On the Topological Nature of the Stable Sets Associated to the Second Invariant of the Order $q$ Standard Lyness’ Equation

We prove a conjecture asserted in a previous paper (see [2]) about order $q$ Lyness difference equation in ${\mathbb R}_*^+$:$u_{n+q}\,u_n=a+u_{n+q-1}+{\dots}+u_{n+1}$, with $a>0$. It is known that the function on ${{\mathbb R}_*^+}^q$ defined by\begin{multline*}H(x)=\frac{(1+x_1+x_2)(1+x_2+x_3)\...

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 7; no. 1; pp. 31 - 38
Main Authors Bastien, G., Rogalski, M.
Format Journal Article
LanguageEnglish
Published 10.06.2024
Online AccessGet full text
ISSN1840-0655
2233-1964
DOI10.5644/SJM.07.1.04

Cover

Loading…
Abstract We prove a conjecture asserted in a previous paper (see [2]) about order $q$ Lyness difference equation in ${\mathbb R}_*^+$:$u_{n+q}\,u_n=a+u_{n+q-1}+{\dots}+u_{n+1}$, with $a>0$. It is known that the function on ${{\mathbb R}_*^+}^q$ defined by\begin{multline*}H(x)=\frac{(1+x_1+x_2)(1+x_2+x_3)\dots}{x_1\dots x_q}\\\frac{(1+x_{q-1}+x_q)(a+x_1x_q+x_1+x_2+{\dots}+x_q)}{ x_1\dotsx_q}\end{multline*}is an {\sl invariant} for this equation. It is conjectured in [2] (and proved for $q=3$ only) that if $M>M_a:=\min H$ is {\sl sufficiently near} to $M_a$, then the set $S(M):=\{x\,|\,H(x)=M\}$ is homeomorphic to the sphere $\mathbbS$$^{^{q-1}}$. Here we prove this conjecture for every $q\geq 3$, and deduce from it that if the equilibrium $L$ of the map $T$ associated to the Lyness' equation, where $H$ attains its minimum, is for some $q$ {\sl the only critical point} of $H$, then the sets $S(M)$ are, for this $q$, homeomorphic to $\mathbbS$$^{^{q-1}}$ for every $M>M_a$, and that this is the case for $q$=3, 4 or 5.   2000 Mathematics Subject Classification. 37E, 39A10, 58F20
AbstractList We prove a conjecture asserted in a previous paper (see [2]) about order $q$ Lyness difference equation in ${\mathbb R}_*^+$:$u_{n+q}\,u_n=a+u_{n+q-1}+{\dots}+u_{n+1}$, with $a>0$. It is known that the function on ${{\mathbb R}_*^+}^q$ defined by\begin{multline*}H(x)=\frac{(1+x_1+x_2)(1+x_2+x_3)\dots}{x_1\dots x_q}\\\frac{(1+x_{q-1}+x_q)(a+x_1x_q+x_1+x_2+{\dots}+x_q)}{ x_1\dotsx_q}\end{multline*}is an {\sl invariant} for this equation. It is conjectured in [2] (and proved for $q=3$ only) that if $M>M_a:=\min H$ is {\sl sufficiently near} to $M_a$, then the set $S(M):=\{x\,|\,H(x)=M\}$ is homeomorphic to the sphere $\mathbbS$$^{^{q-1}}$. Here we prove this conjecture for every $q\geq 3$, and deduce from it that if the equilibrium $L$ of the map $T$ associated to the Lyness' equation, where $H$ attains its minimum, is for some $q$ {\sl the only critical point} of $H$, then the sets $S(M)$ are, for this $q$, homeomorphic to $\mathbbS$$^{^{q-1}}$ for every $M>M_a$, and that this is the case for $q$=3, 4 or 5.   2000 Mathematics Subject Classification. 37E, 39A10, 58F20
Author Rogalski, M.
Bastien, G.
Author_xml – sequence: 1
  givenname: G.
  surname: Bastien
  fullname: Bastien, G.
– sequence: 2
  givenname: M.
  surname: Rogalski
  fullname: Rogalski, M.
BookMark eNo1kE1OAjEAhRuDiYCuvEAX7MyM7fRvZkkIIgZlAfum03Z0zNhCW0xIXHgNr-dJBNHN-xZf3lu8Aeg57ywA1xjljFN6u3p4zJHIcY7oGegXBSEZrjjtgT4uKcoQZ-wCDGJ8RYiTUrA--Fg6mF4sXPuN7_xzq1UHn1TaBQt982tWSdXdATZFOI7R61Yla2DyJ2u1dwbO3bsKrXLpv7UMxgY42o6OfWdUMHCxdzbG788vON3uVGq9uwTnjeqivfrjEKzvpuvJfbZYzuaT8SLTgtCMWs1KTDivMW4Uq63hpEBIC4xs1VQ1FbRsGspEWZEaK0QEK5SpKMWkLqtDDsHNaVYHH2OwjdyE9k2FvcRIHn-Th98kEhJLRMkPAxpigg
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5644/SJM.07.1.04
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2233-1964
EndPage 38
ExternalDocumentID 10_5644_SJM_07_1_04
GroupedDBID AAYXX
ACIPV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBS
EJD
FRJ
OK1
TR2
ID FETCH-LOGICAL-c734-4ec581366b11fa5bed63200c710e9f9b4748ff457893b1a03752ad94413b89413
ISSN 1840-0655
IngestDate Tue Jul 01 02:29:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c734-4ec581366b11fa5bed63200c710e9f9b4748ff457893b1a03752ad94413b89413
OpenAccessLink https://sjm.anubih.ba/index.php/sjm/article/download/302/299
PageCount 8
ParticipantIDs crossref_primary_10_5644_SJM_07_1_04
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-10
PublicationDateYYYYMMDD 2024-06-10
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-10
  day: 10
PublicationDecade 2020
PublicationTitle Sarajevo journal of mathematics
PublicationYear 2024
SSID ssj0063875
Score 2.2590632
Snippet We prove a conjecture asserted in a previous paper (see [2]) about order $q$ Lyness difference equation in ${\mathbb...
SourceID crossref
SourceType Index Database
StartPage 31
Title On the Topological Nature of the Stable Sets Associated to the Second Invariant of the Order $q$ Standard Lyness’ Equation
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYquMABwS6Ix7LyobdVQp24iX1cIVYIbemBInGL4sQ5INFSCEggDvwN_h6_hBlPXjwOwKFR69Spmvky8409_sxYXwUGwp6xnlSB9mSsck_bTHk5BINca9zvGGd0R8fR4ak8Ohue9XoP3dUlpfGz-w_XlXzHqtAGdsVVsl-wbHNRaID3YF84goXh-Ckbj6lGcUIbHbjbfeyEOuuZf6CSuDLqxJbXjSGAYVZ88wSTYawGvoWEOaWaAGwfXzmBiUDO4YXXoMGG_3foFuvqCP3nYH7TmrXitzjAfG5vZ11FiotGGbYdkk-vUc7VDcr77ZwPRKtqG-2R3x2OCCSWTVWFqeRBFdaLRqS961vXBhQk9FD5q-t243foIhdaBQUKxqT88tbND4HE4UTz0QiFV4VPGxi_FtN-E-Sa0kNIerB7Ap2TQZyIBMVkFwNIMkSdkFMcB8fkZJqbP0SrO7HzXueXO3ymQ0wmq2ylyij4X4LHGuvZ6Q-2PGpv-k_2MJ5y-Mg7QOEEFD4r3BkCCkeg8BYovJzRWQcU3gCl7uWAwvvzPq9Bwgkkz49PvIbHOpv8O5jsH3rVthteFofSkzYbKhFGkRGiSIfG5lEID10GVNTqQhsZS1UUEjy9Do1IcQ_lIM010OrQKHi4ww22MJ1N7SbjRW6kjO1AFKGV1ihlgU-nYpANdFroQGyxfn3vkksSV0k-sM_25762w5ZaQP5iC-XVjd0Fxlia386wL5n8anM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Topological+Nature+of+the+Stable+Sets+Associated+to+the+Second+Invariant+of+the+Order+%24q%24+Standard+Lyness%E2%80%99+Equation&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=Bastien%2C+G.&rft.au=Rogalski%2C+M.&rft.date=2024-06-10&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=7&rft.issue=1&rft.spage=31&rft.epage=38&rft_id=info:doi/10.5644%2FSJM.07.1.04&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_07_1_04
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon