On the Topological Nature of the Stable Sets Associated to the Second Invariant of the Order $q$ Standard Lyness’ Equation
We prove a conjecture asserted in a previous paper (see [2]) about order $q$ Lyness difference equation in ${\mathbb R}_*^+$:$u_{n+q}\,u_n=a+u_{n+q-1}+{\dots}+u_{n+1}$, with $a>0$. It is known that the function on ${{\mathbb R}_*^+}^q$ defined by\begin{multline*}H(x)=\frac{(1+x_1+x_2)(1+x_2+x_3)\...
Saved in:
Published in | Sarajevo journal of mathematics Vol. 7; no. 1; pp. 31 - 38 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
10.06.2024
|
Online Access | Get full text |
ISSN | 1840-0655 2233-1964 |
DOI | 10.5644/SJM.07.1.04 |
Cover
Loading…
Abstract | We prove a conjecture asserted in a previous paper (see [2]) about order $q$ Lyness difference equation in ${\mathbb R}_*^+$:$u_{n+q}\,u_n=a+u_{n+q-1}+{\dots}+u_{n+1}$, with $a>0$. It is known that the function on ${{\mathbb R}_*^+}^q$ defined by\begin{multline*}H(x)=\frac{(1+x_1+x_2)(1+x_2+x_3)\dots}{x_1\dots x_q}\\\frac{(1+x_{q-1}+x_q)(a+x_1x_q+x_1+x_2+{\dots}+x_q)}{ x_1\dotsx_q}\end{multline*}is an {\sl invariant} for this equation. It is conjectured in [2] (and proved for $q=3$ only) that if $M>M_a:=\min H$ is {\sl sufficiently near} to $M_a$, then the set $S(M):=\{x\,|\,H(x)=M\}$ is homeomorphic to the sphere $\mathbbS$$^{^{q-1}}$. Here we prove this conjecture for every $q\geq 3$, and deduce from it that if the equilibrium $L$ of the map $T$ associated to the Lyness' equation, where $H$ attains its minimum, is for some $q$ {\sl the only critical point} of $H$, then the sets $S(M)$ are, for this $q$, homeomorphic to $\mathbbS$$^{^{q-1}}$ for every $M>M_a$, and that this is the case for $q$=3, 4 or 5.
2000 Mathematics Subject Classification. 37E, 39A10, 58F20 |
---|---|
AbstractList | We prove a conjecture asserted in a previous paper (see [2]) about order $q$ Lyness difference equation in ${\mathbb R}_*^+$:$u_{n+q}\,u_n=a+u_{n+q-1}+{\dots}+u_{n+1}$, with $a>0$. It is known that the function on ${{\mathbb R}_*^+}^q$ defined by\begin{multline*}H(x)=\frac{(1+x_1+x_2)(1+x_2+x_3)\dots}{x_1\dots x_q}\\\frac{(1+x_{q-1}+x_q)(a+x_1x_q+x_1+x_2+{\dots}+x_q)}{ x_1\dotsx_q}\end{multline*}is an {\sl invariant} for this equation. It is conjectured in [2] (and proved for $q=3$ only) that if $M>M_a:=\min H$ is {\sl sufficiently near} to $M_a$, then the set $S(M):=\{x\,|\,H(x)=M\}$ is homeomorphic to the sphere $\mathbbS$$^{^{q-1}}$. Here we prove this conjecture for every $q\geq 3$, and deduce from it that if the equilibrium $L$ of the map $T$ associated to the Lyness' equation, where $H$ attains its minimum, is for some $q$ {\sl the only critical point} of $H$, then the sets $S(M)$ are, for this $q$, homeomorphic to $\mathbbS$$^{^{q-1}}$ for every $M>M_a$, and that this is the case for $q$=3, 4 or 5.
2000 Mathematics Subject Classification. 37E, 39A10, 58F20 |
Author | Rogalski, M. Bastien, G. |
Author_xml | – sequence: 1 givenname: G. surname: Bastien fullname: Bastien, G. – sequence: 2 givenname: M. surname: Rogalski fullname: Rogalski, M. |
BookMark | eNo1kE1OAjEAhRuDiYCuvEAX7MyM7fRvZkkIIgZlAfum03Z0zNhCW0xIXHgNr-dJBNHN-xZf3lu8Aeg57ywA1xjljFN6u3p4zJHIcY7oGegXBSEZrjjtgT4uKcoQZ-wCDGJ8RYiTUrA--Fg6mF4sXPuN7_xzq1UHn1TaBQt982tWSdXdATZFOI7R61Yla2DyJ2u1dwbO3bsKrXLpv7UMxgY42o6OfWdUMHCxdzbG788vON3uVGq9uwTnjeqivfrjEKzvpuvJfbZYzuaT8SLTgtCMWs1KTDivMW4Uq63hpEBIC4xs1VQ1FbRsGspEWZEaK0QEK5SpKMWkLqtDDsHNaVYHH2OwjdyE9k2FvcRIHn-Th98kEhJLRMkPAxpigg |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.5644/SJM.07.1.04 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2233-1964 |
EndPage | 38 |
ExternalDocumentID | 10_5644_SJM_07_1_04 |
GroupedDBID | AAYXX ACIPV ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBS EJD FRJ OK1 TR2 |
ID | FETCH-LOGICAL-c734-4ec581366b11fa5bed63200c710e9f9b4748ff457893b1a03752ad94413b89413 |
ISSN | 1840-0655 |
IngestDate | Tue Jul 01 02:29:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c734-4ec581366b11fa5bed63200c710e9f9b4748ff457893b1a03752ad94413b89413 |
OpenAccessLink | https://sjm.anubih.ba/index.php/sjm/article/download/302/299 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_5644_SJM_07_1_04 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-10 |
PublicationDateYYYYMMDD | 2024-06-10 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Sarajevo journal of mathematics |
PublicationYear | 2024 |
SSID | ssj0063875 |
Score | 2.2590632 |
Snippet | We prove a conjecture asserted in a previous paper (see [2]) about order $q$ Lyness difference equation in ${\mathbb... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 31 |
Title | On the Topological Nature of the Stable Sets Associated to the Second Invariant of the Order $q$ Standard Lyness’ Equation |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYquMABwS6Ix7LyobdVQp24iX1cIVYIbemBInGL4sQ5INFSCEggDvwN_h6_hBlPXjwOwKFR69Spmvky8409_sxYXwUGwp6xnlSB9mSsck_bTHk5BINca9zvGGd0R8fR4ak8Ohue9XoP3dUlpfGz-w_XlXzHqtAGdsVVsl-wbHNRaID3YF84goXh-Ckbj6lGcUIbHbjbfeyEOuuZf6CSuDLqxJbXjSGAYVZ88wSTYawGvoWEOaWaAGwfXzmBiUDO4YXXoMGG_3foFuvqCP3nYH7TmrXitzjAfG5vZ11FiotGGbYdkk-vUc7VDcr77ZwPRKtqG-2R3x2OCCSWTVWFqeRBFdaLRqS961vXBhQk9FD5q-t243foIhdaBQUKxqT88tbND4HE4UTz0QiFV4VPGxi_FtN-E-Sa0kNIerB7Ap2TQZyIBMVkFwNIMkSdkFMcB8fkZJqbP0SrO7HzXueXO3ymQ0wmq2ylyij4X4LHGuvZ6Q-2PGpv-k_2MJ5y-Mg7QOEEFD4r3BkCCkeg8BYovJzRWQcU3gCl7uWAwvvzPq9Bwgkkz49PvIbHOpv8O5jsH3rVthteFofSkzYbKhFGkRGiSIfG5lEID10GVNTqQhsZS1UUEjy9Do1IcQ_lIM010OrQKHi4ww22MJ1N7SbjRW6kjO1AFKGV1ihlgU-nYpANdFroQGyxfn3vkksSV0k-sM_25762w5ZaQP5iC-XVjd0Fxlia386wL5n8anM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Topological+Nature+of+the+Stable+Sets+Associated+to+the+Second+Invariant+of+the+Order+%24q%24+Standard+Lyness%E2%80%99+Equation&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=Bastien%2C+G.&rft.au=Rogalski%2C+M.&rft.date=2024-06-10&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=7&rft.issue=1&rft.spage=31&rft.epage=38&rft_id=info:doi/10.5644%2FSJM.07.1.04&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_07_1_04 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon |