Functional organization of human auditory cortex: Investigation of response latencies through direct recordings

The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 101; pp. 598 - 609
Main Authors Nourski, Kirill V., Steinschneider, Mitchell, McMurray, Bob, Kovach, Christopher K., Oya, Hiroyuki, Kawasaki, Hiroto, Howard, Matthew A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2014
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy. •We measured latencies of responses to sounds in multiple auditory cortical regions•Earliest responses were found in posteromedial Heschl's gyrus (HG) (auditory core)•Anterolateral HG was characterized by the longest latencies•Posterolateral superior temporal gyrus (PLST) had intermediate latencies•Part of PLST may represent a relatively early stage in auditory cortical hierarchy
AbstractList The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.
The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy. •We measured latencies of responses to sounds in multiple auditory cortical regions•Earliest responses were found in posteromedial Heschl's gyrus (HG) (auditory core)•Anterolateral HG was characterized by the longest latencies•Posterolateral superior temporal gyrus (PLST) had intermediate latencies•Part of PLST may represent a relatively early stage in auditory cortical hierarchy
The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.
Author Howard, Matthew A.
Kawasaki, Hiroto
Steinschneider, Mitchell
McMurray, Bob
Oya, Hiroyuki
Nourski, Kirill V.
Kovach, Christopher K.
AuthorAffiliation 2 Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
3 Department of Psychology, Department of Communication Sciences and Disorders, Department of Linguistics, The University of Iowa, Iowa City, IA, 52242 USA
1 Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
AuthorAffiliation_xml – name: 3 Department of Psychology, Department of Communication Sciences and Disorders, Department of Linguistics, The University of Iowa, Iowa City, IA, 52242 USA
– name: 2 Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
– name: 1 Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
Author_xml – sequence: 1
  givenname: Kirill V.
  orcidid: 0000-0002-7152-8473
  surname: Nourski
  fullname: Nourski, Kirill V.
  email: kirill-nourski@uiowa.edu
  organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
– sequence: 2
  givenname: Mitchell
  surname: Steinschneider
  fullname: Steinschneider, Mitchell
  organization: Department of Neurology, Albert Einstein College of Medicine, New York, NY 10461, USA
– sequence: 3
  givenname: Bob
  orcidid: 0000-0002-6532-284X
  surname: McMurray
  fullname: McMurray, Bob
  organization: Department of Psychology, The University of Iowa, Iowa City, IA 52242, USA
– sequence: 4
  givenname: Christopher K.
  surname: Kovach
  fullname: Kovach, Christopher K.
  organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
– sequence: 5
  givenname: Hiroyuki
  surname: Oya
  fullname: Oya, Hiroyuki
  organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
– sequence: 6
  givenname: Hiroto
  surname: Kawasaki
  fullname: Kawasaki, Hiroto
  organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
– sequence: 7
  givenname: Matthew A.
  surname: Howard
  fullname: Howard, Matthew A.
  organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25019680$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuP0zAUhSM0iHnAX0CR2LBJ8LWdxGaBGEYMjDQSG1hbrnOTuqR2sZOK8utx6DygG7qyLZ_7-V6fc56dOO8wy3IgJRCo36xKh1Pwdq17LCkBXpKmJIQ_yc6AyKqQVUNP5n3FCgEgT7PzGFeEEAlcPMtOaUVA1oKcZf56cma03ukh96HXzv7S8zH3Xb6c1trlemrt6MMuNz6M-PNtfuO2GEfbP-gCxo13EfNBj-iMxZiPy-Cnfpm3NqAZkyIVt9b18Xn2tNNDxBd360X27frj16vPxe2XTzdXl7eFaRgbi3ohqZEdlchlB1pqwzitKaFiARqFbLsa-IIRLTvNBTMdaxqgyA1y0VIh2UX2bs_dTIs1tgbdGPSgNiH9Wdgpr63698bZper9VnHOiGA0AV7fAYL_MaWB1dpGg8OgHfopKqgprQGYbP4vrWrKOTBWJ-mrA-nKTyF9_gwEDlAJXiXVy7-bf-j63rbH6UzwMQbslLHjHz_SLHZQQNScE7VSjzlRc04UaVTKSQKIA8D9G0eUftiXYrJvazGomCx3Bvdeq9bbYyDvDyBmsM4aPXzH3XGI312Y9wg
CitedBy_id crossref_primary_10_1073_pnas_2113887118
crossref_primary_10_1523_JNEUROSCI_3556_14_2015
crossref_primary_10_1016_j_heares_2020_107911
crossref_primary_10_1080_23273798_2015_1101145
crossref_primary_10_1093_cercor_bhad020
crossref_primary_10_1080_02643294_2022_2085085
crossref_primary_10_1523_JNEUROSCI_0938_17_2017
crossref_primary_10_1016_j_cortex_2025_02_015
crossref_primary_10_1038_s41467_025_56779_w
crossref_primary_10_3389_fnhum_2016_00691
crossref_primary_10_1016_j_heares_2018_11_009
crossref_primary_10_1038_s41562_021_01261_y
crossref_primary_10_1016_j_cell_2021_07_019
crossref_primary_10_3389_fnhum_2021_737230
crossref_primary_10_1016_j_neuroimage_2019_116076
crossref_primary_10_1093_cercor_bhab168
crossref_primary_10_3171_CASE22417
crossref_primary_10_7554_eLife_53445
crossref_primary_10_1523_JNEUROSCI_3305_14_2016
crossref_primary_10_1093_cercor_bhaa281
crossref_primary_10_3389_fnhum_2016_00202
crossref_primary_10_3389_fnins_2021_636060
crossref_primary_10_1038_s42003_024_07297_w
crossref_primary_10_1002_wcs_1541
crossref_primary_10_1093_cercor_bhad517
crossref_primary_10_1016_j_clinph_2024_04_017
crossref_primary_10_1016_j_pnpbp_2021_110426
crossref_primary_10_1016_j_celrep_2018_07_076
crossref_primary_10_1016_j_heares_2021_108229
crossref_primary_10_3389_fncom_2019_00095
crossref_primary_10_1016_j_neuroimage_2021_118003
crossref_primary_10_1016_j_neuroimage_2020_117291
crossref_primary_10_1093_cercor_bhae007
crossref_primary_10_4103_indianjotol_indianjotol_80_23
crossref_primary_10_1016_j_neuroimage_2018_08_027
crossref_primary_10_3389_fnhum_2022_815232
crossref_primary_10_1016_j_neuroimage_2017_01_032
crossref_primary_10_1523_JNEUROSCI_1468_18_2019
crossref_primary_10_1007_s00062_021_01082_6
crossref_primary_10_1523_JNEUROSCI_0696_19_2019
crossref_primary_10_1007_s00422_019_00795_9
crossref_primary_10_1016_j_neuroimage_2018_11_049
crossref_primary_10_1038_s42003_023_05749_3
crossref_primary_10_3389_fnins_2018_00831
crossref_primary_10_1371_journal_pbio_3002176
crossref_primary_10_1523_JNEUROSCI_1468_21_2022
crossref_primary_10_1523_JNEUROSCI_0967_18_2018
crossref_primary_10_1093_cercor_bhae338
crossref_primary_10_1016_j_bandl_2015_03_003
crossref_primary_10_1371_journal_pone_0137915
crossref_primary_10_1016_j_bandl_2018_06_006
crossref_primary_10_1007_s10162_015_0546_4
crossref_primary_10_3389_fnhum_2021_736512
crossref_primary_10_1016_j_tics_2015_03_012
crossref_primary_10_1016_j_neuroimage_2018_01_042
crossref_primary_10_1038_s41598_022_05053_w
crossref_primary_10_1016_j_heares_2020_108078
crossref_primary_10_1177_02841851221127271
crossref_primary_10_1002_lio2_73
crossref_primary_10_1016_j_cub_2018_04_033
crossref_primary_10_1038_s41598_024_80911_3
crossref_primary_10_1523_JNEUROSCI_2693_16_2017
crossref_primary_10_1093_cercor_bhac203
crossref_primary_10_1016_j_neuroimage_2017_02_061
Cites_doi 10.1038/35002078
10.1016/S1053-8119(09)70939-5
10.1016/j.biosystems.2006.05.018
10.1093/cercor/bhs314
10.1109/42.929618
10.1016/j.heares.2007.11.012
10.1152/jn.1999.82.5.2346
10.1093/cercor/bhi080
10.1093/cercor/bhh120
10.1016/S0896-6273(03)00669-X
10.3389/fnhum.2011.00042
10.1371/journal.pbio.0040215
10.1016/j.neuroscience.2008.07.050
10.1016/j.neuroimage.2010.06.010
10.1523/JNEUROSCI.22-21-09502.2002
10.1121/1.398894
10.1016/j.neuroimage.2009.07.029
10.1523/JNEUROSCI.0296-10.2010
10.1016/0006-8993(96)00315-0
10.1093/brain/107.1.115
10.1006/nimg.1997.0304
10.3389/fnins.2014.00072
10.3389/fnsys.2010.00155
10.1523/JNEUROSCI.1448-11.2011
10.1016/j.neuroimage.2012.09.017
10.1073/pnas.97.22.11793
10.1002/cne.1407
10.1523/JNEUROSCI.3769-11.2012
10.1002/cne.21432
10.1152/jn.00980.2002
10.1152/jn.1998.80.5.2743
10.1152/jn.00263.2005
10.1002/cne.20702
10.1152/physrev.00029.2003
10.1016/S0378-5955(00)00194-5
10.1093/cercor/11.5.411
10.1196/annals.1284.033
10.1073/pnas.1206387109
10.1002/(SICI)1097-0193(1997)5:4<218::AID-HBM2>3.0.CO;2-6
10.3171/2009.7.JNS09404
10.1371/journal.pcbi.1003271
10.1152/jn.00500.2003
10.1037/a0022325
10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z
10.1006/nimg.2000.0715
10.3389/fnsys.2013.00011
10.1016/j.clinph.2007.09.136
10.1152/jn.90954.2008
10.1093/cercor/bhr014
10.1002/cne.901680203
10.1109/34.24792
10.1152/jn.00248.2004
10.1002/(SICI)1096-9861(20000103)416:1<79::AID-CNE6>3.0.CO;2-2
10.1152/jn.91346.2008
10.1038/nn.2331
10.1016/S0079-6123(06)59019-3
10.1093/cercor/10.5.512
10.1016/j.neuroimage.2011.08.098
10.1371/journal.pone.0005183
10.1016/S1388-2457(00)00545-9
10.1002/cne.901900312
10.1016/S0378-5955(00)00203-3
10.1126/science.7701330
10.1152/jn.00718.2012
10.1016/S0378-5955(01)00259-3
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Nov 1, 2014
2014 Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Nov 1, 2014
– notice: 2014 Elsevier Inc. All rights reserved. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2014.07.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE



ProQuest One Psychology
Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 609
ExternalDocumentID PMC4430832
3465764551
25019680
10_1016_j_neuroimage_2014_07_004
S105381191400576X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01-DC008089
– fundername: NIDCD NIH HHS
  grantid: R01-DC00657
– fundername: NIDCD NIH HHS
  grantid: R01 DC008089
– fundername: NIDCD NIH HHS
  grantid: R01 DC000657
– fundername: NCRR NIH HHS
  grantid: UL1RR024979
– fundername: NIDCD NIH HHS
  grantid: P50 DC000242
– fundername: NIDCD NIH HHS
  grantid: R01-DC04290
– fundername: NIDCD NIH HHS
  grantid: R01 DC004290
– fundername: NCRR NIH HHS
  grantid: UL1 RR024979
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c733t-6b92c9f29e49f1a9ac34262028b1ae89df614b30a9fa483cf37712e4ce48d2893
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 13:26:43 EDT 2025
Fri Jul 11 15:36:30 EDT 2025
Fri Jul 11 01:10:11 EDT 2025
Wed Aug 13 09:45:51 EDT 2025
Mon Jul 21 05:31:18 EDT 2025
Tue Jul 01 02:14:54 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Fri Feb 23 02:24:27 EST 2024
Tue Aug 26 16:31:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c733t-6b92c9f29e49f1a9ac34262028b1ae89df614b30a9fa483cf37712e4ce48d2893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7152-8473
0000-0002-6532-284X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4430832
PMID 25019680
PQID 1614115845
PQPubID 2031077
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4430832
proquest_miscellaneous_1622611397
proquest_miscellaneous_1562441336
proquest_journals_1614115845
pubmed_primary_25019680
crossref_citationtrail_10_1016_j_neuroimage_2014_07_004
crossref_primary_10_1016_j_neuroimage_2014_07_004
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_07_004
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_07_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Nourski, Steinschneider, Oya, Kawasaki, Jones, Howard (bb0240) 2014; 24
Brugge, Volkov, Garell, Reale, Howard (bb0040) 2003; 90
Nourski, Howard (bb0220) 2014
Lee, Lueders, Dinner, Lesser, Hahn, Klem (bb0190) 1984; 107
Fullerton, Pandya (bb0105) 2007; 504
Woods, Herron, Cate, Yund, Stecker, Rinne, Kang (bb0350) 2010; 4
Rauschecker, Tian, Hauser (bb0265) 1995; 268
Woods, Herron, Cate, Kang, Yund (bb0355) 2011; 5
Camalier, D'Angelo, Sterbing-D'Angelo, de la Mothe, Hackett (bb0055) 2012; 109
Crone, Boatman, Gordon, Hao (bb0065) 2001; 112
Monti, Lutkenhoff, Rubinov, Boveroux, Vanhaudenhuyse, Gosseries, Bruno, Noirhomme, Boly, Laureys (bb0210) 2013; 9
Klatt, Klatt (bb0175) 1990; 87
Eggermont (bb0085) 1998; 80
Bates, Sarkar (bb0005) 2011
Joris, Schreiner, Rees (bb0155) 1994; 84
Steinschneider, Volkov, Noh, Garell, Howard (bb0305) 1999; 82
Oya, Poon, Brugge, Reale, Kawasaki, Volkov, Howard (bb0250) 2007; 89
Yvert, Crouzeix, Bertrand, Seither-Preisler, Pantev (bb0360) 2001; 11
Howard, Volkov, Abbas, Damasio, Ollendieck, Granner (bb0130) 1996; 724
Oya, Kawasaki, Howard, Adolphs (bb0245) 2002; 22
Ray, Niebur, Hsiao, Sinai, Crone (bb0270) 2008; 119
Nourski, Reddy, Oya, Kawasaki, Brugge, Howard (bb0230) 2009
Destrieux, Fischl, Dale, Halgren (bb0075) 2010; 53
Bookstein (bb0030) 1989; 11
Recanzone (bb0275) 2000; 150
Lakatos, Shah, Knuth, Ulbert, Karmos, Schroeder (bb0180) 2005; 94
Rohr, Stiehl, Sprengel, Buzug, Weese, Kuhn (bb0290) 2001; 20
Chevillet, Riesenhuber, Rauschecker (bb0060) 2011; 31
Rauschecher, Scott (bb0260) 2009; 12
Brugge, Nourski, Oya, Reale, Kawasaki, Steinschneider, Howard (bb0050) 2009; 102
Eggermont (bb0090) 2001; 157
Rivier, Clarke (bb0285) 1997; 6
Brugge, Volkov, Oya, Kawasaki, Reale, Fenoy, Steinschneider, Howard (bb0045) 2008; 238
Sweet, Dorph-Petersen, Lewis (bb0320) 2005; 491
Winer (bb0340) 2010
Hackett (bb0110) 2007
Edwards, Soltani, Kim, Dalal, Nagarajan, Berger, Knight (bb0080) 2009; 102
Galaburda, Sanides (bb0095) 1980; 190
Brugge, Howard (bb0035) 2002
Binder, Frost, Hammeke, Bellgowan, Springer, Kaufman, Possing (bb0020) 2000; 10
Wang, Lu, Bendor, Bartlett (bb0335) 2008; 157
Steinschneider, Nourski, Kawasaki, Oya, Brugge, Howard (bb0315) 2011; 21
Petkov, Kayser, Augath, Logothetis (bb0255) 2006; 4
Hackett, de la Mothe, Camalier, Falchier, Lakatos, Kajikawa, Schroeder (bb0125) 2014; 8
Liégeois-Chauvel, Musolino, Chauvel (bb0195) 1991; 114
Baumann, Petkov, Griffiths (bb0010) 2013; 7
Boly, Moran, Murphy, Boveroux, Bruno, Noirhomme, Ledoux, Bonhomme, Brichant, Tononi, Laureys, Friston (bb0025) 2012; 32
Nourski, Reddy, Oya, Kawasaki, Brugge, Howard (bb0225) 2009
Jones (bb0145) 2003; 999
Formisano, Kim, Di Salle, van de Moortele, Ugurbil, Goebel (bb0100) 2003; 40
Hackett, Preuss, Kaas (bb0120) 2001; 441
Woods, Stecker, Rinne, Herron, Cate, Yund, Liao, Kang (bb0345) 2009; 4
Inui, Okamoto, Miki, Gunji, Kakigi (bb0140) 2006; 16
Steinschneider, Volkov, Fishman, Oya, Arezzo, Howard (bb0310) 2005; 15
Belin, Zatorre, Lafaille, Ahad, Pike (bb0015) 2000; 403
McMurray, Jongman (bb0200) 2011; 118
Reddy, Dahdaleh, Albert, Chen, Hansen, Nourski, Kawasaki, Oya, Howard (bb0280) 2010; 112
Kaas, Hackett (bb0160) 2000; 97
Hackett, Stepniewska, Kaas (bb0115) 1998; 394
Kajikawa, de La Mothe, Blumell, Hackett (bb0170) 2005; 93
Millman, Prendergast, Hymers, Green (bb0205) 2013; 64
Crone, Sinai, Korzeniewska (bb0070) 2006; 159
Kaas, Hackett (bb0165) 2005
Howard, Volkov, Mirsky, Garell, Noh, Granner, Damasio, Steinschneider, Reale, Hind, Brugge (bb0135) 2000; 416
Jones, Burton (bb0150) 1976; 168
Talavage, Ledden, Benson, Rosen, Melcher (bb0325) 2000; 150
Leaver, Rauschecker (bb0185) 2010; 30
Nourski, Brugge, Reale, Kovach, Oya, Kawasaki, Jenison, Howard (bb0235) 2013; 109
Sedley, Teki, Kumar, Overath, Barnes, Griffiths (bb0295) 2012; 59
Stecker, Mickey, Macpherson, Middlebrooks (bb0300) 2003; 89
Zilles, Schleicher, Langemann, Amunts, Morosan, Palomero-Gallagher, Schormann, Mohlberg, Bürgel, Steinmetz, Schlaug, Roland (bb0365) 2007; 5
Morosan, Rademacher, Schleicher, Amunts, Schormann, Zilles (bb0215) 2001; 13
Tanji, Leopold, Ye, Zhu, Malloy, Saunders, Mishkin (bb0330) 2010; 49
Woods (10.1016/j.neuroimage.2014.07.004_bb0355) 2011; 5
Leaver (10.1016/j.neuroimage.2014.07.004_bb0185) 2010; 30
Brugge (10.1016/j.neuroimage.2014.07.004_bb0045) 2008; 238
Inui (10.1016/j.neuroimage.2014.07.004_bb0140) 2006; 16
Chevillet (10.1016/j.neuroimage.2014.07.004_bb0060) 2011; 31
Fullerton (10.1016/j.neuroimage.2014.07.004_bb0105) 2007; 504
Oya (10.1016/j.neuroimage.2014.07.004_bb0250) 2007; 89
Camalier (10.1016/j.neuroimage.2014.07.004_bb0055) 2012; 109
Tanji (10.1016/j.neuroimage.2014.07.004_bb0330) 2010; 49
Kaas (10.1016/j.neuroimage.2014.07.004_bb0160) 2000; 97
Nourski (10.1016/j.neuroimage.2014.07.004_bb0235) 2013; 109
Bookstein (10.1016/j.neuroimage.2014.07.004_bb0030) 1989; 11
Brugge (10.1016/j.neuroimage.2014.07.004_bb0035) 2002
Steinschneider (10.1016/j.neuroimage.2014.07.004_bb0315) 2011; 21
Edwards (10.1016/j.neuroimage.2014.07.004_bb0080) 2009; 102
Belin (10.1016/j.neuroimage.2014.07.004_bb0015) 2000; 403
Binder (10.1016/j.neuroimage.2014.07.004_bb0020) 2000; 10
Eggermont (10.1016/j.neuroimage.2014.07.004_bb0085) 1998; 80
Sweet (10.1016/j.neuroimage.2014.07.004_bb0320) 2005; 491
Yvert (10.1016/j.neuroimage.2014.07.004_bb0360) 2001; 11
Kajikawa (10.1016/j.neuroimage.2014.07.004_bb0170) 2005; 93
Oya (10.1016/j.neuroimage.2014.07.004_bb0245) 2002; 22
Lee (10.1016/j.neuroimage.2014.07.004_bb0190) 1984; 107
Eggermont (10.1016/j.neuroimage.2014.07.004_bb0090) 2001; 157
Crone (10.1016/j.neuroimage.2014.07.004_bb0070) 2006; 159
Steinschneider (10.1016/j.neuroimage.2014.07.004_bb0310) 2005; 15
Rauschecker (10.1016/j.neuroimage.2014.07.004_bb0265) 1995; 268
Hackett (10.1016/j.neuroimage.2014.07.004_bb0125) 2014; 8
Nourski (10.1016/j.neuroimage.2014.07.004_bb0240) 2014; 24
Woods (10.1016/j.neuroimage.2014.07.004_bb0350) 2010; 4
Millman (10.1016/j.neuroimage.2014.07.004_bb0205) 2013; 64
Brugge (10.1016/j.neuroimage.2014.07.004_bb0040) 2003; 90
Hackett (10.1016/j.neuroimage.2014.07.004_bb0110) 2007
Petkov (10.1016/j.neuroimage.2014.07.004_bb0255) 2006; 4
Reddy (10.1016/j.neuroimage.2014.07.004_bb0280) 2010; 112
Hackett (10.1016/j.neuroimage.2014.07.004_bb0120) 2001; 441
Jones (10.1016/j.neuroimage.2014.07.004_bb0150) 1976; 168
Hackett (10.1016/j.neuroimage.2014.07.004_bb0115) 1998; 394
Monti (10.1016/j.neuroimage.2014.07.004_bb0210) 2013; 9
Lakatos (10.1016/j.neuroimage.2014.07.004_bb0180) 2005; 94
Boly (10.1016/j.neuroimage.2014.07.004_bb0025) 2012; 32
Stecker (10.1016/j.neuroimage.2014.07.004_bb0300) 2003; 89
Howard (10.1016/j.neuroimage.2014.07.004_bb0135) 2000; 416
Recanzone (10.1016/j.neuroimage.2014.07.004_bb0275) 2000; 150
Rohr (10.1016/j.neuroimage.2014.07.004_bb0290) 2001; 20
Zilles (10.1016/j.neuroimage.2014.07.004_bb0365) 2007; 5
Nourski (10.1016/j.neuroimage.2014.07.004_bb0220) 2014
Wang (10.1016/j.neuroimage.2014.07.004_bb0335) 2008; 157
Galaburda (10.1016/j.neuroimage.2014.07.004_bb0095) 1980; 190
Crone (10.1016/j.neuroimage.2014.07.004_bb0065) 2001; 112
Morosan (10.1016/j.neuroimage.2014.07.004_bb0215) 2001; 13
Bates (10.1016/j.neuroimage.2014.07.004_bb0005) 2011
Formisano (10.1016/j.neuroimage.2014.07.004_bb0100) 2003; 40
Joris (10.1016/j.neuroimage.2014.07.004_bb0155) 1994; 84
Sedley (10.1016/j.neuroimage.2014.07.004_bb0295) 2012; 59
McMurray (10.1016/j.neuroimage.2014.07.004_bb0200) 2011; 118
Kaas (10.1016/j.neuroimage.2014.07.004_bb0165) 2005
Ray (10.1016/j.neuroimage.2014.07.004_bb0270) 2008; 119
Talavage (10.1016/j.neuroimage.2014.07.004_bb0325) 2000; 150
Brugge (10.1016/j.neuroimage.2014.07.004_bb0050) 2009; 102
Baumann (10.1016/j.neuroimage.2014.07.004_bb0010) 2013; 7
Woods (10.1016/j.neuroimage.2014.07.004_bb0345) 2009; 4
Howard (10.1016/j.neuroimage.2014.07.004_bb0130) 1996; 724
Jones (10.1016/j.neuroimage.2014.07.004_bb0145) 2003; 999
Liégeois-Chauvel (10.1016/j.neuroimage.2014.07.004_bb0195) 1991; 114
Destrieux (10.1016/j.neuroimage.2014.07.004_bb0075) 2010; 53
Winer (10.1016/j.neuroimage.2014.07.004_bb0340) 2010
Nourski (10.1016/j.neuroimage.2014.07.004_bb0230) 2009
Klatt (10.1016/j.neuroimage.2014.07.004_bb0175) 1990; 87
Nourski (10.1016/j.neuroimage.2014.07.004_bb0225) 2009
Rivier (10.1016/j.neuroimage.2014.07.004_bb0285) 1997; 6
Rauschecher (10.1016/j.neuroimage.2014.07.004_bb0260) 2009; 12
Steinschneider (10.1016/j.neuroimage.2014.07.004_bb0305) 1999; 82
10847601 - Cereb Cortex. 2000 May;10(5):512-28
23074251 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18168-73
12968011 - J Neurophysiol. 2003 Dec;90(6):3750-63
19675285 - J Neurophysiol. 2009 Oct;102(4):2358-74
21697384 - J Neurosci. 2011 Jun 22;31(25):9345-52
10561410 - J Neurophysiol. 1999 Nov;82(5):2346-57
19143093 - Neuroscience. 2008 Nov 19;157(2):484-94
821974 - J Comp Neurol. 1976 Jul 15;168(2):197-247
22989625 - Neuroimage. 2013 Jan 1;64:185-96
9819278 - J Neurophysiol. 1998 Nov;80(5):2743-64
10659849 - Nature. 2000 Jan 20;403(6767):309-12
15238437 - Cereb Cortex. 2005 Feb;15(2):170-86
6697149 - Brain. 1984 Mar;107 ( Pt 1):115-31
23641203 - Front Syst Neurosci. 2013 Apr 30;7:11
15901760 - J Neurophysiol. 2005 Sep;94(3):1904-11
25726272 - Handb Clin Neurol. 2015;129:225-44
19663547 - J Neurosurg. 2010 Jun;112(6):1301-7
16774452 - PLoS Biol. 2006 Jul;4(7):e215
9590556 - J Comp Neurol. 1998 May 18;394(4):475-95
20519535 - J Neurosci. 2010 Jun 2;30(22):7604-12
10578103 - J Comp Neurol. 2000 Jan 3;416(1):79-92
11745645 - J Comp Neurol. 2001 Dec 17;441(3):197-222
18037343 - Clin Neurophysiol. 2008 Jan;119(1):116-33
19631273 - Neuroimage. 2010 Jan 1;49(1):150-7
15800024 - Cereb Cortex. 2006 Jan;16(1):18-30
11275528 - Clin Neurophysiol. 2001 Apr;112(4):565-82
14681146 - Ann N Y Acad Sci. 2003 Nov;999:218-33
9417972 - Neuroimage. 1997 Nov;6(4):288-304
12611946 - J Neurophysiol. 2003 Jun;89(6):2889-903
11077196 - Hear Res. 2000 Dec;150(1-2):104-18
11050211 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793-9
21160558 - Front Syst Neurosci. 2010 Dec 03;4:155
15342713 - J Neurophysiol. 2005 Jan;93(1):22-34
19365552 - PLoS One. 2009;4(4):e5183
15044682 - Physiol Rev. 2004 Apr;84(2):541-77
6771305 - J Comp Neurol. 1980 Apr 1;190(3):597-610
21417542 - Psychol Rev. 2011 Apr;118(2):219-46
21541252 - Front Hum Neurosci. 2011 Apr 20;5:42
19439673 - J Neurophysiol. 2009 Jul;102(1):377-86
8828578 - Brain Res. 1996 Jun 17;724(2):260-4
1900211 - Brain. 1991 Feb;114 ( Pt 1A):139-51
18207680 - Hear Res. 2008 Apr;238(1-2):12-24
11470183 - Hear Res. 2001 Jul;157(1-2):1-42
2137837 - J Acoust Soc Am. 1990 Feb;87(2):820-57
17701981 - J Comp Neurol. 2007 Oct 10;504(5):470-98
16134138 - J Comp Neurol. 2005 Oct 24;491(3):270-89
14622588 - Neuron. 2003 Nov 13;40(4):859-69
20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
12417674 - J Neurosci. 2002 Nov 1;22(21):9502-12
23048019 - Cereb Cortex. 2014 Feb;24(2):340-52
24146606 - PLoS Comput Biol. 2013;9(10):e1003271
7701330 - Science. 1995 Apr 7;268(5207):111-4
17071238 - Prog Brain Res. 2006;159:275-95
11313293 - Cereb Cortex. 2001 May;11(5):411-23
19471271 - Nat Neurosci. 2009 Jun;12(6):718-24
20408218 - Hum Brain Mapp. 1997;5(4):218-21
17184906 - Biosystems. 2007 May-Jun;89(1-3):198-207
11305897 - Neuroimage. 2001 Apr;13(4):684-701
11437112 - IEEE Trans Med Imaging. 2001 Jun;20(6):526-34
21925281 - Neuroimage. 2012 Jan 16;59(2):1904-11
11077206 - Hear Res. 2000 Dec;150(1-2):225-44
23236002 - J Neurophysiol. 2013 Mar;109(5):1283-95
22593076 - J Neurosci. 2012 May 16;32(20):7082-90
21368087 - Cereb Cortex. 2011 Oct;21(10):2332-47
24795550 - Front Neurosci. 2014 Apr 22;8:72
References_xml – volume: 93
  start-page: 22
  year: 2005
  end-page: 34
  ident: bb0170
  article-title: A comparison of neuron response properties in areas A1 and CM of the marmoset monkey auditory cortex: tones and broadband noise
  publication-title: J. Neurophysiol.
– volume: 32
  start-page: 7082
  year: 2012
  end-page: 7090
  ident: bb0025
  article-title: Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness
  publication-title: J. Neurosci.
– volume: 20
  start-page: 526
  year: 2001
  end-page: 534
  ident: bb0290
  article-title: Landmark-based elastic registration using approximating thin-plate splines
  publication-title: IEEE Trans. Med. Imaging
– volume: 84
  start-page: 541
  year: 1994
  end-page: 577
  ident: bb0155
  article-title: Neural processing of amplitude-modulated sounds
  publication-title: Physiol. Rev.
– volume: 9
  start-page: e1003271
  year: 2013
  ident: bb0210
  article-title: Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness
  publication-title: PLoS Comput. Biol.
– volume: 30
  start-page: 7604
  year: 2010
  end-page: 7612
  ident: bb0185
  article-title: Cortical representation of natural complex sounds: effects of acoustic features and auditory object category
  publication-title: J. Neurosci.
– volume: 24
  start-page: 340
  year: 2014
  end-page: 352
  ident: bb0240
  article-title: Spectral organization of the human lateral superior temporal gyrus revealed by intracranial recordings
  publication-title: Cereb. Cortex
– volume: 11
  start-page: 567
  year: 1989
  end-page: 585
  ident: bb0030
  article-title: Principal warps: thin-plate splines and the decomposition of deformations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 102
  start-page: 377
  year: 2009
  end-page: 386
  ident: bb0080
  article-title: Comparison of time–frequency responses and the event-related potential to auditory speech stimuli in human cortex
  publication-title: J. Neurophysiol.
– volume: 102
  start-page: 2358
  year: 2009
  end-page: 2374
  ident: bb0050
  article-title: Coding of repetitive transients by auditory cortex on Heschl's gyrus
  publication-title: J. Neurophysiol.
– volume: 114
  start-page: 139
  year: 1991
  end-page: 151
  ident: bb0195
  article-title: Localization of the primary auditory area in man
  publication-title: Brain
– volume: 87
  start-page: 820
  year: 1990
  end-page: 857
  ident: bb0175
  article-title: Analysis, synthesis, and perception of voice quality variations among female and male talkers
  publication-title: J. Acoust. Soc. Am.
– start-page: 41
  year: 2010
  end-page: 74
  ident: bb0340
  article-title: A profile of auditory forebrain connections and circuits
  publication-title: The Auditory Cortex
– volume: 504
  start-page: 470
  year: 2007
  end-page: 498
  ident: bb0105
  article-title: Architectonic analysis of the auditory-related areas of the superior temporal region in human brain
  publication-title: J. Comp. Neurol.
– volume: 238
  start-page: 12
  year: 2008
  end-page: 24
  ident: bb0045
  article-title: Functional localization of auditory cortical fields of human: click-train stimulation
  publication-title: Hear. Res.
– volume: 82
  start-page: 2346
  year: 1999
  end-page: 2357
  ident: bb0305
  article-title: Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex
  publication-title: J. Neurophysiol.
– volume: 8
  start-page: 72
  year: 2014
  ident: bb0125
  article-title: Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model
  publication-title: Front. Neurosci.
– volume: 107
  start-page: 115
  year: 1984
  end-page: 131
  ident: bb0190
  article-title: Recording of auditory evoked potentials in man using chronic subdural electrodes
  publication-title: Brain
– volume: 64
  start-page: 185
  year: 2013
  end-page: 196
  ident: bb0205
  article-title: Representations of the temporal envelope of sounds in human auditory cortex: can the results from invasive intracortical "depth" electrode recordings be replicated using non-invasive MEG "virtual electrodes"?
  publication-title: Neuroimage
– volume: 7
  start-page: 11
  year: 2013
  ident: bb0010
  article-title: A unified framework for the organization of the primate auditory cortex
  publication-title: Front. Syst. Neurosci.
– volume: 16
  start-page: 18
  year: 2006
  end-page: 30
  ident: bb0140
  article-title: Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study
  publication-title: Cereb. Cortex
– volume: 90
  start-page: 3750
  year: 2003
  end-page: 3763
  ident: bb0040
  article-title: Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans
  publication-title: J. Neurophysiol.
– volume: 268
  start-page: 111
  year: 1995
  end-page: 114
  ident: bb0265
  article-title: Processing of complex sounds in the macaque nonprimary auditory cortex
  publication-title: Science
– start-page: 116
  year: 2009
  ident: bb0230
  article-title: General anesthesia differentially affects responses from auditory cortical fields in humans
  publication-title: 3rd International Conference on Auditory Cortex. August 29 – September 2, 2009, Magdeburg, Germany
– volume: 150
  start-page: 104
  year: 2000
  end-page: 118
  ident: bb0275
  article-title: Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys
  publication-title: Hear. Res.
– volume: 394
  start-page: 475
  year: 1998
  end-page: 495
  ident: bb0115
  article-title: Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys
  publication-title: J. Comp. Neurol.
– volume: 89
  start-page: 2889
  year: 2003
  end-page: 2903
  ident: bb0300
  article-title: Spatial sensitivity in field PAF of cat auditory cortex
  publication-title: J. Neurophysiol.
– volume: 157
  start-page: 1
  year: 2001
  end-page: 42
  ident: bb0090
  article-title: Between sound and perception: reviewing the search for a neural code
  publication-title: Hear. Res.
– volume: 441
  start-page: 197
  year: 2001
  end-page: 222
  ident: bb0120
  article-title: Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans
  publication-title: J. Comp. Neurol.
– volume: 6
  start-page: 288
  year: 1997
  end-page: 304
  ident: bb0285
  article-title: Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas
  publication-title: Neuroimage
– volume: 80
  start-page: 2743
  year: 1998
  end-page: 2764
  ident: bb0085
  article-title: Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences
  publication-title: J. Neurophysiol.
– volume: 40
  start-page: 859
  year: 2003
  end-page: 969
  ident: bb0100
  article-title: Mirror-symmetric tonotopic maps in human primary auditory cortex
  publication-title: Neuron
– volume: 150
  start-page: 225
  year: 2000
  end-page: 244
  ident: bb0325
  article-title: Frequency-dependent responses exhibited by multiple regions in human auditory cortex
  publication-title: Hear. Res.
– year: 2011
  ident: bb0005
  article-title: LME4: linear mixed-effects models using S4 classes (R Package Version 0.9975-11) [Computer software manual]
– volume: 21
  start-page: 2332
  year: 2011
  end-page: 2347
  ident: bb0315
  article-title: Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus
  publication-title: Cereb. Cortex
– volume: 403
  start-page: 309
  year: 2000
  end-page: 312
  ident: bb0015
  article-title: Voice-selective areas in human auditory cortex
  publication-title: Nature
– volume: 4
  start-page: e5183
  year: 2009
  ident: bb0345
  article-title: Functional maps of human auditory cortex: effects of acoustic features and attention
  publication-title: PLoS One
– year: 2014
  ident: bb0220
  article-title: Invasive recordings in human auditory cortex
  publication-title: Hand. Clin. Neurol.
– volume: 119
  start-page: 116
  year: 2008
  end-page: 133
  ident: bb0270
  article-title: High-frequency gamma activity (80-150Hz) is increased in human cortex during selective attention
  publication-title: Clin. Neurophysiol.
– volume: 118
  start-page: 219
  year: 2011
  end-page: 246
  ident: bb0200
  article-title: What information is necessary for speech categorization? Harnessing variability in the speech signal by integrating cues computed relative to expectations
  publication-title: Psychol. Rev.
– volume: 999
  start-page: 218
  year: 2003
  end-page: 233
  ident: bb0145
  article-title: Chemically defined parallel pathways in the monkey auditory system
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 112
  start-page: 565
  year: 2001
  end-page: 582
  ident: bb0065
  article-title: Induced electrocorticographic gamma activity during auditory perception
  publication-title: Clin. Neurophysiol.
– volume: 94
  start-page: 1904
  year: 2005
  end-page: 1911
  ident: bb0180
  article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex
  publication-title: J. Neurophysiol.
– start-page: 429
  year: 2002
  end-page: 448
  ident: bb0035
  article-title: Hearing
  publication-title: Encyclopedia of the Human Brain
– volume: 190
  start-page: 597
  year: 1980
  end-page: 610
  ident: bb0095
  article-title: Cytoarchitectonic organization of the human auditory cortex
  publication-title: J. Comp. Neurol.
– volume: 10
  start-page: 512
  year: 2000
  end-page: 528
  ident: bb0020
  article-title: Human temporal lobe activation by speech and nonspeech sounds
  publication-title: Cereb. Cortex
– start-page: 7
  year: 2005
  end-page: 26
  ident: bb0165
  article-title: Subdivisions and connections of auditory cortex in primates: a working model
  publication-title: Auditory Cortex. A Synthesis of Human and Animal Research
– volume: 89
  start-page: 198
  year: 2007
  end-page: 207
  ident: bb0250
  article-title: Functional connections between auditory cortical fields in humans revealed by Granger causality analysis of intra-cranial evoked potentials to sounds: comparison of two methods
  publication-title: Biosystems
– volume: 5
  start-page: 42
  year: 2011
  ident: bb0355
  article-title: Phonological processing in human auditory cortical fields
  publication-title: Front. Hum. Neurosci.
– volume: 13
  start-page: 684
  year: 2001
  end-page: 701
  ident: bb0215
  article-title: Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system
  publication-title: Neuroimage
– volume: 4
  start-page: 155
  year: 2010
  ident: bb0350
  article-title: Functional properties of human auditory cortical fields
  publication-title: Front. Syst. Neurosci.
– volume: 168
  start-page: 197
  year: 1976
  end-page: 247
  ident: bb0150
  article-title: Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates
  publication-title: J. Comp. Neurol.
– volume: 157
  start-page: 484
  year: 2008
  end-page: 494
  ident: bb0335
  article-title: Neural coding of temporal information in auditory thalamus and cortex
  publication-title: Neuroscience
– volume: 53
  start-page: 1
  year: 2010
  end-page: 15
  ident: bb0075
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
– volume: 15
  start-page: 170
  year: 2005
  end-page: 186
  ident: bb0310
  article-title: Intracortical responses in human and monkey primary auditory cortex support a temporal processing mechanism for encoding of the voice onset time phonetic parameter
  publication-title: Cereb. Cortex
– volume: 416
  start-page: 76
  year: 2000
  end-page: 92
  ident: bb0135
  article-title: Auditory cortex on the posterior superior temporal gyrus of human cerebral cortex
  publication-title: J. Comp. Neurol.
– volume: 49
  start-page: 150
  year: 2010
  end-page: 157
  ident: bb0330
  article-title: Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey
  publication-title: Neuroimage
– volume: 11
  start-page: 411
  year: 2001
  end-page: 423
  ident: bb0360
  article-title: Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans
  publication-title: Cereb. Cortex
– volume: 109
  start-page: 1283
  year: 2013
  end-page: 1295
  ident: bb0235
  article-title: Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study
  publication-title: J. Neurophysiol.
– volume: 22
  start-page: 9502
  year: 2002
  end-page: 9512
  ident: bb0245
  article-title: Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli
  publication-title: J. Neurosci.
– volume: 112
  start-page: 1301
  year: 2010
  end-page: 1307
  ident: bb0280
  article-title: A method for placing Heschl gyrus depth electrodes
  publication-title: J. Neurosurg.
– volume: 5
  start-page: 218
  year: 2007
  end-page: 221
  ident: bb0365
  article-title: Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture
  publication-title: Hum. Brain Mapp.
– volume: 59
  start-page: 1904
  year: 2012
  end-page: 1911
  ident: bb0295
  article-title: Gamma band pitch responses in human auditory cortex measured with magnetoencephalography
  publication-title: Neuroimage
– volume: 12
  start-page: 718
  year: 2009
  end-page: 724
  ident: bb0260
  article-title: Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing
  publication-title: Nat. Neurosci.
– volume: 31
  start-page: 9345
  year: 2011
  end-page: 9352
  ident: bb0060
  article-title: Functional correlates of the anterolateral processing hierarchy in human auditory cortex
  publication-title: J. Neurosci.
– volume: 4
  start-page: e215
  year: 2006
  ident: bb0255
  article-title: Functional imaging reveals numerous fields in the monkey auditory cortex
  publication-title: PLoS Biol.
– volume: 159
  start-page: 275
  year: 2006
  end-page: 295
  ident: bb0070
  article-title: High-frequency gamma oscillations and human brain mapping with electrocorticography
  publication-title: Prog. Brain Res.
– volume: 109
  start-page: 18168
  year: 2012
  end-page: 18173
  ident: bb0055
  article-title: Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 97
  start-page: 11793
  year: 2000
  end-page: 11799
  ident: bb0160
  article-title: Subdivisions of auditory cortex and processing streams in primates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2009
  ident: bb0225
  article-title: Differential effects of general anesthesia on auditory cortical fields in humans
  publication-title: 15th Annual Meeting of the Organization for Human Brain Mapping. June 18 – 22, 2009, San Francisco, CA
– volume: 491
  start-page: 270
  year: 2005
  end-page: 289
  ident: bb0320
  article-title: Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus
  publication-title: J. Comp. Neurol.
– volume: 724
  start-page: 260
  year: 1996
  end-page: 264
  ident: bb0130
  article-title: A chronic microelectrode investigation of the tonotopic organization of human auditory cortex
  publication-title: Brain Res.
– start-page: 109
  year: 2007
  end-page: 119
  ident: bb0110
  article-title: Organization and correspondence of the auditory cortex of humans and nonhuman primates
  publication-title: Evolution of Nervous Systems Vol. 4: Primates
– volume: 403
  start-page: 309
  year: 2000
  ident: 10.1016/j.neuroimage.2014.07.004_bb0015
  article-title: Voice-selective areas in human auditory cortex
  publication-title: Nature
  doi: 10.1038/35002078
– year: 2009
  ident: 10.1016/j.neuroimage.2014.07.004_bb0225
  article-title: Differential effects of general anesthesia on auditory cortical fields in humans
  doi: 10.1016/S1053-8119(09)70939-5
– volume: 89
  start-page: 198
  year: 2007
  ident: 10.1016/j.neuroimage.2014.07.004_bb0250
  article-title: Functional connections between auditory cortical fields in humans revealed by Granger causality analysis of intra-cranial evoked potentials to sounds: comparison of two methods
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2006.05.018
– volume: 24
  start-page: 340
  year: 2014
  ident: 10.1016/j.neuroimage.2014.07.004_bb0240
  article-title: Spectral organization of the human lateral superior temporal gyrus revealed by intracranial recordings
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs314
– volume: 20
  start-page: 526
  year: 2001
  ident: 10.1016/j.neuroimage.2014.07.004_bb0290
  article-title: Landmark-based elastic registration using approximating thin-plate splines
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.929618
– volume: 238
  start-page: 12
  year: 2008
  ident: 10.1016/j.neuroimage.2014.07.004_bb0045
  article-title: Functional localization of auditory cortical fields of human: click-train stimulation
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2007.11.012
– volume: 82
  start-page: 2346
  year: 1999
  ident: 10.1016/j.neuroimage.2014.07.004_bb0305
  article-title: Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1999.82.5.2346
– volume: 16
  start-page: 18
  year: 2006
  ident: 10.1016/j.neuroimage.2014.07.004_bb0140
  article-title: Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhi080
– volume: 15
  start-page: 170
  year: 2005
  ident: 10.1016/j.neuroimage.2014.07.004_bb0310
  article-title: Intracortical responses in human and monkey primary auditory cortex support a temporal processing mechanism for encoding of the voice onset time phonetic parameter
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh120
– volume: 40
  start-page: 859
  year: 2003
  ident: 10.1016/j.neuroimage.2014.07.004_bb0100
  article-title: Mirror-symmetric tonotopic maps in human primary auditory cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00669-X
– volume: 5
  start-page: 42
  year: 2011
  ident: 10.1016/j.neuroimage.2014.07.004_bb0355
  article-title: Phonological processing in human auditory cortical fields
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2011.00042
– volume: 4
  start-page: e215
  year: 2006
  ident: 10.1016/j.neuroimage.2014.07.004_bb0255
  article-title: Functional imaging reveals numerous fields in the monkey auditory cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040215
– volume: 157
  start-page: 484
  year: 2008
  ident: 10.1016/j.neuroimage.2014.07.004_bb0335
  article-title: Neural coding of temporal information in auditory thalamus and cortex
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2008.07.050
– volume: 53
  start-page: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2014.07.004_bb0075
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume: 22
  start-page: 9502
  year: 2002
  ident: 10.1016/j.neuroimage.2014.07.004_bb0245
  article-title: Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-21-09502.2002
– volume: 87
  start-page: 820
  year: 1990
  ident: 10.1016/j.neuroimage.2014.07.004_bb0175
  article-title: Analysis, synthesis, and perception of voice quality variations among female and male talkers
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.398894
– volume: 49
  start-page: 150
  year: 2010
  ident: 10.1016/j.neuroimage.2014.07.004_bb0330
  article-title: Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.029
– volume: 30
  start-page: 7604
  year: 2010
  ident: 10.1016/j.neuroimage.2014.07.004_bb0185
  article-title: Cortical representation of natural complex sounds: effects of acoustic features and auditory object category
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0296-10.2010
– volume: 724
  start-page: 260
  year: 1996
  ident: 10.1016/j.neuroimage.2014.07.004_bb0130
  article-title: A chronic microelectrode investigation of the tonotopic organization of human auditory cortex
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(96)00315-0
– volume: 107
  start-page: 115
  year: 1984
  ident: 10.1016/j.neuroimage.2014.07.004_bb0190
  article-title: Recording of auditory evoked potentials in man using chronic subdural electrodes
  publication-title: Brain
  doi: 10.1093/brain/107.1.115
– volume: 114
  start-page: 139
  year: 1991
  ident: 10.1016/j.neuroimage.2014.07.004_bb0195
  article-title: Localization of the primary auditory area in man
  publication-title: Brain
– volume: 6
  start-page: 288
  year: 1997
  ident: 10.1016/j.neuroimage.2014.07.004_bb0285
  article-title: Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas
  publication-title: Neuroimage
  doi: 10.1006/nimg.1997.0304
– volume: 8
  start-page: 72
  year: 2014
  ident: 10.1016/j.neuroimage.2014.07.004_bb0125
  article-title: Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00072
– volume: 4
  start-page: 155
  year: 2010
  ident: 10.1016/j.neuroimage.2014.07.004_bb0350
  article-title: Functional properties of human auditory cortical fields
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2010.00155
– volume: 31
  start-page: 9345
  year: 2011
  ident: 10.1016/j.neuroimage.2014.07.004_bb0060
  article-title: Functional correlates of the anterolateral processing hierarchy in human auditory cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1448-11.2011
– volume: 64
  start-page: 185
  year: 2013
  ident: 10.1016/j.neuroimage.2014.07.004_bb0205
  article-title: Representations of the temporal envelope of sounds in human auditory cortex: can the results from invasive intracortical "depth" electrode recordings be replicated using non-invasive MEG "virtual electrodes"?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.017
– volume: 97
  start-page: 11793
  year: 2000
  ident: 10.1016/j.neuroimage.2014.07.004_bb0160
  article-title: Subdivisions of auditory cortex and processing streams in primates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.22.11793
– volume: 441
  start-page: 197
  year: 2001
  ident: 10.1016/j.neuroimage.2014.07.004_bb0120
  article-title: Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.1407
– volume: 32
  start-page: 7082
  year: 2012
  ident: 10.1016/j.neuroimage.2014.07.004_bb0025
  article-title: Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3769-11.2012
– volume: 504
  start-page: 470
  year: 2007
  ident: 10.1016/j.neuroimage.2014.07.004_bb0105
  article-title: Architectonic analysis of the auditory-related areas of the superior temporal region in human brain
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.21432
– volume: 89
  start-page: 2889
  year: 2003
  ident: 10.1016/j.neuroimage.2014.07.004_bb0300
  article-title: Spatial sensitivity in field PAF of cat auditory cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00980.2002
– volume: 80
  start-page: 2743
  year: 1998
  ident: 10.1016/j.neuroimage.2014.07.004_bb0085
  article-title: Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.80.5.2743
– volume: 94
  start-page: 1904
  year: 2005
  ident: 10.1016/j.neuroimage.2014.07.004_bb0180
  article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00263.2005
– volume: 491
  start-page: 270
  year: 2005
  ident: 10.1016/j.neuroimage.2014.07.004_bb0320
  article-title: Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20702
– volume: 84
  start-page: 541
  year: 1994
  ident: 10.1016/j.neuroimage.2014.07.004_bb0155
  article-title: Neural processing of amplitude-modulated sounds
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00029.2003
– volume: 150
  start-page: 104
  year: 2000
  ident: 10.1016/j.neuroimage.2014.07.004_bb0275
  article-title: Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(00)00194-5
– volume: 11
  start-page: 411
  year: 2001
  ident: 10.1016/j.neuroimage.2014.07.004_bb0360
  article-title: Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/11.5.411
– start-page: 109
  year: 2007
  ident: 10.1016/j.neuroimage.2014.07.004_bb0110
  article-title: Organization and correspondence of the auditory cortex of humans and nonhuman primates
– volume: 999
  start-page: 218
  year: 2003
  ident: 10.1016/j.neuroimage.2014.07.004_bb0145
  article-title: Chemically defined parallel pathways in the monkey auditory system
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1284.033
– volume: 109
  start-page: 18168
  year: 2012
  ident: 10.1016/j.neuroimage.2014.07.004_bb0055
  article-title: Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1206387109
– volume: 5
  start-page: 218
  year: 2007
  ident: 10.1016/j.neuroimage.2014.07.004_bb0365
  article-title: Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1997)5:4<218::AID-HBM2>3.0.CO;2-6
– volume: 112
  start-page: 1301
  year: 2010
  ident: 10.1016/j.neuroimage.2014.07.004_bb0280
  article-title: A method for placing Heschl gyrus depth electrodes
  publication-title: J. Neurosurg.
  doi: 10.3171/2009.7.JNS09404
– volume: 9
  start-page: e1003271
  year: 2013
  ident: 10.1016/j.neuroimage.2014.07.004_bb0210
  article-title: Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003271
– volume: 90
  start-page: 3750
  year: 2003
  ident: 10.1016/j.neuroimage.2014.07.004_bb0040
  article-title: Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00500.2003
– volume: 118
  start-page: 219
  year: 2011
  ident: 10.1016/j.neuroimage.2014.07.004_bb0200
  article-title: What information is necessary for speech categorization? Harnessing variability in the speech signal by integrating cues computed relative to expectations
  publication-title: Psychol. Rev.
  doi: 10.1037/a0022325
– volume: 394
  start-page: 475
  year: 1998
  ident: 10.1016/j.neuroimage.2014.07.004_bb0115
  article-title: Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z
– volume: 13
  start-page: 684
  year: 2001
  ident: 10.1016/j.neuroimage.2014.07.004_bb0215
  article-title: Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0715
– start-page: 41
  year: 2010
  ident: 10.1016/j.neuroimage.2014.07.004_bb0340
  article-title: A profile of auditory forebrain connections and circuits
– volume: 7
  start-page: 11
  year: 2013
  ident: 10.1016/j.neuroimage.2014.07.004_bb0010
  article-title: A unified framework for the organization of the primate auditory cortex
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2013.00011
– volume: 119
  start-page: 116
  year: 2008
  ident: 10.1016/j.neuroimage.2014.07.004_bb0270
  article-title: High-frequency gamma activity (80-150Hz) is increased in human cortex during selective attention
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.09.136
– volume: 102
  start-page: 377
  year: 2009
  ident: 10.1016/j.neuroimage.2014.07.004_bb0080
  article-title: Comparison of time–frequency responses and the event-related potential to auditory speech stimuli in human cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90954.2008
– volume: 21
  start-page: 2332
  year: 2011
  ident: 10.1016/j.neuroimage.2014.07.004_bb0315
  article-title: Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr014
– year: 2011
  ident: 10.1016/j.neuroimage.2014.07.004_bb0005
– volume: 168
  start-page: 197
  year: 1976
  ident: 10.1016/j.neuroimage.2014.07.004_bb0150
  article-title: Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.901680203
– year: 2014
  ident: 10.1016/j.neuroimage.2014.07.004_bb0220
  article-title: Invasive recordings in human auditory cortex
  publication-title: Hand. Clin. Neurol.
– volume: 11
  start-page: 567
  year: 1989
  ident: 10.1016/j.neuroimage.2014.07.004_bb0030
  article-title: Principal warps: thin-plate splines and the decomposition of deformations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.24792
– volume: 93
  start-page: 22
  year: 2005
  ident: 10.1016/j.neuroimage.2014.07.004_bb0170
  article-title: A comparison of neuron response properties in areas A1 and CM of the marmoset monkey auditory cortex: tones and broadband noise
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00248.2004
– start-page: 429
  year: 2002
  ident: 10.1016/j.neuroimage.2014.07.004_bb0035
  article-title: Hearing
– volume: 416
  start-page: 76
  year: 2000
  ident: 10.1016/j.neuroimage.2014.07.004_bb0135
  article-title: Auditory cortex on the posterior superior temporal gyrus of human cerebral cortex
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(20000103)416:1<79::AID-CNE6>3.0.CO;2-2
– volume: 102
  start-page: 2358
  year: 2009
  ident: 10.1016/j.neuroimage.2014.07.004_bb0050
  article-title: Coding of repetitive transients by auditory cortex on Heschl's gyrus
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.91346.2008
– start-page: 116
  year: 2009
  ident: 10.1016/j.neuroimage.2014.07.004_bb0230
  article-title: General anesthesia differentially affects responses from auditory cortical fields in humans
– volume: 12
  start-page: 718
  year: 2009
  ident: 10.1016/j.neuroimage.2014.07.004_bb0260
  article-title: Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2331
– volume: 159
  start-page: 275
  year: 2006
  ident: 10.1016/j.neuroimage.2014.07.004_bb0070
  article-title: High-frequency gamma oscillations and human brain mapping with electrocorticography
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(06)59019-3
– volume: 10
  start-page: 512
  year: 2000
  ident: 10.1016/j.neuroimage.2014.07.004_bb0020
  article-title: Human temporal lobe activation by speech and nonspeech sounds
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.5.512
– volume: 59
  start-page: 1904
  year: 2012
  ident: 10.1016/j.neuroimage.2014.07.004_bb0295
  article-title: Gamma band pitch responses in human auditory cortex measured with magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.098
– volume: 4
  start-page: e5183
  year: 2009
  ident: 10.1016/j.neuroimage.2014.07.004_bb0345
  article-title: Functional maps of human auditory cortex: effects of acoustic features and attention
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005183
– volume: 112
  start-page: 565
  year: 2001
  ident: 10.1016/j.neuroimage.2014.07.004_bb0065
  article-title: Induced electrocorticographic gamma activity during auditory perception
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00545-9
– volume: 190
  start-page: 597
  year: 1980
  ident: 10.1016/j.neuroimage.2014.07.004_bb0095
  article-title: Cytoarchitectonic organization of the human auditory cortex
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.901900312
– volume: 150
  start-page: 225
  year: 2000
  ident: 10.1016/j.neuroimage.2014.07.004_bb0325
  article-title: Frequency-dependent responses exhibited by multiple regions in human auditory cortex
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(00)00203-3
– volume: 268
  start-page: 111
  year: 1995
  ident: 10.1016/j.neuroimage.2014.07.004_bb0265
  article-title: Processing of complex sounds in the macaque nonprimary auditory cortex
  publication-title: Science
  doi: 10.1126/science.7701330
– volume: 109
  start-page: 1283
  year: 2013
  ident: 10.1016/j.neuroimage.2014.07.004_bb0235
  article-title: Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00718.2012
– volume: 157
  start-page: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2014.07.004_bb0090
  article-title: Between sound and perception: reviewing the search for a neural code
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(01)00259-3
– start-page: 7
  year: 2005
  ident: 10.1016/j.neuroimage.2014.07.004_bb0165
  article-title: Subdivisions and connections of auditory cortex in primates: a working model
– reference: 22989625 - Neuroimage. 2013 Jan 1;64:185-96
– reference: 15800024 - Cereb Cortex. 2006 Jan;16(1):18-30
– reference: 21541252 - Front Hum Neurosci. 2011 Apr 20;5:42
– reference: 25726272 - Handb Clin Neurol. 2015;129:225-44
– reference: 7701330 - Science. 1995 Apr 7;268(5207):111-4
– reference: 10578103 - J Comp Neurol. 2000 Jan 3;416(1):79-92
– reference: 6771305 - J Comp Neurol. 1980 Apr 1;190(3):597-610
– reference: 12417674 - J Neurosci. 2002 Nov 1;22(21):9502-12
– reference: 19471271 - Nat Neurosci. 2009 Jun;12(6):718-24
– reference: 23236002 - J Neurophysiol. 2013 Mar;109(5):1283-95
– reference: 9819278 - J Neurophysiol. 1998 Nov;80(5):2743-64
– reference: 11305897 - Neuroimage. 2001 Apr;13(4):684-701
– reference: 19663547 - J Neurosurg. 2010 Jun;112(6):1301-7
– reference: 11077196 - Hear Res. 2000 Dec;150(1-2):104-18
– reference: 19365552 - PLoS One. 2009;4(4):e5183
– reference: 18207680 - Hear Res. 2008 Apr;238(1-2):12-24
– reference: 16774452 - PLoS Biol. 2006 Jul;4(7):e215
– reference: 23048019 - Cereb Cortex. 2014 Feb;24(2):340-52
– reference: 11313293 - Cereb Cortex. 2001 May;11(5):411-23
– reference: 11437112 - IEEE Trans Med Imaging. 2001 Jun;20(6):526-34
– reference: 11050211 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793-9
– reference: 15901760 - J Neurophysiol. 2005 Sep;94(3):1904-11
– reference: 10561410 - J Neurophysiol. 1999 Nov;82(5):2346-57
– reference: 22593076 - J Neurosci. 2012 May 16;32(20):7082-90
– reference: 19675285 - J Neurophysiol. 2009 Oct;102(4):2358-74
– reference: 17701981 - J Comp Neurol. 2007 Oct 10;504(5):470-98
– reference: 17184906 - Biosystems. 2007 May-Jun;89(1-3):198-207
– reference: 21925281 - Neuroimage. 2012 Jan 16;59(2):1904-11
– reference: 20519535 - J Neurosci. 2010 Jun 2;30(22):7604-12
– reference: 19439673 - J Neurophysiol. 2009 Jul;102(1):377-86
– reference: 9590556 - J Comp Neurol. 1998 May 18;394(4):475-95
– reference: 17071238 - Prog Brain Res. 2006;159:275-95
– reference: 12968011 - J Neurophysiol. 2003 Dec;90(6):3750-63
– reference: 21160558 - Front Syst Neurosci. 2010 Dec 03;4:155
– reference: 14622588 - Neuron. 2003 Nov 13;40(4):859-69
– reference: 821974 - J Comp Neurol. 1976 Jul 15;168(2):197-247
– reference: 15044682 - Physiol Rev. 2004 Apr;84(2):541-77
– reference: 16134138 - J Comp Neurol. 2005 Oct 24;491(3):270-89
– reference: 11275528 - Clin Neurophysiol. 2001 Apr;112(4):565-82
– reference: 1900211 - Brain. 1991 Feb;114 ( Pt 1A):139-51
– reference: 19631273 - Neuroimage. 2010 Jan 1;49(1):150-7
– reference: 21417542 - Psychol Rev. 2011 Apr;118(2):219-46
– reference: 11077206 - Hear Res. 2000 Dec;150(1-2):225-44
– reference: 18037343 - Clin Neurophysiol. 2008 Jan;119(1):116-33
– reference: 19143093 - Neuroscience. 2008 Nov 19;157(2):484-94
– reference: 8828578 - Brain Res. 1996 Jun 17;724(2):260-4
– reference: 10847601 - Cereb Cortex. 2000 May;10(5):512-28
– reference: 15342713 - J Neurophysiol. 2005 Jan;93(1):22-34
– reference: 23641203 - Front Syst Neurosci. 2013 Apr 30;7:11
– reference: 9417972 - Neuroimage. 1997 Nov;6(4):288-304
– reference: 21697384 - J Neurosci. 2011 Jun 22;31(25):9345-52
– reference: 23074251 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18168-73
– reference: 24146606 - PLoS Comput Biol. 2013;9(10):e1003271
– reference: 2137837 - J Acoust Soc Am. 1990 Feb;87(2):820-57
– reference: 12611946 - J Neurophysiol. 2003 Jun;89(6):2889-903
– reference: 11745645 - J Comp Neurol. 2001 Dec 17;441(3):197-222
– reference: 14681146 - Ann N Y Acad Sci. 2003 Nov;999:218-33
– reference: 20408218 - Hum Brain Mapp. 1997;5(4):218-21
– reference: 21368087 - Cereb Cortex. 2011 Oct;21(10):2332-47
– reference: 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
– reference: 15238437 - Cereb Cortex. 2005 Feb;15(2):170-86
– reference: 10659849 - Nature. 2000 Jan 20;403(6767):309-12
– reference: 24795550 - Front Neurosci. 2014 Apr 22;8:72
– reference: 11470183 - Hear Res. 2001 Jul;157(1-2):1-42
– reference: 6697149 - Brain. 1984 Mar;107 ( Pt 1):115-31
SSID ssj0009148
Score 2.4148846
Snippet The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 598
SubjectTerms Adult
Auditory Cortex - anatomy & histology
Auditory Cortex - physiology
Auditory Perception - physiology
Brain
Brain Mapping - methods
Ears & hearing
Electrodes, Implanted
Electroencephalography - methods
Evoked Potentials, Auditory - physiology
Female
Gamma Rhythm - physiology
Human subjects
Humans
Male
Middle Aged
Physiology
Primates
Reaction Time - physiology
Sound
Speech Perception - physiology
Studies
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RaxQxEA61heKL1Fr1tEoEX4O7SfaS6EMpxaMU2qcW7i1kswlW6m69XkH_vTOb7N5VpdzzTmB3Mpn5djLzDSEfVahC1cTICqc8k9po5rTirOZOFEGVoYiYGji_mJ5eybN5Nc8Jt7tcVjn4xN5RN53HHPknQCYS0IuW1dHtT4ZTo_B2NY_QeEJ2kLoMS7rUXK1Id0uZWuEqwTQI5EqeVN_V80Ve_4BTiwVesqfwzOPa_hOe_oWff1dRroWl2R55lvEkPU4G8JxshXaf7J7nG_MXpJtB4Er5Ptqt9V3SLtJ-Ph912JfRLX5Tj3W3vz7TNeqNJLdIdbSB3jhE2PBvTfN4H5oiIk2pHky6H5Cr2dfLk1OWhywwr4RYsmltuDeRmyBNLJ1xXvQk9VzXpQvaNBEUX4vCmeikFj4KpUoepA9SN_C3Jl6S7bZrw2tCuWoCRDcTfB1kUN4pJJNRvKp5XckYJ0QNurU-M5DjIIwbO5SafberXbG4K7bA63E5IeW48jaxcGywxgzbZ4cuU_CLFkLFBmu_jGszEkn63HD14WAtNnuEO7uy3wn5MD6Gs4wXNK4N3T3IABgFeCrE9BGZKQDmEnH7hLxKBjiqBOAsOFRdgKIfmOYogFziD5-01996TnEpBYBx_ubxV39LnuJ3pl7MQ7K9XNyHdwDKlvX7_uT9AQD-O1M
  priority: 102
  providerName: ProQuest
Title Functional organization of human auditory cortex: Investigation of response latencies through direct recordings
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191400576X
https://dx.doi.org/10.1016/j.neuroimage.2014.07.004
https://www.ncbi.nlm.nih.gov/pubmed/25019680
https://www.proquest.com/docview/1614115845
https://www.proquest.com/docview/1562441336
https://www.proquest.com/docview/1622611397
https://pubmed.ncbi.nlm.nih.gov/PMC4430832
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fixMxEA7HCeKL-NvqeUTwde1ukt0k-nQeV6pyRdSDvoVsmnCVc_eoPdAX_3ZnNtm9VkUKvrS0mUA7mcx8m8x8Q8gL6UtfLkLIcitdJpRWmVWSZTWzPPey8HnAo4HTWTU9E-_m5XyPHPe1MJhWmXx_9Omdt07fjJM2x5fL5fgTIAMIN8hPhhWV1Rwr2IVEK3_58zrNA4ZjOVzJM5RO2Twxx6vjjFx-hZ2LSV6io_FMLdv-EqL-hKC_Z1JuhKbJHXI7YUp6FH_2XbLnm3vk5mm6Nb9P2gkEr3jmR9uN2kvaBtr16KMWazPa1Q_qMPf2-yu6Qb8R5VYxl9bTC4soG56vaWrxQ6MGaTzuwYP3B-RscvL5eJqlRguZk5yvs6rWzOnAtBc6FFZbxzuieqbqwnqlFwGCeM1zq4MVirvApSyYF84LtYAnNv6Q7Ddt4x8TyuTCQ4TT3tVeeOmsREIZycqa1aUIYURkr1vjEgs5NsO4MH262RdzvSoGV8XkeEUuRqQYZl5GJo4d5uh--UxfaQq-0UC42GHu62HulkXuOPugtxaTvMI3A-haAAJXohyR58Mw7Ge8pLGNb69ABgApQFTOq3_IVACaC8TuI_IoGuCgEoC04FRVDoreMs1BAPnEt0ea5XnHKy4EB0DOnvzXH39KbuGnWK55QPbXqyv_DHDbuj7sNia8yrk8JDeO3r6fzuD9zcnsw8dfhzFK7w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8UBhgJHiMS26ltEEJ8rOrYWiG0SXvLHMcWQyMZXSfYP8XfyDl22g7Q1Jc9x9cmvvPd7873AfBc2NzmlXNJqoVJuFQy0VLQpKSapVZkNnU-NDCeDEZ7_NN-vr8Gv7taGJ9W2enEVlFXjfEx8peITDiiF8nzt8c_Ej81yt-udiM0glhs27Of6LKdvNn6iPx9Qelwc_fDKIlTBRIjGJslg1JRoxxVliuXaaUNa7uyU1lm2kpVOfynkqVaOc0lM44JkVHLjeWyQveE4e9egXXO0JXpwfr7zcnnL4s2vxkPxXc5S2SWqZg7FDLK2g6Vh99RT_iUMt42DY0D4v5jEP8FvH_nbS4ZwuFNuBERLHkXRO4WrNn6Nlwdxzv6O9AM0VSGCCNplio9SeNIOxGQaF8J0kzPiPGZvr9ekaVmH2HdNGTuWnKkPaZHb57EgUIk2GASgks-zH8X9i6FAfegVze1fQCEisqiPVXWlJZbYbTw7WsEzUta5ty5PohubwsTe5770RtHRZfc9q1YcKXwXClSfyHP-5DNKY9D348VaFTHvqKra0VNXKBxWoH29Zw2Yp-wnytSb3TSUkQddFIsTkwfns0fo_bwV0K6ts0prkH4i4CYscEFawYI0TPvKfThfhDA-ZYggEYVLlPc6HOiOV_gu5eff1Iffm27mHPOEP7Thxe_-lO4Ntod7xQ7W5PtR3Ddf3OoBN2A3mx6ah8jJJyVT-I5JHBw2Uf_DzwpeR4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG4QE-ILwSsrqDXRxwnTy2xbDSFG3IAI8UGSfaudThsxMIPLEuWv-es8nXZmFzVkX3iednfm9Fy-c3ouCL0SrnBF5X2WG2EzLpXMjBQ0K6lhuRPE5T6EBg6PhnvH_OO4GC-h310tTEir7HRiq6irxoYY-RYgEw7oRfJiy6e0iM-7o53zH1mYIBVuWrtxGpFFDtzVT3DfLrb3d-GsX1M6-vDl_V6WJgxkVjA2zYalolZ5qhxXnhhlLGs7tFNZEuOkqjz8a8lyo7zhklnPhCDUceu4rMBVYfC7d9BdwQoSZEyMxazhL-GxDK9gmSREpSyimFvW9qo8OQONEZLLeNs-NI2K-49p_Bf6_p3BOWcSR2toNWFZ_C4y33205OoHaOUw3dY_RM0IjGaMNeJmruYTNx63swGxCTUhzeQK25Dz--sNnmv7EddNYg6vw6cmoHvw63EaLYSjNcYxzBQC_o_Q8a2Q_zFarpvarSNMReXAsipnS8edsEaERjaCFiUtC-79AImOttqm7udhCMep7tLcvuvZqehwKjoPV_N8gEi_8zx2AFlgj-qOT3cVrqCTNZipBfa-7fcmFBTpueDuzY5bdNJGF3omOwP0sn8MeiRcDpnaNZewBoAwQGPGhjesGQJYJ8FnGKAnkQF7kgCUBmUucyD0NdbsF4Q-5tef1Cff2n7mnDNwBOjTm1_9BVoBgdef9o8ONtC98MmxJHQTLU8nl-4ZYMNp-bwVQoy-3rbU_wFKJnvu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+organization+of+human+auditory+cortex%3A+Investigation+of+response+latencies+through+direct+recordings&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Nourski%2C+Kirill+V.&rft.au=Steinschneider%2C+Mitchell&rft.au=McMurray%2C+Bob&rft.au=Kovach%2C+Christopher+K.&rft.date=2014-11-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=101&rft.spage=598&rft.epage=609&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.07.004&rft.externalDocID=S105381191400576X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon