Properties of Nehari Disks

Let $D$ be a simply connected plane domain and let $B$ be the unit disk. The inner radius of $D$, $\sigma (D)$ is defined by $\sigma (D) = \sup \{a:a \geq 0,||S_f||_{D} \leq a$ implies $f$ is univalent in $D$ . Here $S_f$ is the Schwarzian derivative of $f$, $ \rho_{D}$ the hyperbolic density on $D$...

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 4; no. 1; pp. 49 - 59
Main Author Miller-Van Wieren, Leila
Format Journal Article
LanguageEnglish
Published 11.06.2024
Online AccessGet full text
ISSN1840-0655
2233-1964
DOI10.5644/SJM.04.1.05

Cover

Abstract Let $D$ be a simply connected plane domain and let $B$ be the unit disk. The inner radius of $D$, $\sigma (D)$ is defined by $\sigma (D) = \sup \{a:a \geq 0,||S_f||_{D} \leq a$ implies $f$ is univalent in $D$ . Here $S_f$ is the Schwarzian derivative of $f$, $ \rho_{D}$ the hyperbolic density on $D$ and $ || S_{f} ||_{D} = \sup_{z \in D} |S_{f} (z)|\rho_{D}^{-2} (z) $. Domains for which the value of $ \sigma (D)$ is known include disks, angular sectors and regular polygons as well as certain classes of rectangles and equiangular hexagons. When the inner radius for the above-mentioned domains, except non convex angular sectors, is computed it is seen that $ \sigma (D) = 2- || S_h ||_{B}$, where $ h:B \longrightarrow D $ is the Riemann mapping and $B$ the unit disk, a fact that yields a convenient method for computing $\sigma(D)$. We introduce the name Nehari disks for domains with the above property. In this paper we generalize some results by Gehring, Pommerenke, Ahlfors and Minda that were proved in the unit disk, to analogous results for Nehari disks.   2000 Mathematics Subject Classification. Primary 30C55; Secondary 30C20
AbstractList Let $D$ be a simply connected plane domain and let $B$ be the unit disk. The inner radius of $D$, $\sigma (D)$ is defined by $\sigma (D) = \sup \{a:a \geq 0,||S_f||_{D} \leq a$ implies $f$ is univalent in $D$ . Here $S_f$ is the Schwarzian derivative of $f$, $ \rho_{D}$ the hyperbolic density on $D$ and $ || S_{f} ||_{D} = \sup_{z \in D} |S_{f} (z)|\rho_{D}^{-2} (z) $. Domains for which the value of $ \sigma (D)$ is known include disks, angular sectors and regular polygons as well as certain classes of rectangles and equiangular hexagons. When the inner radius for the above-mentioned domains, except non convex angular sectors, is computed it is seen that $ \sigma (D) = 2- || S_h ||_{B}$, where $ h:B \longrightarrow D $ is the Riemann mapping and $B$ the unit disk, a fact that yields a convenient method for computing $\sigma(D)$. We introduce the name Nehari disks for domains with the above property. In this paper we generalize some results by Gehring, Pommerenke, Ahlfors and Minda that were proved in the unit disk, to analogous results for Nehari disks.   2000 Mathematics Subject Classification. Primary 30C55; Secondary 30C20
Author Miller-Van Wieren, Leila
Author_xml – sequence: 1
  givenname: Leila
  surname: Miller-Van Wieren
  fullname: Miller-Van Wieren, Leila
BookMark eNotzztPwzAUQGELFYm0MLExZUcO1_G9Tjyi8qxaQKK75ceNCI-msln494BgOtuRvrmY7aYdC3GqoCGDePG82jSAjWqADkTVtlpLZQ3ORKV6BAmG6EjMS3kFMLrvqBJnT3nac_4cudTTUD_wi89jfTWWt3IsDgf_XvjkvwuxvbneLu_k-vH2fnm5lrHTJKNB7hJbSzZRiB5MShoAPbUE0WLyOliOkZRuE3aefcAIeuh6DqgC64U4_9vGPJWSeXD7PH74_OUUuF-V-1E5QKcckP4GSzVAYg
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5644/SJM.04.1.05
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2233-1964
EndPage 59
ExternalDocumentID 10_5644_SJM_04_1_05
GroupedDBID AAYXX
ACIPV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBS
EJD
FRJ
OK1
TR2
ID FETCH-LOGICAL-c735-c64e7de9959d5bca06dd3004a5250c94da3b9ecc5132d47aeab4c03f78eb41be3
ISSN 1840-0655
IngestDate Tue Jul 01 02:29:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c735-c64e7de9959d5bca06dd3004a5250c94da3b9ecc5132d47aeab4c03f78eb41be3
OpenAccessLink http://doi.org/10.5644/sjm.04.1.05
PageCount 11
ParticipantIDs crossref_primary_10_5644_SJM_04_1_05
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-11
PublicationDateYYYYMMDD 2024-06-11
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-11
  day: 11
PublicationDecade 2020
PublicationTitle Sarajevo journal of mathematics
PublicationYear 2024
SSID ssj0063875
Score 2.2584841
Snippet Let $D$ be a simply connected plane domain and let $B$ be the unit disk. The inner radius of $D$, $\sigma (D)$ is defined by $\sigma (D) = \sup \{a:a \geq...
SourceID crossref
SourceType Index Database
StartPage 49
Title Properties of Nehari Disks
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWBAPAXloQxdXZLYzmNECFRVFDEU1C2yHVs8W1QKA7-euzhNotKhsESRFSeyv_j8nc_3mZCOVUxpLRg1gYwoTyJLVZoIagMbayuMkMVhMIPbqHfP-yMxqs_MLLJLZqqrv5fmlfwHVSgDXDFL9g_IVi-FArgHfOEKCMN1JYzvcCV9ipKoheNvHsHxRT3Nl48m58RF32fzNWmqRLxVaq0Vp3ZZgfRB4k4aM3Xm6MY8vcrmykDIcQdTabmcMUtw62bkZHC7pigDNsAoinA1LSD_BbSzZk5MtJwXnXD3osUVwKcw5tsfoGJs0PVFPbHMg-kL8021CxD8D6yeQeXM51mQoRbtehjHLt6OvrGbUsFGFIrJVYNcoiVWPm98uUEtGhxhuE22SnLvXTikdsiaGe-SzUHd13ukXWPmTaznMPMKzPbJ8PpqeNmj5fkUVMdMUB1xE-cGBdtyobT0ozxH_TKJkWKd8lwylcIIEeDw5zyWRiqufWbjxCgeKMMOSGs8GZtD4jGdWBbagNkw4Do1CgZJKJgGdhGARyuPSGfesuzdqZBkS3qvvdpjx2Sj_l1OSGs2_TSnQK1m6qzo9h-3XiGF
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+Nehari+Disks&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=Miller-Van+Wieren%2C+Leila&rft.date=2024-06-11&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=4&rft.issue=1&rft.spage=49&rft.epage=59&rft_id=info:doi/10.5644%2FSJM.04.1.05&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_04_1_05
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon