Comparative performance of two automated machine learning platforms for COVID-19 detection by MALDI-TOF-MS

The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 7; p. e0263954
Main Authors Rashidi, Hooman H., Pepper, John, Howard, Taylor, Klein, Karina, May, Larissa, Albahra, Samer, Phinney, Brett, Salemi, Michelle R., Tran, Nam K.
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 29.07.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-cost alternative to molecular methods. Automated ML is a novel approach that could move mass spectrometry techniques beyond the confines of traditional laboratory settings. However, it remains unknown how different automated ML platforms perform for COVID-19 MS analysis. To this end, the goal of our study is to compare algorithms produced by two commercial automated ML platforms (Platforms A and B). Our study consisted of MS data derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-CoV-2 variants. The top optimized ML model with respect to positive percent agreement (PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative percent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%, respectively. These results illustrate the MS method’s robustness against SARS-CoV-2 variants and highlight similarities and differences in automated ML platforms in producing optimal predictive algorithms for a given dataset.
AbstractList The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-cost alternative to molecular methods. Automated ML is a novel approach that could move mass spectrometry techniques beyond the confines of traditional laboratory settings. However, it remains unknown how different automated ML platforms perform for COVID-19 MS analysis. To this end, the goal of our study is to compare algorithms produced by two commercial automated ML platforms (Platforms A and B). Our study consisted of MS data derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-CoV-2 variants. The top optimized ML model with respect to positive percent agreement (PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative percent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%, respectively. These results illustrate the MS method's robustness against SARS-CoV-2 variants and highlight similarities and differences in automated ML platforms in producing optimal predictive algorithms for a given dataset.
The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-cost alternative to molecular methods. Automated ML is a novel approach that could move mass spectrometry techniques beyond the confines of traditional laboratory settings. However, it remains unknown how different automated ML platforms perform for COVID-19 MS analysis. To this end, the goal of our study is to compare algorithms produced by two commercial automated ML platforms (Platforms A and B). Our study consisted of MS data derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-CoV-2 variants. The top optimized ML model with respect to positive percent agreement (PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative percent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%, respectively. These results illustrate the MS method's robustness against SARS-CoV-2 variants and highlight similarities and differences in automated ML platforms in producing optimal predictive algorithms for a given dataset.The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-cost alternative to molecular methods. Automated ML is a novel approach that could move mass spectrometry techniques beyond the confines of traditional laboratory settings. However, it remains unknown how different automated ML platforms perform for COVID-19 MS analysis. To this end, the goal of our study is to compare algorithms produced by two commercial automated ML platforms (Platforms A and B). Our study consisted of MS data derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-CoV-2 variants. The top optimized ML model with respect to positive percent agreement (PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative percent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%, respectively. These results illustrate the MS method's robustness against SARS-CoV-2 variants and highlight similarities and differences in automated ML platforms in producing optimal predictive algorithms for a given dataset.
Audience Academic
Author Phinney, Brett
May, Larissa
Tran, Nam K.
Klein, Karina
Rashidi, Hooman H.
Albahra, Samer
Howard, Taylor
Salemi, Michelle R.
Pepper, John
AuthorAffiliation 3 Dept. of Pathology and Laboratory Medicine, UC Davis, Davis, California, United States of America
1 Robert. J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
2 Spectra Pass LLC & Allegiant Airlines, Las Vegas, Nevada, United States of America
4 Dept. of Emergency Medicine, UC Davis, Davis, California, United States of America
Kathmandu Institute of Applied Sciences, NEPAL
5 Proteomics Core, UC Davis, Davis, California, United States of America
AuthorAffiliation_xml – name: 1 Robert. J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
– name: 4 Dept. of Emergency Medicine, UC Davis, Davis, California, United States of America
– name: 2 Spectra Pass LLC & Allegiant Airlines, Las Vegas, Nevada, United States of America
– name: Kathmandu Institute of Applied Sciences, NEPAL
– name: 3 Dept. of Pathology and Laboratory Medicine, UC Davis, Davis, California, United States of America
– name: 5 Proteomics Core, UC Davis, Davis, California, United States of America
Author_xml – sequence: 1
  givenname: Hooman H.
  surname: Rashidi
  fullname: Rashidi, Hooman H.
– sequence: 2
  givenname: John
  surname: Pepper
  fullname: Pepper, John
– sequence: 3
  givenname: Taylor
  surname: Howard
  fullname: Howard, Taylor
– sequence: 4
  givenname: Karina
  surname: Klein
  fullname: Klein, Karina
– sequence: 5
  givenname: Larissa
  surname: May
  fullname: May, Larissa
– sequence: 6
  givenname: Samer
  surname: Albahra
  fullname: Albahra, Samer
– sequence: 7
  givenname: Brett
  surname: Phinney
  fullname: Phinney, Brett
– sequence: 8
  givenname: Michelle R.
  surname: Salemi
  fullname: Salemi, Michelle R.
– sequence: 9
  givenname: Nam K.
  orcidid: 0000-0003-1565-0025
  surname: Tran
  fullname: Tran, Nam K.
BookMark eNqNk12L1DAUhousuB_6DwQLguhFx6Zpk8YLYZh1dWCWAXfd25CmyUyGNKlJurr_3tQZZbssIoU2nD7vm5yTc06TI2ONSJKXIJ8BiMH7nR2cYXrWx_AsLxAkVfkkOQEEFhkqcnh0b32cnHq_y_MK1gg9S45hRfIqJ8VJslvYrmeOBXUr0l44aV3HDBeplWn4YVM2BNuxINq0Y3yrjEi1YM4os0l7zcKI-zS-08X6ZnmeAZK2IggelDVpc5dezlfny-x6fZFdXj1PnkqmvXhx-J4l3y4-XS--ZKv15-Vivso4hlXICGYtlrjNoeAclLJEiABBZNMwggqJEK5EAypQkbYGGCApq6bkkpO8bBpYVvAsebX37bX19FAmTwtEUImLuioisdwTrWU72jvVMXdHLVP0d8C6DWUuKK4FzZuqBg2CTY1ZSTAmLcKiBiwej3BZNNHr42G3oelEy4UJjumJ6fSPUVu6sbeUQIgRBNHg7cHA2e-D8IF2ynOhNTPCDvtz1_G-6hF9_QB9PLsDtWExAWWkjfvy0ZTOMYg9Ea--jtTsESo-regUjz0lVYxPBO8mgsgE8TNs2OA9XV59_X92fTNl39xjt4LpsPVWD2ML-SlY7kHurPdOyL9FBjkdR-JPNeg4EvQwElH24YGMq8BG95iw0v8W_wLXsxFX
CitedBy_id crossref_primary_10_1016_j_jtha_2022_12_019
crossref_primary_10_1038_s41541_024_00946_5
crossref_primary_10_1097_QCO_0000000000000935
crossref_primary_10_1177_10406387241270071
crossref_primary_10_4265_jmc_29_4_143
crossref_primary_10_1186_s12903_024_04347_x
Cites_doi 10.1038/s41598-021-87463-w
10.1001/jamainternmed.2018.3763
10.1371/journal.pone.0235502
10.1016/S1473-3099(20)30303-0
10.1056/NEJMp2025631
10.1021/acs.jproteome.0c00535
10.1373/clinchem.2014.221770
10.3390/vaccines9020160
10.1038/s41598-020-69433-w
10.5858/arpa.2020-0110-OA
10.1097/JAC.0000000000000360
10.1038/s41587-020-0644-7
10.1177/2374289519873088
10.1016/S0140-6736(21)00306-8
10.1145/3292500.3330667
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Rashidi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Rashidi et al 2022 Rashidi et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Rashidi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Rashidi et al 2022 Rashidi et al
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0263954
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic




Agricultural Science Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Public Health
DocumentTitleAlternate Comparative performance automated machine learning platforms for COVID-19 detection by MALDI-TOF-MS
