Icariin Enhances Cytotoxicity of Doxorubicin in Human Multidrug-Resistant Osteosarcoma Cells by Inhibition of ABCB1 and Down-Regulation of the PI3K/Akt Pathway
Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great po...
Saved in:
Published in | Biological & pharmaceutical bulletin Vol. 38; no. 2; pp. 277 - 284 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Pharmaceutical Society of Japan
01.02.2015
Pharmaceutical Society of Japan Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of mainstream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma. |
---|---|
AbstractList | Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of mainstream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma. Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of main-stream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma. Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of mainstream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma.Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of mainstream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma. |
Author | Guo, Chao Wang, Zhendong Yang, Lei Kong, Lingyi Xia, Yuanzheng |
Author_xml | – sequence: 1 fullname: Wang, Zhendong organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University – sequence: 2 fullname: Yang, Lei organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University – sequence: 3 fullname: Xia, Yuanzheng organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University – sequence: 4 fullname: Guo, Chao organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University – sequence: 5 fullname: Kong, Lingyi organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25747987$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vGyEQhlGVqkncHnutkHrpZRM-dhf26GzTxGqqRFV7RsCyNu4aHGCV-Nf0rxbbiStFqiohEJpn3hmY9xQcOe8MAO8xOsOk5Odqrc4ULguE6pq-AieYlqyoCK6OwAlqMC9qXPFjcBrjEiHEEKFvwDGpWMkazk7A75mWwVoHL91COm0ibDfJJ_9otU0b6Hv42T_6MKp8dzCv63ElHfw2Dsl2YZwX3020MUmX4G1MxkcZtF9J2JphiFBt4MwtrLLJercVm160FxhK12XZB5eT5-Mgn4NpYeDdjH49n_5K8E6mxYPcvAWvezlE8-7pnICfXy5_tNfFze3VrJ3eFJrRKhWs72jdEMarhnacSq1Uow3FtcK846SvqKRUdryRiJqy5so0pjcE9Vgx3deITsCnve46-PvRxCRWNur8COmMH6PAnDKKGW_K_6N1jZuGlg3N6McX6NKPweWHCMwqWlVNuRP88ESNamU6sQ52JcNGPE8pA8Ue0MHHGEx_QDASWxeI7AKRXSB2Lsg8fcHnYe6-OQVph39mXe2zcg9Wy8G7wTrzt2MdmbJ-8IIgXOUcyhERCNcCEcbyxktSZqXssAlo90rL7Iy5OXQrQ7J6MLu6lAuy3Q71D1G9kEEYR_8AMPXkeg |
CitedBy_id | crossref_primary_10_1016_j_lfs_2018_03_059 crossref_primary_10_1016_j_ejmech_2022_114542 crossref_primary_10_3390_nu8090563 crossref_primary_10_1016_j_bbadis_2019_165575 crossref_primary_10_1007_s10856_025_06874_7 crossref_primary_10_1016_j_taap_2023_116405 crossref_primary_10_3390_ph17050598 crossref_primary_10_2174_0929867329666220209110009 crossref_primary_10_3892_ol_2017_7693 crossref_primary_10_1155_2017_2694261 crossref_primary_10_1080_1040841X_2019_1607248 crossref_primary_10_1016_j_biopha_2021_112138 crossref_primary_10_1021_acs_jnatprod_1c00950 crossref_primary_10_1111_jcmm_14123 crossref_primary_10_1590_1414_431x20187151 crossref_primary_10_1038_aps_2015_124 crossref_primary_10_1155_2017_2198323 crossref_primary_10_3390_pharmaceutics10030144 crossref_primary_10_1248_bpb_b21_00991 crossref_primary_10_3389_fphar_2022_867133 crossref_primary_10_1177_09603271221097363 crossref_primary_10_1210_jendso_bvz025 crossref_primary_10_18632_oncotarget_19148 crossref_primary_10_1016_S1875_5364_18_30026_8 crossref_primary_10_1177_1010428317705745 crossref_primary_10_3892_ijmm_2016_2539 crossref_primary_10_1002_cbdv_202401533 crossref_primary_10_1016_j_heliyon_2021_e07325 crossref_primary_10_1080_10937404_2024_2407452 crossref_primary_10_1186_s43094_025_00780_z crossref_primary_10_1016_j_prp_2023_154693 crossref_primary_10_1248_bpb_b21_00163 crossref_primary_10_3892_ijo_2016_3423 crossref_primary_10_3389_fphar_2023_1216363 crossref_primary_10_1007_s11033_022_07778_3 crossref_primary_10_1016_j_prp_2023_154902 crossref_primary_10_1002_ptr_6798 crossref_primary_10_1155_2022_1955101 crossref_primary_10_3389_fphar_2016_00191 crossref_primary_10_1097_CAD_0000000000000455 |
Cites_doi | 10.1016/j.jviromet.2009.03.027 10.1124/jpet.107.127704 10.3892/or_00000407 10.1097/00001622-199511000-00011 10.1677/erc.0.0100043 10.1200/JCO.2005.03.6640 10.1097/01.ju.0000074710.96154.c9 10.1158/1078-0432.CCR-06-2414 10.1016/j.urology.2006.09.031 10.1016/j.ygyno.2003.08.004 10.5414/CPP47049 10.1038/sj.cgt.7700602 10.1074/jbc.M414696200 10.1016/j.ejphar.2007.02.039 10.1016/j.phymed.2007.04.002 10.3760/cma.j.issn.0366-6999.20130950 10.1186/1756-9966-29-34 10.5582/ddt.2011.v5.5.220 10.1016/j.bmc.2007.11.057 10.1007/BF03226382 10.2174/092986712800167392 10.18433/J3RC77 10.1080/10428190701190169 10.1038/nrc1590 10.1371/journal.pone.0025284 10.2174/156802610792928103 10.1186/1471-2407-5-39 10.3892/or.7.4.859 10.3892/or.2014.3181 |
ContentType | Journal Article |
Copyright | 2015 The Pharmaceutical Society of Japan Copyright Japan Science and Technology Agency 2015 |
Copyright_xml | – notice: 2015 The Pharmaceutical Society of Japan – notice: Copyright Japan Science and Technology Agency 2015 |
CorporateAuthor | State Key Laboratory of Natural Medicines Department of Natural Medicinal Chemistry China Pharmaceutical University |
CorporateAuthor_xml | – name: Department of Natural Medicinal Chemistry – name: State Key Laboratory of Natural Medicines – name: China Pharmaceutical University |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
DOI | 10.1248/bpb.b14-00663 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5215 |
EndPage | 284 |
ExternalDocumentID | 3912619301 25747987 10_1248_bpb_b14_00663 cs7biolo_2015_003802_016_0277_02842400602 article_bpb_38_2_38_b14_00663_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 23N 2WC 53G 5GY 6J9 ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JMI JSF JSH KQ8 MOJWN OK1 P2P RJT RZJ TR2 XSB ABJNI .55 1CY AAYXX AI. CITATION TKC VH1 X7M ZXP ZY4 CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c735t-7fd369278593d83acbb9ce316b18d82f53a33ad89a03e468be9efe20f1b7cf603 |
ISSN | 0918-6158 1347-5215 |
IngestDate | Thu Jul 10 19:08:36 EDT 2025 Fri Jul 11 08:47:55 EDT 2025 Mon Jun 30 10:04:42 EDT 2025 Mon Jul 21 05:56:15 EDT 2025 Tue Jul 01 02:43:51 EDT 2025 Thu Apr 24 23:11:34 EDT 2025 Thu Jul 10 16:12:41 EDT 2025 Thu Aug 17 20:29:50 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c735t-7fd369278593d83acbb9ce316b18d82f53a33ad89a03e468be9efe20f1b7cf603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/bpb/38/2/38_b14-00663/_article/-char/en |
PMID | 25747987 |
PQID | 1753559494 |
PQPubID | 1966364 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1837317894 proquest_miscellaneous_1661993493 proquest_journals_1753559494 pubmed_primary_25747987 crossref_primary_10_1248_bpb_b14_00663 crossref_citationtrail_10_1248_bpb_b14_00663 medicalonline_journals_cs7biolo_2015_003802_016_0277_02842400602 jstage_primary_article_bpb_38_2_38_b14_00663_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Biological & pharmaceutical bulletin |
PublicationTitleAlternate | Biol Pharm Bull |
PublicationYear | 2015 |
Publisher | The Pharmaceutical Society of Japan Pharmaceutical Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Pharmaceutical Society of Japan – name: Japan Science and Technology Agency |
References | 20) Wang J, Yin JQ, Jia Q, Shen JN, Huang G, Xie XB, Zou CY. Bufalin induces apoptosis in osteosarcoma U-2OS and U-2OS methotrexate 300-resistant cell lines in vitro. Zhonghua Zhong Liu Za Zhi, 32, 734–738 (2010). 27) Diestra JE, Condom E, Del Muro XG, Scheffer GL, Perez J, Zurita AJ, Munoz-Segui J, Vigues F, Scheper RJ, Capella G, Germa-Lluch JR, Izquierdo MA. Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: Biological and clinical implications. J. Urol., 170, 1383–1387 (2003). 29) Coffey JC, Wang JH, Smith MJF, Laing A, Bouchier-Hayes D, Cotter TG, Redmond HP. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. J. Biol. Chem., 280, 20968–20977 (2005). 25) Broxterman HJ, Giaccone G, Lankelma J. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr. Opin. Oncol., 7, 532–540 (1995). 16) Oda Y, Matsumoto Y, Harimaya K, Iwamoto Y, Tsuneyoshi M. Establishment of new multidrug-resistant human osteosarcoma cell lines. Oncol. Rep., 7, 859–866 (2000). 10) Molnár J, Engi H, Hohmann J, Molnar P, Deli J, Wesolowska O, Michalak K, Wang Q. Reversal of multidrug resistance by natural substances from plants. Curr. Top. Med. Chem., 10, 1757–1768 (2010). 30) Luan Y, Yang Q, Xie Y, Duan S, Cai S, Forrest ML. A sensitive near-infrared fluorescent probe for caspase-mediated apoptosis: Synthesis and application in cell imaging. Drug Discov. Ther., 5, 220–226 (2011). 28) Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr. Relat. Cancer, 10, 43–73 (2003). 17) Roncuzzi L, Pancotti F, Baldini N. Involvement of HIF-1alpha activation in the doxorubicin resistance of human osteosarcoma cells. Oncol. Rep., 32, 389–394 (2014). 6) Guns ES, Bullock PL, Reimer ML, Dixon R, Bally M, Mayer LD. Assessment of the involvement of CYP3A in vitro metabolism of a new modulator of MDR in cancer chemotherapy, OC144-193, by human liver microsomes. Eur. J. Drug Metab. Pharmacokinet., 26, 273–282 (2001). 21) Díaz-Montero CM, McIntyre BW. Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents. BMC Cancer, 5, 39 (2005). 11) Palmeira A, Sousa E, Vasconcelos MH, Pinto MM. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr. Med. Chem., 19, 1946–2025 (2012). 15) Ning HX, Xin ZC, Lin GT, Banie L, Lue TF, Lin CS. Effects of icariin on phosphodiesterase-5 activity in vitro and cyclic guanosine monophosphate level in cavernous smooth muscle cells. Urology, 68, 1350–1354 (2006). 13) Zhang DW, Cheng Y, Wang NL, Zhang JC, Yang MS, Yao XS. Effects of total flavonoids and flavonol glycosides from Epimedium koreanum NAKAI on the proliferation and differentiation of primary osteoblasts. Phytomedicine, 15, 55–61 (2008). 2) Mader RM, Schmidt WM, Steger GG, Krupitza G. Molecular mechanisms of drug resistance. Int. J. Clin. Pharmacol. Ther., 47, 49–50 (2009). 5) Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 5, 275–284 (2005). 18) Judson PL, Geller MA, Bliss RL, Boente MP, Downs LS Jr, Argenta PA, Carson LF. Preoperative detection of peripherally circulating cancer cells and its prognostic significance in ovarian cancer. Gynecol. Oncol., 91, 389–394 (2003). 7) Kuppens IE, Witteveen EO, Jewell RC, Radema SA, Paul EM, Mangum SG, Beijnen JH, Voest EE, Schellens JH. A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin. Cancer Res., 13, 3276–3285 (2007). 14) Huang X, Zhu DY, Lou Y. A novel anticancer agent, icaritin, induced cell growth inhibition, G(1) arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur. J. Pharmacol., 564, 26–36 (2007). 24) Deback C, Geli J, Ait-Arkoub Z, Angleraud F, Gautheret-Dejean A, Agut H, Boutolleau D. Use of the Roche LightCycler (R) 480 system in a routine laboratory setting for molecular diagnosis of opportunistic viral infections: Evaluation on whole blood specimens and proficiency panels. J. Virol. Methods, 159, 291–294 (2009). 26) Gottesman MM. Cancer gene therapy: an awkward adolescence. Cancer Gene Ther., 10, 501–508 (2003). 4) Wei L, Song XR, Wang XW, Li M, Zuo WS. Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghua Zhong Liu Za Zhi, 28, 445–448 (2006). 22) Shen F, Chu S, Bence AK, Bailey B, Xue X, Erickson PA, Montrose MH, Beck WT, Erickson LC. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J. Pharmacol. Exp. Ther., 324, 95–102 (2008). 23) Jiang H, Fan D, Zhou G, Li X, Deng H. Phosphatidylinositol 3-kinase inhibitor (LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo. J. Exp. Clin. Cancer Res., 29, 34 (2010). 8) Morschhauser F, Zinzani PL, Burgess M, Sloots L, Bouafia F, Dumontet C. Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar·3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma, 48, 708–715 (2007). 19) Si M, Zhao J, Li X, Tian JG, Li YG, Li JM. Reversion effects of curcumin on multidrug resistance of MNNG/HOS human osteosarcoma cells in vitro and in vivo through regulation of P-glycoprotein. Chin. Med. J., 126, 4116–4123 (2013). 12) Bansal T, Jaggi M, Khar RK, Talegaonkar S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J. Pharm. Pharm. Sci., 12, 46–78 (2009). 1) Wu X, Gu J, Wu TT, Swisher SG, Liao Z, Correa AM, Liu J, Etzel CJ, Amos CI, Huang M, Chiang SS, Milas L, Hittelman WN, Ajani JA. Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J. Clin. Oncol., 24, 3789–3798 (2006). 9) Müller H, Pajeva IK, Globisch C, Wiese M. Functional assay and structure–activity relationships of new third-generation P-glycoprotein inhibitors. Bioorg. Med. Chem., 16, 2448–2462 (2008). 31) Zhang Y, Johansson E, Miller ML, Janicke RU, Ferguson DJ, Plas D, Meller J, Anderson MW. Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway. PLoS ONE, 6, e25284 (2011). 3) Wen J, Zheng B, Hu Y, Zhang X, Yang H, Luo KJ, Zhang X, Li YF, Fu JH. Establishment and biological analysis of the EC109/CDDP multidrug-resistant esophageal squamous cell carcinoma cell line. Oncol. Rep., 22, 65–71 (2009). 22 23 24 25 26 27 28 29 30 31 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 10) Molnár J, Engi H, Hohmann J, Molnar P, Deli J, Wesolowska O, Michalak K, Wang Q. Reversal of multidrug resistance by natural substances from plants. Curr. Top. Med. Chem., 10, 1757–1768 (2010). – reference: 16) Oda Y, Matsumoto Y, Harimaya K, Iwamoto Y, Tsuneyoshi M. Establishment of new multidrug-resistant human osteosarcoma cell lines. Oncol. Rep., 7, 859–866 (2000). – reference: 20) Wang J, Yin JQ, Jia Q, Shen JN, Huang G, Xie XB, Zou CY. Bufalin induces apoptosis in osteosarcoma U-2OS and U-2OS methotrexate 300-resistant cell lines in vitro. Zhonghua Zhong Liu Za Zhi, 32, 734–738 (2010). – reference: 24) Deback C, Geli J, Ait-Arkoub Z, Angleraud F, Gautheret-Dejean A, Agut H, Boutolleau D. Use of the Roche LightCycler (R) 480 system in a routine laboratory setting for molecular diagnosis of opportunistic viral infections: Evaluation on whole blood specimens and proficiency panels. J. Virol. Methods, 159, 291–294 (2009). – reference: 27) Diestra JE, Condom E, Del Muro XG, Scheffer GL, Perez J, Zurita AJ, Munoz-Segui J, Vigues F, Scheper RJ, Capella G, Germa-Lluch JR, Izquierdo MA. Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: Biological and clinical implications. J. Urol., 170, 1383–1387 (2003). – reference: 19) Si M, Zhao J, Li X, Tian JG, Li YG, Li JM. Reversion effects of curcumin on multidrug resistance of MNNG/HOS human osteosarcoma cells in vitro and in vivo through regulation of P-glycoprotein. Chin. Med. J., 126, 4116–4123 (2013). – reference: 3) Wen J, Zheng B, Hu Y, Zhang X, Yang H, Luo KJ, Zhang X, Li YF, Fu JH. Establishment and biological analysis of the EC109/CDDP multidrug-resistant esophageal squamous cell carcinoma cell line. Oncol. Rep., 22, 65–71 (2009). – reference: 2) Mader RM, Schmidt WM, Steger GG, Krupitza G. Molecular mechanisms of drug resistance. Int. J. Clin. Pharmacol. Ther., 47, 49–50 (2009). – reference: 15) Ning HX, Xin ZC, Lin GT, Banie L, Lue TF, Lin CS. Effects of icariin on phosphodiesterase-5 activity in vitro and cyclic guanosine monophosphate level in cavernous smooth muscle cells. Urology, 68, 1350–1354 (2006). – reference: 21) Díaz-Montero CM, McIntyre BW. Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents. BMC Cancer, 5, 39 (2005). – reference: 23) Jiang H, Fan D, Zhou G, Li X, Deng H. Phosphatidylinositol 3-kinase inhibitor (LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo. J. Exp. Clin. Cancer Res., 29, 34 (2010). – reference: 25) Broxterman HJ, Giaccone G, Lankelma J. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr. Opin. Oncol., 7, 532–540 (1995). – reference: 5) Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 5, 275–284 (2005). – reference: 13) Zhang DW, Cheng Y, Wang NL, Zhang JC, Yang MS, Yao XS. Effects of total flavonoids and flavonol glycosides from Epimedium koreanum NAKAI on the proliferation and differentiation of primary osteoblasts. Phytomedicine, 15, 55–61 (2008). – reference: 26) Gottesman MM. Cancer gene therapy: an awkward adolescence. Cancer Gene Ther., 10, 501–508 (2003). – reference: 29) Coffey JC, Wang JH, Smith MJF, Laing A, Bouchier-Hayes D, Cotter TG, Redmond HP. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. J. Biol. Chem., 280, 20968–20977 (2005). – reference: 18) Judson PL, Geller MA, Bliss RL, Boente MP, Downs LS Jr, Argenta PA, Carson LF. Preoperative detection of peripherally circulating cancer cells and its prognostic significance in ovarian cancer. Gynecol. Oncol., 91, 389–394 (2003). – reference: 4) Wei L, Song XR, Wang XW, Li M, Zuo WS. Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghua Zhong Liu Za Zhi, 28, 445–448 (2006). – reference: 12) Bansal T, Jaggi M, Khar RK, Talegaonkar S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J. Pharm. Pharm. Sci., 12, 46–78 (2009). – reference: 6) Guns ES, Bullock PL, Reimer ML, Dixon R, Bally M, Mayer LD. Assessment of the involvement of CYP3A in vitro metabolism of a new modulator of MDR in cancer chemotherapy, OC144-193, by human liver microsomes. Eur. J. Drug Metab. Pharmacokinet., 26, 273–282 (2001). – reference: 22) Shen F, Chu S, Bence AK, Bailey B, Xue X, Erickson PA, Montrose MH, Beck WT, Erickson LC. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J. Pharmacol. Exp. Ther., 324, 95–102 (2008). – reference: 31) Zhang Y, Johansson E, Miller ML, Janicke RU, Ferguson DJ, Plas D, Meller J, Anderson MW. Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway. PLoS ONE, 6, e25284 (2011). – reference: 8) Morschhauser F, Zinzani PL, Burgess M, Sloots L, Bouafia F, Dumontet C. Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar·3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma, 48, 708–715 (2007). – reference: 30) Luan Y, Yang Q, Xie Y, Duan S, Cai S, Forrest ML. A sensitive near-infrared fluorescent probe for caspase-mediated apoptosis: Synthesis and application in cell imaging. Drug Discov. Ther., 5, 220–226 (2011). – reference: 14) Huang X, Zhu DY, Lou Y. A novel anticancer agent, icaritin, induced cell growth inhibition, G(1) arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur. J. Pharmacol., 564, 26–36 (2007). – reference: 11) Palmeira A, Sousa E, Vasconcelos MH, Pinto MM. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr. Med. Chem., 19, 1946–2025 (2012). – reference: 9) Müller H, Pajeva IK, Globisch C, Wiese M. Functional assay and structure–activity relationships of new third-generation P-glycoprotein inhibitors. Bioorg. Med. Chem., 16, 2448–2462 (2008). – reference: 1) Wu X, Gu J, Wu TT, Swisher SG, Liao Z, Correa AM, Liu J, Etzel CJ, Amos CI, Huang M, Chiang SS, Milas L, Hittelman WN, Ajani JA. Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J. Clin. Oncol., 24, 3789–3798 (2006). – reference: 7) Kuppens IE, Witteveen EO, Jewell RC, Radema SA, Paul EM, Mangum SG, Beijnen JH, Voest EE, Schellens JH. A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin. Cancer Res., 13, 3276–3285 (2007). – reference: 17) Roncuzzi L, Pancotti F, Baldini N. Involvement of HIF-1alpha activation in the doxorubicin resistance of human osteosarcoma cells. Oncol. Rep., 32, 389–394 (2014). – reference: 28) Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr. Relat. Cancer, 10, 43–73 (2003). – ident: 4 – ident: 24 doi: 10.1016/j.jviromet.2009.03.027 – ident: 22 doi: 10.1124/jpet.107.127704 – ident: 3 doi: 10.3892/or_00000407 – ident: 25 doi: 10.1097/00001622-199511000-00011 – ident: 28 doi: 10.1677/erc.0.0100043 – ident: 1 doi: 10.1200/JCO.2005.03.6640 – ident: 27 doi: 10.1097/01.ju.0000074710.96154.c9 – ident: 7 doi: 10.1158/1078-0432.CCR-06-2414 – ident: 15 doi: 10.1016/j.urology.2006.09.031 – ident: 20 – ident: 18 doi: 10.1016/j.ygyno.2003.08.004 – ident: 2 doi: 10.5414/CPP47049 – ident: 26 doi: 10.1038/sj.cgt.7700602 – ident: 29 doi: 10.1074/jbc.M414696200 – ident: 14 doi: 10.1016/j.ejphar.2007.02.039 – ident: 13 doi: 10.1016/j.phymed.2007.04.002 – ident: 19 doi: 10.3760/cma.j.issn.0366-6999.20130950 – ident: 23 doi: 10.1186/1756-9966-29-34 – ident: 30 doi: 10.5582/ddt.2011.v5.5.220 – ident: 9 doi: 10.1016/j.bmc.2007.11.057 – ident: 6 doi: 10.1007/BF03226382 – ident: 11 doi: 10.2174/092986712800167392 – ident: 12 doi: 10.18433/J3RC77 – ident: 8 doi: 10.1080/10428190701190169 – ident: 5 doi: 10.1038/nrc1590 – ident: 31 doi: 10.1371/journal.pone.0025284 – ident: 10 doi: 10.2174/156802610792928103 – ident: 21 doi: 10.1186/1471-2407-5-39 – ident: 16 doi: 10.3892/or.7.4.859 – ident: 17 doi: 10.3892/or.2014.3181 |
SSID | ssj0007023 ssib058492369 ssib023156946 ssib002483627 ssib002822050 ssib017383521 |
Score | 2.3208387 |
Snippet | Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1... |
SourceID | proquest pubmed crossref medicalonline jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 277 |
SubjectTerms | Antineoplastic Agents - pharmacology Apoptosis - drug effects ATP Binding Cassette Transporter, Sub-Family B - genetics ATP Binding Cassette Transporter, Sub-Family B - metabolism ATP Binding Cassette Transporter, Sub-Family G, Member 2 ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - metabolism Cell Line, Tumor Cell Survival - drug effects Down-Regulation Doxorubicin - pharmacology Drug Resistance, Multiple - drug effects Drug Resistance, Neoplasm - drug effects Flavonoids - pharmacology Humans icariin multidrug resistance (MDR) Multidrug Resistance-Associated Proteins - genetics Multidrug Resistance-Associated Proteins - metabolism Neoplasm Proteins - genetics Neoplasm Proteins - metabolism osteosarcoma Osteosarcoma - drug therapy Osteosarcoma - metabolism phosphatidyl inositol 3-kinase (PI3K)/Akt pathway Phosphatidylinositol 3-Kinase - metabolism Proto-Oncogene Proteins c-akt - metabolism |
Title | Icariin Enhances Cytotoxicity of Doxorubicin in Human Multidrug-Resistant Osteosarcoma Cells by Inhibition of ABCB1 and Down-Regulation of the PI3K/Akt Pathway |
URI | https://www.jstage.jst.go.jp/article/bpb/38/2/38_b14-00663/_article/-char/en http://mol.medicalonline.jp/library/journal/download?GoodsID=cs7biolo/2015/003802/016&name=0277-0284e https://www.ncbi.nlm.nih.gov/pubmed/25747987 https://www.proquest.com/docview/1753559494 https://www.proquest.com/docview/1661993493 https://www.proquest.com/docview/1837317894 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biological and Pharmaceutical Bulletin, 2015/02/01, Vol.38(2), pp.277-284 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbGQAIJIdh4KQxkJLQvW7o0TuJY4gPbtNHBGPvQSR1fothJ1gJLpjURK38G8U-5cxI3hQ0NpMqqnIvb6nl6ubPvhZBXropSPI-yfBXZlgs2hyVYxCzBU86FB7T2McH5w4HfP3LfDb3hwsLPVtRSWciu-n5pXsn_oApzgCtmyf4DsmZRmID3gC-MgDCM18J4T4GnizU_shGCN1lT0yIv8ouxqgMt4vwiPy8lnp7jxkbVkE_HEMbn5YkFrjaajxgNAGDnEyB9fhqt4Wb-BO3ScTYay3FjU25ubW_19GFDDK473HxSt_5q4gwO99h7rM_wpcByraNv0fyR8djoWaTb2WhuM122y4DrDf5KCX0aJdhv5MRop3p-Pxk3U8Mq3ve4BDMXpI3o2zKvAwry9t5Gz2vCoY06Zi4HV7lK-Owml8zVOpwFLa46bYVcNYn540HhuJj8IM9kV_ZcSxtesydiEwVw8DHcPdrfDwc7w8ENchPW0jZ4vz_zsLitOwiaL1WXcYXlN-YWnzN7bn0GbLGkw93T6jSuqopytZOjjZ3BfXKv9lLoZkW5B2QhyZbI8mYWFfnplK5SHTesD2SWyO3tpmfgElk9rFCdrtPBLLFvsq5vMTXSp8vkR01d2lCXtqlL85S2qEvhpalLL6EubVOXaupSOaUz6uJimroUqEt_oy5eBOpSpO4GEJfWxH1IjnZ3Btt9q-4VYinOvMLiacx84XAs3xcHLFJSCpWwni97QRw4qQcKiEVxICKbJa4fyEQkaeLYaU9ylfo2e0QWszxLnhCKiTEiTrivfDDOGZfMATWHhSklGm-iQ9YbKENVF9LHfi5fQ3SoAfkQkA8B-VAj3yGrRvysqiBzleDrihdGrFYsWowFoYODETdXMT0TtGGHvJljU1grqkmoJlxXdAvxL4bFgAPbCTGyE-M3YAhcDCT3badDVhoCzu7GUr6eJ1zhdshLcxl4hYhGWZKXIANWPjg6rmB_kQkYB2clwHUeV-Q2PxTsBpeLgD-9xic8I3dmqmKFLBbnZfIcHINCvtB_zV_i6xPu |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Icariin+enhances+cytotoxicity+of+doxorubicin+in+human+multidrug-resistant+osteosarcoma+cells+by+inhibition+of+ABCB1+and+down-regulation+of+the+PI3K%2FAkt+pathway&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Wang%2C+Zhendong&rft.au=Yang%2C+Lei&rft.au=Xia%2C+Yuanzheng&rft.au=Guo%2C+Chao&rft.date=2015-02-01&rft.issn=1347-5215&rft.eissn=1347-5215&rft.volume=38&rft.issue=2&rft.spage=277&rft_id=info:doi/10.1248%2Fbpb.b14-00663&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon |