Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands
Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the “center of gravity” of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Altho...
Saved in:
Published in | Proceedings of the Japan Academy, Series B Vol. 93; no. 4; pp. 220 - 233 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japan Academy
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0386-2208 1349-2896 1349-2896 |
DOI | 10.2183/pjab.93.014 |
Cover
Loading…
Abstract | Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the “center of gravity” of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique. |
---|---|
AbstractList | Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the "center of gravity" of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique. Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the "center of gravity" of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique.Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the "center of gravity" of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique. |
Author | HIRANO, Ko MATSUOKA, Makoto ORDONIO, Reynante Lacsamana |
Author_xml | – sequence: 1 fullname: HIRANO, Ko organization: Bioscience and Biotechnology Center, Nagoya University – sequence: 1 fullname: ORDONIO, Reynante Lacsamana organization: Philippine Rice Research Institute – sequence: 1 fullname: MATSUOKA, Makoto organization: Bioscience and Biotechnology Center, Nagoya University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28413198$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kdFr1TAUxoNM3N30yXcJ-CKMXpOmTZMXYY5tKgNF9Dmk6WlvLm1yTdKB_70pdys68CHJgfzOxznfd4ZOnHeA0GtKtiUV7P1hr9utZFtCq2doQ1kli1JIfoI2hAlelCURp-gsxj0hrKwFfYFOS1FRRqXYIH3tBusAgnUDTjvAo--GpQ4QbUzaGcATmJ12Nk7Y9_jgYypuA4DD3-Hej3Oy3uFgM5d8RiHhfk5zANzBpF0XX6LnvR4jvHp4z9HPm-sfV5-Ku6-3n68u7wrTMJYKDWXFZStk3_Sas6Y1jGsuG1LyVvdt3RraSZaPoNRUwHUNjBIqW6lpX0LNztGHo-5hbifoDLgU9KgOwU46_FZeW_Xvj7M7Nfh7VVdCVoxkgXcPAsH_miEmNdloYBy1Az9HRYUQsq4bzjL69gm693Nweb2FamST7eWZevP3ROsoj-5n4OIImOBjDNCvCCVqyVYt2SrJVM420_QJbWzSi_15HTv-p-fm2LPPWQ6w6uuQrBlhZavl-vblUjJSfVSkXoGcfFDg2B9v3MJa |
CitedBy_id | crossref_primary_10_1016_j_eja_2025_127507 crossref_primary_10_1093_bfgp_elaa019 crossref_primary_10_3389_fpls_2019_00340 crossref_primary_10_3389_fpls_2022_926277 crossref_primary_10_1007_s10725_018_0468_3 crossref_primary_10_1038_s41598_023_37992_3 crossref_primary_10_1111_pbi_13509 crossref_primary_10_1017_S0021859624000091 crossref_primary_10_3389_fgene_2021_623861 crossref_primary_10_3390_agronomy14010091 crossref_primary_10_1016_j_jia_2022_07_035 crossref_primary_10_3390_agronomy12112603 crossref_primary_10_3390_plants11070999 crossref_primary_10_1016_j_cj_2023_03_011 crossref_primary_10_1093_pcp_pcaa104 crossref_primary_10_1186_s12284_023_00621_8 crossref_primary_10_1016_j_semcdb_2019_04_005 crossref_primary_10_1088_1755_1315_648_1_012149 crossref_primary_10_1016_j_tplants_2020_06_005 crossref_primary_10_1007_s12892_020_00075_0 crossref_primary_10_3390_agronomy15030614 crossref_primary_10_1038_s41598_021_95268_0 crossref_primary_10_3390_biom11111616 crossref_primary_10_1590_s1678_3921_pab2022_v57_02812 crossref_primary_10_3390_agronomy13112711 crossref_primary_10_3390_ijms25053028 crossref_primary_10_1016_j_rsci_2024_08_002 crossref_primary_10_1088_1755_1315_1219_1_012016 crossref_primary_10_3390_agronomy15030699 crossref_primary_10_1093_plphys_kiad546 crossref_primary_10_1007_s11032_020_01164_2 crossref_primary_10_3390_genes12050718 crossref_primary_10_1007_s10681_022_03036_6 crossref_primary_10_1093_jxb_ery424 crossref_primary_10_1038_cr_2017_115 crossref_primary_10_1111_pbi_13842 crossref_primary_10_1111_pbi_13963 crossref_primary_10_1007_s42729_023_01465_3 crossref_primary_10_3390_ijms241612845 crossref_primary_10_1007_s00425_018_2885_y crossref_primary_10_1093_pcp_pcab051 crossref_primary_10_1007_s10681_025_03470_2 crossref_primary_10_3390_ijms24010812 crossref_primary_10_1016_j_biombioe_2022_106355 crossref_primary_10_1016_j_fcr_2022_108733 crossref_primary_10_1007_s10681_022_03101_0 crossref_primary_10_1016_j_scitotenv_2018_07_431 crossref_primary_10_1016_j_tplants_2018_10_008 crossref_primary_10_1111_jipb_13830 crossref_primary_10_3390_plants9111592 crossref_primary_10_1007_s42976_024_00537_z crossref_primary_10_1038_s41598_020_76949_8 crossref_primary_10_1111_pbi_13370 crossref_primary_10_3390_ijms252212382 crossref_primary_10_1016_j_aoas_2020_09_004 crossref_primary_10_1002_csc2_20712 crossref_primary_10_3389_fpls_2022_1091156 crossref_primary_10_1111_nph_18489 crossref_primary_10_3390_ijms20174211 crossref_primary_10_1007_s00122_023_04372_4 crossref_primary_10_1016_j_jplph_2020_153141 crossref_primary_10_1016_j_biombioe_2018_04_001 crossref_primary_10_3389_fpls_2023_1298083 crossref_primary_10_3390_ijms231912057 crossref_primary_10_1126_science_aax0025 crossref_primary_10_3389_fgene_2022_960007 crossref_primary_10_1007_s11032_019_0961_z crossref_primary_10_1080_09553002_2024_2304827 crossref_primary_10_1002_jsfa_13257 crossref_primary_10_1016_j_biosystemseng_2022_02_009 crossref_primary_10_1093_plphys_kiac437 crossref_primary_10_3390_genes10110874 |
Cites_doi | 10.1016/j.fcr.2006.12.002 10.1104/pp.105.060988 10.1371/journal.pone.0096009 10.1038/ng.591 10.1111/pbi.12276 10.1139/gen-42-4-646 10.1626/jcs.76.1 10.1111/j.1365-313X.2007.03200.x 10.1038/ncomms2542 10.1046/j.1365-313X.2003.01648.x 10.2480/agrmet.54.235 10.1016/j.molp.2014.10.009 10.1270/jsbbs.57.53 10.1270/jsbbs.52.143 10.1093/pcp/pcu023 10.1626/jcs.62.378 10.1073/pnas.132266399 10.1007/s00122-006-0218-1 10.1126/science.1113373 10.1626/pps.13.58 10.1270/jsbbs.55.431 10.1016/j.jgg.2011.08.002 10.1270/jsbbs1951.44.247 10.2135/cropsci2004.0348 10.1111/j.1365-313X.2007.03210.x 10.1626/jcs.72.171 10.1016/j.pbi.2008.03.002 10.1626/jcs.59.809 10.1038/nrg2342 10.1038/srep06567 10.2307/1241374 10.1038/srep30572 10.1371/journal.pone.0086870 10.1038/ncomms1132 10.1038/416701a 10.1038/ng.352 10.1038/ng.592 10.1038/22307 10.2134/agronj1954.00021962004600090006x 10.1371/journal.pone.0160104 10.1626/jcs.61.419 |
ContentType | Journal Article |
Copyright | 2017 The Japan Academy 2017 The Japan Academy 2017 |
Copyright_xml | – notice: 2017 The Japan Academy – notice: 2017 The Japan Academy 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7TK 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI BVBZV CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 5PM |
DOI | 10.2183/pjab.93.014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology collection Natural Science Collection East & South Asia Database ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Engineering Database (subscription) Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) East & South Asia Database Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Improving rice lodging resistance |
EISSN | 1349-2896 |
EndPage | 233 |
ExternalDocumentID | PMC5489430 4321693699 28413198 10_2183_pjab_93_014 article_pjab_93_4_93_PJA9304B_05_article_char_en |
Genre | Journal Article Review |
GroupedDBID | --- -~X .55 29P 2WC 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 ABJCF ABUWG ACIWK ACPRK ADRAZ AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVBZV BVXVI CCPQU DIK DWQXO E3Z EBD EBS EJD EMOBN F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HMCUK HYE I-F IAO IEA ITC JSF JSH KQ8 L6V LK8 M1P M2O M48 M7P M7S O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 RJT RNS RPM RZJ RZL SV3 TN5 TR2 TUS UKHRP WH7 X7M XSB YNT ~02 53G AAYXX AFFNX ALIPV CITATION TKC XJT XOL 3V. CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7XB 8FD 8FK FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c733t-ae2469b89f7fa637bc36a697026bafb5bc1d931d9811c4e6a5e31019b9a1f2e53 |
IEDL.DBID | M48 |
ISSN | 0386-2208 1349-2896 |
IngestDate | Thu Aug 21 18:22:59 EDT 2025 Mon Jul 21 09:32:57 EDT 2025 Fri Jul 25 10:25:41 EDT 2025 Thu Jan 02 22:21:33 EST 2025 Tue Jul 01 01:25:15 EDT 2025 Thu Apr 24 22:53:01 EDT 2025 Wed Sep 03 06:29:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c733t-ae2469b89f7fa637bc36a697026bafb5bc1d931d9811c4e6a5e31019b9a1f2e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Communicated by Yasuyuki YAMADA, M.J.A. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2183/pjab.93.014 |
PMID | 28413198 |
PQID | 1887974136 |
PQPubID | 1066378 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5489430 proquest_miscellaneous_1888955763 proquest_journals_1887974136 pubmed_primary_28413198 crossref_primary_10_2183_pjab_93_014 crossref_citationtrail_10_2183_pjab_93_014 jstage_primary_article_pjab_93_4_93_PJA9304B_05_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Ueno Park – name: Tokyo, Japan |
PublicationTitle | Proceedings of the Japan Academy, Series B |
PublicationTitleAlternate | Proc. Jpn. Acad., Ser. B |
PublicationYear | 2017 |
Publisher | The Japan Academy |
Publisher_xml | – name: The Japan Academy |
References | 28) Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H. and Matsuoka, M. (2005) Cytokinin oxidase regulates rice grain production. Science 309, 741–745. 1) United Nations Report, World Population Prospects: The 2012 Revision. www.unpopulation.org. 32) Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H. and Ashikari, M. (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549. 3) Khush, G.S. (1999) Green revolution: preparing for the 21st century. Genome 42, 646–655. 43) Kojima, Y., Ebana, K., Fukuoka, S., Nagamine, T. and Kawase, M. (2005) Development of an RFLP-based rice diversity research set of germplasm. Breed. Sci. 55, 431–440. 8) Hoshikawa, K. and Wang, S.B. (1990) Studies lodging in rice plants. I. A general observation on lodged rice culms. Jpn. J. Crop Sci. 59, 809–814. 24) Hirano, K., Okuno, A., Hobo, T., Ordonio, R., Shinozaki, Y., Asano, K., Kitano, H. and Matsuoka, M. (2014) Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS One 9, e96009. 14) Spielmeyer, W., Ellis, M.H. and Chandler, P.M. (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. U.S.A. 99, 9043–9048. 20) Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014) New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One 9, e86870. 44) Vogel, J. (2008) Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11, 301–307. 31) Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., Qian, Q. and Li, J. (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544. 22) Ookawa, T. and Ishihara, K. (1992) Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice. Jpn. J. Crop Sci. 61, 419–425. 2) Dalrymple, D.G. (1985) The development and adoption of high-yielding varieties of wheat and rice in developing countries. Am. J. Agric. Econ. 67, 1067–1073. 33) Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., Asano, K., Ochiai, Y., Ikeda, M., Nishitani, R., Ebitani, T., Ozaki, H., Angeles, E.R., Hirasawa, T. and Matsuoka, M. (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 1, 132. 35) Murai, M. and Iizawa, M. (1994) Effects of major genes controlling morphology of panicle in rice. Breed. Sci. 44, 247–255. 23) Ookawa, T., Aoba, R., Yamamoto, T., Ueda, T., Takai, T., Fukuoka, S., Ando, T., Adachi, S., Matsuoka, M., Ebitani, T., Kato, Y., Mulsanti, I.W., Kishii, M., Reynolds, M., Piñera, F., Kotake, T., Kawasaki, S., Motobayashi, T. and Hirasawa, T. (2016) Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice. Sci. Rep. 28, 30572. 19) Zhu, G., Li, G., Wang, D., Yuan, S. and Wang, F. (2016) Changes in the lodging-related traits along with rice genetic improvement in China. PLoS One 11, e0160104. 5) Kang, D.J. and Ishii, R. (2003) Studies on acid soil tolerance of rice plants (Oryza sativa) I. Morphological and physiological characteristics of acid soil tolerant varieties of rice plants. Jpn. J. Crop Sci. 72, 171–176. 45) Ookawa, T., Inoue, K., Matsuoka, M., Ebitani, T., Takarada, T., Yamamoto, T., Ueda, T., Yokoyama, T., Sugiyama, C., Nakaba, S., Funada, R., Kato, H., Kanekatsu, M., Toyota, K., Motobayashi, T., Vazirzanjani, M., Tojo, S. and Hirasawa, T. (2014) Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production. Sci. Rep. 4, 6567. 38) Takeda, S. and Matsuoka, M. (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9, 444–457. 6) Kono, M. (1995) Physiological aspects of lodging. In Science of the rice plant, Physiology 2 (eds. Matsuo, T., Kumazawa, K., Ishii, R., Ishihara, K., and Hirata, H.). Food and Agriculture Policy Research Center, Tokyo, pp. 971–982. 15) Koshio, K., Inaishi, Y., Hayamichi, Y., Fujimaki, H., Kikuchi, F. and Toyohara, H. (2000) Character expression of isogenic lines with semidwarf genes of different origins in rice (Oryza sativa L.). J. Agr. Sci., Tokyo Nogyo Daigaku 45, 201–209. 29) Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X. and Zhang, Q. (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171. 37) Yano, K., Ookawa, T., Aya, K., Ochiai, Y., Hirasawa, T., Ebitani, T., Takarada, T., Yano, M., Yamamoto, T., Fukuoka, S., Wu, J., Ando, T., Ordonio, R.L., Hirano, K. and Matsuoka, M. (2015) Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol. Plant 8, 303–314. 21) Ookawa, T. and Ishihara, K. (1993) Varietal difference of the cell wall components affecting the bending stress of the culm in relation to the lodging resistance in paddy rice. Jpn. J. Crop Sci. 62, 378–384. 46) Li, F., Zhang, M., Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G. and Peng, L. (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol. J. 13, 514–525. 10) Watanabe, T. (1997) Lodging resistance. In Science of the rice plant, Genetics 3 (eds. Matsuo, T., Futsuhara, Y., Kikuchi, F., and Yamaguchi, H.). Food and Agriculture Policy Research Center, Tokyo, pp. 567–577. 16) Asano, K., Takashi, T., Miura, K., Qian, Q., Kitano, H., Matsuoka, M. and Ashikari, M. (2007) Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed. Sci. 57, 53–58. 39) Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H. and Matsuoka, M. (2005) Cytokinin oxidase regulates rice grain production. Science 309, 741–745. 41) Ookawa, T., Yasuda, K., Kato, H., Sakai, M., Seto, M., Sunaga, K., Motobayashi, T., Tojo, S. and Hirasawa, T. (2010) Biomass production and lodging resistance in ‘Leaf Star’, a new long-culm rice forage cultivar. Plant Prod. Sci. 13, 58–66. 12) Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261. 18) Bao, J., Lce, S., Chen, C., Zhang, X., Zhang, Y., Liu, S., Clark, T., Wang, J., Cao, M., Yang, H., Wang, S.M. and Yu, J. (2005) Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol. 138, 1216–1231. 11) Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701–702. 13) Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Datta, S., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice “green revolution”. Breed. Sci. 52, 143–150. 36) Kinoshita, T. and Takahashi, M. (1991) The hundredth report of genetical studies on rice plants. Linkage studies and future prospects. J. Fac. Agric. Hokkaido Univ. 65, 1–61. 4) Yonemura, S., Yajima, M., Sakai, H. and Morokuma, M. (1998) Estimate of rice yield of Japan under the conditions with elevated CO2 and increased temperature by using third mesh climate data. J. Agric. Meteorol. 54, 235–245. 42) Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H. and Kyozuka, J. (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019–1029. 30) Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J. and Fu, X. (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497. 34) Ikeda, K., Ito, M., Nagasawa, N., Kyozuka, J. and Nagato, Y. (2007) Rice ABERRANT PANICLE ORGANIZATION1, encoding an F-box protein, regulates meristem fate. Plant J. 51, 1030–1040. 27) Zhang, B., Tian, F., Tan, L., Xie, D. and Sun, C. (2011) Characterization of a novel high tillering dwarf 3 mutant in rice. J. Genet. Genomics 38, 411–418. 25) Aya, K., Hobo, T., Sato-Izawa, K., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014) A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol. 55, 897–912. 7) Kashiwagi, T., Hirotsu, N., Madoka, Y., Ookawa, T. and Ishimaru, K. (2007) Improvement of resistance to bending-type lodging in rice. Jpn. J. Crop Sci. 76, 1–9. 26) Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M. and Ueguchi, C. (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513–520. 9) Islam, M.S., Peng, S., Visperas, R.M., Ereful, N. and Bhuiya, M.S.U. (2007) Lodging related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Res. 101, 240–248. 17) Yan, W., Dilday, R.H., Tai, T.H., Gibbons, J.W., McNew, R.W. and Rutger, J.N. (2005) Differential response of rice germplasrn to straighthead induced by arsenic. Crop Sci. 45, 1223–1228. 47) Grafius, J.E. and Brown, H.M. (1954) Lodging resistance in oats. Agron. J. 46 22 44 23 45 24 46 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 19305410 - Nat Genet. 2009 Apr;41(4):494-7 15976269 - Science. 2005 Jul 29;309(5735):741-5 16009997 - Plant Physiol. 2005 Jul;138(3):1216-31 27466812 - PLoS One. 2016 Jul 28;11(7):e0160104 17666027 - Plant J. 2007 Sep;51(6):1030-40 24486766 - Plant Cell Physiol. 2014 May;55(5):897-912 27465821 - Sci Rep. 2016 Jul 28;6:30572 21119645 - Nat Commun. 2010 Nov 30;1:132 23463009 - Nat Commun. 2013;4:1566 18434239 - Curr Opin Plant Biol. 2008 Jun;11(3):301-7 20495564 - Nat Genet. 2010 Jun;42(6):545-9 11961544 - Nature. 2002 Apr 18;416(6882):701-2 21930100 - J Genet Genomics. 2011 Sep 20;38(9):411-8 18475268 - Nat Rev Genet. 2008 Jun;9(6):444-57 20495565 - Nat Genet. 2010 Jun;42(6):541-4 25418842 - Plant Biotechnol J. 2015 May;13(4):514-25 10464789 - Genome. 1999 Aug;42(4):646-55 25616386 - Mol Plant. 2015 Feb;8(2):303-14 16453132 - Theor Appl Genet. 2006 Apr;112(6):1164-71 24987959 - PLoS One. 2014 Jul 02;9(7):e96009 10421366 - Nature. 1999 Jul 15;400(6741):256-61 25298209 - Sci Rep. 2014 Oct 09;4:6567 17655651 - Plant J. 2007 Sep;51(6):1019-29 12581309 - Plant J. 2003 Feb;33(3):513-20 24586255 - PLoS One. 2014 Feb 19;9(2):e86870 12077303 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9043-8 |
References_xml | – reference: 35) Murai, M. and Iizawa, M. (1994) Effects of major genes controlling morphology of panicle in rice. Breed. Sci. 44, 247–255. – reference: 27) Zhang, B., Tian, F., Tan, L., Xie, D. and Sun, C. (2011) Characterization of a novel high tillering dwarf 3 mutant in rice. J. Genet. Genomics 38, 411–418. – reference: 29) Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X. and Zhang, Q. (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171. – reference: 24) Hirano, K., Okuno, A., Hobo, T., Ordonio, R., Shinozaki, Y., Asano, K., Kitano, H. and Matsuoka, M. (2014) Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS One 9, e96009. – reference: 44) Vogel, J. (2008) Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11, 301–307. – reference: 32) Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H. and Ashikari, M. (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549. – reference: 36) Kinoshita, T. and Takahashi, M. (1991) The hundredth report of genetical studies on rice plants. Linkage studies and future prospects. J. Fac. Agric. Hokkaido Univ. 65, 1–61. – reference: 41) Ookawa, T., Yasuda, K., Kato, H., Sakai, M., Seto, M., Sunaga, K., Motobayashi, T., Tojo, S. and Hirasawa, T. (2010) Biomass production and lodging resistance in ‘Leaf Star’, a new long-culm rice forage cultivar. Plant Prod. Sci. 13, 58–66. – reference: 7) Kashiwagi, T., Hirotsu, N., Madoka, Y., Ookawa, T. and Ishimaru, K. (2007) Improvement of resistance to bending-type lodging in rice. Jpn. J. Crop Sci. 76, 1–9. – reference: 18) Bao, J., Lce, S., Chen, C., Zhang, X., Zhang, Y., Liu, S., Clark, T., Wang, J., Cao, M., Yang, H., Wang, S.M. and Yu, J. (2005) Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol. 138, 1216–1231. – reference: 11) Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701–702. – reference: 16) Asano, K., Takashi, T., Miura, K., Qian, Q., Kitano, H., Matsuoka, M. and Ashikari, M. (2007) Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed. Sci. 57, 53–58. – reference: 23) Ookawa, T., Aoba, R., Yamamoto, T., Ueda, T., Takai, T., Fukuoka, S., Ando, T., Adachi, S., Matsuoka, M., Ebitani, T., Kato, Y., Mulsanti, I.W., Kishii, M., Reynolds, M., Piñera, F., Kotake, T., Kawasaki, S., Motobayashi, T. and Hirasawa, T. (2016) Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice. Sci. Rep. 28, 30572. – reference: 19) Zhu, G., Li, G., Wang, D., Yuan, S. and Wang, F. (2016) Changes in the lodging-related traits along with rice genetic improvement in China. PLoS One 11, e0160104. – reference: 2) Dalrymple, D.G. (1985) The development and adoption of high-yielding varieties of wheat and rice in developing countries. Am. J. Agric. Econ. 67, 1067–1073. – reference: 6) Kono, M. (1995) Physiological aspects of lodging. In Science of the rice plant, Physiology 2 (eds. Matsuo, T., Kumazawa, K., Ishii, R., Ishihara, K., and Hirata, H.). Food and Agriculture Policy Research Center, Tokyo, pp. 971–982. – reference: 12) Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261. – reference: 31) Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., Qian, Q. and Li, J. (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544. – reference: 14) Spielmeyer, W., Ellis, M.H. and Chandler, P.M. (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. U.S.A. 99, 9043–9048. – reference: 15) Koshio, K., Inaishi, Y., Hayamichi, Y., Fujimaki, H., Kikuchi, F. and Toyohara, H. (2000) Character expression of isogenic lines with semidwarf genes of different origins in rice (Oryza sativa L.). J. Agr. Sci., Tokyo Nogyo Daigaku 45, 201–209. – reference: 33) Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., Asano, K., Ochiai, Y., Ikeda, M., Nishitani, R., Ebitani, T., Ozaki, H., Angeles, E.R., Hirasawa, T. and Matsuoka, M. (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 1, 132. – reference: 8) Hoshikawa, K. and Wang, S.B. (1990) Studies lodging in rice plants. I. A general observation on lodged rice culms. Jpn. J. Crop Sci. 59, 809–814. – reference: 20) Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014) New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One 9, e86870. – reference: 39) Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H. and Matsuoka, M. (2005) Cytokinin oxidase regulates rice grain production. Science 309, 741–745. – reference: 22) Ookawa, T. and Ishihara, K. (1992) Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice. Jpn. J. Crop Sci. 61, 419–425. – reference: 21) Ookawa, T. and Ishihara, K. (1993) Varietal difference of the cell wall components affecting the bending stress of the culm in relation to the lodging resistance in paddy rice. Jpn. J. Crop Sci. 62, 378–384. – reference: 47) Grafius, J.E. and Brown, H.M. (1954) Lodging resistance in oats. Agron. J. 46, 414–418. – reference: 9) Islam, M.S., Peng, S., Visperas, R.M., Ereful, N. and Bhuiya, M.S.U. (2007) Lodging related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Res. 101, 240–248. – reference: 30) Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J. and Fu, X. (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497. – reference: 40) Guo, S., Xu, Y., Liu, H., Mao, Z., Zhang, C., Ma, Y., Zhang, Q., Meng, Z. and Chong, K. (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat. Commun. 4, 1566. – reference: 28) Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H. and Matsuoka, M. (2005) Cytokinin oxidase regulates rice grain production. Science 309, 741–745. – reference: 25) Aya, K., Hobo, T., Sato-Izawa, K., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014) A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol. 55, 897–912. – reference: 38) Takeda, S. and Matsuoka, M. (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9, 444–457. – reference: 45) Ookawa, T., Inoue, K., Matsuoka, M., Ebitani, T., Takarada, T., Yamamoto, T., Ueda, T., Yokoyama, T., Sugiyama, C., Nakaba, S., Funada, R., Kato, H., Kanekatsu, M., Toyota, K., Motobayashi, T., Vazirzanjani, M., Tojo, S. and Hirasawa, T. (2014) Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production. Sci. Rep. 4, 6567. – reference: 46) Li, F., Zhang, M., Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G. and Peng, L. (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol. J. 13, 514–525. – reference: 4) Yonemura, S., Yajima, M., Sakai, H. and Morokuma, M. (1998) Estimate of rice yield of Japan under the conditions with elevated CO2 and increased temperature by using third mesh climate data. J. Agric. Meteorol. 54, 235–245. – reference: 5) Kang, D.J. and Ishii, R. (2003) Studies on acid soil tolerance of rice plants (Oryza sativa) I. Morphological and physiological characteristics of acid soil tolerant varieties of rice plants. Jpn. J. Crop Sci. 72, 171–176. – reference: 13) Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Datta, S., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice “green revolution”. Breed. Sci. 52, 143–150. – reference: 17) Yan, W., Dilday, R.H., Tai, T.H., Gibbons, J.W., McNew, R.W. and Rutger, J.N. (2005) Differential response of rice germplasrn to straighthead induced by arsenic. Crop Sci. 45, 1223–1228. – reference: 26) Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M. and Ueguchi, C. (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513–520. – reference: 10) Watanabe, T. (1997) Lodging resistance. In Science of the rice plant, Genetics 3 (eds. Matsuo, T., Futsuhara, Y., Kikuchi, F., and Yamaguchi, H.). Food and Agriculture Policy Research Center, Tokyo, pp. 567–577. – reference: 1) United Nations Report, World Population Prospects: The 2012 Revision. www.unpopulation.org. – reference: 42) Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H. and Kyozuka, J. (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019–1029. – reference: 34) Ikeda, K., Ito, M., Nagasawa, N., Kyozuka, J. and Nagato, Y. (2007) Rice ABERRANT PANICLE ORGANIZATION1, encoding an F-box protein, regulates meristem fate. Plant J. 51, 1030–1040. – reference: 37) Yano, K., Ookawa, T., Aya, K., Ochiai, Y., Hirasawa, T., Ebitani, T., Takarada, T., Yano, M., Yamamoto, T., Fukuoka, S., Wu, J., Ando, T., Ordonio, R.L., Hirano, K. and Matsuoka, M. (2015) Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol. Plant 8, 303–314. – reference: 3) Khush, G.S. (1999) Green revolution: preparing for the 21st century. Genome 42, 646–655. – reference: 43) Kojima, Y., Ebana, K., Fukuoka, S., Nagamine, T. and Kawase, M. (2005) Development of an RFLP-based rice diversity research set of germplasm. Breed. Sci. 55, 431–440. – ident: 9 doi: 10.1016/j.fcr.2006.12.002 – ident: 18 doi: 10.1104/pp.105.060988 – ident: 24 doi: 10.1371/journal.pone.0096009 – ident: 30 doi: 10.1038/ng.591 – ident: 45 doi: 10.1111/pbi.12276 – ident: 35 – ident: 3 doi: 10.1139/gen-42-4-646 – ident: 7 doi: 10.1626/jcs.76.1 – ident: 33 doi: 10.1111/j.1365-313X.2007.03200.x – ident: 39 doi: 10.1038/ncomms2542 – ident: 26 doi: 10.1046/j.1365-313X.2003.01648.x – ident: 4 doi: 10.2480/agrmet.54.235 – ident: 10 – ident: 36 doi: 10.1016/j.molp.2014.10.009 – ident: 16 doi: 10.1270/jsbbs.57.53 – ident: 13 doi: 10.1270/jsbbs.52.143 – ident: 25 doi: 10.1093/pcp/pcu023 – ident: 21 doi: 10.1626/jcs.62.378 – ident: 14 doi: 10.1073/pnas.132266399 – ident: 28 doi: 10.1007/s00122-006-0218-1 – ident: 38 doi: 10.1126/science.1113373 – ident: 40 doi: 10.1626/pps.13.58 – ident: 42 doi: 10.1270/jsbbs.55.431 – ident: 27 doi: 10.1016/j.jgg.2011.08.002 – ident: 34 doi: 10.1270/jsbbs1951.44.247 – ident: 17 doi: 10.2135/cropsci2004.0348 – ident: 41 doi: 10.1111/j.1365-313X.2007.03210.x – ident: 5 doi: 10.1626/jcs.72.171 – ident: 43 doi: 10.1016/j.pbi.2008.03.002 – ident: 8 doi: 10.1626/jcs.59.809 – ident: 37 doi: 10.1038/nrg2342 – ident: 44 doi: 10.1038/srep06567 – ident: 2 doi: 10.2307/1241374 – ident: 1 – ident: 23 doi: 10.1038/srep30572 – ident: 20 doi: 10.1371/journal.pone.0086870 – ident: 15 – ident: 32 doi: 10.1038/ncomms1132 – ident: 11 doi: 10.1038/416701a – ident: 29 doi: 10.1038/ng.352 – ident: 31 doi: 10.1038/ng.592 – ident: 12 doi: 10.1038/22307 – ident: 6 – ident: 46 doi: 10.2134/agronj1954.00021962004600090006x – ident: 19 doi: 10.1371/journal.pone.0160104 – ident: 22 doi: 10.1626/jcs.61.419 – reference: 25616386 - Mol Plant. 2015 Feb;8(2):303-14 – reference: 12581309 - Plant J. 2003 Feb;33(3):513-20 – reference: 16009997 - Plant Physiol. 2005 Jul;138(3):1216-31 – reference: 24586255 - PLoS One. 2014 Feb 19;9(2):e86870 – reference: 10421366 - Nature. 1999 Jul 15;400(6741):256-61 – reference: 24987959 - PLoS One. 2014 Jul 02;9(7):e96009 – reference: 27465821 - Sci Rep. 2016 Jul 28;6:30572 – reference: 24486766 - Plant Cell Physiol. 2014 May;55(5):897-912 – reference: 11961544 - Nature. 2002 Apr 18;416(6882):701-2 – reference: 16453132 - Theor Appl Genet. 2006 Apr;112(6):1164-71 – reference: 15976269 - Science. 2005 Jul 29;309(5735):741-5 – reference: 21930100 - J Genet Genomics. 2011 Sep 20;38(9):411-8 – reference: 18475268 - Nat Rev Genet. 2008 Jun;9(6):444-57 – reference: 20495564 - Nat Genet. 2010 Jun;42(6):545-9 – reference: 10464789 - Genome. 1999 Aug;42(4):646-55 – reference: 25418842 - Plant Biotechnol J. 2015 May;13(4):514-25 – reference: 21119645 - Nat Commun. 2010 Nov 30;1:132 – reference: 20495565 - Nat Genet. 2010 Jun;42(6):541-4 – reference: 18434239 - Curr Opin Plant Biol. 2008 Jun;11(3):301-7 – reference: 23463009 - Nat Commun. 2013;4:1566 – reference: 17655651 - Plant J. 2007 Sep;51(6):1019-29 – reference: 25298209 - Sci Rep. 2014 Oct 09;4:6567 – reference: 19305410 - Nat Genet. 2009 Apr;41(4):494-7 – reference: 17666027 - Plant J. 2007 Sep;51(6):1030-40 – reference: 12077303 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9043-8 – reference: 27466812 - PLoS One. 2016 Jul 28;11(7):e0160104 |
SSID | ssj0032581 |
Score | 2.38538 |
SecondaryResourceType | review_article |
Snippet | Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 220 |
SubjectTerms | Animals Breeding - methods Crop science culm Cultivars Genetic Engineering - methods gibberellin Gibberellins - metabolism Humans lodging resistance Oryza - genetics Oryza - growth & development Oryza - metabolism Phenotype Plant resistance pyramiding quantitative trait loci Quantitative Trait Loci - genetics Review Rice Selective breeding |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZt2kIvpc_EbVpUyKmgxJJsyTqFNCSEQEspDezN6OUmIWtvs06g_74zttbNltCDjUFzMDMa6Rtp5htCdrRQzhYmsjwUkRXcaeYaLeCr8pwrFZuA5x1fvqqTs-J0Vs7SgdsypVWu1sRhoQ6dxzPyPQ7eANiXS7W_-MWwaxTerqYWGg_JI6Quw5QuPZsCLinKoUlpLivFhMirsT4PQcHe4tK6XSN3c16s7UiPLwGU_Yz34c1_0ybv7EPHz8mzBCDpwWjxF-RBbF-SJ2NLyd-viL1DMEgB3NGrLmAfIgphNUJFsDGdRyz3vVjOadfQRbfs2ZB9Q7_H2zQRKVIN0b4D0djTkXeEhjjHuuDX5Oz46MfhCUttFJjXUvbMRgExsKtMoxurpHZeKquMztFMjSud58FIeCrOfRGVLSNgPm6csbwRsZRvyEbbtXGLUFX5RgVtnfUOTAG-zPNofDAqGB-9yMinlSprnzjGsdXFVQ2xBuq9Rr3XRtag94zsTMKLkVrjfrH90SaTUPKpSajA17fTAyPz4nOdl5MAFq6B92dke2XMOnnosv47nzLycRoG38ILE9vG7maQqUwJEZnMyOZo--knYFvnsHxVGdFrs2ISQN7u9ZH24nzg74YgEUnv3_7_t96RpwIhxHDcs002-uub-B4AUO8-DLP8D_RvCUQ priority: 102 providerName: ProQuest |
Title | Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands |
URI | https://www.jstage.jst.go.jp/article/pjab/93/4/93_PJA9304B-05/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/28413198 https://www.proquest.com/docview/1887974136 https://www.proquest.com/docview/1888955763 https://pubmed.ncbi.nlm.nih.gov/PMC5489430 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Proceedings of the Japan Academy, Series B, 2017/04/11, Vol.93(4), pp.220-233 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NDSReEJ8jMCoj7QkpJY4TO35A0wYbY2jTNFGpb5HtOLCpbcqaIfbfc5ek0Tr1gYdYiXyRkjuf78723Q9gV8XSmkT7MCoSHybcqtCWKsa7zHEupS8LWu84PZPHo-RknI43YAnG2TFwsTa0Izyp0fVk-Pf37R4q_Cc6xowj8uP8ytihFsOIAK230CQp0tDTpN9OEHHaoJVGIpNhHEdZm6h3_-UV0_TwCr2zn36d43n__OQdg3T0FJ50niTbb0X_DDb87Dk8arElb1-AuVNpkKGXxyZVQYBEDONr8hlR2GzqKe_3cjFlVcnm1aIOm2M47ML_6UYko5pDrK6Q1NesLUDCCj-lBOGXMDo6_PH5OOzwFEKnhKhD42MMhm2mS1UaKZR1QhqpVUTyKm1qHS-0wCvj3CVemtSj88e11YaXsU_FK9icVTP_GpjMXCkLZaxxFs0gKjWPvHaFloV23sUBfFiyMnddsXHCvJjkGHQQ33Pie65FjnwPYLcnnrc1NtaT7bUy6Yk65eqJEmrOT_a1iJKDPEp7Aspgw2kggJ2lMPPlSMs5TrMYVHEhA3jfd6OS0c6JmfnqpqHJdIqhmQhgu5V9_xFo3znOY1kAamVU9ARUwHu1Z3b5qynkjdEiVb9_83___xYex-RTNOs_O7BZX9_4d-gR1XYAD9RYYZsdfR3A1sHh2fkFPn359n3Q6ME_fwgSng |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VBQQXxJtAASOVC1La2E6c-ICq8qi2TyHUSntLbceBVt1kYVNQ_xS_kZkkG7qo4tbDRitlDta8_I3jmQ9gNRXKmlj7MCpiH8bcpqEtU4H_Mse5Ur4s6Lxj_0CNjuKdcTJegt_zXhi6VjnPiW2iLmpHZ-TrHKMBsS-XamP6PSTWKPq6OqfQ6Nxi11_8wpJt9m77I9r3jRBbnw4_jMKeVSB0qZRNaLzAktBmukxLo2RqnVRG6TSiVZc2sY4XWuIv49zFXpnEIwTi2mrDS-GJJQJT_g3ceCOKqHQ8FHhSJC0paiQzFQoRZV0_IIGQ9empsWtarkU8XtgBb54iCPzqr8K3_17TvLTvbd2Duz1gZZudh92HJV89gFsdheXFQzCXBhoyBJPsrC6I94hhGU_QFH2KTTy1F5_MJqwu2bSeNWF724d98T97x2c02og1NYr6hnVzTljhJ9SH_AiOrkXBj2G5qiv_FJjKXKmK1FjjLJoecwePvHaFVoV23okA3s5Vmbt-pjlRa5zlWNuQ3nPSe65ljnoPYHUQnnajPK4W2-hsMgj1MTwIxfT4vLOpZRS_z6NkEKBGOcw2AazMjZn3GWGW__XfAF4PrzGW6QONqXx93spkOsEKUAbwpLP9sAiEERzTZRZAuuAVgwDNCV98U518a-eFY1FKQ_af_X9Zr-D26HB_L9_bPth9DncEwZf2qGkFlpsf5_4Fgq_Gvmw9nsHxdYfYH-qyRkk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqFhAXxJvQAkYqF6R0Yzux4wOqCmXVB1QVotLegu040KqbbLspqH-NX8dMXnRRxa2HRJE8B2de_sb2zBCyrri0JtY-jPLYhzGzKrSF4vCVOsak9EWO-x2fD-TOUbw3SSZL5HefC4PXKnuf2DjqvHK4Rz5iYA2AfZmQo6K7FnG4Pd6cnYXYQQpPWvt2Gq2K7PvLXxC-zd_tboOs33A-_vj1w07YdRgInRKiDo3nEB7aVBeqMFIo64Q0UqsI_6CwiXUs1wKelDEXe2kSD3CIaasNK7jHjhHg_leUSBjamJoMwZ7gSdMgNRKpDDmP0jY3EAHJaHZi7IYWGxGLF1bDWycACL_767Duv1c2r6yB4_vkXgde6VarbQ_Iki8fktttO8vLR8RcKW5IAVjS0yrHHkgUQnqEqaBfdOox1fh4PqVVQWfVvA6bmz_0i__ZGQHFMke0roDU17SteUJzP8Wc5Mfk6EYY_IQsl1XpnxEqU1fIXBlrnAU1AD_CIq9drmWunXc8IG97Vmauq2-ObTZOM4hzkO8Z8j3TIgO-B2R9IJ61ZT2uJ9tsZTIQdfY8EMX4Otzb0iKK32dRMhBg0hx4noCs9cLMOu8wz_7qckBeD8Ng13hYY0pfXTQ0qU4gGhQBedrKfpgEQAoGrjMNiFrQioEAa4YvjpTHP5ra4RCgYsH95_-f1ityB4wr-7R7sL9K7nJEMs2u0xpZrs8v_AvAYbV92Sg8Jd9u2sL-AM8QSn8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+the+lodging+resistance+mechanism+of+post-Green+Revolution+rice+to+meet+future+demands&rft.jtitle=Proceedings+of+the+Japan+Academy.+Series+B.+Physical+and+biological+sciences&rft.au=HIRANO%2C+Ko&rft.au=ORDONIO%2C+Reynante+Lacsamana&rft.au=MATSUOKA%2C+Makoto&rft.date=2017&rft.issn=0386-2208&rft.eissn=1349-2896&rft.volume=93&rft.issue=4&rft.spage=220&rft.epage=233&rft_id=info:doi/10.2183%2Fpjab.93.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_2183_pjab_93_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-2208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-2208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-2208&client=summon |