EISSN 1932-6203
ExternalDocumentID 2696472852
oai_doaj_org_article_0b581b63b87a49779d67e81ad039cf2b
PMC9337631
A711930508
10_1371_journal_pone_0263954
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c735t-97ad7f7d03ecc14f46691e9fbba962f6675eb15159d81716ff5b4cfc904bb3453
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 31 00:47:56 EDT 2022
Wed Aug 27 01:24:16 EDT 2025
Thu Aug 21 18:35:21 EDT 2025
Fri Jul 11 13:32:20 EDT 2025
Fri Jul 25 09:28:36 EDT 2025
Tue Jun 17 20:56:59 EDT 2025
Tue Jun 10 20:24:07 EDT 2025
Fri Jun 27 04:07:11 EDT 2025
Fri Jun 27 03:36:54 EDT 2025
Thu May 22 21:16:52 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Tue Jul 01 03:29:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c735t-97ad7f7d03ecc14f46691e9fbba962f6675eb15159d81716ff5b4cfc904bb3453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: N.T. is a consultant for Roche Diagnostics and Roche Molecular Systems. He is also a co-inventor / co-owner of MILO-ML, LLC. H.R. is also a co-inventor / co-owner of MILO-ML, LLC. J.P. is a co-founder and employee of SpectraPass, LLC. L.M. is a consultant for Roche Diagnostics and Roche Molecular Systems. S.A. is a co-inventor / co-owner of MILO-ML, LLC. T.H., K.K., B.P., and M.S. have no competing interests.
ORCID 0000-0003-1565-0025
OpenAccessLink https://www.proquest.com/docview/2696472852?pq-origsite=%requestingapplication%
PMID 35905092
PQID 2696472852
PQPubID 1436336
PageCount e0263954
ParticipantIDs plos_journals_2696472852
doaj_primary_oai_doaj_org_article_0b581b63b87a49779d67e81ad039cf2b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337631
proquest_miscellaneous_2696859081
proquest_journals_2696472852
gale_infotracmisc_A711930508
gale_infotracacademiconefile_A711930508
gale_incontextgauss_ISR_A711930508
gale_incontextgauss_IOV_A711930508
gale_healthsolutions_A711930508
crossref_primary_10_1371_journal_pone_0263954
crossref_citationtrail_10_1371_journal_pone_0263954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-29
PublicationDateYYYYMMDD 2022-07-29
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-29
  day: 29
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Coustasse (pone.0263954.ref016) 2021; 44
NK Tran (pone.0263954.ref003) 2021; 11
OJ Wouters (pone.0263954.ref015) 2021; 397
G Hanson (pone.0263954.ref019) 2020
S Wenlong (pone.0263954.ref009) 2020; 15
CM Cutillo (pone.0263954.ref007) 2020; 47
Z Du (pone.0263954.ref020) 2021; 6
pone.0263954.ref011
NK Tran (pone.0263954.ref022) 2020; 10
pone.0263954.ref001
pone.0263954.ref012
pone.0263954.ref002
M Mina (pone.0263954.ref018) 2020; 383
FM Nachtigall (pone.0263954.ref004) 2020; 38
D Gouvia (pone.0263954.ref006) 2020; 19
Shivangi (pone.0263954.ref013) 2021; 12
B. Talha (pone.0263954.ref014) 2020; 20
HR Rashidi (pone.0263954.ref010) 2019; 6
M. Sallam (pone.0263954.ref017) 2021; 16
MA Gianfrancesco (pone.0263954.ref008) 2018; 178
R. Patel (pone.0263954.ref005) 2015; 61
HH Rashidi (pone.0263954.ref021) 2021; 145
References_xml – volume: 11
  start-page: 8219
  year: 2021
  ident: pone.0263954.ref003
  article-title: Novel Application of Automated Machine Learning With Maldi-Tof-Ms For Rapid High-Throughput Screening of Covid-19
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-87463-w
– volume: 6
  start-page: E184
  year: 2021
  ident: pone.0263954.ref020
  article-title: Comparative cost-effectiveness of SARS-CoV-2 testing strategies in the USA: A modelling study
  publication-title: Lancet
– volume: 178
  start-page: 1544
  year: 2018
  ident: pone.0263954.ref008
  article-title: Potential biases in machine learning algorithms using electronic health record data
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2018.3763
– year: 2020
  ident: pone.0263954.ref019
  article-title: Clinical performance of the point-of-care cobas Liat for detection of SARS-CoV-2 in 20 minutes: A multicenter study
  publication-title: J Clin Microbiol
– volume: 15
  start-page: e0235502
  year: 2020
  ident: pone.0263954.ref009
  article-title: Evolution and impact of bias in human and machine learning algorithm interaction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0235502
– volume: 20
  start-page: 547
  year: 2020
  ident: pone.0263954.ref014
  article-title: COVID-19 in Latin America
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(20)30303-0
– volume: 383
  start-page: e120
  year: 2020
  ident: pone.0263954.ref018
  article-title: COVID-19 test sensitivity—a strategy for containment
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp2025631
– ident: pone.0263954.ref011
– volume: 19
  start-page: 4407
  year: 2020
  ident: pone.0263954.ref006
  article-title: Proteotyping SARS-CoV-2 virus from nasopharyngeal swabs: A proof-of-concept focused on a 3 min mass spectrometry window
  publication-title: J Proteom Res
  doi: 10.1021/acs.jproteome.0c00535
– volume: 61
  start-page: 100
  year: 2015
  ident: pone.0263954.ref005
  article-title: MALDI-TOF-MS for the diagnosis of infectious diseases
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2014.221770
– volume: 16
  start-page: 160
  year: 2021
  ident: pone.0263954.ref017
  article-title: COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates
  publication-title: Vaccines
  doi: 10.3390/vaccines9020160
– volume: 10
  start-page: 12354
  issue: 1
  year: 2020
  ident: pone.0263954.ref022
  article-title: Novel application of an automated-machine learning development tool for predicting burn sepsis: proof of concept
  publication-title: Nature’s Sci Rep
  doi: 10.1038/s41598-020-69433-w
– volume: 145
  start-page: 320
  issue: 3
  year: 2021
  ident: pone.0263954.ref021
  article-title: Enhancing Military Burn- and Trauma-Related Acute Kidney Injury Prediction Through an Automated Machine Learning Platform and Point-of-Care Testing
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2020-0110-OA
– volume: 44
  start-page: 71
  year: 2021
  ident: pone.0263954.ref016
  article-title: COVID-19 and vaccine hesitancy: A challenge the United States must overcome
  publication-title: J Ambul Care Manage
  doi: 10.1097/JAC.0000000000000360
– volume: 38
  start-page: 1168
  year: 2020
  ident: pone.0263954.ref004
  article-title: Detection of SARS-CoV-2 in nasal swabs using MALDI-MS
  publication-title: Nat Biotech
  doi: 10.1038/s41587-020-0644-7
– volume: 6
  start-page: 2374289519873088
  year: 2019
  ident: pone.0263954.ref010
  article-title: Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods
  publication-title: Acad Pathol
  doi: 10.1177/2374289519873088
– volume: 47
  start-page: 1
  year: 2020
  ident: pone.0263954.ref007
  article-title: Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency
  publication-title: Digital Med
– volume: 397
  start-page: 1023
  year: 2021
  ident: pone.0263954.ref015
  article-title: Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and development
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00306-8
– ident: pone.0263954.ref001
– volume: 12
  start-page: 10
  year: 2021
  ident: pone.0263954.ref013
  article-title: A comprehensive review of COVID-19 in India: A frequent catch of information
  publication-title: Biotechnol Appl Biochem
– ident: pone.0263954.ref002
– ident: pone.0263954.ref012
  doi: 10.1145/3292500.3330667
SSID ssj0053866
Score 2.438577
Snippet The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0263954
SubjectTerms Algorithms
Analysis
Automation
Biology and life sciences
Computer and Information Sciences
Coronaviruses
COVID-19
COVID-19 vaccines
Datasets
Evaluation
Infectious diseases
Innovations
Learning algorithms
Machine learning
Mass spectrometry
Mass spectroscopy
Medical tests
Medicine and Health Sciences
Pandemics
Physical Sciences
Platforms
Public health
Research and Analysis Methods
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Spectroscopy
Viral diseases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdQT1wQ40MrDDAICThkS-LEjo-lo1oRpRL70G6RndgDVJKIpEL897yXuNksIY0Dlx7iX6Lmfdg_K-_9TMhrgSJeUREGlmkVJNxYSCkscrQZL0uVatNr6a0-85Pz5ONlennjqC-sCRvkgQfDHYU6BWbFmc6ESoCsyJILk0WqDJksbKxx9oU1b7eZGuZgyGLOXaMcE9GR88thU1fmEHYdTKaJtxD1ev3jrDxpNnXrUU6_YPLGCrS4T-456khnw1_eI3dM9YDsueRs6VunIP3uIfk-v9b0ps11awCtLe1-1VRtuxqYqinpj76W0lB3eMQVbTaqQ3hL4ZfO1xfL4yCStDRdX7NVUf2brmafjpfB2XoRrE4fkfPFh7P5SeAOVQgKwdIukEKVwgowHzgvSmzCuYyMtForyWPLYQMB0zeynDJDKR1rU50UtpBhojVLUvaYTCow4z6hGpJXKCAgZagSnhVKsyzGz34WvG3CcErYzsJ54RTH8eCLTd5_RhOw8xgsl6NfcueXKQnGu5pBceMW_Ht03ohFvez-AkRR7qIovy2KpuQFuj4fmk_HrM9nIgKGGwKLnZJXPQI1MyosyrlS27bNl-uLfwCdfvFAbxzI1mCOQrlGCHgn1OLykAceEjK_8Ib3MVB3VmnzmGNfcZylMdy5C96_D78ch_GhWGhXmXo7YLJUAlGcEuEFvWdgf6T69rUXJpcMl6voyf_wyFNyN8ZOk1AEsTwgk-7n1jwD_tfp532q_wGtsVhW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXLggloe2yy4YhAQcspvEiR2fUOlSbRGlEvtQb5Gd2AVUkuwmFeLfM5O6KZEQcOkh_pIqM57xOJ75hpCXAkm8gsz3LNPKi7ixYFKY5GgTnucq1qbl0pt94meX0YdFvHAf3GqXVrn1ia2jzssMv5GfhBxrJsMkDt9W1x52jcLTVddC4za5g9RlmNIlFt2GC2yZc1cux0Rw4rRzXJWFOYa9B5Nx1FuOWtb-zjcPqlVZ9wLPftrkb-vQ5D655wJIOtpofI_cMsUDsudMtKavHY_0m4fk23jH7E2rXYEALS1tfpRUrZsS4lWT0-9tRqWhroXEklYr1SC8pvBLx_Or6akXSJqbps3cKqj-SWejj6dT72I-8Wbnj8jl5P3F-MxzrRW8TLC48aRQubAi9xmoMIhsxLkMjLRaK8lDy2EbAU4cY508QUIda2MdZTaTfqQ1i2L2mAwKEOM-oRpMWCgIQ3JfRTzJlGZJiId_FnRufH9I2FbCaeZ4x7H9xSptD9ME7D82kktRL6nTy5B43V3VhnfjH_h3qLwOi6zZ7YXyZpk6I0x9HUOUzplOhIog8JU5FyYJFIhBZjbUQ_IMVZ9uSlA7209HAmYXOEY_GZIXLQKZMwpMzVmqdV2n0_nVf4DOP_dArxzIliCOTLlyCHgnZOTqIQ97SLD_rDe8jxN1K5U63VkK3LmdvH8eft4N40Mx3a4w5XqDSWIJ4eKQiN6k7wm4P1J8_dLSk0uGi1Zw8Pc_f0LuhlhJ4gsvlIdk0NyszRHEd41-2hrxL5k2UBs
  priority: 102
  providerName: ProQuest
Title Comparative performance of two automated machine learning platforms for COVID-19 detection by MALDI-TOF-MS
URI https://www.proquest.com/docview/2696472852
https://www.proquest.com/docview/2696859081
https://pubmed.ncbi.nlm.nih.gov/PMC9337631
https://doaj.org/article/0b581b63b87a49779d67e81ad039cf2b
http://dx.doi.org/10.1371/journal.pone.0263954
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPjQCqMYhAQ8pMqnHT8g1HUrK6Ir2tapb5Gd2AVUktKkgv333LlpR6Qh9uKH-Bwp5zv75_jud4S85kji5aWuYwIlnZBpAy6FQY4mZlkmI6Utl97ojJ1Owk_TaLpDNjVbawWWtx7tsJ7UZDnv_v55_QEc_r2t2sC9zaDuosh1F84UgYjCXbIHexNHVx2F23sF8G57e4moxWG-G9TJdP96S2Ozspz-25W7tZgXZQOWNoMq_9qlBg_I_Rpe0t7aHvbJjs4fkv3agUv6tmaZfveIfO_f8H7TxU36AC0MrX4VVK6qAtCszugPG2-paV1gYkYXc1mheEmhpf3x1fDY8QTNdGXjunKqrumo9_l46FyOB87o4jGZDE4u-6dOXXjBSXkQVY7gMuOGZ24AE-yFJmRMeFoYpaRgvmFwyIAlHpFQFiPdjjGRClOTCjdUKgij4Alp5aDGA0IVODiXAFIyV4YsTqUKYh-vBg1YhHbdNgk2Gk7SmpUci2PME3vVxuF0stZcgvOS1PPSJs521GLNyvEf-SOcvK0scmrbB8VyltQumrgqAgzPAhVzGQIsFhnjOvYkqEGkxldt8gKnPlknqG5XhqTHPbAnF5Bum7yyEsirkWPgzkyuyjIZjq_uIHRx3hB6UwuZAtSRyjpZAr4J-boakocNSVgd0kb3ARrqRitl4jPMPfbjyIeRG-O9vfvlthtfisF4uS5Wa5k4EgAm24Q3jL6h4GZP_u2rJS8XAW5p3tO7qOoZuedjtonLHV8ckla1XOnngAEr1SG7fMqhjfsetoOPHbJ3dHL25bxj_6p0rNv_AZWsXt8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4QAXRHmogUIXBAIObv3ctQ8IhYQooUkj0bTKzd21dwMo2KZ2VPVP8RuZ8SPBEgIuveTgHTvOzOw8sjPfEPKSI4iXFZmGdqQwXKY0bCksctQ-i2PhSVVi6U1P2OjM_bTwFjvkZ9MLg2WVjU0sDXWcRvgf-ZHNsGfS9j37ffbDwKlReLrajNCo1OJYXV9Bypa_Gw9Avq9se_hx3h8Z9VQBI-KOVxgBFzHXPDYdeHvL1S5jgaUCLaUImK0ZRNBgv9DNxz5iyWjtSTfSUWC6UjouTokAk38LHK-JO4ovNgke2A7G6vY8h1tHtTYcZmmiDiHXcQLPbbm_ckrAxhd0slWatwLddpnmb35veI_crQNW2qs0bJfsqOQ-2a1NQk7f1LjVbx-Qb_0tkjjNtg0JNNW0uEqpWBcpxMcqpt_LCk5F65EVS5qtRIHkOYVP2p-djweGFdBYFWWlWELlNZ32JoOxMZ8NjenpQ3J2I0x_RDoJsHGPUAkmgwsIe2JTuMyPhHR8Gw8bNeiYMs0ucRoOh1GNc47jNlZheXjHId-pOBeiXMJaLl1ibO7KKpyPf9B_QOFtaBGlu7yQXi7DetOHpvQgK2CO9LlwIdAOYsaVbwlgQxBpW3bJAYo-rFpeN7Ym7HEL4moTYucueVFSIFJHgqVAS7HO83A8O_8PotPPLaLXNZFOgR2RqNsv4DchAliLcr9FCfYmai3voaI2XMnD7c6EOxvl_fPy880yPhTL-xKVrisa3wsgPO0S3lL6FoPbK8nXLyUceuCgk7Qe__3LD8jt0Xw6CSfjk-Mn5I6NXSwmN-xgn3SKy7V6CrFlIZ-VG5qSi5u2IL8Aui6NVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQUJcEOWhBgpdEAg4uPFz1z4gFBKihjYNog_lZnbt3QAKdqgdVf1r_Dpm7I2DJQRcevEhO7bl2dlvZ7Iz3xDynCOJl5PYlvaksHymNCwpTHLUIUtTEUhVcelNjtnBmf9hFsy2yM91LQymVa4xsQLqNE_wP_Key7Bm0g0Dt6dNWsTH4ejt8oeFHaTwpHXdTqM2kUN1dQnhW_FmPIS5fuG6o_engwPLdBiwEu4FpRVxkXLNU9uDL3F87TMWOSrSUoqIuZqBNw1Yhlt-GiKvjNaB9BOdRLYvpedjxwiA_xvwLAfXGJ81wR7gCGOmVM_jTs9Yxv4yz9Q-xD1eFPitrbDqGNDsC53lIi9aTm87ZfO3PXB0h9w2zivt19a2TbZUdpdsG3go6CvDYf36Hvk22LCK0-WmOIHmmpaXORWrMgdfWaX0e5XNqahpXzGny4UoUbygcKWD6fl4aDkRTVVZZY1lVF7RSf9oOLZOpyNrcnKfnF2L0h-QTgZq3CFUAnxwAS5QagufhYmQXujiwaMGe1O23SXeWsNxYjjPsfXGIq4O8jjEPrXmYpyX2MxLl1jNXcua8-Mf8u9w8hpZZOyufsgv5rEBgNiWAUQIzJMhFz443VHKuAodAWqIEu3KLtnDqY_r8tcGd-I-d8DHtsGP7pJnlQSydmRo_3OxKop4PD3_D6GTTy2hl0ZI56CORJhSDPgmZANrSe62JAF7ktbwDhrqWitFvFmlcOfaeP88_LQZxodiql-m8lUtEwYRuKpdwltG31JweyT7-qWiRo883DCdh39_-R65CdgRH42PDx-RWy4WtNjccqNd0ikvVuoxuJmlfFKtZ0o-XzeA_AJTHZGK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+performance+of+two+automated+machine+learning+platforms+for+COVID-19+detection+by+MALDI-TOF-MS&rft.jtitle=PloS+one&rft.au=Rashidi%2C+Hooman+H&rft.au=Pepper%2C+John&rft.au=Howard%2C+Taylor&rft.au=Klein%2C+Karina&rft.date=2022-07-29&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=7&rft.spage=e0263954&rft_id=info:doi/10.1371%2Fjournal.pone.0263954&rft.externalDBID=IOV&rft.externalDocID=A711930508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon