Icariin Enhances Cytotoxicity of Doxorubicin in Human Multidrug-Resistant Osteosarcoma Cells by Inhibition of ABCB1 and Down-Regulation of the PI3K/Akt Pathway

Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great po...

Full description

Saved in:
Bibliographic Details
Published inBiological & pharmaceutical bulletin Vol. 38; no. 2; pp. 277 - 284
Main Authors Wang, Zhendong, Yang, Lei, Xia, Yuanzheng, Guo, Chao, Kong, Lingyi
Format Journal Article
LanguageEnglish
Published Japan The Pharmaceutical Society of Japan 01.02.2015
Pharmaceutical Society of Japan
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of mainstream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma.
AbstractList Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of mainstream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma.
Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of main-stream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma.
Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of mainstream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma.Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1 (MDR1 or ABCB1) was considered to play a critical role in multidrug resistance. Agents from traditional Chinese medicines (TCMs) have great potential to prevent the onset or delay the progression of the carcinogenic process, and also to enhance the efficacy of mainstream antitumor agents. Herein, we investigated the effect and mechanism of icariin in the human osteosarcoma doxorubicin (DOX)-resistant cell line MG-63/DOX. In this study, icariin exhibited significant effects in sensitization of the resistant cancer cells at a concentration non-toxic to doxorubicin. It also increased the intracellular doxorubicin accumulation and retention in MG-63/DOX cells. In addition, an increase in Rh123 accumulation and a decrease in Rh123 efflux were observed in MG-63/DOX cells treated with icariin, indicating a blockage of the activity of MDR1. Furthermore, icariin enhanced the apoptosis induced by doxorubicin and down-regulated the expression of MDR1. The mechanism involves the inhibition of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling. In conclusion, icariin possesses a reversal effect on multidrug resistance in MG-63/DOX cells through down-regulation of the MDR1 and the PI3K/Akt pathway, and has the potential to be an adjunct to chemotherapy for osteosarcoma.
Author Guo, Chao
Wang, Zhendong
Yang, Lei
Kong, Lingyi
Xia, Yuanzheng
Author_xml – sequence: 1
  fullname: Wang, Zhendong
  organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University
– sequence: 2
  fullname: Yang, Lei
  organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University
– sequence: 3
  fullname: Xia, Yuanzheng
  organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University
– sequence: 4
  fullname: Guo, Chao
  organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University
– sequence: 5
  fullname: Kong, Lingyi
  organization: State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25747987$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vGyEQhlGVqkncHnutkHrpZRM-dhf26GzTxGqqRFV7RsCyNu4aHGCV-Nf0rxbbiStFqiohEJpn3hmY9xQcOe8MAO8xOsOk5Odqrc4ULguE6pq-AieYlqyoCK6OwAlqMC9qXPFjcBrjEiHEEKFvwDGpWMkazk7A75mWwVoHL91COm0ibDfJJ_9otU0b6Hv42T_6MKp8dzCv63ElHfw2Dsl2YZwX3020MUmX4G1MxkcZtF9J2JphiFBt4MwtrLLJercVm160FxhK12XZB5eT5-Mgn4NpYeDdjH49n_5K8E6mxYPcvAWvezlE8-7pnICfXy5_tNfFze3VrJ3eFJrRKhWs72jdEMarhnacSq1Uow3FtcK846SvqKRUdryRiJqy5so0pjcE9Vgx3deITsCnve46-PvRxCRWNur8COmMH6PAnDKKGW_K_6N1jZuGlg3N6McX6NKPweWHCMwqWlVNuRP88ESNamU6sQ52JcNGPE8pA8Ue0MHHGEx_QDASWxeI7AKRXSB2Lsg8fcHnYe6-OQVph39mXe2zcg9Wy8G7wTrzt2MdmbJ-8IIgXOUcyhERCNcCEcbyxktSZqXssAlo90rL7Iy5OXQrQ7J6MLu6lAuy3Q71D1G9kEEYR_8AMPXkeg
CitedBy_id crossref_primary_10_1016_j_lfs_2018_03_059
crossref_primary_10_1016_j_ejmech_2022_114542
crossref_primary_10_3390_nu8090563
crossref_primary_10_1016_j_bbadis_2019_165575
crossref_primary_10_1007_s10856_025_06874_7
crossref_primary_10_1016_j_taap_2023_116405
crossref_primary_10_3390_ph17050598
crossref_primary_10_2174_0929867329666220209110009
crossref_primary_10_3892_ol_2017_7693
crossref_primary_10_1155_2017_2694261
crossref_primary_10_1080_1040841X_2019_1607248
crossref_primary_10_1016_j_biopha_2021_112138
crossref_primary_10_1021_acs_jnatprod_1c00950
crossref_primary_10_1111_jcmm_14123
crossref_primary_10_1590_1414_431x20187151
crossref_primary_10_1038_aps_2015_124
crossref_primary_10_1155_2017_2198323
crossref_primary_10_3390_pharmaceutics10030144
crossref_primary_10_1248_bpb_b21_00991
crossref_primary_10_3389_fphar_2022_867133
crossref_primary_10_1177_09603271221097363
crossref_primary_10_1210_jendso_bvz025
crossref_primary_10_18632_oncotarget_19148
crossref_primary_10_1016_S1875_5364_18_30026_8
crossref_primary_10_1177_1010428317705745
crossref_primary_10_3892_ijmm_2016_2539
crossref_primary_10_1002_cbdv_202401533
crossref_primary_10_1016_j_heliyon_2021_e07325
crossref_primary_10_1080_10937404_2024_2407452
crossref_primary_10_1186_s43094_025_00780_z
crossref_primary_10_1016_j_prp_2023_154693
crossref_primary_10_1248_bpb_b21_00163
crossref_primary_10_3892_ijo_2016_3423
crossref_primary_10_3389_fphar_2023_1216363
crossref_primary_10_1007_s11033_022_07778_3
crossref_primary_10_1016_j_prp_2023_154902
crossref_primary_10_1002_ptr_6798
crossref_primary_10_1155_2022_1955101
crossref_primary_10_3389_fphar_2016_00191
crossref_primary_10_1097_CAD_0000000000000455
Cites_doi 10.1016/j.jviromet.2009.03.027
10.1124/jpet.107.127704
10.3892/or_00000407
10.1097/00001622-199511000-00011
10.1677/erc.0.0100043
10.1200/JCO.2005.03.6640
10.1097/01.ju.0000074710.96154.c9
10.1158/1078-0432.CCR-06-2414
10.1016/j.urology.2006.09.031
10.1016/j.ygyno.2003.08.004
10.5414/CPP47049
10.1038/sj.cgt.7700602
10.1074/jbc.M414696200
10.1016/j.ejphar.2007.02.039
10.1016/j.phymed.2007.04.002
10.3760/cma.j.issn.0366-6999.20130950
10.1186/1756-9966-29-34
10.5582/ddt.2011.v5.5.220
10.1016/j.bmc.2007.11.057
10.1007/BF03226382
10.2174/092986712800167392
10.18433/J3RC77
10.1080/10428190701190169
10.1038/nrc1590
10.1371/journal.pone.0025284
10.2174/156802610792928103
10.1186/1471-2407-5-39
10.3892/or.7.4.859
10.3892/or.2014.3181
ContentType Journal Article
Copyright 2015 The Pharmaceutical Society of Japan
Copyright Japan Science and Technology Agency 2015
Copyright_xml – notice: 2015 The Pharmaceutical Society of Japan
– notice: Copyright Japan Science and Technology Agency 2015
CorporateAuthor State Key Laboratory of Natural Medicines
Department of Natural Medicinal Chemistry
China Pharmaceutical University
CorporateAuthor_xml – name: Department of Natural Medicinal Chemistry
– name: State Key Laboratory of Natural Medicines
– name: China Pharmaceutical University
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
7X8
DOI 10.1248/bpb.b14-00663
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts
Calcium & Calcified Tissue Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-5215
EndPage 284
ExternalDocumentID 3912619301
25747987
10_1248_bpb_b14_00663
cs7biolo_2015_003802_016_0277_02842400602
article_bpb_38_2_38_b14_00663_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
23N
2WC
53G
5GY
6J9
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HH5
JMI
JSF
JSH
KQ8
MOJWN
OK1
P2P
RJT
RZJ
TR2
XSB
ABJNI
.55
1CY
AAYXX
AI.
CITATION
TKC
VH1
X7M
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c735t-7fd369278593d83acbb9ce316b18d82f53a33ad89a03e468be9efe20f1b7cf603
ISSN 0918-6158
1347-5215
IngestDate Thu Jul 10 19:08:36 EDT 2025
Fri Jul 11 08:47:55 EDT 2025
Mon Jun 30 10:04:42 EDT 2025
Mon Jul 21 05:56:15 EDT 2025
Tue Jul 01 02:43:51 EDT 2025
Thu Apr 24 23:11:34 EDT 2025
Thu Jul 10 16:12:41 EDT 2025
Thu Aug 17 20:29:50 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c735t-7fd369278593d83acbb9ce316b18d82f53a33ad89a03e468be9efe20f1b7cf603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/bpb/38/2/38_b14-00663/_article/-char/en
PMID 25747987
PQID 1753559494
PQPubID 1966364
PageCount 8
ParticipantIDs proquest_miscellaneous_1837317894
proquest_miscellaneous_1661993493
proquest_journals_1753559494
pubmed_primary_25747987
crossref_primary_10_1248_bpb_b14_00663
crossref_citationtrail_10_1248_bpb_b14_00663
medicalonline_journals_cs7biolo_2015_003802_016_0277_02842400602
jstage_primary_article_bpb_38_2_38_b14_00663_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Biological & pharmaceutical bulletin
PublicationTitleAlternate Biol Pharm Bull
PublicationYear 2015
Publisher The Pharmaceutical Society of Japan
Pharmaceutical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Pharmaceutical Society of Japan
– name: Pharmaceutical Society of Japan
– name: Japan Science and Technology Agency
References 20) Wang J, Yin JQ, Jia Q, Shen JN, Huang G, Xie XB, Zou CY. Bufalin induces apoptosis in osteosarcoma U-2OS and U-2OS methotrexate 300-resistant cell lines in vitro. Zhonghua Zhong Liu Za Zhi, 32, 734–738 (2010).
27) Diestra JE, Condom E, Del Muro XG, Scheffer GL, Perez J, Zurita AJ, Munoz-Segui J, Vigues F, Scheper RJ, Capella G, Germa-Lluch JR, Izquierdo MA. Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: Biological and clinical implications. J. Urol., 170, 1383–1387 (2003).
29) Coffey JC, Wang JH, Smith MJF, Laing A, Bouchier-Hayes D, Cotter TG, Redmond HP. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. J. Biol. Chem., 280, 20968–20977 (2005).
25) Broxterman HJ, Giaccone G, Lankelma J. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr. Opin. Oncol., 7, 532–540 (1995).
16) Oda Y, Matsumoto Y, Harimaya K, Iwamoto Y, Tsuneyoshi M. Establishment of new multidrug-resistant human osteosarcoma cell lines. Oncol. Rep., 7, 859–866 (2000).
10) Molnár J, Engi H, Hohmann J, Molnar P, Deli J, Wesolowska O, Michalak K, Wang Q. Reversal of multidrug resistance by natural substances from plants. Curr. Top. Med. Chem., 10, 1757–1768 (2010).
30) Luan Y, Yang Q, Xie Y, Duan S, Cai S, Forrest ML. A sensitive near-infrared fluorescent probe for caspase-mediated apoptosis: Synthesis and application in cell imaging. Drug Discov. Ther., 5, 220–226 (2011).
28) Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr. Relat. Cancer, 10, 43–73 (2003).
17) Roncuzzi L, Pancotti F, Baldini N. Involvement of HIF-1alpha activation in the doxorubicin resistance of human osteosarcoma cells. Oncol. Rep., 32, 389–394 (2014).
6) Guns ES, Bullock PL, Reimer ML, Dixon R, Bally M, Mayer LD. Assessment of the involvement of CYP3A in vitro metabolism of a new modulator of MDR in cancer chemotherapy, OC144-193, by human liver microsomes. Eur. J. Drug Metab. Pharmacokinet., 26, 273–282 (2001).
21) Díaz-Montero CM, McIntyre BW. Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents. BMC Cancer, 5, 39 (2005).
11) Palmeira A, Sousa E, Vasconcelos MH, Pinto MM. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr. Med. Chem., 19, 1946–2025 (2012).
15) Ning HX, Xin ZC, Lin GT, Banie L, Lue TF, Lin CS. Effects of icariin on phosphodiesterase-5 activity in vitro and cyclic guanosine monophosphate level in cavernous smooth muscle cells. Urology, 68, 1350–1354 (2006).
13) Zhang DW, Cheng Y, Wang NL, Zhang JC, Yang MS, Yao XS. Effects of total flavonoids and flavonol glycosides from Epimedium koreanum NAKAI on the proliferation and differentiation of primary osteoblasts. Phytomedicine, 15, 55–61 (2008).
2) Mader RM, Schmidt WM, Steger GG, Krupitza G. Molecular mechanisms of drug resistance. Int. J. Clin. Pharmacol. Ther., 47, 49–50 (2009).
5) Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 5, 275–284 (2005).
18) Judson PL, Geller MA, Bliss RL, Boente MP, Downs LS Jr, Argenta PA, Carson LF. Preoperative detection of peripherally circulating cancer cells and its prognostic significance in ovarian cancer. Gynecol. Oncol., 91, 389–394 (2003).
7) Kuppens IE, Witteveen EO, Jewell RC, Radema SA, Paul EM, Mangum SG, Beijnen JH, Voest EE, Schellens JH. A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin. Cancer Res., 13, 3276–3285 (2007).
14) Huang X, Zhu DY, Lou Y. A novel anticancer agent, icaritin, induced cell growth inhibition, G(1) arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur. J. Pharmacol., 564, 26–36 (2007).
24) Deback C, Geli J, Ait-Arkoub Z, Angleraud F, Gautheret-Dejean A, Agut H, Boutolleau D. Use of the Roche LightCycler (R) 480 system in a routine laboratory setting for molecular diagnosis of opportunistic viral infections: Evaluation on whole blood specimens and proficiency panels. J. Virol. Methods, 159, 291–294 (2009).
26) Gottesman MM. Cancer gene therapy: an awkward adolescence. Cancer Gene Ther., 10, 501–508 (2003).
4) Wei L, Song XR, Wang XW, Li M, Zuo WS. Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghua Zhong Liu Za Zhi, 28, 445–448 (2006).
22) Shen F, Chu S, Bence AK, Bailey B, Xue X, Erickson PA, Montrose MH, Beck WT, Erickson LC. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J. Pharmacol. Exp. Ther., 324, 95–102 (2008).
23) Jiang H, Fan D, Zhou G, Li X, Deng H. Phosphatidylinositol 3-kinase inhibitor (LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo. J. Exp. Clin. Cancer Res., 29, 34 (2010).
8) Morschhauser F, Zinzani PL, Burgess M, Sloots L, Bouafia F, Dumontet C. Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar·3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma, 48, 708–715 (2007).
19) Si M, Zhao J, Li X, Tian JG, Li YG, Li JM. Reversion effects of curcumin on multidrug resistance of MNNG/HOS human osteosarcoma cells in vitro and in vivo through regulation of P-glycoprotein. Chin. Med. J., 126, 4116–4123 (2013).
12) Bansal T, Jaggi M, Khar RK, Talegaonkar S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J. Pharm. Pharm. Sci., 12, 46–78 (2009).
1) Wu X, Gu J, Wu TT, Swisher SG, Liao Z, Correa AM, Liu J, Etzel CJ, Amos CI, Huang M, Chiang SS, Milas L, Hittelman WN, Ajani JA. Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J. Clin. Oncol., 24, 3789–3798 (2006).
9) Müller H, Pajeva IK, Globisch C, Wiese M. Functional assay and structure–activity relationships of new third-generation P-glycoprotein inhibitors. Bioorg. Med. Chem., 16, 2448–2462 (2008).
31) Zhang Y, Johansson E, Miller ML, Janicke RU, Ferguson DJ, Plas D, Meller J, Anderson MW. Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway. PLoS ONE, 6, e25284 (2011).
3) Wen J, Zheng B, Hu Y, Zhang X, Yang H, Luo KJ, Zhang X, Li YF, Fu JH. Establishment and biological analysis of the EC109/CDDP multidrug-resistant esophageal squamous cell carcinoma cell line. Oncol. Rep., 22, 65–71 (2009).
22
23
24
25
26
27
28
29
30
31
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 10) Molnár J, Engi H, Hohmann J, Molnar P, Deli J, Wesolowska O, Michalak K, Wang Q. Reversal of multidrug resistance by natural substances from plants. Curr. Top. Med. Chem., 10, 1757–1768 (2010).
– reference: 16) Oda Y, Matsumoto Y, Harimaya K, Iwamoto Y, Tsuneyoshi M. Establishment of new multidrug-resistant human osteosarcoma cell lines. Oncol. Rep., 7, 859–866 (2000).
– reference: 20) Wang J, Yin JQ, Jia Q, Shen JN, Huang G, Xie XB, Zou CY. Bufalin induces apoptosis in osteosarcoma U-2OS and U-2OS methotrexate 300-resistant cell lines in vitro. Zhonghua Zhong Liu Za Zhi, 32, 734–738 (2010).
– reference: 24) Deback C, Geli J, Ait-Arkoub Z, Angleraud F, Gautheret-Dejean A, Agut H, Boutolleau D. Use of the Roche LightCycler (R) 480 system in a routine laboratory setting for molecular diagnosis of opportunistic viral infections: Evaluation on whole blood specimens and proficiency panels. J. Virol. Methods, 159, 291–294 (2009).
– reference: 27) Diestra JE, Condom E, Del Muro XG, Scheffer GL, Perez J, Zurita AJ, Munoz-Segui J, Vigues F, Scheper RJ, Capella G, Germa-Lluch JR, Izquierdo MA. Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: Biological and clinical implications. J. Urol., 170, 1383–1387 (2003).
– reference: 19) Si M, Zhao J, Li X, Tian JG, Li YG, Li JM. Reversion effects of curcumin on multidrug resistance of MNNG/HOS human osteosarcoma cells in vitro and in vivo through regulation of P-glycoprotein. Chin. Med. J., 126, 4116–4123 (2013).
– reference: 3) Wen J, Zheng B, Hu Y, Zhang X, Yang H, Luo KJ, Zhang X, Li YF, Fu JH. Establishment and biological analysis of the EC109/CDDP multidrug-resistant esophageal squamous cell carcinoma cell line. Oncol. Rep., 22, 65–71 (2009).
– reference: 2) Mader RM, Schmidt WM, Steger GG, Krupitza G. Molecular mechanisms of drug resistance. Int. J. Clin. Pharmacol. Ther., 47, 49–50 (2009).
– reference: 15) Ning HX, Xin ZC, Lin GT, Banie L, Lue TF, Lin CS. Effects of icariin on phosphodiesterase-5 activity in vitro and cyclic guanosine monophosphate level in cavernous smooth muscle cells. Urology, 68, 1350–1354 (2006).
– reference: 21) Díaz-Montero CM, McIntyre BW. Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents. BMC Cancer, 5, 39 (2005).
– reference: 23) Jiang H, Fan D, Zhou G, Li X, Deng H. Phosphatidylinositol 3-kinase inhibitor (LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo. J. Exp. Clin. Cancer Res., 29, 34 (2010).
– reference: 25) Broxterman HJ, Giaccone G, Lankelma J. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr. Opin. Oncol., 7, 532–540 (1995).
– reference: 5) Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 5, 275–284 (2005).
– reference: 13) Zhang DW, Cheng Y, Wang NL, Zhang JC, Yang MS, Yao XS. Effects of total flavonoids and flavonol glycosides from Epimedium koreanum NAKAI on the proliferation and differentiation of primary osteoblasts. Phytomedicine, 15, 55–61 (2008).
– reference: 26) Gottesman MM. Cancer gene therapy: an awkward adolescence. Cancer Gene Ther., 10, 501–508 (2003).
– reference: 29) Coffey JC, Wang JH, Smith MJF, Laing A, Bouchier-Hayes D, Cotter TG, Redmond HP. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. J. Biol. Chem., 280, 20968–20977 (2005).
– reference: 18) Judson PL, Geller MA, Bliss RL, Boente MP, Downs LS Jr, Argenta PA, Carson LF. Preoperative detection of peripherally circulating cancer cells and its prognostic significance in ovarian cancer. Gynecol. Oncol., 91, 389–394 (2003).
– reference: 4) Wei L, Song XR, Wang XW, Li M, Zuo WS. Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghua Zhong Liu Za Zhi, 28, 445–448 (2006).
– reference: 12) Bansal T, Jaggi M, Khar RK, Talegaonkar S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J. Pharm. Pharm. Sci., 12, 46–78 (2009).
– reference: 6) Guns ES, Bullock PL, Reimer ML, Dixon R, Bally M, Mayer LD. Assessment of the involvement of CYP3A in vitro metabolism of a new modulator of MDR in cancer chemotherapy, OC144-193, by human liver microsomes. Eur. J. Drug Metab. Pharmacokinet., 26, 273–282 (2001).
– reference: 22) Shen F, Chu S, Bence AK, Bailey B, Xue X, Erickson PA, Montrose MH, Beck WT, Erickson LC. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J. Pharmacol. Exp. Ther., 324, 95–102 (2008).
– reference: 31) Zhang Y, Johansson E, Miller ML, Janicke RU, Ferguson DJ, Plas D, Meller J, Anderson MW. Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway. PLoS ONE, 6, e25284 (2011).
– reference: 8) Morschhauser F, Zinzani PL, Burgess M, Sloots L, Bouafia F, Dumontet C. Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar·3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma, 48, 708–715 (2007).
– reference: 30) Luan Y, Yang Q, Xie Y, Duan S, Cai S, Forrest ML. A sensitive near-infrared fluorescent probe for caspase-mediated apoptosis: Synthesis and application in cell imaging. Drug Discov. Ther., 5, 220–226 (2011).
– reference: 14) Huang X, Zhu DY, Lou Y. A novel anticancer agent, icaritin, induced cell growth inhibition, G(1) arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur. J. Pharmacol., 564, 26–36 (2007).
– reference: 11) Palmeira A, Sousa E, Vasconcelos MH, Pinto MM. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr. Med. Chem., 19, 1946–2025 (2012).
– reference: 9) Müller H, Pajeva IK, Globisch C, Wiese M. Functional assay and structure–activity relationships of new third-generation P-glycoprotein inhibitors. Bioorg. Med. Chem., 16, 2448–2462 (2008).
– reference: 1) Wu X, Gu J, Wu TT, Swisher SG, Liao Z, Correa AM, Liu J, Etzel CJ, Amos CI, Huang M, Chiang SS, Milas L, Hittelman WN, Ajani JA. Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J. Clin. Oncol., 24, 3789–3798 (2006).
– reference: 7) Kuppens IE, Witteveen EO, Jewell RC, Radema SA, Paul EM, Mangum SG, Beijnen JH, Voest EE, Schellens JH. A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin. Cancer Res., 13, 3276–3285 (2007).
– reference: 17) Roncuzzi L, Pancotti F, Baldini N. Involvement of HIF-1alpha activation in the doxorubicin resistance of human osteosarcoma cells. Oncol. Rep., 32, 389–394 (2014).
– reference: 28) Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr. Relat. Cancer, 10, 43–73 (2003).
– ident: 4
– ident: 24
  doi: 10.1016/j.jviromet.2009.03.027
– ident: 22
  doi: 10.1124/jpet.107.127704
– ident: 3
  doi: 10.3892/or_00000407
– ident: 25
  doi: 10.1097/00001622-199511000-00011
– ident: 28
  doi: 10.1677/erc.0.0100043
– ident: 1
  doi: 10.1200/JCO.2005.03.6640
– ident: 27
  doi: 10.1097/01.ju.0000074710.96154.c9
– ident: 7
  doi: 10.1158/1078-0432.CCR-06-2414
– ident: 15
  doi: 10.1016/j.urology.2006.09.031
– ident: 20
– ident: 18
  doi: 10.1016/j.ygyno.2003.08.004
– ident: 2
  doi: 10.5414/CPP47049
– ident: 26
  doi: 10.1038/sj.cgt.7700602
– ident: 29
  doi: 10.1074/jbc.M414696200
– ident: 14
  doi: 10.1016/j.ejphar.2007.02.039
– ident: 13
  doi: 10.1016/j.phymed.2007.04.002
– ident: 19
  doi: 10.3760/cma.j.issn.0366-6999.20130950
– ident: 23
  doi: 10.1186/1756-9966-29-34
– ident: 30
  doi: 10.5582/ddt.2011.v5.5.220
– ident: 9
  doi: 10.1016/j.bmc.2007.11.057
– ident: 6
  doi: 10.1007/BF03226382
– ident: 11
  doi: 10.2174/092986712800167392
– ident: 12
  doi: 10.18433/J3RC77
– ident: 8
  doi: 10.1080/10428190701190169
– ident: 5
  doi: 10.1038/nrc1590
– ident: 31
  doi: 10.1371/journal.pone.0025284
– ident: 10
  doi: 10.2174/156802610792928103
– ident: 21
  doi: 10.1186/1471-2407-5-39
– ident: 16
  doi: 10.3892/or.7.4.859
– ident: 17
  doi: 10.3892/or.2014.3181
SSID ssj0007023
ssib058492369
ssib023156946
ssib002483627
ssib002822050
ssib017383521
Score 2.3208387
Snippet Multidrug resistance is one of the major causes limiting the efficacy of chemotherapeutic agents used to control osteosarcoma. Multidrug resistance protein 1...
SourceID proquest
pubmed
crossref
medicalonline
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 277
SubjectTerms Antineoplastic Agents - pharmacology
Apoptosis - drug effects
ATP Binding Cassette Transporter, Sub-Family B - genetics
ATP Binding Cassette Transporter, Sub-Family B - metabolism
ATP Binding Cassette Transporter, Sub-Family G, Member 2
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
Cell Line, Tumor
Cell Survival - drug effects
Down-Regulation
Doxorubicin - pharmacology
Drug Resistance, Multiple - drug effects
Drug Resistance, Neoplasm - drug effects
Flavonoids - pharmacology
Humans
icariin
multidrug resistance (MDR)
Multidrug Resistance-Associated Proteins - genetics
Multidrug Resistance-Associated Proteins - metabolism
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
osteosarcoma
Osteosarcoma - drug therapy
Osteosarcoma - metabolism
phosphatidyl inositol 3-kinase (PI3K)/Akt pathway
Phosphatidylinositol 3-Kinase - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Title Icariin Enhances Cytotoxicity of Doxorubicin in Human Multidrug-Resistant Osteosarcoma Cells by Inhibition of ABCB1 and Down-Regulation of the PI3K/Akt Pathway
URI https://www.jstage.jst.go.jp/article/bpb/38/2/38_b14-00663/_article/-char/en
http://mol.medicalonline.jp/library/journal/download?GoodsID=cs7biolo/2015/003802/016&name=0277-0284e
https://www.ncbi.nlm.nih.gov/pubmed/25747987
https://www.proquest.com/docview/1753559494
https://www.proquest.com/docview/1661993493
https://www.proquest.com/docview/1837317894
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biological and Pharmaceutical Bulletin, 2015/02/01, Vol.38(2), pp.277-284
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbGQAIJIdh4KQxkJLQvW7o0TuJY4gPbtNHBGPvQSR1fothJ1gJLpjURK38G8U-5cxI3hQ0NpMqqnIvb6nl6ubPvhZBXropSPI-yfBXZlgs2hyVYxCzBU86FB7T2McH5w4HfP3LfDb3hwsLPVtRSWciu-n5pXsn_oApzgCtmyf4DsmZRmID3gC-MgDCM18J4T4GnizU_shGCN1lT0yIv8ouxqgMt4vwiPy8lnp7jxkbVkE_HEMbn5YkFrjaajxgNAGDnEyB9fhqt4Wb-BO3ScTYay3FjU25ubW_19GFDDK473HxSt_5q4gwO99h7rM_wpcByraNv0fyR8djoWaTb2WhuM122y4DrDf5KCX0aJdhv5MRop3p-Pxk3U8Mq3ve4BDMXpI3o2zKvAwry9t5Gz2vCoY06Zi4HV7lK-Owml8zVOpwFLa46bYVcNYn540HhuJj8IM9kV_ZcSxtesydiEwVw8DHcPdrfDwc7w8ENchPW0jZ4vz_zsLitOwiaL1WXcYXlN-YWnzN7bn0GbLGkw93T6jSuqopytZOjjZ3BfXKv9lLoZkW5B2QhyZbI8mYWFfnplK5SHTesD2SWyO3tpmfgElk9rFCdrtPBLLFvsq5vMTXSp8vkR01d2lCXtqlL85S2qEvhpalLL6EubVOXaupSOaUz6uJimroUqEt_oy5eBOpSpO4GEJfWxH1IjnZ3Btt9q-4VYinOvMLiacx84XAs3xcHLFJSCpWwni97QRw4qQcKiEVxICKbJa4fyEQkaeLYaU9ylfo2e0QWszxLnhCKiTEiTrivfDDOGZfMATWHhSklGm-iQ9YbKENVF9LHfi5fQ3SoAfkQkA8B-VAj3yGrRvysqiBzleDrihdGrFYsWowFoYODETdXMT0TtGGHvJljU1grqkmoJlxXdAvxL4bFgAPbCTGyE-M3YAhcDCT3badDVhoCzu7GUr6eJ1zhdshLcxl4hYhGWZKXIANWPjg6rmB_kQkYB2clwHUeV-Q2PxTsBpeLgD-9xic8I3dmqmKFLBbnZfIcHINCvtB_zV_i6xPu
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Icariin+enhances+cytotoxicity+of+doxorubicin+in+human+multidrug-resistant+osteosarcoma+cells+by+inhibition+of+ABCB1+and+down-regulation+of+the+PI3K%2FAkt+pathway&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Wang%2C+Zhendong&rft.au=Yang%2C+Lei&rft.au=Xia%2C+Yuanzheng&rft.au=Guo%2C+Chao&rft.date=2015-02-01&rft.issn=1347-5215&rft.eissn=1347-5215&rft.volume=38&rft.issue=2&rft.spage=277&rft_id=info:doi/10.1248%2Fbpb.b14-00663&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon