p0rNv_AZWsXt8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4QAXRHmogUIXBAIObv3ctQ8IhYQooUkj0bTKzd21dwMo2KZ2VPVP8RuZ8SPBEgIuveTgHTvOzOw8sjPfEPKSI4iXFZmGdqQwXKY0bCksctQ-i2PhSVVi6U1P2OjM_bTwFjvkZ9MLg2WVjU0sDXWcRvgf-ZHNsGfS9j37ffbDwKlReLrajNCo1OJYXV9Bypa_Gw9Avq9se_hx3h8Z9VQBI-KOVxgBFzHXPDYdeHvL1S5jgaUCLaUImK0ZRNBgv9DNxz5iyWjtSTfSUWC6UjouTokAk38LHK-JO4ovNgke2A7G6vY8h1tHtTYcZmmiDiHXcQLPbbm_ckrAxhd0slWatwLddpnmb35veI_crQNW2qs0bJfsqOQ-2a1NQk7f1LjVbx-Qb_0tkjjNtg0JNNW0uEqpWBcpxMcqpt_LCk5F65EVS5qtRIHkOYVP2p-djweGFdBYFWWlWELlNZ32JoOxMZ8NjenpQ3J2I0x_RDoJsHGPUAkmgwsIe2JTuMyPhHR8Gw8bNeiYMs0ucRoOh1GNc47jNlZheXjHId-pOBeiXMJaLl1ibO7KKpyPf9B_QOFtaBGlu7yQXi7DetOHpvQgK2CO9LlwIdAOYsaVbwlgQxBpW3bJAYo-rFpeN7Ym7HEL4moTYucueVFSIFJHgqVAS7HO83A8O_8PotPPLaLXNZFOgR2RqNsv4DchAliLcr9FCfYmai3voaI2XMnD7c6EOxvl_fPy880yPhTL-xKVrisa3wsgPO0S3lL6FoPbK8nXLyUceuCgk7Qe__3LD8jt0Xw6CSfjk-Mn5I6NXSwmN-xgn3SKy7V6CrFlIZ-VG5qSi5u2IL8Aui6NVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQUJcEOWhBgpdEAg4uPFz1z4gFBKihjYNog_lZnbt3QAKdqgdVf1r_Dpm7I2DJQRcevEhO7bl2dlvZ7Iz3xDynCOJl5PYlvaksHymNCwpTHLUIUtTEUhVcelNjtnBmf9hFsy2yM91LQymVa4xsQLqNE_wP_Key7Bm0g0Dt6dNWsTH4ejt8oeFHaTwpHXdTqM2kUN1dQnhW_FmPIS5fuG6o_engwPLdBiwEu4FpRVxkXLNU9uDL3F87TMWOSrSUoqIuZqBNw1Yhlt-GiKvjNaB9BOdRLYvpedjxwiA_xvwLAfXGJ81wR7gCGOmVM_jTs9Yxv4yz9Q-xD1eFPitrbDqGNDsC53lIi9aTm87ZfO3PXB0h9w2zivt19a2TbZUdpdsG3go6CvDYf36Hvk22LCK0-WmOIHmmpaXORWrMgdfWaX0e5XNqahpXzGny4UoUbygcKWD6fl4aDkRTVVZZY1lVF7RSf9oOLZOpyNrcnKfnF2L0h-QTgZq3CFUAnxwAS5QagufhYmQXujiwaMGe1O23SXeWsNxYjjPsfXGIq4O8jjEPrXmYpyX2MxLl1jNXcua8-Mf8u9w8hpZZOyufsgv5rEBgNiWAUQIzJMhFz443VHKuAodAWqIEu3KLtnDqY_r8tcGd-I-d8DHtsGP7pJnlQSydmRo_3OxKop4PD3_D6GTTy2hl0ZI56CORJhSDPgmZANrSe62JAF7ktbwDhrqWitFvFmlcOfaeP88_LQZxodiql-m8lUtEwYRuKpdwltG31JweyT7-qWiRo883DCdh39_-R65CdgRH42PDx-RWy4WtNjccqNd0ikvVuoxuJmlfFKtZ0o-XzeA_AJTHZGK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+performance+of+two+automated+machine+learning+platforms+for+COVID-19+detection+by+MALDI-TOF-MS&rft.jtitle=PloS+one&rft.au=Rashidi%2C+Hooman+H&rft.au=Pepper%2C+John&rft.au=Howard%2C+Taylor&rft.au=Klein%2C+Karina&rft.date=2022-07-29&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=7&rft.spage=e0263954&rft_id=info:doi/10.1371%2Fjournal.pone.0263954&rft.externalDBID=IOV&rft.externalDocID=A711930508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |