Clinical Text Data in Machine Learning: Systematic Review

Clinical narratives represent the main form of communication within health care, providing a personalized account of patient history and assessments, and offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock ev...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 8; no. 3; p. e17984
Main Authors Spasic, Irena, Nenadic, Goran
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clinical narratives represent the main form of communication within health care, providing a personalized account of patient history and assessments, and offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. The main aim of this study was to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigated the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multifaceted interface, to perform a literature search against MEDLINE. We identified 110 relevant studies and extracted information about text data used to support machine learning, NLP tasks supported, and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation, and any relevant statistics. The majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents, with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing the predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free-text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable because of the sensitive nature of data considered. Besides the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The majority of studies focused on text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management, and surveillance. We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which do not require data annotation.
AbstractList Clinical narratives represent the main form of communication within health care, providing a personalized account of patient history and assessments, and offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data.BACKGROUNDClinical narratives represent the main form of communication within health care, providing a personalized account of patient history and assessments, and offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data.The main aim of this study was to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigated the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice.OBJECTIVEThe main aim of this study was to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigated the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice.Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multifaceted interface, to perform a literature search against MEDLINE. We identified 110 relevant studies and extracted information about text data used to support machine learning, NLP tasks supported, and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation, and any relevant statistics.METHODSOur methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multifaceted interface, to perform a literature search against MEDLINE. We identified 110 relevant studies and extracted information about text data used to support machine learning, NLP tasks supported, and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation, and any relevant statistics.The majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents, with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing the predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free-text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable because of the sensitive nature of data considered. Besides the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The majority of studies focused on text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management, and surveillance.RESULTSThe majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents, with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing the predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free-text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable because of the sensitive nature of data considered. Besides the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The majority of studies focused on text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management, and surveillance.We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which do not require data annotation.CONCLUSIONSWe identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which do not require data annotation.
Background: Clinical narratives represent the main form of communication within health care, providing a personalized account of patient history and assessments, and offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. Objective: The main aim of this study was to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigated the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. Methods: Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multifaceted interface, to perform a literature search against MEDLINE. We identified 110 relevant studies and extracted information about text data used to support machine learning, NLP tasks supported, and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation, and any relevant statistics. Results: The majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents, with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing the predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free-text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable because of the sensitive nature of data considered. Besides the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The majority of studies focused on text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management, and surveillance. Conclusions: We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which do not require data annotation.
Clinical narratives represent the main form of communication within health care, providing a personalized account of patient history and assessments, and offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. The main aim of this study was to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigated the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multifaceted interface, to perform a literature search against MEDLINE. We identified 110 relevant studies and extracted information about text data used to support machine learning, NLP tasks supported, and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation, and any relevant statistics. The majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents, with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing the predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free-text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable because of the sensitive nature of data considered. Besides the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The majority of studies focused on text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management, and surveillance. We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which do not require data annotation.
BackgroundClinical narratives represent the main form of communication within health care, providing a personalized account of patient history and assessments, and offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. ObjectiveThe main aim of this study was to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigated the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. MethodsOur methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multifaceted interface, to perform a literature search against MEDLINE. We identified 110 relevant studies and extracted information about text data used to support machine learning, NLP tasks supported, and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation, and any relevant statistics. ResultsThe majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents, with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing the predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free-text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable because of the sensitive nature of data considered. Besides the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The majority of studies focused on text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management, and surveillance. ConclusionsWe identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which do not require data annotation.
Author Spasic, Irena
Nenadic, Goran
AuthorAffiliation 1 School of Computer Science and Informatics Cardiff University Cardiff United Kingdom
2 Department of Computer Science University of Manchester Manchester United Kingdom
AuthorAffiliation_xml – name: 2 Department of Computer Science University of Manchester Manchester United Kingdom
– name: 1 School of Computer Science and Informatics Cardiff University Cardiff United Kingdom
Author_xml – sequence: 1
  givenname: Irena
  orcidid: 0000-0002-8132-3885
  surname: Spasic
  fullname: Spasic, Irena
– sequence: 2
  givenname: Goran
  orcidid: 0000-0003-0795-5363
  surname: Nenadic
  fullname: Nenadic, Goran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32229465$$D View this record in MEDLINE/PubMed
BookMark eNpdku1rFDEQh4NUbK33L8iCCEI5zfsmfhDk6kvhRND6OcxmZ6859pKa7FX735v2Wun1U4bMw8OPmXlODmKKSMiM0becWf2OtdbIJ-SIc8vmVlt58KA-JLNS1pRSJpnWun1GDgWvXanVEbGLMcTgYWzO8e_UnMIETYjNN_AXIWKzRMgxxNX75ud1mXADU_DND7wK-OcFeTrAWHB29x6TX58_nS--zpffv5wtPi7nvhVimmNvemU62iOIYeiNsQM3Q8slGKkkE-0ge6aNlJ5q1taKIUfjKRo9oLdeHJOznbdPsHaXOWwgX7sEwd1-pLxykGusEZ0WxlLdMdsxL4HKThvdQ6cocmE7BdX1Yee63HYb7D3GKcO4J93vxHDhVunKtUy1iqoqeHMnyOn3FsvkNqF4HEeImLbFcWEU10YoWdFXj9B12uZYR-W4YnVrwghRqZcPE_2Pcr-hCpzsAJ9TKRkH58NU15BuAobRMepuTsDdnkClXz-i74X73D-DVavX
CitedBy_id crossref_primary_10_1111_bjop_12721
crossref_primary_10_1016_j_ijmedinf_2022_104805
crossref_primary_10_3390_ijerph21020189
crossref_primary_10_7566_JPSJ_94_031002
crossref_primary_10_1177_20552076241308987
crossref_primary_10_1016_j_jbi_2022_104118
crossref_primary_10_1200_CCI_22_00064
crossref_primary_10_2196_49041
crossref_primary_10_1186_s12911_022_02083_2
crossref_primary_10_4258_hir_2022_28_1_89
crossref_primary_10_1186_s12911_022_01923_5
crossref_primary_10_2196_38308
crossref_primary_10_3390_min11020148
crossref_primary_10_3389_fdgth_2024_1211564
crossref_primary_10_1371_journal_pone_0279953
crossref_primary_10_1002_ams2_554
crossref_primary_10_1055_s_0040_1702001
crossref_primary_10_2196_41312
crossref_primary_10_1016_j_remn_2021_11_002
crossref_primary_10_1186_s12911_022_01829_2
crossref_primary_10_1007_s11912_021_01054_6
crossref_primary_10_1371_journal_pdig_0000218
crossref_primary_10_2196_56880
crossref_primary_10_2196_54580
crossref_primary_10_1093_jamia_ocac121
crossref_primary_10_1155_2021_1285167
crossref_primary_10_2196_57852
crossref_primary_10_56124_encriptar_v6i11_0001
crossref_primary_10_2196_38155
crossref_primary_10_1016_j_jbi_2023_104480
crossref_primary_10_1007_s10488_023_01329_z
crossref_primary_10_1016_j_cmpb_2024_108257
crossref_primary_10_2196_21252
crossref_primary_10_1371_journal_pone_0284965
crossref_primary_10_1002_pds_5357
crossref_primary_10_47164_ijngc_v14i2_1137
crossref_primary_10_1007_s10916_021_01761_4
crossref_primary_10_1080_03007995_2021_2015156
crossref_primary_10_2196_24008
crossref_primary_10_2196_62924
crossref_primary_10_1038_s41746_022_00730_6
crossref_primary_10_1016_j_geogeo_2025_100361
crossref_primary_10_1200_CCI_24_00026
crossref_primary_10_2196_39057
crossref_primary_10_1186_s12911_021_01533_7
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1186_s12874_022_01583_z
crossref_primary_10_2196_22651
crossref_primary_10_1002_cam4_5276
crossref_primary_10_3390_jpm10040286
crossref_primary_10_1016_j_ijrobp_2021_01_044
crossref_primary_10_12677_acm_2025_153769
crossref_primary_10_1186_s12911_022_02012_3
crossref_primary_10_5858_arpa_2021_0635_RA
crossref_primary_10_1186_s40537_021_00492_0
crossref_primary_10_1371_journal_pdig_0000014
crossref_primary_10_2196_28632
crossref_primary_10_1136_rapm_2023_104629
crossref_primary_10_2196_38095
crossref_primary_10_2196_22898
crossref_primary_10_2139_ssrn_3922677
crossref_primary_10_1016_j_cll_2022_09_004
crossref_primary_10_1038_s41746_025_01527_z
crossref_primary_10_1016_j_wpi_2021_102021
crossref_primary_10_3389_fmed_2023_1284081
crossref_primary_10_1016_j_inffus_2023_102040
crossref_primary_10_2196_54449
crossref_primary_10_1186_s12873_023_00839_1
crossref_primary_10_1093_gigascience_giad030
crossref_primary_10_1038_s41746_023_00879_8
crossref_primary_10_1007_s10742_024_00324_7
crossref_primary_10_18006_2022_10_1__211_226
crossref_primary_10_1371_journal_pone_0279842
crossref_primary_10_1109_ACCESS_2023_3284682
crossref_primary_10_2196_39077
crossref_primary_10_1186_s12874_025_02470_z
crossref_primary_10_3390_bdcc8040038
crossref_primary_10_1016_S2589_7500_22_00041_3
crossref_primary_10_1136_bmjopen_2021_053808
crossref_primary_10_1093_jamia_ocac058
crossref_primary_10_1136_tobaccocontrol_2020_056438
crossref_primary_10_1186_s12911_025_02897_w
crossref_primary_10_1055_s_0040_1719037
crossref_primary_10_1016_j_ijmedinf_2022_104963
crossref_primary_10_1093_bioinformatics_btac298
crossref_primary_10_3389_fdgth_2024_1282043
crossref_primary_10_3389_fmed_2024_1460553
crossref_primary_10_1016_j_cose_2025_104358
crossref_primary_10_1186_s12911_023_02121_7
crossref_primary_10_1177_10732748231209892
crossref_primary_10_1186_s12911_025_02948_2
crossref_primary_10_1016_j_jacr_2022_05_030
crossref_primary_10_1186_s12911_025_02851_w
crossref_primary_10_1093_jamia_ocab236
crossref_primary_10_1016_j_mlwa_2023_100452
crossref_primary_10_3389_fpsyt_2021_787792
crossref_primary_10_1016_j_xops_2024_100564
crossref_primary_10_1016_j_jbi_2023_104282
crossref_primary_10_2196_37945
crossref_primary_10_1007_s10479_022_05035_1
crossref_primary_10_3390_medicina57040351
crossref_primary_10_1016_j_artmed_2021_102138
crossref_primary_10_1016_j_ijmedinf_2024_105761
crossref_primary_10_1007_s12553_021_00607_w
crossref_primary_10_2196_59680
crossref_primary_10_1186_s12911_024_02422_5
crossref_primary_10_32628_IJSRSET2411314
crossref_primary_10_1186_s40537_022_00605_3
crossref_primary_10_2196_43638
crossref_primary_10_47992_IJAEML_2581_7000_0110
crossref_primary_10_1016_j_inffus_2025_103024
crossref_primary_10_1109_ACCESS_2021_3119621
crossref_primary_10_3390_make5030040
crossref_primary_10_1016_j_jbi_2023_104578
crossref_primary_10_1212_WNL_0000000000207967
crossref_primary_10_2196_33834
crossref_primary_10_1038_s44184_023_00046_7
crossref_primary_10_1007_s40264_022_01172_5
crossref_primary_10_1017_cts_2023_575
crossref_primary_10_1038_s41598_024_70618_w
crossref_primary_10_1145_3709155
crossref_primary_10_2196_26811
crossref_primary_10_1055_s_0041_1723024
crossref_primary_10_2139_ssrn_3999264
crossref_primary_10_1016_j_hlpt_2024_100893
crossref_primary_10_1177_26320843211061287
crossref_primary_10_2196_32903
crossref_primary_10_1016_j_annemergmed_2022_08_450
crossref_primary_10_1016_j_patter_2021_100383
crossref_primary_10_7717_peerj_cs_2263
crossref_primary_10_1097_CIN_0000000000001114
crossref_primary_10_1016_j_nic_2020_08_008
crossref_primary_10_1016_j_artmed_2023_102584
crossref_primary_10_1007_s41870_022_00970_5
crossref_primary_10_1016_j_cmi_2024_12_021
crossref_primary_10_1177_14604582221142442
crossref_primary_10_1109_ACCESS_2024_3457850
crossref_primary_10_1213_ANE_0000000000006152
crossref_primary_10_1016_j_acra_2021_12_005
crossref_primary_10_1186_s12889_024_21026_2
crossref_primary_10_1016_j_jbi_2025_104783
crossref_primary_10_3389_fdgth_2023_1195017
crossref_primary_10_1055_a_2233_2736
crossref_primary_10_1016_j_compbiomed_2025_109925
crossref_primary_10_1109_ACCESS_2024_3428918
crossref_primary_10_1001_jamapsychiatry_2021_2500
crossref_primary_10_1016_j_ijmedinf_2024_105347
crossref_primary_10_3390_ijgi12020064
crossref_primary_10_1038_s41698_025_00824_w
crossref_primary_10_1016_j_remnie_2021_11_002
crossref_primary_10_1093_gigascience_giaf016
crossref_primary_10_2196_40534
Cites_doi 10.2196/publichealth.9361
10.1186/s12911-015-0160-8
10.1186/s12911-017-0556-8
10.1007/s10278-017-0021-3
10.3233/978-1-61499-753-5-201
10.1093/jamia/ocv113
10.1002/jhm.425
10.1093/jamia/ocx125
10.18653/v1/e17-2004
10.3233/978-1-61499-564-7-629
10.1186/s12887-016-0592-z
10.1093/jamia/ocw097
10.1136/amiajnl-2013-001628
10.1016/j.artmed.2015.09.007
10.1186/s12911-017-0468-7
10.4338/ACI-2016-08-RA-0129
10.1016/j.jpainsymman.2018.02.016
10.1007/s11517-017-1772-1
10.1016/j.jbi.2017.06.010
10.1136/amiajnl-2011-000203
10.1016/j.artmed.2016.06.001
10.1007/s10278-016-9931-8
10.1186/s12911-017-0483-8
10.1016/j.jbi.2015.04.008
10.1136/bmjopen-2017-018753
10.2196/medinform.7140
10.1371/journal.pone.0174970
10.1016/j.jbi.2015.05.009
10.1016/j.jbi.2017.06.006
10.1002/acr.23140
10.1016/s1386-5056(02)00131-4
10.1016/j.jbi.2015.09.006
10.1093/jamia/ocx090
10.1148/radiographics.21.1.g01ja18237
10.1016/j.jbi.2015.09.010
10.1097/CCM.0000000000003148
10.1136/jamia.2010.007237
10.1002/jhrm.21237
10.4137/BII.S38308
10.4338/ACI-2016-01-RA-0015
10.1016/j.jbi.2017.07.005
10.1093/jamia/ocw006
10.1093/jamia/ocx079
10.1111/acem.12859
10.1186/s12911-018-0626-6
10.2196/jmir.6887
10.1016/s0933-3657(02)00050-7
10.2196/medinform.8611
10.1371/journal.pone.0192360
10.18653/v1/s15-2136
10.1038/s41598-018-25773-2
10.18653/v1/d19-1670
10.3233/978-1-61499-564-7-599
10.1016/j.artmed.2018.05.001
10.1093/jamia/ocx070
10.1038/s41598-018-27946-5
10.18653/v1/n18-2072
10.1016/j.ijmedinf.2017.05.005
10.1007/978-3-642-40802-1_24
10.4103/2153-3539.194838
10.1016/j.jbi.2017.05.019
10.1016/j.jbi.2017.04.017
10.1148/radiol.2017170549
10.1186/s12911-017-0518-1
10.1016/j.jbi.2017.06.011
10.1016/j.jbi.2017.06.007
10.1016/j.jbi.2017.06.019
10.1016/j.jbi.2017.11.007
10.1016/j.jbi.2015.06.015
10.1016/j.jbi.2017.05.023
10.1093/jamia/ocx138
10.1016/j.jbi.2015.09.002
10.1016/j.jbi.2015.07.010
10.1007/s10488-018-0850-5
10.2196/medinform.7235
10.1007/s10278-018-0116-5
10.1136/amiajnl-2011-000784
10.1016/j.jbi.2015.08.011
10.2106/JBJS.16.00167
10.1007/978-3-319-96893-3_20
10.1186/s12911-018-0625-7
10.1016/j.jbi.2017.05.020
10.1093/jamia/ocv102
10.1016/j.ijmedinf.2017.10.004
10.3115/1690219.1690287
10.1136/amiajnl-2013-001926
10.1016/j.jss.2016.09.058
10.1007/s10278-015-9823-3
10.1093/jamia/ocv016
10.1093/jamia/ocx131
10.1136/eb-2017-102688
10.1142/9789814749411_0014
10.1016/j.jbi.2017.04.011
10.1016/j.jbi.2014.11.009
10.1093/jamia/ocv069
10.4338/ACI-2015-09-RA-0114
10.1371/journal.pone.0174708
10.1016/j.jbi.2015.06.029
10.1155/2015/636371
10.1016/j.jbi.2015.06.009
10.1002/mpr.1602
10.2214/AJR.16.16128
10.1109/ICHI.2017.31
10.1093/jamia/ocw109
10.1186/1472-6947-13-S1-S1
10.4338/ACI-2014-11-RA-0110
10.1377/hlthaff.2014.0054
10.1109/JBHI.2017.2684121
10.1016/j.jbi.2017.06.005
10.1016/j.ijmedinf.2019.103974
10.1016/j.jbi.2015.06.010
10.1093/jamia/ocv155
10.1016/j.ijmedinf.2017.05.015
10.1093/jamia/ocw071
10.18653/v1/n16-1056
10.1016/j.compbiomed.2017.12.026
10.1016/j.jbi.2016.10.005
10.1038/sdata.2016.35
10.1136/amiajnl-2014-002887
10.1016/j.jbi.2015.07.020
10.1016/j.amjmed.2016.12.008
10.1109/tkde.2009.191
10.1109/mis.2009.36
10.1016/j.jacr.2007.09.004
10.1186/1741-7015-10-100
10.1016/j.ijmedinf.2014.06.009
10.1148/radiol.2018171093
10.1016/j.jbi.2017.04.003
ContentType Journal Article
Copyright Irena Spasic, Goran Nenadic. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 31.03.2020.
2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Irena Spasic, Goran Nenadic. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 31.03.2020. 2020
Copyright_xml – notice: Irena Spasic, Goran Nenadic. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 31.03.2020.
– notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Irena Spasic, Goran Nenadic. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 31.03.2020. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.2196/17984
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Healthcare Administration Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID oai_doaj_org_article_638906b19b1c4a04b686dab50e239b5a
PMC7157505
32229465
10_2196_17984
Genre Journal Article
Review
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c733t-ed8d58b0dea3ffd889f28f724a8454137f4d16844c06171681e2e8c0e86fec9c3
IEDL.DBID M48
ISSN 2291-9694
IngestDate Wed Aug 27 01:28:10 EDT 2025
Thu Aug 21 18:19:35 EDT 2025
Tue Aug 05 10:51:09 EDT 2025
Fri Jul 25 04:15:53 EDT 2025
Thu Jan 02 22:58:23 EST 2025
Tue Jul 01 04:31:18 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords medical informatics applications
medical informatics
natural language processing
machine learning
Language English
License Irena Spasic, Goran Nenadic. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 31.03.2020.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c733t-ed8d58b0dea3ffd889f28f724a8454137f4d16844c06171681e2e8c0e86fec9c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0795-5363
0000-0002-8132-3885
OpenAccessLink https://doaj.org/article/638906b19b1c4a04b686dab50e239b5a
PMID 32229465
PQID 2511963833
PQPubID 4997117
ParticipantIDs doaj_primary_oai_doaj_org_article_638906b19b1c4a04b686dab50e239b5a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7157505
proquest_miscellaneous_2385268354
proquest_journals_2511963833
pubmed_primary_32229465
crossref_citationtrail_10_2196_17984
crossref_primary_10_2196_17984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2020
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Witten, IH (ref4) 2008
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref7
Finley, G (ref33) 2016; 2016
ref9
ref3
ref6
ref5
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref146
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref99
ref124
ref10
Maldonado, R (ref70) 2017; 2017
ref125
ref17
ref16
ref19
ref18
Wu, Y (ref104) 2017; 2017
Goodwin, T (ref41) 2016; 2016
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
Roysden, N (ref81) 2015; 2015
ref82
ref144
AAlAbdulsalam, A (ref8) 2018; 2017
ref84
ref142
ref83
ref143
ref140
ref141
ref80
Wang, Y (ref100) 2016; 2016
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref74
ref105
ref102
ref76
ref103
ref2
ref1
Banerjee, I (ref11) 2017; 2017
ref71
ref111
Liu, S (ref63) 2016; 2016
ref112
ref73
ref72
ref110
ref68
ref119
ref67
Divita, G (ref29) 2017; 245
ref117
ref118
ref64
ref115
ref116
ref66
ref113
ref65
ref114
Do, C (ref145) 2006; 18
Patterson, O (ref77) 2015; 216
ref60
ref122
ref123
ref62
ref120
ref61
ref121
Mai, M (ref69) 2016; 2016
Wang, C (ref98) 2015; 2015
References_xml – ident: ref74
  doi: 10.2196/publichealth.9361
– ident: ref139
– ident: ref59
  doi: 10.1186/s12911-015-0160-8
– ident: ref103
  doi: 10.1186/s12911-017-0556-8
– ident: ref94
  doi: 10.1007/s10278-017-0021-3
– ident: ref16
  doi: 10.3233/978-1-61499-753-5-201
– volume: 245
  start-page: 356
  year: 2017
  ident: ref29
  publication-title: Stud Health Technol Inform
– ident: ref60
  doi: 10.1093/jamia/ocv113
– volume: 2015
  start-page: 183
  year: 2015
  ident: ref98
  publication-title: AMIA Jt Summits Transl Sci Proc
– volume: 2017
  start-page: 1812
  year: 2017
  ident: ref104
  publication-title: AMIA Annu Symp Proc
– ident: ref135
  doi: 10.1002/jhm.425
– ident: ref17
  doi: 10.1093/jamia/ocx125
– ident: ref140
  doi: 10.18653/v1/e17-2004
– ident: ref117
  doi: 10.3233/978-1-61499-564-7-629
– ident: ref118
  doi: 10.1186/s12887-016-0592-z
– year: 2008
  ident: ref4
  publication-title: Data Mining: Practical Machine Learning Tools and Techniques. Second Edition (Morgan Kaufmann Series in Data Management Systems)
– ident: ref72
  doi: 10.1093/jamia/ocw097
– ident: ref125
  doi: 10.1136/amiajnl-2013-001628
– ident: ref45
  doi: 10.1016/j.artmed.2015.09.007
– ident: ref64
  doi: 10.1186/s12911-017-0468-7
– ident: ref43
  doi: 10.4338/ACI-2016-08-RA-0129
– ident: ref36
  doi: 10.1016/j.jpainsymman.2018.02.016
– volume: 216
  start-page: 614
  year: 2015
  ident: ref77
  publication-title: Stud Health Technol Inform
– volume: 18
  start-page: 299
  year: 2006
  ident: ref145
  publication-title: Adv Neural Inf Process Syst
– ident: ref34
  doi: 10.1007/s11517-017-1772-1
– ident: ref92
  doi: 10.1016/j.jbi.2017.06.010
– volume: 2016
  start-page: 428
  year: 2016
  ident: ref63
  publication-title: AMIA Jt Summits Transl Sci Proc
– ident: ref123
  doi: 10.1136/amiajnl-2011-000203
– volume: 2016
  start-page: 1794
  year: 2016
  ident: ref41
  publication-title: AMIA Annu Symp Proc
– ident: ref75
  doi: 10.1016/j.artmed.2016.06.001
– volume: 2017
  start-page: 16
  year: 2018
  ident: ref8
  publication-title: AMIA Jt Summits Transl Sci Proc
– ident: ref48
  doi: 10.1007/s10278-016-9931-8
– ident: ref101
  doi: 10.1186/s12911-017-0483-8
– ident: ref56
  doi: 10.1016/j.jbi.2015.04.008
– volume: 2016
  start-page: 560
  year: 2016
  ident: ref33
  publication-title: AMIA Annu Symp Proc
– ident: ref134
  doi: 10.1136/bmjopen-2017-018753
– ident: ref30
  doi: 10.2196/medinform.7140
– ident: ref109
  doi: 10.1371/journal.pone.0174970
– ident: ref128
  doi: 10.1016/j.jbi.2015.05.009
– ident: ref58
  doi: 10.1016/j.jbi.2017.06.006
– ident: ref97
  doi: 10.1002/acr.23140
– ident: ref121
  doi: 10.1016/s1386-5056(02)00131-4
– ident: ref107
  doi: 10.1016/j.jbi.2015.09.006
– ident: ref67
  doi: 10.1093/jamia/ocx090
– ident: ref111
  doi: 10.1148/radiographics.21.1.g01ja18237
– ident: ref20
  doi: 10.1016/j.jbi.2015.09.010
– ident: ref102
  doi: 10.1097/CCM.0000000000003148
– ident: ref1
  doi: 10.1136/jamia.2010.007237
– ident: ref15
  doi: 10.1002/jhrm.21237
– ident: ref25
  doi: 10.4137/BII.S38308
– ident: ref61
  doi: 10.4338/ACI-2016-01-RA-0015
– ident: ref23
  doi: 10.1016/j.jbi.2017.07.005
– ident: ref76
  doi: 10.1093/jamia/ocw006
– ident: ref138
  doi: 10.1093/jamia/ocx079
– ident: ref106
  doi: 10.1111/acem.12859
– ident: ref31
  doi: 10.1186/s12911-018-0626-6
– ident: ref73
  doi: 10.2196/jmir.6887
– ident: ref6
  doi: 10.1016/s0933-3657(02)00050-7
– ident: ref116
  doi: 10.2196/medinform.8611
– ident: ref39
  doi: 10.1371/journal.pone.0192360
– ident: ref129
  doi: 10.18653/v1/s15-2136
– ident: ref32
  doi: 10.1038/s41598-018-25773-2
– ident: ref143
  doi: 10.18653/v1/d19-1670
– ident: ref55
  doi: 10.3233/978-1-61499-564-7-599
– ident: ref49
  doi: 10.1016/j.artmed.2018.05.001
– ident: ref93
  doi: 10.1093/jamia/ocx070
– ident: ref12
  doi: 10.1038/s41598-018-27946-5
– ident: ref142
  doi: 10.18653/v1/n18-2072
– ident: ref35
  doi: 10.1016/j.ijmedinf.2017.05.005
– ident: ref126
  doi: 10.1007/978-3-642-40802-1_24
– ident: ref141
– ident: ref22
  doi: 10.4103/2153-3539.194838
– ident: ref78
  doi: 10.1016/j.jbi.2017.05.019
– ident: ref130
  doi: 10.1016/j.jbi.2017.04.017
– ident: ref10
  doi: 10.1148/radiol.2017170549
– ident: ref95
  doi: 10.1186/s12911-017-0518-1
– ident: ref131
  doi: 10.1016/j.jbi.2017.06.011
– ident: ref83
  doi: 10.1016/j.jbi.2017.06.007
– ident: ref18
  doi: 10.1016/j.jbi.2017.06.019
– ident: ref96
  doi: 10.1016/j.jbi.2017.11.007
– ident: ref108
  doi: 10.1016/j.jbi.2015.06.015
– ident: ref65
  doi: 10.1016/j.jbi.2017.05.023
– ident: ref119
  doi: 10.1093/jamia/ocx138
– ident: ref21
  doi: 10.1016/j.jbi.2015.09.002
– ident: ref57
  doi: 10.1016/j.jbi.2015.07.010
– ident: ref68
  doi: 10.1007/s10488-018-0850-5
– ident: ref115
  doi: 10.2196/medinform.7235
– ident: ref87
  doi: 10.1007/s10278-018-0116-5
– ident: ref124
  doi: 10.1136/amiajnl-2011-000784
– ident: ref91
  doi: 10.1016/j.jbi.2015.08.011
– ident: ref14
  doi: 10.2106/JBJS.16.00167
– ident: ref114
  doi: 10.1007/978-3-319-96893-3_20
– ident: ref113
  doi: 10.1186/s12911-018-0625-7
– volume: 2017
  start-page: 411
  year: 2017
  ident: ref11
  publication-title: AMIA Annu Symp Proc
– ident: ref42
  doi: 10.1016/j.jbi.2017.05.020
– ident: ref99
  doi: 10.1093/jamia/ocv102
– ident: ref79
  doi: 10.1016/j.ijmedinf.2017.10.004
– ident: ref146
  doi: 10.3115/1690219.1690287
– ident: ref136
  doi: 10.1136/amiajnl-2013-001926
– ident: ref86
  doi: 10.1016/j.jss.2016.09.058
– ident: ref46
  doi: 10.1007/s10278-015-9823-3
– volume: 2015
  start-page: 2063
  year: 2015
  ident: ref81
  publication-title: AMIA Annu Symp Proc
– ident: ref66
  doi: 10.1093/jamia/ocv016
– ident: ref38
  doi: 10.1093/jamia/ocx131
– ident: ref40
  doi: 10.1136/eb-2017-102688
– ident: ref84
  doi: 10.1142/9789814749411_0014
– ident: ref19
  doi: 10.1016/j.jbi.2017.04.011
– ident: ref71
  doi: 10.1016/j.jbi.2014.11.009
– ident: ref54
  doi: 10.1093/jamia/ocv069
– volume: 2016
  start-page: 2062
  year: 2016
  ident: ref100
  publication-title: AMIA Annu Symp Proc
– ident: ref90
  doi: 10.4338/ACI-2015-09-RA-0114
– ident: ref50
  doi: 10.1371/journal.pone.0174708
– volume: 2017
  start-page: 1233
  year: 2017
  ident: ref70
  publication-title: AMIA Annu Symp Proc
– volume: 2016
  start-page: 1910
  year: 2016
  ident: ref69
  publication-title: AMIA Annu Symp Proc
– ident: ref26
  doi: 10.1016/j.jbi.2015.06.029
– ident: ref7
– ident: ref52
  doi: 10.1155/2015/636371
– ident: ref62
  doi: 10.1016/j.jbi.2015.06.009
– ident: ref53
  doi: 10.1002/mpr.1602
– ident: ref47
  doi: 10.2214/AJR.16.16128
– ident: ref44
  doi: 10.1109/ICHI.2017.31
– ident: ref105
  doi: 10.1093/jamia/ocw109
– ident: ref88
  doi: 10.1186/1472-6947-13-S1-S1
– ident: ref85
  doi: 10.4338/ACI-2014-11-RA-0110
– ident: ref122
  doi: 10.1377/hlthaff.2014.0054
– ident: ref9
  doi: 10.1109/JBHI.2017.2684121
– ident: ref27
  doi: 10.1016/j.jbi.2017.06.005
– ident: ref2
  doi: 10.1016/j.ijmedinf.2019.103974
– ident: ref80
  doi: 10.1016/j.jbi.2015.06.010
– ident: ref13
  doi: 10.1093/jamia/ocv155
– ident: ref28
  doi: 10.1016/j.ijmedinf.2017.05.015
– ident: ref89
  doi: 10.1093/jamia/ocw071
– ident: ref51
  doi: 10.18653/v1/n16-1056
– ident: ref82
  doi: 10.1016/j.compbiomed.2017.12.026
– ident: ref110
  doi: 10.1016/j.jbi.2016.10.005
– ident: ref120
  doi: 10.1038/sdata.2016.35
– ident: ref137
  doi: 10.1136/amiajnl-2014-002887
– ident: ref127
  doi: 10.1016/j.jbi.2015.07.020
– ident: ref37
  doi: 10.1016/j.amjmed.2016.12.008
– ident: ref144
  doi: 10.1109/tkde.2009.191
– ident: ref5
  doi: 10.1109/mis.2009.36
– ident: ref133
  doi: 10.1016/j.jacr.2007.09.004
– ident: ref132
  doi: 10.1186/1741-7015-10-100
– ident: ref3
  doi: 10.1016/j.ijmedinf.2014.06.009
– ident: ref112
  doi: 10.1148/radiol.2018171093
– ident: ref24
  doi: 10.1016/j.jbi.2017.04.003
SSID ssj0001416667
Score 2.6495795
SecondaryResourceType review_article
Snippet Clinical narratives represent the main form of communication within health care, providing a personalized account of patient history and assessments, and...
Background: Clinical narratives represent the main form of communication within health care, providing a personalized account of patient history and...
BackgroundClinical narratives represent the main form of communication within health care, providing a personalized account of patient history and assessments,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e17984
SubjectTerms Artificial intelligence
Bibliometrics
Clinical medicine
Deep learning
Electronic health records
Explicit knowledge
Language
Literature reviews
Machine learning
Medical Subject Headings-MeSH
Narratives
Natural language processing
Review
Search strategies
Systematic review
Word sense disambiguation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyRBDC7Egwgi7rquo7NDCV4bq-vd3vYlsjB7WQVvTT1SqyA94o7_fyvVbTMjghdvTSc06aSqklTCF0JOwUrrk2CV41JUMjhXeZ58FcAAc9ll6ohXA_Pf-vJa_rpRNyujvrAnrIcH7hV3hh6VaV83vg7SMem11dF5xYCLxqsSGmWft5JMldsVieUws0V2sNc5r7IzBOaSa86nYPS_Fli-7I9ccTgXe2R3iBTp117CD2QDuo9kaz7UwvdJM0B63tOrfMDSH27p6F1H56U7EugAnPr3nP4ZwZppXwn4RK4vfl59v6yGQQhVMEIsK4g2KutZBCdSitY2idtkuHRWquyFTJKx1lbKgAFJfqqBgw0MrE4QmiAOyGa36OCQ0AhGNjx_w8UkE1Pecme94IY7qJMWE3L6rKE2DCjhOKzivs3ZAiqyLYqckNnI9tDDYrxk-IbqHYmIYl1eZNu2g23bt2w7IdNn47TD1vrXYk6Ep4bIsp6M5LwpsNLhOlg8ZR5hEcZGqCzH596WoyRYWmqkVhNi1qy8Juo6pbu7LcDbps7BLVNH7_Fvx2SbY-pe2tmmZHP5-ARfcnyz9LOylP8DlaP4hQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sghSk-NHWVCtb8DW42e_0pdRaEeH6UoV7C_tpBclZPf__7uT2Yk9K30J2E4aZ3Z3fzgy_ATiORhiXOK0tE7wW3traseRqH3WkNrtMFTA0MPmhLq7F5VROS8DtsZRVLs_E4aAOM48x8hOEwrhYOP9y_7vGrlGYXS0tNF7BBlKXYUmXnurnGIvApJjehC2seM6fnyA9l1hxQQNT_7_g5csqyb_czvk2vCl4kXxdGHgH1mK_C5uTkhHfg7YQe96Rq3zMkjM7t-S2J5OhRjKSQp9685n8HCmbySIf8Bauz79ffbuoSzuE2mvO53UMJkjjaIiWpxSMaRMzSTNhjZDZF-kkQqOMEB5hSX5qIovG02hUir71_B2s97M-7gMJUYuW5X_YkESi0hlmjeNMMxubpHgFx0sNdb5whWPLirsu3xlQkd2gyAqOxmn3C3KMlxNOUb3jIHJZDy9mDzdd2RodYiaqXNO6xgtLhVNGBeskjYy3TtoKDpfG6coGe-yel0MFn8bhvDUw32H7OHvKc7hBMhsusxzvF7YcJcEEUyuUrECvWHlF1NWR_vbXQL-tmwxxqfzwf7EO4DXDq_lQrnYI6_OHp_gx45e5OxoW6R-P0_Bi
  priority: 102
  providerName: ProQuest
Title Clinical Text Data in Machine Learning: Systematic Review
URI https://www.ncbi.nlm.nih.gov/pubmed/32229465
https://www.proquest.com/docview/2511963833
https://www.proquest.com/docview/2385268354
https://pubmed.ncbi.nlm.nih.gov/PMC7157505
https://doaj.org/article/638906b19b1c4a04b686dab50e239b5a
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEB9sC0UQ8e1pDSv0azTZ9woiVluKcEW0B_0Wdje7tXDk2vMK-t-7k9sLTSn4LWQ3YTKzs_PMbwH2g-baRVaVlnJWcm9t6Wh0pQ8qVDaZTNliamB6Io9n_NuZuNFNmBn4-87QDs-Tmi3n7_5c_f2UFP4jtjGnBfQeMbf4FuwkY6RQN6fZw-_TLBzrYvjTNKWmLo00fBcejJ4cWaQeuP8ub_N20-QNK3T0CB5m95F8Xsv7MdwL3RPYneYC-VMwGedzTk7Trku-2pUlFx2Z9i2TgWQ01fMP5OeA4EzW5YFnMDs6PP1yXObTEUqvGFuVodWt0K5qg2UxtlqbSHVUlFvNRTJNKvK2lppzj15KuqoDDdpXQcsYvPHsOWx3iy68BNIGxQ1N77Bt5LESTlOrHaOK2lBHySawv-FQ4zN0OJ5gMW9SCIGMbHpGTqAYpl2usTJuTzhA9g6DCG3d31gsz5usKQ26UJV0tXG157biTmrZWieqQJlxwk5gbyOcZrNcGgyUcCthida3w3DSFCx_2C4srtMcphHbholEx4u1LAdKsN5kuBQTUCMpj0gdj3QXv3o0blUnj7cSr_738a_hPsVYve9f24Pt1fI6vEkOzcoVsKXOVAE7B4cn338UfVqg6JfxPzu39pI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFD7YFWyhSO9NtXYK9jGYzCWZFERqVdbqLqVdwbd0rlaQrNWV0j_lb3RObnal9M23kBnC4dxnzsl3ANad5FJ7lsSKchZzo1SsqdexcblLVAiZmcWrgdE4Gx7xL8fieAGuu39hsK2y84m1o7ZTg3fkG5gKo7IwtnX-K8apUVhd7UZoNGpx4P78Dke2y839nSDfD5Tu7U4-D-N2qkBscsZmsbPSCqkT6xTz3kpZeCp9TrmSXASXnntu00xybjC6h6fUUSdN4mTmnSkMC999AIuchaPMABa3d8dfv93e6nAsw-VL8Bh7rAPBGwgIxueCXj0b4F8J7d2-zL8C3d4TWG4zVPKpUamnsOCqZ7A0amvwz6FooUTPyCQ4drKjZoqcVmRUd2U60gK2nnwk33uQaNJUIF7A0b2w6iUMqmnlXgOxLucFDd9Q1nOfCC2pkprRnCqX-oxFsN5xqDQtOjkOyTgrwykFGVnWjIxgrd923sBx3N2wjeztFxE9u34xvTgpW2MsMUtLMp0WOjVcJVxnMrNKi8RRVmihIljthFO2Jn1Z3ipgBO_75WCMWGFRlZtehT1MInwOE4GOV40se0qwpFXwTESQz0l5jtT5ler0Zw34nachqU7Em_-T9Q4eDiejw_Jwf3ywAo8oXgzUzXKrMJhdXLm3IXua6bVWZQn8uG8ruQHFHy6-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5ihEUQ8XZijC3Ex2Fn-pjuEUTUdUmMGwQT2LexzxgIszk2iH_NX2fXXHGD-Ja3Ybppijq6aqpqvgLY9oorE1iWaspZyq3WqaHBpNZLn-noMguHqYHZfrFzyD_PxXwNfvf_wmBbZX8nNhe1W1jMkY8xFEZlYWwcuraIr5Ppu9OzFCdIYaW1H6fRqsie__Uzfr5dvN2dRFm_pnT66eDjTtpNGEitZGyZeqecUCZzXrMQnFJloCpIyrXiIl7vMnCXF4pzi54-PuWeemUzr4rgbWlZPPcW3JZM5Ghjci6v8jscC3JyBHex2zqSPkZoML7i_popAf8Kba93aP7l8qb34V4Xq5L3rXI9gDVfP4TRrKvGP4KyAxU9IQeRT2Sil5oc12TW9Gd60kG3Hr0h3wa4aNLWIh7D4Y0w6gms14vaPwPivOQljWdoF3jIhFFUK8OopNrnoWAJbPccqmyHU47jMk6q-L2CjKwaRiawNWw7bYE5rm_4gOwdFhFHu3mxOD-qOrOsMF7LCpOXJrdcZ9wUqnDaiMxTVhqhE9jshVN1xn1RXaliAq-G5WiWWGvRtV9cxj1MIZAOE5GOp60sB0qwuFXyQiQgV6S8QurqSn38o4H-lnkMrzOx8X-yXsIo2kb1ZXd_7zncoZghaLrmNmF9eX7pX8Qwamm2Gn0l8P2mDeQPfPIxjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+Text+Data+in+Machine+Learning%3A+Systematic+Review&rft.jtitle=JMIR+medical+informatics&rft.au=Spasic%2C+Irena&rft.au=Nenadic%2C+Goran&rft.date=2020-03-01&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=8&rft.issue=3&rft.spage=e17984&rft_id=info:doi/10.2196%2F17984&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_17984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon