Properties of Nehari Disks
Let $D$ be a simply connected plane domain and let $B$ be the unit disk. The inner radius of $D$, $\sigma (D)$ is defined by $\sigma (D) = \sup \{a:a \geq 0,||S_f||_{D} \leq a$ implies $f$ is univalent in $D$ . Here $S_f$ is the Schwarzian derivative of $f$, $ \rho_{D}$ the hyperbolic density on $D$...
Saved in:
Published in | Sarajevo journal of mathematics Vol. 4; no. 1; pp. 49 - 59 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
11.06.2024
|
Online Access | Get full text |
ISSN | 1840-0655 2233-1964 |
DOI | 10.5644/SJM.04.1.05 |
Cover
Abstract | Let $D$ be a simply connected plane domain and let $B$ be the unit disk. The inner radius of $D$, $\sigma (D)$ is defined by $\sigma (D) = \sup \{a:a \geq 0,||S_f||_{D} \leq a$ implies $f$ is univalent in $D$ . Here $S_f$ is the Schwarzian derivative of $f$, $ \rho_{D}$ the hyperbolic density on $D$ and $ || S_{f} ||_{D} = \sup_{z \in D} |S_{f} (z)|\rho_{D}^{-2} (z) $. Domains for which the value of $ \sigma (D)$ is known include disks, angular sectors and regular polygons as well as certain classes of rectangles and equiangular hexagons.
When the inner radius for the above-mentioned domains, except non convex angular sectors, is computed it is seen that $ \sigma (D) = 2- || S_h ||_{B}$, where $ h:B \longrightarrow D $ is the Riemann mapping and $B$ the unit disk, a fact that yields a convenient method for computing $\sigma(D)$. We introduce the name Nehari disks for domains with the above property.
In this paper we generalize some results by Gehring, Pommerenke, Ahlfors and Minda that were proved in the unit disk, to analogous results for Nehari disks.
2000 Mathematics Subject Classification. Primary 30C55; Secondary 30C20 |
---|---|
AbstractList | Let $D$ be a simply connected plane domain and let $B$ be the unit disk. The inner radius of $D$, $\sigma (D)$ is defined by $\sigma (D) = \sup \{a:a \geq 0,||S_f||_{D} \leq a$ implies $f$ is univalent in $D$ . Here $S_f$ is the Schwarzian derivative of $f$, $ \rho_{D}$ the hyperbolic density on $D$ and $ || S_{f} ||_{D} = \sup_{z \in D} |S_{f} (z)|\rho_{D}^{-2} (z) $. Domains for which the value of $ \sigma (D)$ is known include disks, angular sectors and regular polygons as well as certain classes of rectangles and equiangular hexagons.
When the inner radius for the above-mentioned domains, except non convex angular sectors, is computed it is seen that $ \sigma (D) = 2- || S_h ||_{B}$, where $ h:B \longrightarrow D $ is the Riemann mapping and $B$ the unit disk, a fact that yields a convenient method for computing $\sigma(D)$. We introduce the name Nehari disks for domains with the above property.
In this paper we generalize some results by Gehring, Pommerenke, Ahlfors and Minda that were proved in the unit disk, to analogous results for Nehari disks.
2000 Mathematics Subject Classification. Primary 30C55; Secondary 30C20 |
Author | Miller-Van Wieren, Leila |
Author_xml | – sequence: 1 givenname: Leila surname: Miller-Van Wieren fullname: Miller-Van Wieren, Leila |
BookMark | eNotzztPwzAUQGELFYm0MLExZUcO1_G9Tjyi8qxaQKK75ceNCI-msln494BgOtuRvrmY7aYdC3GqoCGDePG82jSAjWqADkTVtlpLZQ3ORKV6BAmG6EjMS3kFMLrvqBJnT3nac_4cudTTUD_wi89jfTWWt3IsDgf_XvjkvwuxvbneLu_k-vH2fnm5lrHTJKNB7hJbSzZRiB5MShoAPbUE0WLyOliOkZRuE3aefcAIeuh6DqgC64U4_9vGPJWSeXD7PH74_OUUuF-V-1E5QKcckP4GSzVAYg |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.5644/SJM.04.1.05 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2233-1964 |
EndPage | 59 |
ExternalDocumentID | 10_5644_SJM_04_1_05 |
GroupedDBID | AAYXX ACIPV ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBS EJD FRJ OK1 TR2 |
ID | FETCH-LOGICAL-c735-c64e7de9959d5bca06dd3004a5250c94da3b9ecc5132d47aeab4c03f78eb41be3 |
ISSN | 1840-0655 |
IngestDate | Tue Jul 01 02:29:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c735-c64e7de9959d5bca06dd3004a5250c94da3b9ecc5132d47aeab4c03f78eb41be3 |
OpenAccessLink | http://doi.org/10.5644/sjm.04.1.05 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_5644_SJM_04_1_05 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-11 |
PublicationDateYYYYMMDD | 2024-06-11 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Sarajevo journal of mathematics |
PublicationYear | 2024 |
SSID | ssj0063875 |
Score | 2.2584841 |
Snippet | Let $D$ be a simply connected plane domain and let $B$ be the unit disk. The inner radius of $D$, $\sigma (D)$ is defined by $\sigma (D) = \sup \{a:a \geq... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 49 |
Title | Properties of Nehari Disks |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWBAPAXloQxdXZLYzmNECFRVFDEU1C2yHVs8W1QKA7-euzhNotKhsESRFSeyv_j8nc_3mZCOVUxpLRg1gYwoTyJLVZoIagMbayuMkMVhMIPbqHfP-yMxqs_MLLJLZqqrv5fmlfwHVSgDXDFL9g_IVi-FArgHfOEKCMN1JYzvcCV9ipKoheNvHsHxRT3Nl48m58RF32fzNWmqRLxVaq0Vp3ZZgfRB4k4aM3Xm6MY8vcrmykDIcQdTabmcMUtw62bkZHC7pigDNsAoinA1LSD_BbSzZk5MtJwXnXD3osUVwKcw5tsfoGJs0PVFPbHMg-kL8021CxD8D6yeQeXM51mQoRbtehjHLt6OvrGbUsFGFIrJVYNcoiVWPm98uUEtGhxhuE22SnLvXTikdsiaGe-SzUHd13ukXWPmTaznMPMKzPbJ8PpqeNmj5fkUVMdMUB1xE-cGBdtyobT0ozxH_TKJkWKd8lwylcIIEeDw5zyWRiqufWbjxCgeKMMOSGs8GZtD4jGdWBbagNkw4Do1CgZJKJgGdhGARyuPSGfesuzdqZBkS3qvvdpjx2Sj_l1OSGs2_TSnQK1m6qzo9h-3XiGF |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+Nehari+Disks&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=Miller-Van+Wieren%2C+Leila&rft.date=2024-06-11&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=4&rft.issue=1&rft.spage=49&rft.epage=59&rft_id=info:doi/10.5644%2FSJM.04.1.05&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_04_1_05 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon |