Feasibility of using MRIs to create subject-specific parallel-mechanism joint models

Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints’ measured kinematics in cadavers are well-predicted using 3D cadaver-specif...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 53; pp. 45 - 55
Main Authors Brito da Luz, Simao, Modenese, Luca, Sancisi, Nicola, Mills, Peter M., Kennedy, Ben, Beck, Belinda R., Lloyd, David G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 28.02.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2016.12.018

Cover

Loading…
Abstract Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints’ measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models’ parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres’ centres. Two parameters’ optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations’ means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres’ centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads.
AbstractList Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints’ measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models’ parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres’ centres. Two parameters’ optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations’ means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres’ centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads.
Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject's bone dimensions. Alternatively joints' measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint's surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models' parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant's kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres' centres. Two parameters' optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations' means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres' centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads.
Abstract Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints’ measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models’ parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres’ centres. Two parameters’ optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations’ means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres’ centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads.
Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints' measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models' parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres' centres. Two parameters' optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations' means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres' centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads.
Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints' measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models' parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres' centres. Two parameters' optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations' means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres' centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads.Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints' measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models' parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres' centres. Two parameters' optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations' means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres' centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads.
Author Mills, Peter M.
Beck, Belinda R.
Sancisi, Nicola
Brito da Luz, Simao
Modenese, Luca
Lloyd, David G.
Kennedy, Ben
Author_xml – sequence: 1
  givenname: Simao
  surname: Brito da Luz
  fullname: Brito da Luz, Simao
  email: simao.britodaluz@griffithuni.edu.au
  organization: Menzies Health Institute Queensland, Griffith University, Australia
– sequence: 2
  givenname: Luca
  surname: Modenese
  fullname: Modenese, Luca
  organization: Menzies Health Institute Queensland, Griffith University, Australia
– sequence: 3
  givenname: Nicola
  surname: Sancisi
  fullname: Sancisi, Nicola
  organization: Department of Industrial Engineering, Health Sciences and Technologies ICIR, University of Bologna, Italy
– sequence: 4
  givenname: Peter M.
  surname: Mills
  fullname: Mills, Peter M.
  organization: Menzies Health Institute Queensland, Griffith University, Australia
– sequence: 5
  givenname: Ben
  surname: Kennedy
  fullname: Kennedy, Ben
  organization: Menzies Health Institute Queensland, Griffith University, Australia
– sequence: 6
  givenname: Belinda R.
  surname: Beck
  fullname: Beck, Belinda R.
  organization: Menzies Health Institute Queensland, Griffith University, Australia
– sequence: 7
  givenname: David G.
  surname: Lloyd
  fullname: Lloyd, David G.
  organization: Menzies Health Institute Queensland, Griffith University, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28153474$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2G31L5QBb7yZNSfJfARElOJHoSJo70OSOdGMmcmazAj7782wXYS9sL0Kged98_Gci-JsChMWxRWQLRBoXg_bQbswovm5pXm_Bbol0D0pNtC1rKKsI2fFhhAKlaCCnBcXKQ2EkJa34llxTjuoGW_5prj7iCo57byb92Ww5ZLc9KP88u0mlXMoTUQ1Y5kWPaCZq7RD46wz5U5F5T36ar2AmlwayyG4aS7H0KNPz4unVvmEL-7Xy3zMh7vrz9Xt10831-9vK9MyPle00b3gXa05NopoS5UVhAMVYGytlTCd6HhtqVUaNdfQ142tG0Y6obitLbssXh1qdzH8XjDNcnTJoPdqwrAkCZ1ggrAaxCPQtu14Q2jzCLSpawZc0Iy-PEGHsMQpP3kt5JzTlkKmru6pRY_Yy110o4p7eZSQgTcHwMSQUkQrjZvV7MI0R-W8BCJX53KQR-dydS6Byuw8x5uT-PGEB4PvDsGsDP84jDIZh5PB3sWsW_bBPVzx9qTCeDc5o_wv3GP69x0y5YD8vk7kOpDQMGAA9P8Fj7nBXyUB8nk
CitedBy_id crossref_primary_10_1053_j_jfas_2019_01_024
crossref_primary_10_1007_s10237_020_01367_8
crossref_primary_10_1186_s12984_025_01556_5
crossref_primary_10_1016_j_jbiomech_2018_11_042
crossref_primary_10_1016_j_jbiomech_2020_110186
crossref_primary_10_1016_j_jbiomech_2018_08_023
crossref_primary_10_1007_s10439_023_03216_y
crossref_primary_10_1016_j_cmpb_2022_107002
crossref_primary_10_1080_14763141_2021_1959947
crossref_primary_10_1016_j_jbiomech_2018_02_032
crossref_primary_10_3389_fncom_2017_00096
crossref_primary_10_1007_s10237_020_01398_1
crossref_primary_10_6009_jjrt_2022_1232
crossref_primary_10_1016_j_medengphy_2019_08_001
crossref_primary_10_1016_j_jbiomech_2018_01_021
crossref_primary_10_1016_j_clinbiomech_2019_12_011
crossref_primary_10_1016_j_clinbiomech_2023_106157
crossref_primary_10_1371_journal_pone_0205628
crossref_primary_10_3390_app11209415
crossref_primary_10_1016_j_cmpb_2024_108370
crossref_primary_10_1016_j_gaitpost_2020_06_022
crossref_primary_10_1016_j_jbiomech_2018_03_039
crossref_primary_10_1016_j_smhs_2025_02_003
crossref_primary_10_1109_TNSRE_2017_2683488
crossref_primary_10_1038_s41598_025_86137_1
crossref_primary_10_1007_s11831_022_09757_0
crossref_primary_10_1016_j_jsams_2023_04_001
crossref_primary_10_1007_s10237_022_01626_w
crossref_primary_10_1007_s10237_019_01245_y
crossref_primary_10_1016_j_jbiomech_2019_07_001
crossref_primary_10_1080_10255842_2019_1604950
crossref_primary_10_1115_1_4050034
crossref_primary_10_3390_app10062100
Cites_doi 10.1016/S0021-9290(98)00119-5
10.1007/s10439-009-9852-5
10.1007/s00167-007-0320-1
10.1109/10.102791
10.1016/j.medengphy.2004.07.004
10.1007/s11517-014-1137-y
10.1016/j.jbiomech.2016.05.001
10.1016/0268-0033(91)90049-V
10.1007/s11517-015-1269-8
10.1016/S0021-9290(99)00022-6
10.1115/1.4029304
10.1016/j.orthres.2003.11.011
10.1111/j.2517-6161.1995.tb02031.x
10.1007/s00371-010-0538-7
10.1016/0021-9290(89)90179-6
10.1016/j.jbiomech.2011.01.001
10.1016/S0021-9290(01)00222-6
10.1016/j.jbiomech.2010.06.010
10.1016/j.medengphy.2008.03.001
10.1016/j.jbiomech.2016.03.052
10.1016/j.jbiomech.2013.09.005
10.1016/j.jbiomech.2011.06.019
10.1002/aja.1001840208
10.1007/BF02513282
10.1109/TBME.2007.901024
10.3109/10929080802594563
10.1016/j.jbiomech.2015.01.010
10.1115/1.3138397
10.1016/j.simpat.2006.09.001
10.1115/1.2795965
10.2106/JBJS.G.01358
10.1016/j.jbiomech.2015.09.042
10.1016/j.jbiomech.2015.09.040
10.1016/j.jbiomech.2014.12.049
10.1016/j.gaitpost.2008.05.002
10.1016/j.jbiomech.2009.04.024
10.1177/0363546511423746
10.1249/MSS.0b013e31822dfdb3
10.1016/0021-9290(88)90135-2
10.1115/1.4004890
10.1016/j.jbiomech.2014.08.009
10.1016/j.jbiomech.2010.06.025
10.1177/0954411911406951
10.1016/j.jbiomech.2004.02.008
10.1243/09544119JEIM684
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
P64
DOI 10.1016/j.jbiomech.2016.12.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Technology Research Database
Research Library Prep


Engineering Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 55
ExternalDocumentID 4318822421
28153474
10_1016_j_jbiomech_2016_12_018
S0021929016313112
1_s2_0_S0021929016313112
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
P64
ID FETCH-LOGICAL-c734t-26bd9485b4e6a0bf2af9041291cf5ba9c89845f2fabeb4b1d56f563089a4f5f3
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 05:56:11 EDT 2025
Tue Aug 05 09:59:05 EDT 2025
Thu Jul 10 19:35:01 EDT 2025
Wed Aug 13 10:02:07 EDT 2025
Wed Feb 19 02:42:50 EST 2025
Thu Apr 24 22:56:50 EDT 2025
Tue Jul 01 00:44:08 EDT 2025
Fri Feb 23 02:20:31 EST 2024
Tue Feb 25 20:12:59 EST 2025
Tue Aug 26 17:10:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Modelling
Computer simulation
Subject-specific
Joint kinematic models
MRI
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c734t-26bd9485b4e6a0bf2af9041291cf5ba9c89845f2fabeb4b1d56f563089a4f5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/10072/340040
PMID 28153474
PQID 1874442721
PQPubID 1226346
PageCount 11
ParticipantIDs proquest_miscellaneous_1893903519
proquest_miscellaneous_1877846026
proquest_miscellaneous_1865531492
proquest_journals_1874442721
pubmed_primary_28153474
crossref_citationtrail_10_1016_j_jbiomech_2016_12_018
crossref_primary_10_1016_j_jbiomech_2016_12_018
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2016_12_018
elsevier_clinicalkeyesjournals_1_s2_0_S0021929016313112
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2016_12_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-28
PublicationDateYYYYMMDD 2017-02-28
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Sancisi, Zannoli, Parenti-Castelli, Belvedere, Leardini (bib37) 2011; 225
Damsgaard, Rasmussen, Christensen, Surma, de Zee (bib8) 2006; 14
Grood, Suntay (bib18) 1983; 105
Scheys, Desloovere, Suetens, Jonkers (bib41) 2011; 44
Duprey, Cheze, Dumas (bib12) 2010; 43
Sancisi, Parenti-Castelli (bib36) 2011; 3
Gasparutto, Sancisi, Jacquelin, Parenti-Castelli, Dumas (bib16) 2015; 48
Walker, Rovick, Robertson (bib45) 1988; 21
Arnold, Ward, Lieber, Delp (bib2) 2010; 38
Hicks, Uchida, Seth, Rajagopal, Delp (bib21) 2015; 137
Rovick, Reuben, Schrager, Walker (bib35) 1991; 6
Sandholm, Schwartz, Pronost, de Zee, Voigt, Thalmann (bib39) 2011; 27
Matsuda, Miura, Nagamine, Urabe, Ikenoue, Okazaki, Iwamoto (bib30) 1999; 12
Valente, Pitto, Stagni, Taddei (bib44) 2015; 48
Franci, Parenti-Castelli, Belvedere, Leardini (bib14) 2009; 42
Leardini, O׳Connor, Catani, Giannini (bib26) 1999; 32
Gerus, Sartori, Besier, Fregly, Delp, Banks, Pandy, D׳Lima, Lloyd (bib17) 2013; 46
Ottoboni, Parenti-Castelli, Sancisi, Belvedere, Leardini (bib33) 2010; 224
Scheys, Van Campenhout, Spaepen, Suetens, Jonkers (bib40) 2008; 28
Anglin, Ho, Briard, de Lambilly, Plaskos, Nodwell, Stindel (bib1) 2008; 13
Hashemi, Chandrashekar, Gill, Beynnon, Slauterbeck, Schutt, Mansouri, Dabezies (bib20) 2008; 90
Sreenivasa, Chamorro, Gonzalez-Alvarado, Rettig, Wolf (bib42) 2016; 49
Wu, Siegler, Allard, Kirtley, Leardini, Rosenbaum, Whittle, D’Lima, Cristofolini, Witte, Schmid, Stokes (bib47) 2002; 35
Zheng, Li, Shetye, Zhang (bib49) 2014; 47
Beynnon, Yu, Huston, Fleming, Johnson, Haugh, Pope (bib6) 1996; 118
Wilson, Feikes, O’Connor (bib46) 1998; 31
Belvedere, Catani, Ensini, Moctezuma de la Barrera, Leardini (bib4) 2007; 15
Tsai, Colletti, Powers (bib43) 2012; 44
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (bib11) 2007; 54
Parenti-Castelli, Di Gregorio (bib34) 2000
Bei, Fregly (bib3) 2004; 26
El Habachi, Moissenet, Duprey, Cheze, Dumas (bib13) 2015; 53
Benjamini, Hochberg (bib5) 1995; 57
Delp, Loan, Hoy, Zajac, Topp, Rosen (bib10) 1990; 37
Li, DeFrate, Zayontz, Park, Gill (bib28) 2004; 22
Isman, Inman (bib22) 1968
Modenese, Phillips, Bull (bib31) 2011; 44
Lu, Tsai, Kuo, Hsu, Chen (bib29) 2008; 30
Sancisi, Baldisserri, Parenti-Castelli, Belvedere, Leardini (bib38) 2014; 52
Kapandji (bib25) 1987
Johal, Williams, Wragg, Hunt, Gedroyc (bib23) 2005; 38
Fuss (bib15) 1989; 184
Hamner, Seth, Delp (bib19) 2010; 43
Della Croce, Cappozzo, Kerrigan (bib9) 1999; 37
Yamaguchi, Zajac (bib48) 1989; 22
Clément, Dumas, Hagemeister, de Guise (bib7) 2015; 48
Lerner, DeMers, Delp, Browning (bib27) 2015; 48
Kainz, Modenese, Lloyd, Maine, Walsh, Carty (bib24) 2016; 49
Myers, Torry, Shelburne, Giphart, LaPrade, Woo, Steadman (bib32) 2012; 40
Johal (10.1016/j.jbiomech.2016.12.018_bib23) 2005; 38
Rovick (10.1016/j.jbiomech.2016.12.018_bib35) 1991; 6
Leardini (10.1016/j.jbiomech.2016.12.018_bib26) 1999; 32
Walker (10.1016/j.jbiomech.2016.12.018_bib45) 1988; 21
Wilson (10.1016/j.jbiomech.2016.12.018_bib46) 1998; 31
Benjamini (10.1016/j.jbiomech.2016.12.018_bib5) 1995; 57
Della Croce (10.1016/j.jbiomech.2016.12.018_bib9) 1999; 37
Scheys (10.1016/j.jbiomech.2016.12.018_bib40) 2008; 28
Duprey (10.1016/j.jbiomech.2016.12.018_bib12) 2010; 43
Franci (10.1016/j.jbiomech.2016.12.018_bib14) 2009; 42
Grood (10.1016/j.jbiomech.2016.12.018_bib18) 1983; 105
Gasparutto (10.1016/j.jbiomech.2016.12.018_bib16) 2015; 48
Lu (10.1016/j.jbiomech.2016.12.018_bib29) 2008; 30
Kainz (10.1016/j.jbiomech.2016.12.018_bib24) 2016; 49
Tsai (10.1016/j.jbiomech.2016.12.018_bib43) 2012; 44
Arnold (10.1016/j.jbiomech.2016.12.018_bib2) 2010; 38
Modenese (10.1016/j.jbiomech.2016.12.018_bib31) 2011; 44
Hamner (10.1016/j.jbiomech.2016.12.018_bib19) 2010; 43
Lerner (10.1016/j.jbiomech.2016.12.018_bib27) 2015; 48
Sancisi (10.1016/j.jbiomech.2016.12.018_bib38) 2014; 52
Hicks (10.1016/j.jbiomech.2016.12.018_bib21) 2015; 137
Isman (10.1016/j.jbiomech.2016.12.018_bib22) 1968
Bei (10.1016/j.jbiomech.2016.12.018_bib3) 2004; 26
Sreenivasa (10.1016/j.jbiomech.2016.12.018_bib42) 2016; 49
Scheys (10.1016/j.jbiomech.2016.12.018_bib41) 2011; 44
Delp (10.1016/j.jbiomech.2016.12.018_bib10) 1990; 37
Hashemi (10.1016/j.jbiomech.2016.12.018_bib20) 2008; 90
Ottoboni (10.1016/j.jbiomech.2016.12.018_bib33) 2010; 224
Fuss (10.1016/j.jbiomech.2016.12.018_bib15) 1989; 184
Parenti-Castelli (10.1016/j.jbiomech.2016.12.018_bib34) 2000
Zheng (10.1016/j.jbiomech.2016.12.018_bib49) 2014; 47
El Habachi (10.1016/j.jbiomech.2016.12.018_bib13) 2015; 53
Gerus (10.1016/j.jbiomech.2016.12.018_bib17) 2013; 46
Matsuda (10.1016/j.jbiomech.2016.12.018_bib30) 1999; 12
Kapandji (10.1016/j.jbiomech.2016.12.018_bib25) 1987
Li (10.1016/j.jbiomech.2016.12.018_bib28) 2004; 22
Anglin (10.1016/j.jbiomech.2016.12.018_bib1) 2008; 13
Damsgaard (10.1016/j.jbiomech.2016.12.018_bib8) 2006; 14
Sancisi (10.1016/j.jbiomech.2016.12.018_bib36) 2011; 3
Sandholm (10.1016/j.jbiomech.2016.12.018_bib39) 2011; 27
Valente (10.1016/j.jbiomech.2016.12.018_bib44) 2015; 48
Sancisi (10.1016/j.jbiomech.2016.12.018_bib37) 2011; 225
Beynnon (10.1016/j.jbiomech.2016.12.018_bib6) 1996; 118
Belvedere (10.1016/j.jbiomech.2016.12.018_bib4) 2007; 15
Myers (10.1016/j.jbiomech.2016.12.018_bib32) 2012; 40
Clément (10.1016/j.jbiomech.2016.12.018_bib7) 2015; 48
Wu (10.1016/j.jbiomech.2016.12.018_bib47) 2002; 35
Delp (10.1016/j.jbiomech.2016.12.018_bib11) 2007; 54
Yamaguchi (10.1016/j.jbiomech.2016.12.018_bib48) 1989; 22
References_xml – volume: 21
  start-page: 965
  year: 1988
  end-page: 974
  ident: bib45
  article-title: The effects of knee brace hinge design and placement on joint mechanics
  publication-title: J. Biomech.
– volume: 184
  start-page: 165
  year: 1989
  end-page: 176
  ident: bib15
  article-title: Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint
  publication-title: Am. J. Anat.
– volume: 38
  start-page: 269
  year: 2005
  end-page: 276
  ident: bib23
  article-title: Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI
  publication-title: J. Biomech.
– volume: 30
  start-page: 1004
  year: 2008
  end-page: 1012
  ident: bib29
  article-title: In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy
  publication-title: Med. Eng. Phys.
– volume: 44
  start-page: 305
  year: 2012
  end-page: 312
  ident: bib43
  article-title: Magnetic resonance imaging-measured muscle parameters improved knee moment prediction of an EMG-driven model
  publication-title: Med. Sci. Sport. Exerc.
– volume: 27
  start-page: 161
  year: 2011
  end-page: 171
  ident: bib39
  article-title: Evaluation of a geometry-based knee joint compared to a planar knee joint
  publication-title: Vis. Comput.
– volume: 31
  start-page: 1127
  year: 1998
  end-page: 1136
  ident: bib46
  article-title: Ligaments and articular contact guide passive knee flexion
  publication-title: J. Biomech.
– volume: 49
  start-page: 1658
  year: 2016
  end-page: 1669
  ident: bib24
  article-title: Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models
  publication-title: J. Biomech.
– volume: 13
  start-page: 377
  year: 2008
  end-page: 391
  ident: bib1
  article-title: In vivo patellar kinematics during total knee arthroplasty
  publication-title: Comput. Aided Surg.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib5
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– volume: 137
  start-page: 26
  year: 2015
  ident: bib21
  article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement
  publication-title: J Biomech. Eng.
– volume: 44
  start-page: 1346
  year: 2011
  end-page: 1353
  ident: bib41
  article-title: Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion
  publication-title: J. Biomech.
– volume: 35
  start-page: 543
  year: 2002
  end-page: 548
  ident: bib47
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine
  publication-title: J. Biomech.
– volume: 26
  start-page: 777
  year: 2004
  end-page: 789
  ident: bib3
  article-title: Multibody dynamic simulation of knee contact mechanics
  publication-title: Med. Eng. Amp. Phys.
– volume: 32
  start-page: 585
  year: 1999
  end-page: 591
  ident: bib26
  article-title: A geometric model of the human ankle joint
  publication-title: J. Biomech.
– volume: 224
  start-page: 1121
  year: 2010
  end-page: 1132
  ident: bib33
  article-title: Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint: an experiment-based assessment
  publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
– volume: 44
  start-page: 2185
  year: 2011
  end-page: 2193
  ident: bib31
  article-title: An open source lower limb model: hip joint validation
  publication-title: J. Biomech.
– volume: 49
  start-page: 1918
  year: 2016
  end-page: 1925
  ident: bib42
  article-title: Patient-specific bone geometry and segment inertia from MRI images for model-based analysis of pathological gait
  publication-title: J. Biomech.
– volume: 3
  year: 2011
  ident: bib36
  article-title: A new kinematic model of the passive motion of the knee inclusive of the patella
  publication-title: J. Mech. Robot.
– volume: 14
  start-page: 1100
  year: 2006
  end-page: 1111
  ident: bib8
  article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System
  publication-title: Simul. Model. Pract. Theory
– volume: 52
  start-page: 363
  year: 2014
  end-page: 373
  ident: bib38
  article-title: One-degree-of-freedom spherical model for the passive motion of the human ankle joint
  publication-title: Med. Biol. Eng. Comput.
– volume: 46
  start-page: 2778
  year: 2013
  end-page: 2786
  ident: bib17
  article-title: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces
  publication-title: J. Biomech.
– volume: 43
  start-page: 2709
  year: 2010
  end-page: 2716
  ident: bib19
  article-title: Muscle contributions to propulsion and support during running
  publication-title: J. Biomech.
– year: 1987
  ident: bib25
  publication-title: The Physiology of the Joints
– volume: 90
  start-page: 2724
  year: 2008
  end-page: 2734
  ident: bib20
  article-title: The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint
  publication-title: J Bone Jt. Surg. Am.
– volume: 48
  start-page: 644
  year: 2015
  end-page: 650
  ident: bib27
  article-title: How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces
  publication-title: J. Biomech.
– volume: 15
  start-page: 985
  year: 2007
  end-page: 993
  ident: bib4
  article-title: Patellar tracking during total knee arthroplasty: an in vitro feasibility study
  publication-title: Knee Surg. Sport. Traumatol. Arthr
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: bib10
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: Biomed. Eng. IEEE Trans.
– volume: 40
  start-page: 170
  year: 2012
  end-page: 178
  ident: bib32
  article-title: In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy
  publication-title: Am. J. Sport. Med.
– volume: 48
  start-page: 4198
  year: 2015
  end-page: 4205
  ident: bib44
  article-title: Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities
  publication-title: J. Biomech.
– volume: 28
  start-page: 358
  year: 2008
  end-page: 365
  ident: bib40
  article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths
  publication-title: Gait Amp. Posture
– volume: 225
  start-page: 725
  year: 2011
  end-page: 735
  ident: bib37
  article-title: A one-degree-of-freedom spherical mechanism for human knee joint modelling
  publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
– volume: 118
  start-page: 227
  year: 1996
  end-page: 239
  ident: bib6
  article-title: A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis
  publication-title: J. Biomech. Eng.
– volume: 22
  start-page: 1
  year: 1989
  end-page: 10
  ident: bib48
  article-title: A planar model of the knee joint to characterize the knee extensor mechanism
  publication-title: J. Biomech.
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: bib11
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: Biomed. Eng., IEEE Trans.
– start-page: 333
  year: 2000
  end-page: 344
  ident: bib34
  publication-title: Parallel Mechanisms Applied to the Human Knee Passive Motion Simulation
– volume: 48
  start-page: 1141
  year: 2015
  end-page: 1146
  ident: bib16
  article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints
  publication-title: J. Biomech.
– volume: 105
  start-page: 136
  year: 1983
  end-page: 144
  ident: bib18
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
– volume: 38
  start-page: 269
  year: 2010
  end-page: 279
  ident: bib2
  article-title: A model of the lower limb for analysis of human movement
  publication-title: Ann. Biomed. Eng.
– volume: 48
  start-page: 3796
  year: 2015
  end-page: 3802
  ident: bib7
  article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models
  publication-title: J. Biomech.
– volume: 12
  start-page: 165
  year: 1999
  end-page: 168
  ident: bib30
  article-title: Posterior tibial slope in the normal and varus knee
  publication-title: Am. J Knee Surg.
– volume: 43
  start-page: 2858
  year: 2010
  end-page: 2862
  ident: bib12
  article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization
  publication-title: J Biomech.
– volume: 42
  start-page: 1403
  year: 2009
  end-page: 1408
  ident: bib14
  article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint
  publication-title: J. Biomech.
– start-page: 58
  year: 1968
  ident: bib22
  article-title: Anthropometric studies of the human foot and ankle. Biomechanics Laboratory
– volume: 22
  start-page: 801
  year: 2004
  end-page: 806
  ident: bib28
  article-title: The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads
  publication-title: J. Orthop. Res.
– volume: 6
  start-page: 213
  year: 1991
  end-page: 220
  ident: bib35
  article-title: Relation between knee motion and ligament length patterns
  publication-title: Clin. Biomech.
– volume: 37
  start-page: 155
  year: 1999
  end-page: 161
  ident: bib9
  article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles
  publication-title: Med. Biol. Eng. Comput.
– volume: 53
  start-page: 655
  year: 2015
  end-page: 667
  ident: bib13
  article-title: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model
  publication-title: Med. Biol. Eng. Comput.
– volume: 47
  start-page: 3217
  year: 2014
  end-page: 3221
  ident: bib49
  article-title: Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling
  publication-title: J. Biomech.
– volume: 31
  start-page: 1127
  year: 1998
  ident: 10.1016/j.jbiomech.2016.12.018_bib46
  article-title: Ligaments and articular contact guide passive knee flexion
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00119-5
– volume: 38
  start-page: 269
  year: 2010
  ident: 10.1016/j.jbiomech.2016.12.018_bib2
  article-title: A model of the lower limb for analysis of human movement
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9852-5
– volume: 15
  start-page: 985
  year: 2007
  ident: 10.1016/j.jbiomech.2016.12.018_bib4
  article-title: Patellar tracking during total knee arthroplasty: an in vitro feasibility study
  publication-title: Knee Surg. Sport. Traumatol. Arthr
  doi: 10.1007/s00167-007-0320-1
– volume: 37
  start-page: 757
  year: 1990
  ident: 10.1016/j.jbiomech.2016.12.018_bib10
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/10.102791
– volume: 26
  start-page: 777
  year: 2004
  ident: 10.1016/j.jbiomech.2016.12.018_bib3
  article-title: Multibody dynamic simulation of knee contact mechanics
  publication-title: Med. Eng. Amp. Phys.
  doi: 10.1016/j.medengphy.2004.07.004
– volume: 52
  start-page: 363
  year: 2014
  ident: 10.1016/j.jbiomech.2016.12.018_bib38
  article-title: One-degree-of-freedom spherical model for the passive motion of the human ankle joint
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1137-y
– volume: 49
  start-page: 1918
  year: 2016
  ident: 10.1016/j.jbiomech.2016.12.018_bib42
  article-title: Patient-specific bone geometry and segment inertia from MRI images for model-based analysis of pathological gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.05.001
– volume: 6
  start-page: 213
  year: 1991
  ident: 10.1016/j.jbiomech.2016.12.018_bib35
  article-title: Relation between knee motion and ligament length patterns
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(91)90049-V
– volume: 53
  start-page: 655
  year: 2015
  ident: 10.1016/j.jbiomech.2016.12.018_bib13
  article-title: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1269-8
– volume: 32
  start-page: 585
  year: 1999
  ident: 10.1016/j.jbiomech.2016.12.018_bib26
  article-title: A geometric model of the human ankle joint
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00022-6
– volume: 137
  start-page: 26
  year: 2015
  ident: 10.1016/j.jbiomech.2016.12.018_bib21
  article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement
  publication-title: J Biomech. Eng.
  doi: 10.1115/1.4029304
– volume: 22
  start-page: 801
  year: 2004
  ident: 10.1016/j.jbiomech.2016.12.018_bib28
  article-title: The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads
  publication-title: J. Orthop. Res.
  doi: 10.1016/j.orthres.2003.11.011
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.jbiomech.2016.12.018_bib5
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 27
  start-page: 161
  year: 2011
  ident: 10.1016/j.jbiomech.2016.12.018_bib39
  article-title: Evaluation of a geometry-based knee joint compared to a planar knee joint
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-010-0538-7
– volume: 22
  start-page: 1
  year: 1989
  ident: 10.1016/j.jbiomech.2016.12.018_bib48
  article-title: A planar model of the knee joint to characterize the knee extensor mechanism
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(89)90179-6
– volume: 44
  start-page: 1346
  year: 2011
  ident: 10.1016/j.jbiomech.2016.12.018_bib41
  article-title: Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.01.001
– volume: 35
  start-page: 543
  year: 2002
  ident: 10.1016/j.jbiomech.2016.12.018_bib47
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00222-6
– volume: 43
  start-page: 2858
  year: 2010
  ident: 10.1016/j.jbiomech.2016.12.018_bib12
  article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization
  publication-title: J Biomech.
  doi: 10.1016/j.jbiomech.2010.06.010
– year: 1987
  ident: 10.1016/j.jbiomech.2016.12.018_bib25
– start-page: 58
  year: 1968
  ident: 10.1016/j.jbiomech.2016.12.018_bib22
– volume: 30
  start-page: 1004
  year: 2008
  ident: 10.1016/j.jbiomech.2016.12.018_bib29
  article-title: In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.03.001
– volume: 49
  start-page: 1658
  year: 2016
  ident: 10.1016/j.jbiomech.2016.12.018_bib24
  article-title: Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.03.052
– volume: 46
  start-page: 2778
  year: 2013
  ident: 10.1016/j.jbiomech.2016.12.018_bib17
  article-title: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.09.005
– volume: 44
  start-page: 2185
  year: 2011
  ident: 10.1016/j.jbiomech.2016.12.018_bib31
  article-title: An open source lower limb model: hip joint validation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.06.019
– volume: 184
  start-page: 165
  year: 1989
  ident: 10.1016/j.jbiomech.2016.12.018_bib15
  article-title: Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint
  publication-title: Am. J. Anat.
  doi: 10.1002/aja.1001840208
– volume: 37
  start-page: 155
  year: 1999
  ident: 10.1016/j.jbiomech.2016.12.018_bib9
  article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02513282
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.jbiomech.2016.12.018_bib11
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: Biomed. Eng., IEEE Trans.
  doi: 10.1109/TBME.2007.901024
– volume: 13
  start-page: 377
  year: 2008
  ident: 10.1016/j.jbiomech.2016.12.018_bib1
  article-title: In vivo patellar kinematics during total knee arthroplasty
  publication-title: Comput. Aided Surg.
  doi: 10.3109/10929080802594563
– volume: 48
  start-page: 1141
  year: 2015
  ident: 10.1016/j.jbiomech.2016.12.018_bib16
  article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.01.010
– volume: 105
  start-page: 136
  year: 1983
  ident: 10.1016/j.jbiomech.2016.12.018_bib18
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138397
– volume: 14
  start-page: 1100
  year: 2006
  ident: 10.1016/j.jbiomech.2016.12.018_bib8
  article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2006.09.001
– volume: 118
  start-page: 227
  year: 1996
  ident: 10.1016/j.jbiomech.2016.12.018_bib6
  article-title: A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2795965
– volume: 90
  start-page: 2724
  year: 2008
  ident: 10.1016/j.jbiomech.2016.12.018_bib20
  article-title: The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint
  publication-title: J Bone Jt. Surg. Am.
  doi: 10.2106/JBJS.G.01358
– volume: 48
  start-page: 4198
  year: 2015
  ident: 10.1016/j.jbiomech.2016.12.018_bib44
  article-title: Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.09.042
– volume: 48
  start-page: 3796
  year: 2015
  ident: 10.1016/j.jbiomech.2016.12.018_bib7
  article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.09.040
– volume: 48
  start-page: 644
  year: 2015
  ident: 10.1016/j.jbiomech.2016.12.018_bib27
  article-title: How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.12.049
– volume: 28
  start-page: 358
  year: 2008
  ident: 10.1016/j.jbiomech.2016.12.018_bib40
  article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths
  publication-title: Gait Amp. Posture
  doi: 10.1016/j.gaitpost.2008.05.002
– volume: 42
  start-page: 1403
  year: 2009
  ident: 10.1016/j.jbiomech.2016.12.018_bib14
  article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.04.024
– volume: 40
  start-page: 170
  year: 2012
  ident: 10.1016/j.jbiomech.2016.12.018_bib32
  article-title: In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy
  publication-title: Am. J. Sport. Med.
  doi: 10.1177/0363546511423746
– volume: 44
  start-page: 305
  year: 2012
  ident: 10.1016/j.jbiomech.2016.12.018_bib43
  article-title: Magnetic resonance imaging-measured muscle parameters improved knee moment prediction of an EMG-driven model
  publication-title: Med. Sci. Sport. Exerc.
  doi: 10.1249/MSS.0b013e31822dfdb3
– volume: 21
  start-page: 965
  year: 1988
  ident: 10.1016/j.jbiomech.2016.12.018_bib45
  article-title: The effects of knee brace hinge design and placement on joint mechanics
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(88)90135-2
– volume: 12
  start-page: 165
  year: 1999
  ident: 10.1016/j.jbiomech.2016.12.018_bib30
  article-title: Posterior tibial slope in the normal and varus knee
  publication-title: Am. J Knee Surg.
– volume: 3
  year: 2011
  ident: 10.1016/j.jbiomech.2016.12.018_bib36
  article-title: A new kinematic model of the passive motion of the knee inclusive of the patella
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4004890
– volume: 47
  start-page: 3217
  year: 2014
  ident: 10.1016/j.jbiomech.2016.12.018_bib49
  article-title: Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.08.009
– volume: 43
  start-page: 2709
  year: 2010
  ident: 10.1016/j.jbiomech.2016.12.018_bib19
  article-title: Muscle contributions to propulsion and support during running
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.06.025
– volume: 225
  start-page: 725
  year: 2011
  ident: 10.1016/j.jbiomech.2016.12.018_bib37
  article-title: A one-degree-of-freedom spherical mechanism for human knee joint modelling
  publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
  doi: 10.1177/0954411911406951
– volume: 38
  start-page: 269
  year: 2005
  ident: 10.1016/j.jbiomech.2016.12.018_bib23
  article-title: Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.02.008
– volume: 224
  start-page: 1121
  year: 2010
  ident: 10.1016/j.jbiomech.2016.12.018_bib33
  article-title: Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint: an experiment-based assessment
  publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
  doi: 10.1243/09544119JEIM684
– start-page: 333
  year: 2000
  ident: 10.1016/j.jbiomech.2016.12.018_bib34
SSID ssj0007479
Score 2.386782
Snippet Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which...
Abstract Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms Adult
Ankle
Attachment
Biomechanical Phenomena
Bone and Bones - diagnostic imaging
Bone and Bones - physiology
Bones
Computer simulation
Female
Humans
Joint kinematic models
Joints - diagnostic imaging
Joints - physiology
Kinematics
Knee
Ligaments
Ligaments - diagnostic imaging
Ligaments - physiology
Magnetic Resonance Imaging
Male
Mathematical models
Modelling
Models, Biological
MRI
Muscle, Skeletal - physiology
Optimization
Parameters
Physical Medicine and Rehabilitation
Range of Motion, Articular
Singularities
Subject-specific
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgeUNnyCC3ISIib6dpxHj5VVQUqSOWAirQ3y3Zs1NU2KSR76L_vjNcJPcCCuG7sZJMZj795-BtC3ubOKW7NnJnSKyaFbFhtA3itjQf9aZyHJYXVFl_Ks2_y86JYpIBbn8oqR5sYDXXTOYyRH2HvOCkFOCzH1z8Ydo3C7GpqoXGfPEDqMizpqhaTw4Xc8KnEgzOAAfM7J4SX75fxfHtMSPAyhgSx8cfvN6c_gc-4CX3cI48TeqQnG3E_Ifd8OyP7Jy14zlc39B2N9ZwxUD4ju3eoBmfk4XlKou-TC4B9qSj2hnaBYun7d3r-9VNPh45GFOlpv7YYoWF4EhOriShyhK9WfsXwbUx72V_RZXfZDjT20umfwm0_XJyesdRcgbkqlwMTpW2QGcZKX5q5DcIEhdxbirtQWKNcrWpZBBGM9VZa3hRlQC6xWhkZipA_Iztt1_oXhAr4AQyFczn27PDCNs7VVlamriWvgslIMX5U7RLxOPa_WOmxwmypR2FoFIbmQoMwMnI0zbveUG_8dUY1ykyPB0vBFGrYHf5vpu_Tiu411z2M1Jjc5qhLgGORqUhkRE0zE2jZgJF_eurhqFj614MmRc_Im-kyLHrM5JjWd2scUxZgPKUS28ZUFYBL8LG3jVG5wlyyysjzjWJPn1rUsBnKSr7c_icPyCOBSCee8j8kO8PPtX8FOG2wr-NivAVIVjxh
  priority: 102
  providerName: ProQuest
Title Feasibility of using MRIs to create subject-specific parallel-mechanism joint models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929016313112
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929016313112
https://dx.doi.org/10.1016/j.jbiomech.2016.12.018
https://www.ncbi.nlm.nih.gov/pubmed/28153474
https://www.proquest.com/docview/1874442721
https://www.proquest.com/docview/1865531492
https://www.proquest.com/docview/1877846026
https://www.proquest.com/docview/1893903519
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISF4QNABCxuTkRBvWRfHiePHMg11oFVoGlLfLNuxUasumUj7sBf-9t25TjcEDAQviZSc82Hfnc--u98R8ja3VmZGH6W6dDLljNdpZTysWmsH_FNbByKF0RaTcvyFf5wW0y1y3OfCYFhl1P1rnR60dbwyjL05vJrNMMcXpA3dgGWOmDGohzkXyOWH32_DPMBcjmEeWYrUd7KE54fzkOMenBJZGbYFsfjHryeo3xmgYSL68JQ8iRYkHa0_8hnZcs2A7IwaWD1fXtN3NMR0hs3yAXl8B25wQB6eRUf6DrkA0y8Gxl7T1lMMf_9Kz85PO7psabAkHe1WBndpUszGxIgiijjhi4VbpPg3upl1l3TezpolDfV0uufw2JOL43EaCyykVuR8mbLS1IgOY7gr9ZHxTHuJ-Fsys74wWtpKVrzwzGvjDDdZXZQe8cQqqbkvfP6CbDdt43YJZXABlIW1OdbtcMzU1laGC11VPBNeJ6ToO1XZCD6ONTAWqo8ym6t-MBQOhsqYgsFIyHDT7moNv_HHFqIfM9Unl4I6VDBD_FtL10Wp7lSmOqBUP3FeQuSm5Q_M-1dv3e8ZS92-CIsScAar84S82dwGwUdvjm5cu0KasgAFyiW7j0YIMDBhnX0fjcwl-pNlQl6uGXvT1ayCCZEL_uo_fnCPPGJoCgUYgH2yvfy2cq_BkFuagyCpcBRTcUAejE4_jSdwfn8y-Xx-A4JGStk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4ancTlAUHHpTDASMBbWOM4Fz8gNGBTy9YKTUXam2U7DlrVJYOkQv1R_EfOSZOwBygIaa-tnbQ-x5-_43MDeBFYK32jh56OnPQEF6mXmAyt1tSh_qTW4ZaiaItpNPosPp6Gp1vwo82FobDKFhNroE4LS3fke9Q7TgiOBsvbi68edY0i72rbQmOtFkdu9R1NtvLN-APK9yXnhwez9yOv6Srg2TgQlccjk1JJFCNcpIcm4zqTVHRK-jYLjZY2kYkIM55p44wwfhpGGRXRSqQWWZgF-NhrsC0CtGR6sP3uYPrppIN-5OZNTInvIe8YXkpJnr-e1wn1tQfEj-o7SOo08vvT8E9stz71Du_A7Yausv21ft2FLZf3YWc_R1P9fMVesTqAtL6Z78OtS7UN-3B90njtd2CGPLOJwl2xImMUa_-FTU7GJasKVtNWx8qloSshj1I_KXyJUVHyxcItPPo3Oj8rz9m8OMsrVjfvKe_hY69g3e9DLy9y9xAYxw8QmawNqEmI4ya1NjEi1kki_DjTAwjbRVW2qXRODTcWqg1pm6tWGIqEoXyuUBgD2OvmXaxrffx1RtzKTLWZrIi9Co-j_5vpygZCSuWrEkcq8qb7pEtInKk0Eh-A7GY2LGnNfv7prbutYqlfL-p21gCed18jypDrSOeuWNKYKES0FpJvGhPHyGbRqN80RgaSnNdyAA_Wit0tNU_w9BWxeLT5Rz6DG6PZ5Fgdj6dHj-EmJ5pVlxjYhV71bemeIEmszNNmazJQVwwGPwFzBnrY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkSo4IEh5LBQwEnBbkvV6Hz4gVFGihtIKoSLlZtleGzVKdwu7EcpP498x433QAwSE1Gti7yae8fgbz8w3hDyPjRGRVpNQpVaEnPEizLUDr7WwoD-FsbClMNviJD38zN_Pk_kW-dHXwmBaZW8TvaEuKoN35GPsHcc5A4dl7Lq0iI8H0zcXX0PsIIWR1r6dRqsiR3b9Hdy3-vXsAGT9grHpu9O3h2HXYSA0WcybkKW6QHoUzW2qJtox5QQSUInIuEQrYXKR88Qxp7TVXEdFkjok1MqF4i5xMTz2GrmexUmEWyybD74e0tJ32SVRCAhkcqk4efFq4UvrfSwkSv1tJPYc-f25-Cfc68-_6W1yqwOudL_VtDtky5YjsrtfgtN-vqYvqU8l9Xf0I3LzEsvhiOwcd_H7XXIKiLPLx13TylHMuv9Cjz_NatpU1ANYS-uVxsuhEItAMZGJIj35cmmXIf4bVZ7V53RRnZUN9W186rvw2CtY9Xtku6xK-4BQBh-AjTImxnYhlunCmFzzTOU5jzKnApL0iypNx3mOrTeWsk9uW8heGBKFISMmQRgBGQ_zLlrWj7_OyHqZyb6mFaywhIPp_2baujMmtYxkDSMlxtUj1CWA0EiSxAIihpkdXmpx0D-9da9XLPnrRcMeC8iz4WuwNxhEUqWtVjgmTcBuc8E2jckywLXg3m8aI2KBYWwRkPutYg9LzXI4h3nGH27-kU_JDpgA-WF2cvSI3GCItzzXwB7Zbr6t7GNAi41-4vclJfKK7cBPxW19qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+using+MRIs+to+create+subject-specific+parallel-mechanism+joint+models&rft.jtitle=Journal+of+biomechanics&rft.au=Brito+da+Luz%2C+Simao&rft.au=Modenese%2C+Luca&rft.au=Sancisi%2C+Nicola&rft.au=Mills%2C+Peter+M&rft.date=2017-02-28&rft.issn=0021-9290&rft.volume=53&rft.spage=45&rft.epage=55&rft_id=info:doi/10.1016%2Fj.jbiomech.2016.12.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929017X00031%2Fcov150h.gif