Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands

Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the “center of gravity” of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Altho...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Japan Academy, Series B Vol. 93; no. 4; pp. 220 - 233
Main Authors HIRANO, Ko, ORDONIO, Reynante Lacsamana, MATSUOKA, Makoto
Format Journal Article
LanguageEnglish
Published Japan The Japan Academy 2017
Subjects
Online AccessGet full text
ISSN0386-2208
1349-2896
1349-2896
DOI10.2183/pjab.93.014

Cover

Loading…
Abstract Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the “center of gravity” of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique.
AbstractList Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the "center of gravity" of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique.
Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the "center of gravity" of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique.Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the "center of gravity" of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique.
Author HIRANO, Ko
MATSUOKA, Makoto
ORDONIO, Reynante Lacsamana
Author_xml – sequence: 1
  fullname: HIRANO, Ko
  organization: Bioscience and Biotechnology Center, Nagoya University
– sequence: 1
  fullname: ORDONIO, Reynante Lacsamana
  organization: Philippine Rice Research Institute
– sequence: 1
  fullname: MATSUOKA, Makoto
  organization: Bioscience and Biotechnology Center, Nagoya University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28413198$$D View this record in MEDLINE/PubMed
BookMark eNp1kdFr1TAUxoNM3N30yXcJ-CKMXpOmTZMXYY5tKgNF9Dmk6WlvLm1yTdKB_70pdys68CHJgfzOxznfd4ZOnHeA0GtKtiUV7P1hr9utZFtCq2doQ1kli1JIfoI2hAlelCURp-gsxj0hrKwFfYFOS1FRRqXYIH3tBusAgnUDTjvAo--GpQ4QbUzaGcATmJ12Nk7Y9_jgYypuA4DD3-Hej3Oy3uFgM5d8RiHhfk5zANzBpF0XX6LnvR4jvHp4z9HPm-sfV5-Ku6-3n68u7wrTMJYKDWXFZStk3_Sas6Y1jGsuG1LyVvdt3RraSZaPoNRUwHUNjBIqW6lpX0LNztGHo-5hbifoDLgU9KgOwU46_FZeW_Xvj7M7Nfh7VVdCVoxkgXcPAsH_miEmNdloYBy1Az9HRYUQsq4bzjL69gm693Nweb2FamST7eWZevP3ROsoj-5n4OIImOBjDNCvCCVqyVYt2SrJVM420_QJbWzSi_15HTv-p-fm2LPPWQ6w6uuQrBlhZavl-vblUjJSfVSkXoGcfFDg2B9v3MJa
CitedBy_id crossref_primary_10_1016_j_eja_2025_127507
crossref_primary_10_1093_bfgp_elaa019
crossref_primary_10_3389_fpls_2019_00340
crossref_primary_10_3389_fpls_2022_926277
crossref_primary_10_1007_s10725_018_0468_3
crossref_primary_10_1038_s41598_023_37992_3
crossref_primary_10_1111_pbi_13509
crossref_primary_10_1017_S0021859624000091
crossref_primary_10_3389_fgene_2021_623861
crossref_primary_10_3390_agronomy14010091
crossref_primary_10_1016_j_jia_2022_07_035
crossref_primary_10_3390_agronomy12112603
crossref_primary_10_3390_plants11070999
crossref_primary_10_1016_j_cj_2023_03_011
crossref_primary_10_1093_pcp_pcaa104
crossref_primary_10_1186_s12284_023_00621_8
crossref_primary_10_1016_j_semcdb_2019_04_005
crossref_primary_10_1088_1755_1315_648_1_012149
crossref_primary_10_1016_j_tplants_2020_06_005
crossref_primary_10_1007_s12892_020_00075_0
crossref_primary_10_3390_agronomy15030614
crossref_primary_10_1038_s41598_021_95268_0
crossref_primary_10_3390_biom11111616
crossref_primary_10_1590_s1678_3921_pab2022_v57_02812
crossref_primary_10_3390_agronomy13112711
crossref_primary_10_3390_ijms25053028
crossref_primary_10_1016_j_rsci_2024_08_002
crossref_primary_10_1088_1755_1315_1219_1_012016
crossref_primary_10_3390_agronomy15030699
crossref_primary_10_1093_plphys_kiad546
crossref_primary_10_1007_s11032_020_01164_2
crossref_primary_10_3390_genes12050718
crossref_primary_10_1007_s10681_022_03036_6
crossref_primary_10_1093_jxb_ery424
crossref_primary_10_1038_cr_2017_115
crossref_primary_10_1111_pbi_13842
crossref_primary_10_1111_pbi_13963
crossref_primary_10_1007_s42729_023_01465_3
crossref_primary_10_3390_ijms241612845
crossref_primary_10_1007_s00425_018_2885_y
crossref_primary_10_1093_pcp_pcab051
crossref_primary_10_1007_s10681_025_03470_2
crossref_primary_10_3390_ijms24010812
crossref_primary_10_1016_j_biombioe_2022_106355
crossref_primary_10_1016_j_fcr_2022_108733
crossref_primary_10_1007_s10681_022_03101_0
crossref_primary_10_1016_j_scitotenv_2018_07_431
crossref_primary_10_1016_j_tplants_2018_10_008
crossref_primary_10_1111_jipb_13830
crossref_primary_10_3390_plants9111592
crossref_primary_10_1007_s42976_024_00537_z
crossref_primary_10_1038_s41598_020_76949_8
crossref_primary_10_1111_pbi_13370
crossref_primary_10_3390_ijms252212382
crossref_primary_10_1016_j_aoas_2020_09_004
crossref_primary_10_1002_csc2_20712
crossref_primary_10_3389_fpls_2022_1091156
crossref_primary_10_1111_nph_18489
crossref_primary_10_3390_ijms20174211
crossref_primary_10_1007_s00122_023_04372_4
crossref_primary_10_1016_j_jplph_2020_153141
crossref_primary_10_1016_j_biombioe_2018_04_001
crossref_primary_10_3389_fpls_2023_1298083
crossref_primary_10_3390_ijms231912057
crossref_primary_10_1126_science_aax0025
crossref_primary_10_3389_fgene_2022_960007
crossref_primary_10_1007_s11032_019_0961_z
crossref_primary_10_1080_09553002_2024_2304827
crossref_primary_10_1002_jsfa_13257
crossref_primary_10_1016_j_biosystemseng_2022_02_009
crossref_primary_10_1093_plphys_kiac437
crossref_primary_10_3390_genes10110874
Cites_doi 10.1016/j.fcr.2006.12.002
10.1104/pp.105.060988
10.1371/journal.pone.0096009
10.1038/ng.591
10.1111/pbi.12276
10.1139/gen-42-4-646
10.1626/jcs.76.1
10.1111/j.1365-313X.2007.03200.x
10.1038/ncomms2542
10.1046/j.1365-313X.2003.01648.x
10.2480/agrmet.54.235
10.1016/j.molp.2014.10.009
10.1270/jsbbs.57.53
10.1270/jsbbs.52.143
10.1093/pcp/pcu023
10.1626/jcs.62.378
10.1073/pnas.132266399
10.1007/s00122-006-0218-1
10.1126/science.1113373
10.1626/pps.13.58
10.1270/jsbbs.55.431
10.1016/j.jgg.2011.08.002
10.1270/jsbbs1951.44.247
10.2135/cropsci2004.0348
10.1111/j.1365-313X.2007.03210.x
10.1626/jcs.72.171
10.1016/j.pbi.2008.03.002
10.1626/jcs.59.809
10.1038/nrg2342
10.1038/srep06567
10.2307/1241374
10.1038/srep30572
10.1371/journal.pone.0086870
10.1038/ncomms1132
10.1038/416701a
10.1038/ng.352
10.1038/ng.592
10.1038/22307
10.2134/agronj1954.00021962004600090006x
10.1371/journal.pone.0160104
10.1626/jcs.61.419
ContentType Journal Article
Copyright 2017 The Japan Academy
2017 The Japan Academy 2017
Copyright_xml – notice: 2017 The Japan Academy
– notice: 2017 The Japan Academy 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TK
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BVBZV
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOI 10.2183/pjab.93.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology collection
Natural Science Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Engineering Database (subscription)
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
East & South Asia Database
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Improving rice lodging resistance
EISSN 1349-2896
EndPage 233
ExternalDocumentID PMC5489430
4321693699
28413198
10_2183_pjab_93_014
article_pjab_93_4_93_PJA9304B_05_article_char_en
Genre Journal Article
Review
GroupedDBID ---
-~X
.55
29P
2WC
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
ABJCF
ABUWG
ACIWK
ACPRK
ADRAZ
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVBZV
BVXVI
CCPQU
DIK
DWQXO
E3Z
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IEA
ITC
JSF
JSH
KQ8
L6V
LK8
M1P
M2O
M48
M7P
M7S
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
RJT
RNS
RPM
RZJ
RZL
SV3
TN5
TR2
TUS
UKHRP
WH7
X7M
XSB
YNT
~02
53G
AAYXX
AFFNX
ALIPV
CITATION
TKC
XJT
XOL
3V.
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7XB
8FD
8FK
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c733t-ae2469b89f7fa637bc36a697026bafb5bc1d931d9811c4e6a5e31019b9a1f2e53
IEDL.DBID M48
ISSN 0386-2208
1349-2896
IngestDate Thu Aug 21 18:22:59 EDT 2025
Mon Jul 21 09:32:57 EDT 2025
Fri Jul 25 10:25:41 EDT 2025
Thu Jan 02 22:21:33 EST 2025
Tue Jul 01 01:25:15 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
Wed Sep 03 06:29:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c733t-ae2469b89f7fa637bc36a697026bafb5bc1d931d9811c4e6a5e31019b9a1f2e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Communicated by Yasuyuki YAMADA, M.J.A.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2183/pjab.93.014
PMID 28413198
PQID 1887974136
PQPubID 1066378
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5489430
proquest_miscellaneous_1888955763
proquest_journals_1887974136
pubmed_primary_28413198
crossref_primary_10_2183_pjab_93_014
crossref_citationtrail_10_2183_pjab_93_014
jstage_primary_article_pjab_93_4_93_PJA9304B_05_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Ueno Park
– name: Tokyo, Japan
PublicationTitle Proceedings of the Japan Academy, Series B
PublicationTitleAlternate Proc. Jpn. Acad., Ser. B
PublicationYear 2017
Publisher The Japan Academy
Publisher_xml – name: The Japan Academy
References 28) Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H. and Matsuoka, M. (2005) Cytokinin oxidase regulates rice grain production. Science 309, 741–745.
1) United Nations Report, World Population Prospects: The 2012 Revision. www.unpopulation.org.
32) Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H. and Ashikari, M. (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549.
3) Khush, G.S. (1999) Green revolution: preparing for the 21st century. Genome 42, 646–655.
43) Kojima, Y., Ebana, K., Fukuoka, S., Nagamine, T. and Kawase, M. (2005) Development of an RFLP-based rice diversity research set of germplasm. Breed. Sci. 55, 431–440.
8) Hoshikawa, K. and Wang, S.B. (1990) Studies lodging in rice plants. I. A general observation on lodged rice culms. Jpn. J. Crop Sci. 59, 809–814.
24) Hirano, K., Okuno, A., Hobo, T., Ordonio, R., Shinozaki, Y., Asano, K., Kitano, H. and Matsuoka, M. (2014) Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS One 9, e96009.
14) Spielmeyer, W., Ellis, M.H. and Chandler, P.M. (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. U.S.A. 99, 9043–9048.
20) Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014) New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One 9, e86870.
44) Vogel, J. (2008) Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11, 301–307.
31) Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., Qian, Q. and Li, J. (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544.
22) Ookawa, T. and Ishihara, K. (1992) Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice. Jpn. J. Crop Sci. 61, 419–425.
2) Dalrymple, D.G. (1985) The development and adoption of high-yielding varieties of wheat and rice in developing countries. Am. J. Agric. Econ. 67, 1067–1073.
33) Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., Asano, K., Ochiai, Y., Ikeda, M., Nishitani, R., Ebitani, T., Ozaki, H., Angeles, E.R., Hirasawa, T. and Matsuoka, M. (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 1, 132.
35) Murai, M. and Iizawa, M. (1994) Effects of major genes controlling morphology of panicle in rice. Breed. Sci. 44, 247–255.
23) Ookawa, T., Aoba, R., Yamamoto, T., Ueda, T., Takai, T., Fukuoka, S., Ando, T., Adachi, S., Matsuoka, M., Ebitani, T., Kato, Y., Mulsanti, I.W., Kishii, M., Reynolds, M., Piñera, F., Kotake, T., Kawasaki, S., Motobayashi, T. and Hirasawa, T. (2016) Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice. Sci. Rep. 28, 30572.
19) Zhu, G., Li, G., Wang, D., Yuan, S. and Wang, F. (2016) Changes in the lodging-related traits along with rice genetic improvement in China. PLoS One 11, e0160104.
5) Kang, D.J. and Ishii, R. (2003) Studies on acid soil tolerance of rice plants (Oryza sativa) I. Morphological and physiological characteristics of acid soil tolerant varieties of rice plants. Jpn. J. Crop Sci. 72, 171–176.
45) Ookawa, T., Inoue, K., Matsuoka, M., Ebitani, T., Takarada, T., Yamamoto, T., Ueda, T., Yokoyama, T., Sugiyama, C., Nakaba, S., Funada, R., Kato, H., Kanekatsu, M., Toyota, K., Motobayashi, T., Vazirzanjani, M., Tojo, S. and Hirasawa, T. (2014) Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production. Sci. Rep. 4, 6567.
38) Takeda, S. and Matsuoka, M. (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9, 444–457.
6) Kono, M. (1995) Physiological aspects of lodging. In Science of the rice plant, Physiology 2 (eds. Matsuo, T., Kumazawa, K., Ishii, R., Ishihara, K., and Hirata, H.). Food and Agriculture Policy Research Center, Tokyo, pp. 971–982.
15) Koshio, K., Inaishi, Y., Hayamichi, Y., Fujimaki, H., Kikuchi, F. and Toyohara, H. (2000) Character expression of isogenic lines with semidwarf genes of different origins in rice (Oryza sativa L.). J. Agr. Sci., Tokyo Nogyo Daigaku 45, 201–209.
29) Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X. and Zhang, Q. (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171.
37) Yano, K., Ookawa, T., Aya, K., Ochiai, Y., Hirasawa, T., Ebitani, T., Takarada, T., Yano, M., Yamamoto, T., Fukuoka, S., Wu, J., Ando, T., Ordonio, R.L., Hirano, K. and Matsuoka, M. (2015) Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol. Plant 8, 303–314.
21) Ookawa, T. and Ishihara, K. (1993) Varietal difference of the cell wall components affecting the bending stress of the culm in relation to the lodging resistance in paddy rice. Jpn. J. Crop Sci. 62, 378–384.
46) Li, F., Zhang, M., Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G. and Peng, L. (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol. J. 13, 514–525.
10) Watanabe, T. (1997) Lodging resistance. In Science of the rice plant, Genetics 3 (eds. Matsuo, T., Futsuhara, Y., Kikuchi, F., and Yamaguchi, H.). Food and Agriculture Policy Research Center, Tokyo, pp. 567–577.
16) Asano, K., Takashi, T., Miura, K., Qian, Q., Kitano, H., Matsuoka, M. and Ashikari, M. (2007) Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed. Sci. 57, 53–58.
39) Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H. and Matsuoka, M. (2005) Cytokinin oxidase regulates rice grain production. Science 309, 741–745.
41) Ookawa, T., Yasuda, K., Kato, H., Sakai, M., Seto, M., Sunaga, K., Motobayashi, T., Tojo, S. and Hirasawa, T. (2010) Biomass production and lodging resistance in ‘Leaf Star’, a new long-culm rice forage cultivar. Plant Prod. Sci. 13, 58–66.
12) Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.
18) Bao, J., Lce, S., Chen, C., Zhang, X., Zhang, Y., Liu, S., Clark, T., Wang, J., Cao, M., Yang, H., Wang, S.M. and Yu, J. (2005) Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol. 138, 1216–1231.
11) Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701–702.
13) Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Datta, S., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice “green revolution”. Breed. Sci. 52, 143–150.
36) Kinoshita, T. and Takahashi, M. (1991) The hundredth report of genetical studies on rice plants. Linkage studies and future prospects. J. Fac. Agric. Hokkaido Univ. 65, 1–61.
4) Yonemura, S., Yajima, M., Sakai, H. and Morokuma, M. (1998) Estimate of rice yield of Japan under the conditions with elevated CO2 and increased temperature by using third mesh climate data. J. Agric. Meteorol. 54, 235–245.
42) Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H. and Kyozuka, J. (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019–1029.
30) Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J. and Fu, X. (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497.
34) Ikeda, K., Ito, M., Nagasawa, N., Kyozuka, J. and Nagato, Y. (2007) Rice ABERRANT PANICLE ORGANIZATION1, encoding an F-box protein, regulates meristem fate. Plant J. 51, 1030–1040.
27) Zhang, B., Tian, F., Tan, L., Xie, D. and Sun, C. (2011) Characterization of a novel high tillering dwarf 3 mutant in rice. J. Genet. Genomics 38, 411–418.
25) Aya, K., Hobo, T., Sato-Izawa, K., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014) A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol. 55, 897–912.
7) Kashiwagi, T., Hirotsu, N., Madoka, Y., Ookawa, T. and Ishimaru, K. (2007) Improvement of resistance to bending-type lodging in rice. Jpn. J. Crop Sci. 76, 1–9.
26) Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M. and Ueguchi, C. (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513–520.
9) Islam, M.S., Peng, S., Visperas, R.M., Ereful, N. and Bhuiya, M.S.U. (2007) Lodging related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Res. 101, 240–248.
17) Yan, W., Dilday, R.H., Tai, T.H., Gibbons, J.W., McNew, R.W. and Rutger, J.N. (2005) Differential response of rice germplasrn to straighthead induced by arsenic. Crop Sci. 45, 1223–1228.
47) Grafius, J.E. and Brown, H.M. (1954) Lodging resistance in oats. Agron. J. 46
22
44
23
45
24
46
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
19305410 - Nat Genet. 2009 Apr;41(4):494-7
15976269 - Science. 2005 Jul 29;309(5735):741-5
16009997 - Plant Physiol. 2005 Jul;138(3):1216-31
27466812 - PLoS One. 2016 Jul 28;11(7):e0160104
17666027 - Plant J. 2007 Sep;51(6):1030-40
24486766 - Plant Cell Physiol. 2014 May;55(5):897-912
27465821 - Sci Rep. 2016 Jul 28;6:30572
21119645 - Nat Commun. 2010 Nov 30;1:132
23463009 - Nat Commun. 2013;4:1566
18434239 - Curr Opin Plant Biol. 2008 Jun;11(3):301-7
20495564 - Nat Genet. 2010 Jun;42(6):545-9
11961544 - Nature. 2002 Apr 18;416(6882):701-2
21930100 - J Genet Genomics. 2011 Sep 20;38(9):411-8
18475268 - Nat Rev Genet. 2008 Jun;9(6):444-57
20495565 - Nat Genet. 2010 Jun;42(6):541-4
25418842 - Plant Biotechnol J. 2015 May;13(4):514-25
10464789 - Genome. 1999 Aug;42(4):646-55
25616386 - Mol Plant. 2015 Feb;8(2):303-14
16453132 - Theor Appl Genet. 2006 Apr;112(6):1164-71
24987959 - PLoS One. 2014 Jul 02;9(7):e96009
10421366 - Nature. 1999 Jul 15;400(6741):256-61
25298209 - Sci Rep. 2014 Oct 09;4:6567
17655651 - Plant J. 2007 Sep;51(6):1019-29
12581309 - Plant J. 2003 Feb;33(3):513-20
24586255 - PLoS One. 2014 Feb 19;9(2):e86870
12077303 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9043-8
References_xml – reference: 35) Murai, M. and Iizawa, M. (1994) Effects of major genes controlling morphology of panicle in rice. Breed. Sci. 44, 247–255.
– reference: 27) Zhang, B., Tian, F., Tan, L., Xie, D. and Sun, C. (2011) Characterization of a novel high tillering dwarf 3 mutant in rice. J. Genet. Genomics 38, 411–418.
– reference: 29) Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X. and Zhang, Q. (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171.
– reference: 24) Hirano, K., Okuno, A., Hobo, T., Ordonio, R., Shinozaki, Y., Asano, K., Kitano, H. and Matsuoka, M. (2014) Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS One 9, e96009.
– reference: 44) Vogel, J. (2008) Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11, 301–307.
– reference: 32) Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H. and Ashikari, M. (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549.
– reference: 36) Kinoshita, T. and Takahashi, M. (1991) The hundredth report of genetical studies on rice plants. Linkage studies and future prospects. J. Fac. Agric. Hokkaido Univ. 65, 1–61.
– reference: 41) Ookawa, T., Yasuda, K., Kato, H., Sakai, M., Seto, M., Sunaga, K., Motobayashi, T., Tojo, S. and Hirasawa, T. (2010) Biomass production and lodging resistance in ‘Leaf Star’, a new long-culm rice forage cultivar. Plant Prod. Sci. 13, 58–66.
– reference: 7) Kashiwagi, T., Hirotsu, N., Madoka, Y., Ookawa, T. and Ishimaru, K. (2007) Improvement of resistance to bending-type lodging in rice. Jpn. J. Crop Sci. 76, 1–9.
– reference: 18) Bao, J., Lce, S., Chen, C., Zhang, X., Zhang, Y., Liu, S., Clark, T., Wang, J., Cao, M., Yang, H., Wang, S.M. and Yu, J. (2005) Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol. 138, 1216–1231.
– reference: 11) Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701–702.
– reference: 16) Asano, K., Takashi, T., Miura, K., Qian, Q., Kitano, H., Matsuoka, M. and Ashikari, M. (2007) Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed. Sci. 57, 53–58.
– reference: 23) Ookawa, T., Aoba, R., Yamamoto, T., Ueda, T., Takai, T., Fukuoka, S., Ando, T., Adachi, S., Matsuoka, M., Ebitani, T., Kato, Y., Mulsanti, I.W., Kishii, M., Reynolds, M., Piñera, F., Kotake, T., Kawasaki, S., Motobayashi, T. and Hirasawa, T. (2016) Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice. Sci. Rep. 28, 30572.
– reference: 19) Zhu, G., Li, G., Wang, D., Yuan, S. and Wang, F. (2016) Changes in the lodging-related traits along with rice genetic improvement in China. PLoS One 11, e0160104.
– reference: 2) Dalrymple, D.G. (1985) The development and adoption of high-yielding varieties of wheat and rice in developing countries. Am. J. Agric. Econ. 67, 1067–1073.
– reference: 6) Kono, M. (1995) Physiological aspects of lodging. In Science of the rice plant, Physiology 2 (eds. Matsuo, T., Kumazawa, K., Ishii, R., Ishihara, K., and Hirata, H.). Food and Agriculture Policy Research Center, Tokyo, pp. 971–982.
– reference: 12) Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.
– reference: 31) Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., Qian, Q. and Li, J. (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544.
– reference: 14) Spielmeyer, W., Ellis, M.H. and Chandler, P.M. (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. U.S.A. 99, 9043–9048.
– reference: 15) Koshio, K., Inaishi, Y., Hayamichi, Y., Fujimaki, H., Kikuchi, F. and Toyohara, H. (2000) Character expression of isogenic lines with semidwarf genes of different origins in rice (Oryza sativa L.). J. Agr. Sci., Tokyo Nogyo Daigaku 45, 201–209.
– reference: 33) Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., Asano, K., Ochiai, Y., Ikeda, M., Nishitani, R., Ebitani, T., Ozaki, H., Angeles, E.R., Hirasawa, T. and Matsuoka, M. (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 1, 132.
– reference: 8) Hoshikawa, K. and Wang, S.B. (1990) Studies lodging in rice plants. I. A general observation on lodged rice culms. Jpn. J. Crop Sci. 59, 809–814.
– reference: 20) Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014) New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One 9, e86870.
– reference: 39) Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H. and Matsuoka, M. (2005) Cytokinin oxidase regulates rice grain production. Science 309, 741–745.
– reference: 22) Ookawa, T. and Ishihara, K. (1992) Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice. Jpn. J. Crop Sci. 61, 419–425.
– reference: 21) Ookawa, T. and Ishihara, K. (1993) Varietal difference of the cell wall components affecting the bending stress of the culm in relation to the lodging resistance in paddy rice. Jpn. J. Crop Sci. 62, 378–384.
– reference: 47) Grafius, J.E. and Brown, H.M. (1954) Lodging resistance in oats. Agron. J. 46, 414–418.
– reference: 9) Islam, M.S., Peng, S., Visperas, R.M., Ereful, N. and Bhuiya, M.S.U. (2007) Lodging related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Res. 101, 240–248.
– reference: 30) Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J. and Fu, X. (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497.
– reference: 40) Guo, S., Xu, Y., Liu, H., Mao, Z., Zhang, C., Ma, Y., Zhang, Q., Meng, Z. and Chong, K. (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat. Commun. 4, 1566.
– reference: 28) Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H. and Matsuoka, M. (2005) Cytokinin oxidase regulates rice grain production. Science 309, 741–745.
– reference: 25) Aya, K., Hobo, T., Sato-Izawa, K., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014) A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol. 55, 897–912.
– reference: 38) Takeda, S. and Matsuoka, M. (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9, 444–457.
– reference: 45) Ookawa, T., Inoue, K., Matsuoka, M., Ebitani, T., Takarada, T., Yamamoto, T., Ueda, T., Yokoyama, T., Sugiyama, C., Nakaba, S., Funada, R., Kato, H., Kanekatsu, M., Toyota, K., Motobayashi, T., Vazirzanjani, M., Tojo, S. and Hirasawa, T. (2014) Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production. Sci. Rep. 4, 6567.
– reference: 46) Li, F., Zhang, M., Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G. and Peng, L. (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol. J. 13, 514–525.
– reference: 4) Yonemura, S., Yajima, M., Sakai, H. and Morokuma, M. (1998) Estimate of rice yield of Japan under the conditions with elevated CO2 and increased temperature by using third mesh climate data. J. Agric. Meteorol. 54, 235–245.
– reference: 5) Kang, D.J. and Ishii, R. (2003) Studies on acid soil tolerance of rice plants (Oryza sativa) I. Morphological and physiological characteristics of acid soil tolerant varieties of rice plants. Jpn. J. Crop Sci. 72, 171–176.
– reference: 13) Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Datta, S., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice “green revolution”. Breed. Sci. 52, 143–150.
– reference: 17) Yan, W., Dilday, R.H., Tai, T.H., Gibbons, J.W., McNew, R.W. and Rutger, J.N. (2005) Differential response of rice germplasrn to straighthead induced by arsenic. Crop Sci. 45, 1223–1228.
– reference: 26) Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M. and Ueguchi, C. (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513–520.
– reference: 10) Watanabe, T. (1997) Lodging resistance. In Science of the rice plant, Genetics 3 (eds. Matsuo, T., Futsuhara, Y., Kikuchi, F., and Yamaguchi, H.). Food and Agriculture Policy Research Center, Tokyo, pp. 567–577.
– reference: 1) United Nations Report, World Population Prospects: The 2012 Revision. www.unpopulation.org.
– reference: 42) Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H. and Kyozuka, J. (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019–1029.
– reference: 34) Ikeda, K., Ito, M., Nagasawa, N., Kyozuka, J. and Nagato, Y. (2007) Rice ABERRANT PANICLE ORGANIZATION1, encoding an F-box protein, regulates meristem fate. Plant J. 51, 1030–1040.
– reference: 37) Yano, K., Ookawa, T., Aya, K., Ochiai, Y., Hirasawa, T., Ebitani, T., Takarada, T., Yano, M., Yamamoto, T., Fukuoka, S., Wu, J., Ando, T., Ordonio, R.L., Hirano, K. and Matsuoka, M. (2015) Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol. Plant 8, 303–314.
– reference: 3) Khush, G.S. (1999) Green revolution: preparing for the 21st century. Genome 42, 646–655.
– reference: 43) Kojima, Y., Ebana, K., Fukuoka, S., Nagamine, T. and Kawase, M. (2005) Development of an RFLP-based rice diversity research set of germplasm. Breed. Sci. 55, 431–440.
– ident: 9
  doi: 10.1016/j.fcr.2006.12.002
– ident: 18
  doi: 10.1104/pp.105.060988
– ident: 24
  doi: 10.1371/journal.pone.0096009
– ident: 30
  doi: 10.1038/ng.591
– ident: 45
  doi: 10.1111/pbi.12276
– ident: 35
– ident: 3
  doi: 10.1139/gen-42-4-646
– ident: 7
  doi: 10.1626/jcs.76.1
– ident: 33
  doi: 10.1111/j.1365-313X.2007.03200.x
– ident: 39
  doi: 10.1038/ncomms2542
– ident: 26
  doi: 10.1046/j.1365-313X.2003.01648.x
– ident: 4
  doi: 10.2480/agrmet.54.235
– ident: 10
– ident: 36
  doi: 10.1016/j.molp.2014.10.009
– ident: 16
  doi: 10.1270/jsbbs.57.53
– ident: 13
  doi: 10.1270/jsbbs.52.143
– ident: 25
  doi: 10.1093/pcp/pcu023
– ident: 21
  doi: 10.1626/jcs.62.378
– ident: 14
  doi: 10.1073/pnas.132266399
– ident: 28
  doi: 10.1007/s00122-006-0218-1
– ident: 38
  doi: 10.1126/science.1113373
– ident: 40
  doi: 10.1626/pps.13.58
– ident: 42
  doi: 10.1270/jsbbs.55.431
– ident: 27
  doi: 10.1016/j.jgg.2011.08.002
– ident: 34
  doi: 10.1270/jsbbs1951.44.247
– ident: 17
  doi: 10.2135/cropsci2004.0348
– ident: 41
  doi: 10.1111/j.1365-313X.2007.03210.x
– ident: 5
  doi: 10.1626/jcs.72.171
– ident: 43
  doi: 10.1016/j.pbi.2008.03.002
– ident: 8
  doi: 10.1626/jcs.59.809
– ident: 37
  doi: 10.1038/nrg2342
– ident: 44
  doi: 10.1038/srep06567
– ident: 2
  doi: 10.2307/1241374
– ident: 1
– ident: 23
  doi: 10.1038/srep30572
– ident: 20
  doi: 10.1371/journal.pone.0086870
– ident: 15
– ident: 32
  doi: 10.1038/ncomms1132
– ident: 11
  doi: 10.1038/416701a
– ident: 29
  doi: 10.1038/ng.352
– ident: 31
  doi: 10.1038/ng.592
– ident: 12
  doi: 10.1038/22307
– ident: 6
– ident: 46
  doi: 10.2134/agronj1954.00021962004600090006x
– ident: 19
  doi: 10.1371/journal.pone.0160104
– ident: 22
  doi: 10.1626/jcs.61.419
– reference: 25616386 - Mol Plant. 2015 Feb;8(2):303-14
– reference: 12581309 - Plant J. 2003 Feb;33(3):513-20
– reference: 16009997 - Plant Physiol. 2005 Jul;138(3):1216-31
– reference: 24586255 - PLoS One. 2014 Feb 19;9(2):e86870
– reference: 10421366 - Nature. 1999 Jul 15;400(6741):256-61
– reference: 24987959 - PLoS One. 2014 Jul 02;9(7):e96009
– reference: 27465821 - Sci Rep. 2016 Jul 28;6:30572
– reference: 24486766 - Plant Cell Physiol. 2014 May;55(5):897-912
– reference: 11961544 - Nature. 2002 Apr 18;416(6882):701-2
– reference: 16453132 - Theor Appl Genet. 2006 Apr;112(6):1164-71
– reference: 15976269 - Science. 2005 Jul 29;309(5735):741-5
– reference: 21930100 - J Genet Genomics. 2011 Sep 20;38(9):411-8
– reference: 18475268 - Nat Rev Genet. 2008 Jun;9(6):444-57
– reference: 20495564 - Nat Genet. 2010 Jun;42(6):545-9
– reference: 10464789 - Genome. 1999 Aug;42(4):646-55
– reference: 25418842 - Plant Biotechnol J. 2015 May;13(4):514-25
– reference: 21119645 - Nat Commun. 2010 Nov 30;1:132
– reference: 20495565 - Nat Genet. 2010 Jun;42(6):541-4
– reference: 18434239 - Curr Opin Plant Biol. 2008 Jun;11(3):301-7
– reference: 23463009 - Nat Commun. 2013;4:1566
– reference: 17655651 - Plant J. 2007 Sep;51(6):1019-29
– reference: 25298209 - Sci Rep. 2014 Oct 09;4:6567
– reference: 19305410 - Nat Genet. 2009 Apr;41(4):494-7
– reference: 17666027 - Plant J. 2007 Sep;51(6):1030-40
– reference: 12077303 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9043-8
– reference: 27466812 - PLoS One. 2016 Jul 28;11(7):e0160104
SSID ssj0032581
Score 2.38538
SecondaryResourceType review_article
Snippet Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 220
SubjectTerms Animals
Breeding - methods
Crop science
culm
Cultivars
Genetic Engineering - methods
gibberellin
Gibberellins - metabolism
Humans
lodging resistance
Oryza - genetics
Oryza - growth & development
Oryza - metabolism
Phenotype
Plant resistance
pyramiding
quantitative trait loci
Quantitative Trait Loci - genetics
Review
Rice
Selective breeding
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZt2kIvpc_EbVpUyKmgxJJsyTqFNCSEQEspDezN6OUmIWtvs06g_74zttbNltCDjUFzMDMa6Rtp5htCdrRQzhYmsjwUkRXcaeYaLeCr8pwrFZuA5x1fvqqTs-J0Vs7SgdsypVWu1sRhoQ6dxzPyPQ7eANiXS7W_-MWwaxTerqYWGg_JI6Quw5QuPZsCLinKoUlpLivFhMirsT4PQcHe4tK6XSN3c16s7UiPLwGU_Yz34c1_0ybv7EPHz8mzBCDpwWjxF-RBbF-SJ2NLyd-viL1DMEgB3NGrLmAfIgphNUJFsDGdRyz3vVjOadfQRbfs2ZB9Q7_H2zQRKVIN0b4D0djTkXeEhjjHuuDX5Oz46MfhCUttFJjXUvbMRgExsKtMoxurpHZeKquMztFMjSud58FIeCrOfRGVLSNgPm6csbwRsZRvyEbbtXGLUFX5RgVtnfUOTAG-zPNofDAqGB-9yMinlSprnzjGsdXFVQ2xBuq9Rr3XRtag94zsTMKLkVrjfrH90SaTUPKpSajA17fTAyPz4nOdl5MAFq6B92dke2XMOnnosv47nzLycRoG38ILE9vG7maQqUwJEZnMyOZo--knYFvnsHxVGdFrs2ISQN7u9ZH24nzg74YgEUnv3_7_t96RpwIhxHDcs002-uub-B4AUO8-DLP8D_RvCUQ
  priority: 102
  providerName: ProQuest
Title Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands
URI https://www.jstage.jst.go.jp/article/pjab/93/4/93_PJA9304B-05/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/28413198
https://www.proquest.com/docview/1887974136
https://www.proquest.com/docview/1888955763
https://pubmed.ncbi.nlm.nih.gov/PMC5489430
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Proceedings of the Japan Academy, Series B, 2017/04/11, Vol.93(4), pp.220-233
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NDSReEJ8jMCoj7QkpJY4TO35A0wYbY2jTNFGpb5HtOLCpbcqaIfbfc5ek0Tr1gYdYiXyRkjuf78723Q9gV8XSmkT7MCoSHybcqtCWKsa7zHEupS8LWu84PZPHo-RknI43YAnG2TFwsTa0Izyp0fVk-Pf37R4q_Cc6xowj8uP8ytihFsOIAK230CQp0tDTpN9OEHHaoJVGIpNhHEdZm6h3_-UV0_TwCr2zn36d43n__OQdg3T0FJ50niTbb0X_DDb87Dk8arElb1-AuVNpkKGXxyZVQYBEDONr8hlR2GzqKe_3cjFlVcnm1aIOm2M47ML_6UYko5pDrK6Q1NesLUDCCj-lBOGXMDo6_PH5OOzwFEKnhKhD42MMhm2mS1UaKZR1QhqpVUTyKm1qHS-0wCvj3CVemtSj88e11YaXsU_FK9icVTP_GpjMXCkLZaxxFs0gKjWPvHaFloV23sUBfFiyMnddsXHCvJjkGHQQ33Pie65FjnwPYLcnnrc1NtaT7bUy6Yk65eqJEmrOT_a1iJKDPEp7Aspgw2kggJ2lMPPlSMs5TrMYVHEhA3jfd6OS0c6JmfnqpqHJdIqhmQhgu5V9_xFo3znOY1kAamVU9ARUwHu1Z3b5qynkjdEiVb9_83___xYex-RTNOs_O7BZX9_4d-gR1XYAD9RYYZsdfR3A1sHh2fkFPn359n3Q6ME_fwgSng
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VBQQXxJtAASOVC1La2E6c-ICq8qi2TyHUSntLbceBVt1kYVNQ_xS_kZkkG7qo4tbDRitlDta8_I3jmQ9gNRXKmlj7MCpiH8bcpqEtU4H_Mse5Ur4s6Lxj_0CNjuKdcTJegt_zXhi6VjnPiW2iLmpHZ-TrHKMBsS-XamP6PSTWKPq6OqfQ6Nxi11_8wpJt9m77I9r3jRBbnw4_jMKeVSB0qZRNaLzAktBmukxLo2RqnVRG6TSiVZc2sY4XWuIv49zFXpnEIwTi2mrDS-GJJQJT_g3ceCOKqHQ8FHhSJC0paiQzFQoRZV0_IIGQ9empsWtarkU8XtgBb54iCPzqr8K3_17TvLTvbd2Duz1gZZudh92HJV89gFsdheXFQzCXBhoyBJPsrC6I94hhGU_QFH2KTTy1F5_MJqwu2bSeNWF724d98T97x2c02og1NYr6hnVzTljhJ9SH_AiOrkXBj2G5qiv_FJjKXKmK1FjjLJoecwePvHaFVoV23okA3s5Vmbt-pjlRa5zlWNuQ3nPSe65ljnoPYHUQnnajPK4W2-hsMgj1MTwIxfT4vLOpZRS_z6NkEKBGOcw2AazMjZn3GWGW__XfAF4PrzGW6QONqXx93spkOsEKUAbwpLP9sAiEERzTZRZAuuAVgwDNCV98U518a-eFY1FKQ_af_X9Zr-D26HB_L9_bPth9DncEwZf2qGkFlpsf5_4Fgq_Gvmw9nsHxdYfYH-qyRkk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqFhAXxJvQAkYqF6R0Yzux4wOqCmXVB1QVotLegu040KqbbLspqH-NX8dMXnRRxa2HRJE8B2de_sb2zBCyrri0JtY-jPLYhzGzKrSF4vCVOsak9EWO-x2fD-TOUbw3SSZL5HefC4PXKnuf2DjqvHK4Rz5iYA2AfZmQo6K7FnG4Pd6cnYXYQQpPWvt2Gq2K7PvLXxC-zd_tboOs33A-_vj1w07YdRgInRKiDo3nEB7aVBeqMFIo64Q0UqsI_6CwiXUs1wKelDEXe2kSD3CIaasNK7jHjhHg_leUSBjamJoMwZ7gSdMgNRKpDDmP0jY3EAHJaHZi7IYWGxGLF1bDWycACL_767Duv1c2r6yB4_vkXgde6VarbQ_Iki8fktttO8vLR8RcKW5IAVjS0yrHHkgUQnqEqaBfdOox1fh4PqVVQWfVvA6bmz_0i__ZGQHFMke0roDU17SteUJzP8Wc5Mfk6EYY_IQsl1XpnxEqU1fIXBlrnAU1AD_CIq9drmWunXc8IG97Vmauq2-ObTZOM4hzkO8Z8j3TIgO-B2R9IJ61ZT2uJ9tsZTIQdfY8EMX4Otzb0iKK32dRMhBg0hx4noCs9cLMOu8wz_7qckBeD8Ng13hYY0pfXTQ0qU4gGhQBedrKfpgEQAoGrjMNiFrQioEAa4YvjpTHP5ra4RCgYsH95_-f1ityB4wr-7R7sL9K7nJEMs2u0xpZrs8v_AvAYbV92Sg8Jd9u2sL-AM8QSn8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+the+lodging+resistance+mechanism+of+post-Green+Revolution+rice+to+meet+future+demands&rft.jtitle=Proceedings+of+the+Japan+Academy.+Series+B.+Physical+and+biological+sciences&rft.au=HIRANO%2C+Ko&rft.au=ORDONIO%2C+Reynante+Lacsamana&rft.au=MATSUOKA%2C+Makoto&rft.date=2017&rft.issn=0386-2208&rft.eissn=1349-2896&rft.volume=93&rft.issue=4&rft.spage=220&rft.epage=233&rft_id=info:doi/10.2183%2Fpjab.93.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_2183_pjab_93_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-2208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-2208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-2208&client=summon