Feasibility of using MRIs to create subject-specific parallel-mechanism joint models
Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints’ measured kinematics in cadavers are well-predicted using 3D cadaver-specif...
Saved in:
Published in | Journal of biomechanics Vol. 53; pp. 45 - 55 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
28.02.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2016.12.018 |
Cover
Loading…
Abstract | Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints’ measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces.
In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models’ parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions.
Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres’ centres. Two parameters’ optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to.
With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations’ means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres’ centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads. |
---|---|
AbstractList | Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints’ measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces.
In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models’ parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions.
Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres’ centres. Two parameters’ optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to.
With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations’ means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres’ centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads. Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject's bone dimensions. Alternatively joints' measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint's surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models' parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant's kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres' centres. Two parameters' optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations' means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres' centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads. Abstract Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints’ measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models’ parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres’ centres. Two parameters’ optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations’ means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres’ centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads. Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints' measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models' parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres' centres. Two parameters' optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations' means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres' centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads. Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints' measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models' parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres' centres. Two parameters' optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations' means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres' centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads.Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints' measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models' parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres' centres. Two parameters' optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations' means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres' centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads. |
Author | Mills, Peter M. Beck, Belinda R. Sancisi, Nicola Brito da Luz, Simao Modenese, Luca Lloyd, David G. Kennedy, Ben |
Author_xml | – sequence: 1 givenname: Simao surname: Brito da Luz fullname: Brito da Luz, Simao email: simao.britodaluz@griffithuni.edu.au organization: Menzies Health Institute Queensland, Griffith University, Australia – sequence: 2 givenname: Luca surname: Modenese fullname: Modenese, Luca organization: Menzies Health Institute Queensland, Griffith University, Australia – sequence: 3 givenname: Nicola surname: Sancisi fullname: Sancisi, Nicola organization: Department of Industrial Engineering, Health Sciences and Technologies ICIR, University of Bologna, Italy – sequence: 4 givenname: Peter M. surname: Mills fullname: Mills, Peter M. organization: Menzies Health Institute Queensland, Griffith University, Australia – sequence: 5 givenname: Ben surname: Kennedy fullname: Kennedy, Ben organization: Menzies Health Institute Queensland, Griffith University, Australia – sequence: 6 givenname: Belinda R. surname: Beck fullname: Beck, Belinda R. organization: Menzies Health Institute Queensland, Griffith University, Australia – sequence: 7 givenname: David G. surname: Lloyd fullname: Lloyd, David G. organization: Menzies Health Institute Queensland, Griffith University, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28153474$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhgep2G31L5QBb7yZNSfJfARElOJHoSJo70OSOdGMmcmazAj7782wXYS9sL0Kged98_Gci-JsChMWxRWQLRBoXg_bQbswovm5pXm_Bbol0D0pNtC1rKKsI2fFhhAKlaCCnBcXKQ2EkJa34llxTjuoGW_5prj7iCo57byb92Ww5ZLc9KP88u0mlXMoTUQ1Y5kWPaCZq7RD46wz5U5F5T36ar2AmlwayyG4aS7H0KNPz4unVvmEL-7Xy3zMh7vrz9Xt10831-9vK9MyPle00b3gXa05NopoS5UVhAMVYGytlTCd6HhtqVUaNdfQ142tG0Y6obitLbssXh1qdzH8XjDNcnTJoPdqwrAkCZ1ggrAaxCPQtu14Q2jzCLSpawZc0Iy-PEGHsMQpP3kt5JzTlkKmru6pRY_Yy110o4p7eZSQgTcHwMSQUkQrjZvV7MI0R-W8BCJX53KQR-dydS6Byuw8x5uT-PGEB4PvDsGsDP84jDIZh5PB3sWsW_bBPVzx9qTCeDc5o_wv3GP69x0y5YD8vk7kOpDQMGAA9P8Fj7nBXyUB8nk |
CitedBy_id | crossref_primary_10_1053_j_jfas_2019_01_024 crossref_primary_10_1007_s10237_020_01367_8 crossref_primary_10_1186_s12984_025_01556_5 crossref_primary_10_1016_j_jbiomech_2018_11_042 crossref_primary_10_1016_j_jbiomech_2020_110186 crossref_primary_10_1016_j_jbiomech_2018_08_023 crossref_primary_10_1007_s10439_023_03216_y crossref_primary_10_1016_j_cmpb_2022_107002 crossref_primary_10_1080_14763141_2021_1959947 crossref_primary_10_1016_j_jbiomech_2018_02_032 crossref_primary_10_3389_fncom_2017_00096 crossref_primary_10_1007_s10237_020_01398_1 crossref_primary_10_6009_jjrt_2022_1232 crossref_primary_10_1016_j_medengphy_2019_08_001 crossref_primary_10_1016_j_jbiomech_2018_01_021 crossref_primary_10_1016_j_clinbiomech_2019_12_011 crossref_primary_10_1016_j_clinbiomech_2023_106157 crossref_primary_10_1371_journal_pone_0205628 crossref_primary_10_3390_app11209415 crossref_primary_10_1016_j_cmpb_2024_108370 crossref_primary_10_1016_j_gaitpost_2020_06_022 crossref_primary_10_1016_j_jbiomech_2018_03_039 crossref_primary_10_1016_j_smhs_2025_02_003 crossref_primary_10_1109_TNSRE_2017_2683488 crossref_primary_10_1038_s41598_025_86137_1 crossref_primary_10_1007_s11831_022_09757_0 crossref_primary_10_1016_j_jsams_2023_04_001 crossref_primary_10_1007_s10237_022_01626_w crossref_primary_10_1007_s10237_019_01245_y crossref_primary_10_1016_j_jbiomech_2019_07_001 crossref_primary_10_1080_10255842_2019_1604950 crossref_primary_10_1115_1_4050034 crossref_primary_10_3390_app10062100 |
Cites_doi | 10.1016/S0021-9290(98)00119-5 10.1007/s10439-009-9852-5 10.1007/s00167-007-0320-1 10.1109/10.102791 10.1016/j.medengphy.2004.07.004 10.1007/s11517-014-1137-y 10.1016/j.jbiomech.2016.05.001 10.1016/0268-0033(91)90049-V 10.1007/s11517-015-1269-8 10.1016/S0021-9290(99)00022-6 10.1115/1.4029304 10.1016/j.orthres.2003.11.011 10.1111/j.2517-6161.1995.tb02031.x 10.1007/s00371-010-0538-7 10.1016/0021-9290(89)90179-6 10.1016/j.jbiomech.2011.01.001 10.1016/S0021-9290(01)00222-6 10.1016/j.jbiomech.2010.06.010 10.1016/j.medengphy.2008.03.001 10.1016/j.jbiomech.2016.03.052 10.1016/j.jbiomech.2013.09.005 10.1016/j.jbiomech.2011.06.019 10.1002/aja.1001840208 10.1007/BF02513282 10.1109/TBME.2007.901024 10.3109/10929080802594563 10.1016/j.jbiomech.2015.01.010 10.1115/1.3138397 10.1016/j.simpat.2006.09.001 10.1115/1.2795965 10.2106/JBJS.G.01358 10.1016/j.jbiomech.2015.09.042 10.1016/j.jbiomech.2015.09.040 10.1016/j.jbiomech.2014.12.049 10.1016/j.gaitpost.2008.05.002 10.1016/j.jbiomech.2009.04.024 10.1177/0363546511423746 10.1249/MSS.0b013e31822dfdb3 10.1016/0021-9290(88)90135-2 10.1115/1.4004890 10.1016/j.jbiomech.2014.08.009 10.1016/j.jbiomech.2010.06.025 10.1177/0954411911406951 10.1016/j.jbiomech.2004.02.008 10.1243/09544119JEIM684 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO P64 |
DOI | 10.1016/j.jbiomech.2016.12.018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Technology Research Database Research Library Prep Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 55 |
ExternalDocumentID | 4318822421 28153474 10_1016_j_jbiomech_2016_12_018 S0021929016313112 1_s2_0_S0021929016313112 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 7QO P64 |
ID | FETCH-LOGICAL-c734t-26bd9485b4e6a0bf2af9041291cf5ba9c89845f2fabeb4b1d56f563089a4f5f3 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 05:56:11 EDT 2025 Tue Aug 05 09:59:05 EDT 2025 Thu Jul 10 19:35:01 EDT 2025 Wed Aug 13 10:02:07 EDT 2025 Wed Feb 19 02:42:50 EST 2025 Thu Apr 24 22:56:50 EDT 2025 Tue Jul 01 00:44:08 EDT 2025 Fri Feb 23 02:20:31 EST 2024 Tue Feb 25 20:12:59 EST 2025 Tue Aug 26 17:10:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Modelling Computer simulation Subject-specific Joint kinematic models MRI |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c734t-26bd9485b4e6a0bf2af9041291cf5ba9c89845f2fabeb4b1d56f563089a4f5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10072/340040 |
PMID | 28153474 |
PQID | 1874442721 |
PQPubID | 1226346 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1893903519 proquest_miscellaneous_1877846026 proquest_miscellaneous_1865531492 proquest_journals_1874442721 pubmed_primary_28153474 crossref_citationtrail_10_1016_j_jbiomech_2016_12_018 crossref_primary_10_1016_j_jbiomech_2016_12_018 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2016_12_018 elsevier_clinicalkeyesjournals_1_s2_0_S0021929016313112 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2016_12_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-28 |
PublicationDateYYYYMMDD | 2017-02-28 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Sancisi, Zannoli, Parenti-Castelli, Belvedere, Leardini (bib37) 2011; 225 Damsgaard, Rasmussen, Christensen, Surma, de Zee (bib8) 2006; 14 Grood, Suntay (bib18) 1983; 105 Scheys, Desloovere, Suetens, Jonkers (bib41) 2011; 44 Duprey, Cheze, Dumas (bib12) 2010; 43 Sancisi, Parenti-Castelli (bib36) 2011; 3 Gasparutto, Sancisi, Jacquelin, Parenti-Castelli, Dumas (bib16) 2015; 48 Walker, Rovick, Robertson (bib45) 1988; 21 Arnold, Ward, Lieber, Delp (bib2) 2010; 38 Hicks, Uchida, Seth, Rajagopal, Delp (bib21) 2015; 137 Rovick, Reuben, Schrager, Walker (bib35) 1991; 6 Sandholm, Schwartz, Pronost, de Zee, Voigt, Thalmann (bib39) 2011; 27 Matsuda, Miura, Nagamine, Urabe, Ikenoue, Okazaki, Iwamoto (bib30) 1999; 12 Valente, Pitto, Stagni, Taddei (bib44) 2015; 48 Franci, Parenti-Castelli, Belvedere, Leardini (bib14) 2009; 42 Leardini, O׳Connor, Catani, Giannini (bib26) 1999; 32 Gerus, Sartori, Besier, Fregly, Delp, Banks, Pandy, D׳Lima, Lloyd (bib17) 2013; 46 Ottoboni, Parenti-Castelli, Sancisi, Belvedere, Leardini (bib33) 2010; 224 Scheys, Van Campenhout, Spaepen, Suetens, Jonkers (bib40) 2008; 28 Anglin, Ho, Briard, de Lambilly, Plaskos, Nodwell, Stindel (bib1) 2008; 13 Hashemi, Chandrashekar, Gill, Beynnon, Slauterbeck, Schutt, Mansouri, Dabezies (bib20) 2008; 90 Sreenivasa, Chamorro, Gonzalez-Alvarado, Rettig, Wolf (bib42) 2016; 49 Wu, Siegler, Allard, Kirtley, Leardini, Rosenbaum, Whittle, D’Lima, Cristofolini, Witte, Schmid, Stokes (bib47) 2002; 35 Zheng, Li, Shetye, Zhang (bib49) 2014; 47 Beynnon, Yu, Huston, Fleming, Johnson, Haugh, Pope (bib6) 1996; 118 Wilson, Feikes, O’Connor (bib46) 1998; 31 Belvedere, Catani, Ensini, Moctezuma de la Barrera, Leardini (bib4) 2007; 15 Tsai, Colletti, Powers (bib43) 2012; 44 Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (bib11) 2007; 54 Parenti-Castelli, Di Gregorio (bib34) 2000 Bei, Fregly (bib3) 2004; 26 El Habachi, Moissenet, Duprey, Cheze, Dumas (bib13) 2015; 53 Benjamini, Hochberg (bib5) 1995; 57 Delp, Loan, Hoy, Zajac, Topp, Rosen (bib10) 1990; 37 Li, DeFrate, Zayontz, Park, Gill (bib28) 2004; 22 Isman, Inman (bib22) 1968 Modenese, Phillips, Bull (bib31) 2011; 44 Lu, Tsai, Kuo, Hsu, Chen (bib29) 2008; 30 Sancisi, Baldisserri, Parenti-Castelli, Belvedere, Leardini (bib38) 2014; 52 Kapandji (bib25) 1987 Johal, Williams, Wragg, Hunt, Gedroyc (bib23) 2005; 38 Fuss (bib15) 1989; 184 Hamner, Seth, Delp (bib19) 2010; 43 Della Croce, Cappozzo, Kerrigan (bib9) 1999; 37 Yamaguchi, Zajac (bib48) 1989; 22 Clément, Dumas, Hagemeister, de Guise (bib7) 2015; 48 Lerner, DeMers, Delp, Browning (bib27) 2015; 48 Kainz, Modenese, Lloyd, Maine, Walsh, Carty (bib24) 2016; 49 Myers, Torry, Shelburne, Giphart, LaPrade, Woo, Steadman (bib32) 2012; 40 Johal (10.1016/j.jbiomech.2016.12.018_bib23) 2005; 38 Rovick (10.1016/j.jbiomech.2016.12.018_bib35) 1991; 6 Leardini (10.1016/j.jbiomech.2016.12.018_bib26) 1999; 32 Walker (10.1016/j.jbiomech.2016.12.018_bib45) 1988; 21 Wilson (10.1016/j.jbiomech.2016.12.018_bib46) 1998; 31 Benjamini (10.1016/j.jbiomech.2016.12.018_bib5) 1995; 57 Della Croce (10.1016/j.jbiomech.2016.12.018_bib9) 1999; 37 Scheys (10.1016/j.jbiomech.2016.12.018_bib40) 2008; 28 Duprey (10.1016/j.jbiomech.2016.12.018_bib12) 2010; 43 Franci (10.1016/j.jbiomech.2016.12.018_bib14) 2009; 42 Grood (10.1016/j.jbiomech.2016.12.018_bib18) 1983; 105 Gasparutto (10.1016/j.jbiomech.2016.12.018_bib16) 2015; 48 Lu (10.1016/j.jbiomech.2016.12.018_bib29) 2008; 30 Kainz (10.1016/j.jbiomech.2016.12.018_bib24) 2016; 49 Tsai (10.1016/j.jbiomech.2016.12.018_bib43) 2012; 44 Arnold (10.1016/j.jbiomech.2016.12.018_bib2) 2010; 38 Modenese (10.1016/j.jbiomech.2016.12.018_bib31) 2011; 44 Hamner (10.1016/j.jbiomech.2016.12.018_bib19) 2010; 43 Lerner (10.1016/j.jbiomech.2016.12.018_bib27) 2015; 48 Sancisi (10.1016/j.jbiomech.2016.12.018_bib38) 2014; 52 Hicks (10.1016/j.jbiomech.2016.12.018_bib21) 2015; 137 Isman (10.1016/j.jbiomech.2016.12.018_bib22) 1968 Bei (10.1016/j.jbiomech.2016.12.018_bib3) 2004; 26 Sreenivasa (10.1016/j.jbiomech.2016.12.018_bib42) 2016; 49 Scheys (10.1016/j.jbiomech.2016.12.018_bib41) 2011; 44 Delp (10.1016/j.jbiomech.2016.12.018_bib10) 1990; 37 Hashemi (10.1016/j.jbiomech.2016.12.018_bib20) 2008; 90 Ottoboni (10.1016/j.jbiomech.2016.12.018_bib33) 2010; 224 Fuss (10.1016/j.jbiomech.2016.12.018_bib15) 1989; 184 Parenti-Castelli (10.1016/j.jbiomech.2016.12.018_bib34) 2000 Zheng (10.1016/j.jbiomech.2016.12.018_bib49) 2014; 47 El Habachi (10.1016/j.jbiomech.2016.12.018_bib13) 2015; 53 Gerus (10.1016/j.jbiomech.2016.12.018_bib17) 2013; 46 Matsuda (10.1016/j.jbiomech.2016.12.018_bib30) 1999; 12 Kapandji (10.1016/j.jbiomech.2016.12.018_bib25) 1987 Li (10.1016/j.jbiomech.2016.12.018_bib28) 2004; 22 Anglin (10.1016/j.jbiomech.2016.12.018_bib1) 2008; 13 Damsgaard (10.1016/j.jbiomech.2016.12.018_bib8) 2006; 14 Sancisi (10.1016/j.jbiomech.2016.12.018_bib36) 2011; 3 Sandholm (10.1016/j.jbiomech.2016.12.018_bib39) 2011; 27 Valente (10.1016/j.jbiomech.2016.12.018_bib44) 2015; 48 Sancisi (10.1016/j.jbiomech.2016.12.018_bib37) 2011; 225 Beynnon (10.1016/j.jbiomech.2016.12.018_bib6) 1996; 118 Belvedere (10.1016/j.jbiomech.2016.12.018_bib4) 2007; 15 Myers (10.1016/j.jbiomech.2016.12.018_bib32) 2012; 40 Clément (10.1016/j.jbiomech.2016.12.018_bib7) 2015; 48 Wu (10.1016/j.jbiomech.2016.12.018_bib47) 2002; 35 Delp (10.1016/j.jbiomech.2016.12.018_bib11) 2007; 54 Yamaguchi (10.1016/j.jbiomech.2016.12.018_bib48) 1989; 22 |
References_xml | – volume: 21 start-page: 965 year: 1988 end-page: 974 ident: bib45 article-title: The effects of knee brace hinge design and placement on joint mechanics publication-title: J. Biomech. – volume: 184 start-page: 165 year: 1989 end-page: 176 ident: bib15 article-title: Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint publication-title: Am. J. Anat. – volume: 38 start-page: 269 year: 2005 end-page: 276 ident: bib23 article-title: Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI publication-title: J. Biomech. – volume: 30 start-page: 1004 year: 2008 end-page: 1012 ident: bib29 article-title: In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy publication-title: Med. Eng. Phys. – volume: 44 start-page: 305 year: 2012 end-page: 312 ident: bib43 article-title: Magnetic resonance imaging-measured muscle parameters improved knee moment prediction of an EMG-driven model publication-title: Med. Sci. Sport. Exerc. – volume: 27 start-page: 161 year: 2011 end-page: 171 ident: bib39 article-title: Evaluation of a geometry-based knee joint compared to a planar knee joint publication-title: Vis. Comput. – volume: 31 start-page: 1127 year: 1998 end-page: 1136 ident: bib46 article-title: Ligaments and articular contact guide passive knee flexion publication-title: J. Biomech. – volume: 49 start-page: 1658 year: 2016 end-page: 1669 ident: bib24 article-title: Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models publication-title: J. Biomech. – volume: 13 start-page: 377 year: 2008 end-page: 391 ident: bib1 article-title: In vivo patellar kinematics during total knee arthroplasty publication-title: Comput. Aided Surg. – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib5 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B (Methodol.) – volume: 137 start-page: 26 year: 2015 ident: bib21 article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement publication-title: J Biomech. Eng. – volume: 44 start-page: 1346 year: 2011 end-page: 1353 ident: bib41 article-title: Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion publication-title: J. Biomech. – volume: 35 start-page: 543 year: 2002 end-page: 548 ident: bib47 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine publication-title: J. Biomech. – volume: 26 start-page: 777 year: 2004 end-page: 789 ident: bib3 article-title: Multibody dynamic simulation of knee contact mechanics publication-title: Med. Eng. Amp. Phys. – volume: 32 start-page: 585 year: 1999 end-page: 591 ident: bib26 article-title: A geometric model of the human ankle joint publication-title: J. Biomech. – volume: 224 start-page: 1121 year: 2010 end-page: 1132 ident: bib33 article-title: Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint: an experiment-based assessment publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med. – volume: 44 start-page: 2185 year: 2011 end-page: 2193 ident: bib31 article-title: An open source lower limb model: hip joint validation publication-title: J. Biomech. – volume: 49 start-page: 1918 year: 2016 end-page: 1925 ident: bib42 article-title: Patient-specific bone geometry and segment inertia from MRI images for model-based analysis of pathological gait publication-title: J. Biomech. – volume: 3 year: 2011 ident: bib36 article-title: A new kinematic model of the passive motion of the knee inclusive of the patella publication-title: J. Mech. Robot. – volume: 14 start-page: 1100 year: 2006 end-page: 1111 ident: bib8 article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System publication-title: Simul. Model. Pract. Theory – volume: 52 start-page: 363 year: 2014 end-page: 373 ident: bib38 article-title: One-degree-of-freedom spherical model for the passive motion of the human ankle joint publication-title: Med. Biol. Eng. Comput. – volume: 46 start-page: 2778 year: 2013 end-page: 2786 ident: bib17 article-title: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces publication-title: J. Biomech. – volume: 43 start-page: 2709 year: 2010 end-page: 2716 ident: bib19 article-title: Muscle contributions to propulsion and support during running publication-title: J. Biomech. – year: 1987 ident: bib25 publication-title: The Physiology of the Joints – volume: 90 start-page: 2724 year: 2008 end-page: 2734 ident: bib20 article-title: The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint publication-title: J Bone Jt. Surg. Am. – volume: 48 start-page: 644 year: 2015 end-page: 650 ident: bib27 article-title: How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces publication-title: J. Biomech. – volume: 15 start-page: 985 year: 2007 end-page: 993 ident: bib4 article-title: Patellar tracking during total knee arthroplasty: an in vitro feasibility study publication-title: Knee Surg. Sport. Traumatol. Arthr – volume: 37 start-page: 757 year: 1990 end-page: 767 ident: bib10 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: Biomed. Eng. IEEE Trans. – volume: 40 start-page: 170 year: 2012 end-page: 178 ident: bib32 article-title: In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy publication-title: Am. J. Sport. Med. – volume: 48 start-page: 4198 year: 2015 end-page: 4205 ident: bib44 article-title: Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities publication-title: J. Biomech. – volume: 28 start-page: 358 year: 2008 end-page: 365 ident: bib40 article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths publication-title: Gait Amp. Posture – volume: 225 start-page: 725 year: 2011 end-page: 735 ident: bib37 article-title: A one-degree-of-freedom spherical mechanism for human knee joint modelling publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med. – volume: 118 start-page: 227 year: 1996 end-page: 239 ident: bib6 article-title: A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis publication-title: J. Biomech. Eng. – volume: 22 start-page: 1 year: 1989 end-page: 10 ident: bib48 article-title: A planar model of the knee joint to characterize the knee extensor mechanism publication-title: J. Biomech. – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: bib11 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: Biomed. Eng., IEEE Trans. – start-page: 333 year: 2000 end-page: 344 ident: bib34 publication-title: Parallel Mechanisms Applied to the Human Knee Passive Motion Simulation – volume: 48 start-page: 1141 year: 2015 end-page: 1146 ident: bib16 article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints publication-title: J. Biomech. – volume: 105 start-page: 136 year: 1983 end-page: 144 ident: bib18 article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. – volume: 38 start-page: 269 year: 2010 end-page: 279 ident: bib2 article-title: A model of the lower limb for analysis of human movement publication-title: Ann. Biomed. Eng. – volume: 48 start-page: 3796 year: 2015 end-page: 3802 ident: bib7 article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models publication-title: J. Biomech. – volume: 12 start-page: 165 year: 1999 end-page: 168 ident: bib30 article-title: Posterior tibial slope in the normal and varus knee publication-title: Am. J Knee Surg. – volume: 43 start-page: 2858 year: 2010 end-page: 2862 ident: bib12 article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization publication-title: J Biomech. – volume: 42 start-page: 1403 year: 2009 end-page: 1408 ident: bib14 article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint publication-title: J. Biomech. – start-page: 58 year: 1968 ident: bib22 article-title: Anthropometric studies of the human foot and ankle. Biomechanics Laboratory – volume: 22 start-page: 801 year: 2004 end-page: 806 ident: bib28 article-title: The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads publication-title: J. Orthop. Res. – volume: 6 start-page: 213 year: 1991 end-page: 220 ident: bib35 article-title: Relation between knee motion and ligament length patterns publication-title: Clin. Biomech. – volume: 37 start-page: 155 year: 1999 end-page: 161 ident: bib9 article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles publication-title: Med. Biol. Eng. Comput. – volume: 53 start-page: 655 year: 2015 end-page: 667 ident: bib13 article-title: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model publication-title: Med. Biol. Eng. Comput. – volume: 47 start-page: 3217 year: 2014 end-page: 3221 ident: bib49 article-title: Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling publication-title: J. Biomech. – volume: 31 start-page: 1127 year: 1998 ident: 10.1016/j.jbiomech.2016.12.018_bib46 article-title: Ligaments and articular contact guide passive knee flexion publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00119-5 – volume: 38 start-page: 269 year: 2010 ident: 10.1016/j.jbiomech.2016.12.018_bib2 article-title: A model of the lower limb for analysis of human movement publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9852-5 – volume: 15 start-page: 985 year: 2007 ident: 10.1016/j.jbiomech.2016.12.018_bib4 article-title: Patellar tracking during total knee arthroplasty: an in vitro feasibility study publication-title: Knee Surg. Sport. Traumatol. Arthr doi: 10.1007/s00167-007-0320-1 – volume: 37 start-page: 757 year: 1990 ident: 10.1016/j.jbiomech.2016.12.018_bib10 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/10.102791 – volume: 26 start-page: 777 year: 2004 ident: 10.1016/j.jbiomech.2016.12.018_bib3 article-title: Multibody dynamic simulation of knee contact mechanics publication-title: Med. Eng. Amp. Phys. doi: 10.1016/j.medengphy.2004.07.004 – volume: 52 start-page: 363 year: 2014 ident: 10.1016/j.jbiomech.2016.12.018_bib38 article-title: One-degree-of-freedom spherical model for the passive motion of the human ankle joint publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1137-y – volume: 49 start-page: 1918 year: 2016 ident: 10.1016/j.jbiomech.2016.12.018_bib42 article-title: Patient-specific bone geometry and segment inertia from MRI images for model-based analysis of pathological gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.05.001 – volume: 6 start-page: 213 year: 1991 ident: 10.1016/j.jbiomech.2016.12.018_bib35 article-title: Relation between knee motion and ligament length patterns publication-title: Clin. Biomech. doi: 10.1016/0268-0033(91)90049-V – volume: 53 start-page: 655 year: 2015 ident: 10.1016/j.jbiomech.2016.12.018_bib13 article-title: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-015-1269-8 – volume: 32 start-page: 585 year: 1999 ident: 10.1016/j.jbiomech.2016.12.018_bib26 article-title: A geometric model of the human ankle joint publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00022-6 – volume: 137 start-page: 26 year: 2015 ident: 10.1016/j.jbiomech.2016.12.018_bib21 article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement publication-title: J Biomech. Eng. doi: 10.1115/1.4029304 – volume: 22 start-page: 801 year: 2004 ident: 10.1016/j.jbiomech.2016.12.018_bib28 article-title: The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads publication-title: J. Orthop. Res. doi: 10.1016/j.orthres.2003.11.011 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.jbiomech.2016.12.018_bib5 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 27 start-page: 161 year: 2011 ident: 10.1016/j.jbiomech.2016.12.018_bib39 article-title: Evaluation of a geometry-based knee joint compared to a planar knee joint publication-title: Vis. Comput. doi: 10.1007/s00371-010-0538-7 – volume: 22 start-page: 1 year: 1989 ident: 10.1016/j.jbiomech.2016.12.018_bib48 article-title: A planar model of the knee joint to characterize the knee extensor mechanism publication-title: J. Biomech. doi: 10.1016/0021-9290(89)90179-6 – volume: 44 start-page: 1346 year: 2011 ident: 10.1016/j.jbiomech.2016.12.018_bib41 article-title: Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.01.001 – volume: 35 start-page: 543 year: 2002 ident: 10.1016/j.jbiomech.2016.12.018_bib47 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00222-6 – volume: 43 start-page: 2858 year: 2010 ident: 10.1016/j.jbiomech.2016.12.018_bib12 article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization publication-title: J Biomech. doi: 10.1016/j.jbiomech.2010.06.010 – year: 1987 ident: 10.1016/j.jbiomech.2016.12.018_bib25 – start-page: 58 year: 1968 ident: 10.1016/j.jbiomech.2016.12.018_bib22 – volume: 30 start-page: 1004 year: 2008 ident: 10.1016/j.jbiomech.2016.12.018_bib29 article-title: In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.03.001 – volume: 49 start-page: 1658 year: 2016 ident: 10.1016/j.jbiomech.2016.12.018_bib24 article-title: Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.03.052 – volume: 46 start-page: 2778 year: 2013 ident: 10.1016/j.jbiomech.2016.12.018_bib17 article-title: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.09.005 – volume: 44 start-page: 2185 year: 2011 ident: 10.1016/j.jbiomech.2016.12.018_bib31 article-title: An open source lower limb model: hip joint validation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.06.019 – volume: 184 start-page: 165 year: 1989 ident: 10.1016/j.jbiomech.2016.12.018_bib15 article-title: Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint publication-title: Am. J. Anat. doi: 10.1002/aja.1001840208 – volume: 37 start-page: 155 year: 1999 ident: 10.1016/j.jbiomech.2016.12.018_bib9 article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02513282 – volume: 54 start-page: 1940 year: 2007 ident: 10.1016/j.jbiomech.2016.12.018_bib11 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: Biomed. Eng., IEEE Trans. doi: 10.1109/TBME.2007.901024 – volume: 13 start-page: 377 year: 2008 ident: 10.1016/j.jbiomech.2016.12.018_bib1 article-title: In vivo patellar kinematics during total knee arthroplasty publication-title: Comput. Aided Surg. doi: 10.3109/10929080802594563 – volume: 48 start-page: 1141 year: 2015 ident: 10.1016/j.jbiomech.2016.12.018_bib16 article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.01.010 – volume: 105 start-page: 136 year: 1983 ident: 10.1016/j.jbiomech.2016.12.018_bib18 article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. doi: 10.1115/1.3138397 – volume: 14 start-page: 1100 year: 2006 ident: 10.1016/j.jbiomech.2016.12.018_bib8 article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2006.09.001 – volume: 118 start-page: 227 year: 1996 ident: 10.1016/j.jbiomech.2016.12.018_bib6 article-title: A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis publication-title: J. Biomech. Eng. doi: 10.1115/1.2795965 – volume: 90 start-page: 2724 year: 2008 ident: 10.1016/j.jbiomech.2016.12.018_bib20 article-title: The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint publication-title: J Bone Jt. Surg. Am. doi: 10.2106/JBJS.G.01358 – volume: 48 start-page: 4198 year: 2015 ident: 10.1016/j.jbiomech.2016.12.018_bib44 article-title: Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.09.042 – volume: 48 start-page: 3796 year: 2015 ident: 10.1016/j.jbiomech.2016.12.018_bib7 article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.09.040 – volume: 48 start-page: 644 year: 2015 ident: 10.1016/j.jbiomech.2016.12.018_bib27 article-title: How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.12.049 – volume: 28 start-page: 358 year: 2008 ident: 10.1016/j.jbiomech.2016.12.018_bib40 article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths publication-title: Gait Amp. Posture doi: 10.1016/j.gaitpost.2008.05.002 – volume: 42 start-page: 1403 year: 2009 ident: 10.1016/j.jbiomech.2016.12.018_bib14 article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.04.024 – volume: 40 start-page: 170 year: 2012 ident: 10.1016/j.jbiomech.2016.12.018_bib32 article-title: In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy publication-title: Am. J. Sport. Med. doi: 10.1177/0363546511423746 – volume: 44 start-page: 305 year: 2012 ident: 10.1016/j.jbiomech.2016.12.018_bib43 article-title: Magnetic resonance imaging-measured muscle parameters improved knee moment prediction of an EMG-driven model publication-title: Med. Sci. Sport. Exerc. doi: 10.1249/MSS.0b013e31822dfdb3 – volume: 21 start-page: 965 year: 1988 ident: 10.1016/j.jbiomech.2016.12.018_bib45 article-title: The effects of knee brace hinge design and placement on joint mechanics publication-title: J. Biomech. doi: 10.1016/0021-9290(88)90135-2 – volume: 12 start-page: 165 year: 1999 ident: 10.1016/j.jbiomech.2016.12.018_bib30 article-title: Posterior tibial slope in the normal and varus knee publication-title: Am. J Knee Surg. – volume: 3 year: 2011 ident: 10.1016/j.jbiomech.2016.12.018_bib36 article-title: A new kinematic model of the passive motion of the knee inclusive of the patella publication-title: J. Mech. Robot. doi: 10.1115/1.4004890 – volume: 47 start-page: 3217 year: 2014 ident: 10.1016/j.jbiomech.2016.12.018_bib49 article-title: Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.08.009 – volume: 43 start-page: 2709 year: 2010 ident: 10.1016/j.jbiomech.2016.12.018_bib19 article-title: Muscle contributions to propulsion and support during running publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.06.025 – volume: 225 start-page: 725 year: 2011 ident: 10.1016/j.jbiomech.2016.12.018_bib37 article-title: A one-degree-of-freedom spherical mechanism for human knee joint modelling publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med. doi: 10.1177/0954411911406951 – volume: 38 start-page: 269 year: 2005 ident: 10.1016/j.jbiomech.2016.12.018_bib23 article-title: Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.02.008 – volume: 224 start-page: 1121 year: 2010 ident: 10.1016/j.jbiomech.2016.12.018_bib33 article-title: Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint: an experiment-based assessment publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med. doi: 10.1243/09544119JEIM684 – start-page: 333 year: 2000 ident: 10.1016/j.jbiomech.2016.12.018_bib34 |
SSID | ssj0007479 |
Score | 2.386782 |
Snippet | Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which... Abstract Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 45 |
SubjectTerms | Adult Ankle Attachment Biomechanical Phenomena Bone and Bones - diagnostic imaging Bone and Bones - physiology Bones Computer simulation Female Humans Joint kinematic models Joints - diagnostic imaging Joints - physiology Kinematics Knee Ligaments Ligaments - diagnostic imaging Ligaments - physiology Magnetic Resonance Imaging Male Mathematical models Modelling Models, Biological MRI Muscle, Skeletal - physiology Optimization Parameters Physical Medicine and Rehabilitation Range of Motion, Articular Singularities Subject-specific Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgeUNnyCC3ISIib6dpxHj5VVQUqSOWAirQ3y3Zs1NU2KSR76L_vjNcJPcCCuG7sZJMZj795-BtC3ubOKW7NnJnSKyaFbFhtA3itjQf9aZyHJYXVFl_Ks2_y86JYpIBbn8oqR5sYDXXTOYyRH2HvOCkFOCzH1z8Ydo3C7GpqoXGfPEDqMizpqhaTw4Xc8KnEgzOAAfM7J4SX75fxfHtMSPAyhgSx8cfvN6c_gc-4CX3cI48TeqQnG3E_Ifd8OyP7Jy14zlc39B2N9ZwxUD4ju3eoBmfk4XlKou-TC4B9qSj2hnaBYun7d3r-9VNPh45GFOlpv7YYoWF4EhOriShyhK9WfsXwbUx72V_RZXfZDjT20umfwm0_XJyesdRcgbkqlwMTpW2QGcZKX5q5DcIEhdxbirtQWKNcrWpZBBGM9VZa3hRlQC6xWhkZipA_Iztt1_oXhAr4AQyFczn27PDCNs7VVlamriWvgslIMX5U7RLxOPa_WOmxwmypR2FoFIbmQoMwMnI0zbveUG_8dUY1ykyPB0vBFGrYHf5vpu_Tiu411z2M1Jjc5qhLgGORqUhkRE0zE2jZgJF_eurhqFj614MmRc_Im-kyLHrM5JjWd2scUxZgPKUS28ZUFYBL8LG3jVG5wlyyysjzjWJPn1rUsBnKSr7c_icPyCOBSCee8j8kO8PPtX8FOG2wr-NivAVIVjxh priority: 102 providerName: ProQuest |
Title | Feasibility of using MRIs to create subject-specific parallel-mechanism joint models |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929016313112 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929016313112 https://dx.doi.org/10.1016/j.jbiomech.2016.12.018 https://www.ncbi.nlm.nih.gov/pubmed/28153474 https://www.proquest.com/docview/1874442721 https://www.proquest.com/docview/1865531492 https://www.proquest.com/docview/1877846026 https://www.proquest.com/docview/1893903519 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISF4QNABCxuTkRBvWRfHiePHMg11oFVoGlLfLNuxUasumUj7sBf-9t25TjcEDAQviZSc82Hfnc--u98R8ja3VmZGH6W6dDLljNdpZTysWmsH_FNbByKF0RaTcvyFf5wW0y1y3OfCYFhl1P1rnR60dbwyjL05vJrNMMcXpA3dgGWOmDGohzkXyOWH32_DPMBcjmEeWYrUd7KE54fzkOMenBJZGbYFsfjHryeo3xmgYSL68JQ8iRYkHa0_8hnZcs2A7IwaWD1fXtN3NMR0hs3yAXl8B25wQB6eRUf6DrkA0y8Gxl7T1lMMf_9Kz85PO7psabAkHe1WBndpUszGxIgiijjhi4VbpPg3upl1l3TezpolDfV0uufw2JOL43EaCyykVuR8mbLS1IgOY7gr9ZHxTHuJ-Fsys74wWtpKVrzwzGvjDDdZXZQe8cQqqbkvfP6CbDdt43YJZXABlIW1OdbtcMzU1laGC11VPBNeJ6ToO1XZCD6ONTAWqo8ym6t-MBQOhsqYgsFIyHDT7moNv_HHFqIfM9Unl4I6VDBD_FtL10Wp7lSmOqBUP3FeQuSm5Q_M-1dv3e8ZS92-CIsScAar84S82dwGwUdvjm5cu0KasgAFyiW7j0YIMDBhnX0fjcwl-pNlQl6uGXvT1ayCCZEL_uo_fnCPPGJoCgUYgH2yvfy2cq_BkFuagyCpcBRTcUAejE4_jSdwfn8y-Xx-A4JGStk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4ancTlAUHHpTDASMBbWOM4Fz8gNGBTy9YKTUXam2U7DlrVJYOkQv1R_EfOSZOwBygIaa-tnbQ-x5-_43MDeBFYK32jh56OnPQEF6mXmAyt1tSh_qTW4ZaiaItpNPosPp6Gp1vwo82FobDKFhNroE4LS3fke9Q7TgiOBsvbi68edY0i72rbQmOtFkdu9R1NtvLN-APK9yXnhwez9yOv6Srg2TgQlccjk1JJFCNcpIcm4zqTVHRK-jYLjZY2kYkIM55p44wwfhpGGRXRSqQWWZgF-NhrsC0CtGR6sP3uYPrppIN-5OZNTInvIe8YXkpJnr-e1wn1tQfEj-o7SOo08vvT8E9stz71Du_A7Yausv21ft2FLZf3YWc_R1P9fMVesTqAtL6Z78OtS7UN-3B90njtd2CGPLOJwl2xImMUa_-FTU7GJasKVtNWx8qloSshj1I_KXyJUVHyxcItPPo3Oj8rz9m8OMsrVjfvKe_hY69g3e9DLy9y9xAYxw8QmawNqEmI4ya1NjEi1kki_DjTAwjbRVW2qXRODTcWqg1pm6tWGIqEoXyuUBgD2OvmXaxrffx1RtzKTLWZrIi9Co-j_5vpygZCSuWrEkcq8qb7pEtInKk0Eh-A7GY2LGnNfv7prbutYqlfL-p21gCed18jypDrSOeuWNKYKES0FpJvGhPHyGbRqN80RgaSnNdyAA_Wit0tNU_w9BWxeLT5Rz6DG6PZ5Fgdj6dHj-EmJ5pVlxjYhV71bemeIEmszNNmazJQVwwGPwFzBnrY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkSo4IEh5LBQwEnBbkvV6Hz4gVFGihtIKoSLlZtleGzVKdwu7EcpP498x433QAwSE1Gti7yae8fgbz8w3hDyPjRGRVpNQpVaEnPEizLUDr7WwoD-FsbClMNviJD38zN_Pk_kW-dHXwmBaZW8TvaEuKoN35GPsHcc5A4dl7Lq0iI8H0zcXX0PsIIWR1r6dRqsiR3b9Hdy3-vXsAGT9grHpu9O3h2HXYSA0WcybkKW6QHoUzW2qJtox5QQSUInIuEQrYXKR88Qxp7TVXEdFkjok1MqF4i5xMTz2GrmexUmEWyybD74e0tJ32SVRCAhkcqk4efFq4UvrfSwkSv1tJPYc-f25-Cfc68-_6W1yqwOudL_VtDtky5YjsrtfgtN-vqYvqU8l9Xf0I3LzEsvhiOwcd_H7XXIKiLPLx13TylHMuv9Cjz_NatpU1ANYS-uVxsuhEItAMZGJIj35cmmXIf4bVZ7V53RRnZUN9W186rvw2CtY9Xtku6xK-4BQBh-AjTImxnYhlunCmFzzTOU5jzKnApL0iypNx3mOrTeWsk9uW8heGBKFISMmQRgBGQ_zLlrWj7_OyHqZyb6mFaywhIPp_2baujMmtYxkDSMlxtUj1CWA0EiSxAIihpkdXmpx0D-9da9XLPnrRcMeC8iz4WuwNxhEUqWtVjgmTcBuc8E2jckywLXg3m8aI2KBYWwRkPutYg9LzXI4h3nGH27-kU_JDpgA-WF2cvSI3GCItzzXwB7Zbr6t7GNAi41-4vclJfKK7cBPxW19qA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+using+MRIs+to+create+subject-specific+parallel-mechanism+joint+models&rft.jtitle=Journal+of+biomechanics&rft.au=Brito+da+Luz%2C+Simao&rft.au=Modenese%2C+Luca&rft.au=Sancisi%2C+Nicola&rft.au=Mills%2C+Peter+M&rft.date=2017-02-28&rft.issn=0021-9290&rft.volume=53&rft.spage=45&rft.epage=55&rft_id=info:doi/10.1016%2Fj.jbiomech.2016.12.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929017X00031%2Fcov150h.gif |