Functional organization of human auditory cortex: Investigation of response latencies through direct recordings
The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 101; pp. 598 - 609 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2014
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.
•We measured latencies of responses to sounds in multiple auditory cortical regions•Earliest responses were found in posteromedial Heschl's gyrus (HG) (auditory core)•Anterolateral HG was characterized by the longest latencies•Posterolateral superior temporal gyrus (PLST) had intermediate latencies•Part of PLST may represent a relatively early stage in auditory cortical hierarchy |
---|---|
AbstractList | The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy. The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy. •We measured latencies of responses to sounds in multiple auditory cortical regions•Earliest responses were found in posteromedial Heschl's gyrus (HG) (auditory core)•Anterolateral HG was characterized by the longest latencies•Posterolateral superior temporal gyrus (PLST) had intermediate latencies•Part of PLST may represent a relatively early stage in auditory cortical hierarchy The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy. |
Author | Howard, Matthew A. Kawasaki, Hiroto Steinschneider, Mitchell McMurray, Bob Oya, Hiroyuki Nourski, Kirill V. Kovach, Christopher K. |
AuthorAffiliation | 2 Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA 3 Department of Psychology, Department of Communication Sciences and Disorders, Department of Linguistics, The University of Iowa, Iowa City, IA, 52242 USA 1 Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA |
AuthorAffiliation_xml | – name: 3 Department of Psychology, Department of Communication Sciences and Disorders, Department of Linguistics, The University of Iowa, Iowa City, IA, 52242 USA – name: 2 Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA – name: 1 Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA |
Author_xml | – sequence: 1 givenname: Kirill V. orcidid: 0000-0002-7152-8473 surname: Nourski fullname: Nourski, Kirill V. email: kirill-nourski@uiowa.edu organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA – sequence: 2 givenname: Mitchell surname: Steinschneider fullname: Steinschneider, Mitchell organization: Department of Neurology, Albert Einstein College of Medicine, New York, NY 10461, USA – sequence: 3 givenname: Bob orcidid: 0000-0002-6532-284X surname: McMurray fullname: McMurray, Bob organization: Department of Psychology, The University of Iowa, Iowa City, IA 52242, USA – sequence: 4 givenname: Christopher K. surname: Kovach fullname: Kovach, Christopher K. organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA – sequence: 5 givenname: Hiroyuki surname: Oya fullname: Oya, Hiroyuki organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA – sequence: 6 givenname: Hiroto surname: Kawasaki fullname: Kawasaki, Hiroto organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA – sequence: 7 givenname: Matthew A. surname: Howard fullname: Howard, Matthew A. organization: Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25019680$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuP0zAUhSM0iHnAX0CR2LBJ8LWdxGaBGEYMjDQSG1hbrnOTuqR2sZOK8utx6DygG7qyLZ_7-V6fc56dOO8wy3IgJRCo36xKh1Pwdq17LCkBXpKmJIQ_yc6AyKqQVUNP5n3FCgEgT7PzGFeEEAlcPMtOaUVA1oKcZf56cma03ukh96HXzv7S8zH3Xb6c1trlemrt6MMuNz6M-PNtfuO2GEfbP-gCxo13EfNBj-iMxZiPy-Cnfpm3NqAZkyIVt9b18Xn2tNNDxBd360X27frj16vPxe2XTzdXl7eFaRgbi3ohqZEdlchlB1pqwzitKaFiARqFbLsa-IIRLTvNBTMdaxqgyA1y0VIh2UX2bs_dTIs1tgbdGPSgNiH9Wdgpr63698bZper9VnHOiGA0AV7fAYL_MaWB1dpGg8OgHfopKqgprQGYbP4vrWrKOTBWJ-mrA-nKTyF9_gwEDlAJXiXVy7-bf-j63rbH6UzwMQbslLHjHz_SLHZQQNScE7VSjzlRc04UaVTKSQKIA8D9G0eUftiXYrJvazGomCx3Bvdeq9bbYyDvDyBmsM4aPXzH3XGI312Y9wg |
CitedBy_id | crossref_primary_10_1073_pnas_2113887118 crossref_primary_10_1523_JNEUROSCI_3556_14_2015 crossref_primary_10_1016_j_heares_2020_107911 crossref_primary_10_1080_23273798_2015_1101145 crossref_primary_10_1093_cercor_bhad020 crossref_primary_10_1080_02643294_2022_2085085 crossref_primary_10_1523_JNEUROSCI_0938_17_2017 crossref_primary_10_1016_j_cortex_2025_02_015 crossref_primary_10_1038_s41467_025_56779_w crossref_primary_10_3389_fnhum_2016_00691 crossref_primary_10_1016_j_heares_2018_11_009 crossref_primary_10_1038_s41562_021_01261_y crossref_primary_10_1016_j_cell_2021_07_019 crossref_primary_10_3389_fnhum_2021_737230 crossref_primary_10_1016_j_neuroimage_2019_116076 crossref_primary_10_1093_cercor_bhab168 crossref_primary_10_3171_CASE22417 crossref_primary_10_7554_eLife_53445 crossref_primary_10_1523_JNEUROSCI_3305_14_2016 crossref_primary_10_1093_cercor_bhaa281 crossref_primary_10_3389_fnhum_2016_00202 crossref_primary_10_3389_fnins_2021_636060 crossref_primary_10_1038_s42003_024_07297_w crossref_primary_10_1002_wcs_1541 crossref_primary_10_1093_cercor_bhad517 crossref_primary_10_1016_j_clinph_2024_04_017 crossref_primary_10_1016_j_pnpbp_2021_110426 crossref_primary_10_1016_j_celrep_2018_07_076 crossref_primary_10_1016_j_heares_2021_108229 crossref_primary_10_3389_fncom_2019_00095 crossref_primary_10_1016_j_neuroimage_2021_118003 crossref_primary_10_1016_j_neuroimage_2020_117291 crossref_primary_10_1093_cercor_bhae007 crossref_primary_10_4103_indianjotol_indianjotol_80_23 crossref_primary_10_1016_j_neuroimage_2018_08_027 crossref_primary_10_3389_fnhum_2022_815232 crossref_primary_10_1016_j_neuroimage_2017_01_032 crossref_primary_10_1523_JNEUROSCI_1468_18_2019 crossref_primary_10_1007_s00062_021_01082_6 crossref_primary_10_1523_JNEUROSCI_0696_19_2019 crossref_primary_10_1007_s00422_019_00795_9 crossref_primary_10_1016_j_neuroimage_2018_11_049 crossref_primary_10_1038_s42003_023_05749_3 crossref_primary_10_3389_fnins_2018_00831 crossref_primary_10_1371_journal_pbio_3002176 crossref_primary_10_1523_JNEUROSCI_1468_21_2022 crossref_primary_10_1523_JNEUROSCI_0967_18_2018 crossref_primary_10_1093_cercor_bhae338 crossref_primary_10_1016_j_bandl_2015_03_003 crossref_primary_10_1371_journal_pone_0137915 crossref_primary_10_1016_j_bandl_2018_06_006 crossref_primary_10_1007_s10162_015_0546_4 crossref_primary_10_3389_fnhum_2021_736512 crossref_primary_10_1016_j_tics_2015_03_012 crossref_primary_10_1016_j_neuroimage_2018_01_042 crossref_primary_10_1038_s41598_022_05053_w crossref_primary_10_1016_j_heares_2020_108078 crossref_primary_10_1177_02841851221127271 crossref_primary_10_1002_lio2_73 crossref_primary_10_1016_j_cub_2018_04_033 crossref_primary_10_1038_s41598_024_80911_3 crossref_primary_10_1523_JNEUROSCI_2693_16_2017 crossref_primary_10_1093_cercor_bhac203 crossref_primary_10_1016_j_neuroimage_2017_02_061 |
Cites_doi | 10.1038/35002078 10.1016/S1053-8119(09)70939-5 10.1016/j.biosystems.2006.05.018 10.1093/cercor/bhs314 10.1109/42.929618 10.1016/j.heares.2007.11.012 10.1152/jn.1999.82.5.2346 10.1093/cercor/bhi080 10.1093/cercor/bhh120 10.1016/S0896-6273(03)00669-X 10.3389/fnhum.2011.00042 10.1371/journal.pbio.0040215 10.1016/j.neuroscience.2008.07.050 10.1016/j.neuroimage.2010.06.010 10.1523/JNEUROSCI.22-21-09502.2002 10.1121/1.398894 10.1016/j.neuroimage.2009.07.029 10.1523/JNEUROSCI.0296-10.2010 10.1016/0006-8993(96)00315-0 10.1093/brain/107.1.115 10.1006/nimg.1997.0304 10.3389/fnins.2014.00072 10.3389/fnsys.2010.00155 10.1523/JNEUROSCI.1448-11.2011 10.1016/j.neuroimage.2012.09.017 10.1073/pnas.97.22.11793 10.1002/cne.1407 10.1523/JNEUROSCI.3769-11.2012 10.1002/cne.21432 10.1152/jn.00980.2002 10.1152/jn.1998.80.5.2743 10.1152/jn.00263.2005 10.1002/cne.20702 10.1152/physrev.00029.2003 10.1016/S0378-5955(00)00194-5 10.1093/cercor/11.5.411 10.1196/annals.1284.033 10.1073/pnas.1206387109 10.1002/(SICI)1097-0193(1997)5:4<218::AID-HBM2>3.0.CO;2-6 10.3171/2009.7.JNS09404 10.1371/journal.pcbi.1003271 10.1152/jn.00500.2003 10.1037/a0022325 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z 10.1006/nimg.2000.0715 10.3389/fnsys.2013.00011 10.1016/j.clinph.2007.09.136 10.1152/jn.90954.2008 10.1093/cercor/bhr014 10.1002/cne.901680203 10.1109/34.24792 10.1152/jn.00248.2004 10.1002/(SICI)1096-9861(20000103)416:1<79::AID-CNE6>3.0.CO;2-2 10.1152/jn.91346.2008 10.1038/nn.2331 10.1016/S0079-6123(06)59019-3 10.1093/cercor/10.5.512 10.1016/j.neuroimage.2011.08.098 10.1371/journal.pone.0005183 10.1016/S1388-2457(00)00545-9 10.1002/cne.901900312 10.1016/S0378-5955(00)00203-3 10.1126/science.7701330 10.1152/jn.00718.2012 10.1016/S0378-5955(01)00259-3 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Nov 1, 2014 2014 Elsevier Inc. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Nov 1, 2014 – notice: 2014 Elsevier Inc. All rights reserved. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2014.07.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE ProQuest One Psychology Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 609 |
ExternalDocumentID | PMC4430832 3465764551 25019680 10_1016_j_neuroimage_2014_07_004 S105381191400576X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R01-DC008089 – fundername: NIDCD NIH HHS grantid: R01-DC00657 – fundername: NIDCD NIH HHS grantid: R01 DC008089 – fundername: NIDCD NIH HHS grantid: R01 DC000657 – fundername: NCRR NIH HHS grantid: UL1RR024979 – fundername: NIDCD NIH HHS grantid: P50 DC000242 – fundername: NIDCD NIH HHS grantid: R01-DC04290 – fundername: NIDCD NIH HHS grantid: R01 DC004290 – fundername: NCRR NIH HHS grantid: UL1 RR024979 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c733t-6b92c9f29e49f1a9ac34262028b1ae89df614b30a9fa483cf37712e4ce48d2893 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 13:26:43 EDT 2025 Fri Jul 11 15:36:30 EDT 2025 Fri Jul 11 01:10:11 EDT 2025 Wed Aug 13 09:45:51 EDT 2025 Mon Jul 21 05:31:18 EDT 2025 Tue Jul 01 02:14:54 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Fri Feb 23 02:24:27 EST 2024 Tue Aug 26 16:31:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c733t-6b92c9f29e49f1a9ac34262028b1ae89df614b30a9fa483cf37712e4ce48d2893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7152-8473 0000-0002-6532-284X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4430832 |
PMID | 25019680 |
PQID | 1614115845 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4430832 proquest_miscellaneous_1622611397 proquest_miscellaneous_1562441336 proquest_journals_1614115845 pubmed_primary_25019680 crossref_citationtrail_10_1016_j_neuroimage_2014_07_004 crossref_primary_10_1016_j_neuroimage_2014_07_004 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_07_004 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_07_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Nourski, Steinschneider, Oya, Kawasaki, Jones, Howard (bb0240) 2014; 24 Brugge, Volkov, Garell, Reale, Howard (bb0040) 2003; 90 Nourski, Howard (bb0220) 2014 Lee, Lueders, Dinner, Lesser, Hahn, Klem (bb0190) 1984; 107 Fullerton, Pandya (bb0105) 2007; 504 Woods, Herron, Cate, Yund, Stecker, Rinne, Kang (bb0350) 2010; 4 Rauschecker, Tian, Hauser (bb0265) 1995; 268 Woods, Herron, Cate, Kang, Yund (bb0355) 2011; 5 Camalier, D'Angelo, Sterbing-D'Angelo, de la Mothe, Hackett (bb0055) 2012; 109 Crone, Boatman, Gordon, Hao (bb0065) 2001; 112 Monti, Lutkenhoff, Rubinov, Boveroux, Vanhaudenhuyse, Gosseries, Bruno, Noirhomme, Boly, Laureys (bb0210) 2013; 9 Klatt, Klatt (bb0175) 1990; 87 Eggermont (bb0085) 1998; 80 Bates, Sarkar (bb0005) 2011 Joris, Schreiner, Rees (bb0155) 1994; 84 Steinschneider, Volkov, Noh, Garell, Howard (bb0305) 1999; 82 Oya, Poon, Brugge, Reale, Kawasaki, Volkov, Howard (bb0250) 2007; 89 Yvert, Crouzeix, Bertrand, Seither-Preisler, Pantev (bb0360) 2001; 11 Howard, Volkov, Abbas, Damasio, Ollendieck, Granner (bb0130) 1996; 724 Oya, Kawasaki, Howard, Adolphs (bb0245) 2002; 22 Ray, Niebur, Hsiao, Sinai, Crone (bb0270) 2008; 119 Nourski, Reddy, Oya, Kawasaki, Brugge, Howard (bb0230) 2009 Destrieux, Fischl, Dale, Halgren (bb0075) 2010; 53 Bookstein (bb0030) 1989; 11 Recanzone (bb0275) 2000; 150 Lakatos, Shah, Knuth, Ulbert, Karmos, Schroeder (bb0180) 2005; 94 Rohr, Stiehl, Sprengel, Buzug, Weese, Kuhn (bb0290) 2001; 20 Chevillet, Riesenhuber, Rauschecker (bb0060) 2011; 31 Rauschecher, Scott (bb0260) 2009; 12 Brugge, Nourski, Oya, Reale, Kawasaki, Steinschneider, Howard (bb0050) 2009; 102 Eggermont (bb0090) 2001; 157 Rivier, Clarke (bb0285) 1997; 6 Brugge, Volkov, Oya, Kawasaki, Reale, Fenoy, Steinschneider, Howard (bb0045) 2008; 238 Sweet, Dorph-Petersen, Lewis (bb0320) 2005; 491 Winer (bb0340) 2010 Hackett (bb0110) 2007 Edwards, Soltani, Kim, Dalal, Nagarajan, Berger, Knight (bb0080) 2009; 102 Galaburda, Sanides (bb0095) 1980; 190 Brugge, Howard (bb0035) 2002 Binder, Frost, Hammeke, Bellgowan, Springer, Kaufman, Possing (bb0020) 2000; 10 Wang, Lu, Bendor, Bartlett (bb0335) 2008; 157 Steinschneider, Nourski, Kawasaki, Oya, Brugge, Howard (bb0315) 2011; 21 Petkov, Kayser, Augath, Logothetis (bb0255) 2006; 4 Hackett, de la Mothe, Camalier, Falchier, Lakatos, Kajikawa, Schroeder (bb0125) 2014; 8 Liégeois-Chauvel, Musolino, Chauvel (bb0195) 1991; 114 Baumann, Petkov, Griffiths (bb0010) 2013; 7 Boly, Moran, Murphy, Boveroux, Bruno, Noirhomme, Ledoux, Bonhomme, Brichant, Tononi, Laureys, Friston (bb0025) 2012; 32 Nourski, Reddy, Oya, Kawasaki, Brugge, Howard (bb0225) 2009 Jones (bb0145) 2003; 999 Formisano, Kim, Di Salle, van de Moortele, Ugurbil, Goebel (bb0100) 2003; 40 Hackett, Preuss, Kaas (bb0120) 2001; 441 Woods, Stecker, Rinne, Herron, Cate, Yund, Liao, Kang (bb0345) 2009; 4 Inui, Okamoto, Miki, Gunji, Kakigi (bb0140) 2006; 16 Steinschneider, Volkov, Fishman, Oya, Arezzo, Howard (bb0310) 2005; 15 Belin, Zatorre, Lafaille, Ahad, Pike (bb0015) 2000; 403 McMurray, Jongman (bb0200) 2011; 118 Reddy, Dahdaleh, Albert, Chen, Hansen, Nourski, Kawasaki, Oya, Howard (bb0280) 2010; 112 Kaas, Hackett (bb0160) 2000; 97 Hackett, Stepniewska, Kaas (bb0115) 1998; 394 Kajikawa, de La Mothe, Blumell, Hackett (bb0170) 2005; 93 Millman, Prendergast, Hymers, Green (bb0205) 2013; 64 Crone, Sinai, Korzeniewska (bb0070) 2006; 159 Kaas, Hackett (bb0165) 2005 Howard, Volkov, Mirsky, Garell, Noh, Granner, Damasio, Steinschneider, Reale, Hind, Brugge (bb0135) 2000; 416 Jones, Burton (bb0150) 1976; 168 Talavage, Ledden, Benson, Rosen, Melcher (bb0325) 2000; 150 Leaver, Rauschecker (bb0185) 2010; 30 Nourski, Brugge, Reale, Kovach, Oya, Kawasaki, Jenison, Howard (bb0235) 2013; 109 Sedley, Teki, Kumar, Overath, Barnes, Griffiths (bb0295) 2012; 59 Stecker, Mickey, Macpherson, Middlebrooks (bb0300) 2003; 89 Zilles, Schleicher, Langemann, Amunts, Morosan, Palomero-Gallagher, Schormann, Mohlberg, Bürgel, Steinmetz, Schlaug, Roland (bb0365) 2007; 5 Morosan, Rademacher, Schleicher, Amunts, Schormann, Zilles (bb0215) 2001; 13 Tanji, Leopold, Ye, Zhu, Malloy, Saunders, Mishkin (bb0330) 2010; 49 Woods (10.1016/j.neuroimage.2014.07.004_bb0355) 2011; 5 Leaver (10.1016/j.neuroimage.2014.07.004_bb0185) 2010; 30 Brugge (10.1016/j.neuroimage.2014.07.004_bb0045) 2008; 238 Inui (10.1016/j.neuroimage.2014.07.004_bb0140) 2006; 16 Chevillet (10.1016/j.neuroimage.2014.07.004_bb0060) 2011; 31 Fullerton (10.1016/j.neuroimage.2014.07.004_bb0105) 2007; 504 Oya (10.1016/j.neuroimage.2014.07.004_bb0250) 2007; 89 Camalier (10.1016/j.neuroimage.2014.07.004_bb0055) 2012; 109 Tanji (10.1016/j.neuroimage.2014.07.004_bb0330) 2010; 49 Kaas (10.1016/j.neuroimage.2014.07.004_bb0160) 2000; 97 Nourski (10.1016/j.neuroimage.2014.07.004_bb0235) 2013; 109 Bookstein (10.1016/j.neuroimage.2014.07.004_bb0030) 1989; 11 Brugge (10.1016/j.neuroimage.2014.07.004_bb0035) 2002 Steinschneider (10.1016/j.neuroimage.2014.07.004_bb0315) 2011; 21 Edwards (10.1016/j.neuroimage.2014.07.004_bb0080) 2009; 102 Belin (10.1016/j.neuroimage.2014.07.004_bb0015) 2000; 403 Binder (10.1016/j.neuroimage.2014.07.004_bb0020) 2000; 10 Eggermont (10.1016/j.neuroimage.2014.07.004_bb0085) 1998; 80 Sweet (10.1016/j.neuroimage.2014.07.004_bb0320) 2005; 491 Yvert (10.1016/j.neuroimage.2014.07.004_bb0360) 2001; 11 Kajikawa (10.1016/j.neuroimage.2014.07.004_bb0170) 2005; 93 Oya (10.1016/j.neuroimage.2014.07.004_bb0245) 2002; 22 Lee (10.1016/j.neuroimage.2014.07.004_bb0190) 1984; 107 Eggermont (10.1016/j.neuroimage.2014.07.004_bb0090) 2001; 157 Crone (10.1016/j.neuroimage.2014.07.004_bb0070) 2006; 159 Steinschneider (10.1016/j.neuroimage.2014.07.004_bb0310) 2005; 15 Rauschecker (10.1016/j.neuroimage.2014.07.004_bb0265) 1995; 268 Hackett (10.1016/j.neuroimage.2014.07.004_bb0125) 2014; 8 Nourski (10.1016/j.neuroimage.2014.07.004_bb0240) 2014; 24 Woods (10.1016/j.neuroimage.2014.07.004_bb0350) 2010; 4 Millman (10.1016/j.neuroimage.2014.07.004_bb0205) 2013; 64 Brugge (10.1016/j.neuroimage.2014.07.004_bb0040) 2003; 90 Hackett (10.1016/j.neuroimage.2014.07.004_bb0110) 2007 Petkov (10.1016/j.neuroimage.2014.07.004_bb0255) 2006; 4 Reddy (10.1016/j.neuroimage.2014.07.004_bb0280) 2010; 112 Hackett (10.1016/j.neuroimage.2014.07.004_bb0120) 2001; 441 Jones (10.1016/j.neuroimage.2014.07.004_bb0150) 1976; 168 Hackett (10.1016/j.neuroimage.2014.07.004_bb0115) 1998; 394 Monti (10.1016/j.neuroimage.2014.07.004_bb0210) 2013; 9 Lakatos (10.1016/j.neuroimage.2014.07.004_bb0180) 2005; 94 Boly (10.1016/j.neuroimage.2014.07.004_bb0025) 2012; 32 Stecker (10.1016/j.neuroimage.2014.07.004_bb0300) 2003; 89 Howard (10.1016/j.neuroimage.2014.07.004_bb0135) 2000; 416 Recanzone (10.1016/j.neuroimage.2014.07.004_bb0275) 2000; 150 Rohr (10.1016/j.neuroimage.2014.07.004_bb0290) 2001; 20 Zilles (10.1016/j.neuroimage.2014.07.004_bb0365) 2007; 5 Nourski (10.1016/j.neuroimage.2014.07.004_bb0220) 2014 Wang (10.1016/j.neuroimage.2014.07.004_bb0335) 2008; 157 Galaburda (10.1016/j.neuroimage.2014.07.004_bb0095) 1980; 190 Crone (10.1016/j.neuroimage.2014.07.004_bb0065) 2001; 112 Morosan (10.1016/j.neuroimage.2014.07.004_bb0215) 2001; 13 Bates (10.1016/j.neuroimage.2014.07.004_bb0005) 2011 Formisano (10.1016/j.neuroimage.2014.07.004_bb0100) 2003; 40 Joris (10.1016/j.neuroimage.2014.07.004_bb0155) 1994; 84 Sedley (10.1016/j.neuroimage.2014.07.004_bb0295) 2012; 59 McMurray (10.1016/j.neuroimage.2014.07.004_bb0200) 2011; 118 Kaas (10.1016/j.neuroimage.2014.07.004_bb0165) 2005 Ray (10.1016/j.neuroimage.2014.07.004_bb0270) 2008; 119 Talavage (10.1016/j.neuroimage.2014.07.004_bb0325) 2000; 150 Brugge (10.1016/j.neuroimage.2014.07.004_bb0050) 2009; 102 Baumann (10.1016/j.neuroimage.2014.07.004_bb0010) 2013; 7 Woods (10.1016/j.neuroimage.2014.07.004_bb0345) 2009; 4 Howard (10.1016/j.neuroimage.2014.07.004_bb0130) 1996; 724 Jones (10.1016/j.neuroimage.2014.07.004_bb0145) 2003; 999 Liégeois-Chauvel (10.1016/j.neuroimage.2014.07.004_bb0195) 1991; 114 Destrieux (10.1016/j.neuroimage.2014.07.004_bb0075) 2010; 53 Winer (10.1016/j.neuroimage.2014.07.004_bb0340) 2010 Nourski (10.1016/j.neuroimage.2014.07.004_bb0230) 2009 Klatt (10.1016/j.neuroimage.2014.07.004_bb0175) 1990; 87 Nourski (10.1016/j.neuroimage.2014.07.004_bb0225) 2009 Rivier (10.1016/j.neuroimage.2014.07.004_bb0285) 1997; 6 Rauschecher (10.1016/j.neuroimage.2014.07.004_bb0260) 2009; 12 Steinschneider (10.1016/j.neuroimage.2014.07.004_bb0305) 1999; 82 10847601 - Cereb Cortex. 2000 May;10(5):512-28 23074251 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18168-73 12968011 - J Neurophysiol. 2003 Dec;90(6):3750-63 19675285 - J Neurophysiol. 2009 Oct;102(4):2358-74 21697384 - J Neurosci. 2011 Jun 22;31(25):9345-52 10561410 - J Neurophysiol. 1999 Nov;82(5):2346-57 19143093 - Neuroscience. 2008 Nov 19;157(2):484-94 821974 - J Comp Neurol. 1976 Jul 15;168(2):197-247 22989625 - Neuroimage. 2013 Jan 1;64:185-96 9819278 - J Neurophysiol. 1998 Nov;80(5):2743-64 10659849 - Nature. 2000 Jan 20;403(6767):309-12 15238437 - Cereb Cortex. 2005 Feb;15(2):170-86 6697149 - Brain. 1984 Mar;107 ( Pt 1):115-31 23641203 - Front Syst Neurosci. 2013 Apr 30;7:11 15901760 - J Neurophysiol. 2005 Sep;94(3):1904-11 25726272 - Handb Clin Neurol. 2015;129:225-44 19663547 - J Neurosurg. 2010 Jun;112(6):1301-7 16774452 - PLoS Biol. 2006 Jul;4(7):e215 9590556 - J Comp Neurol. 1998 May 18;394(4):475-95 20519535 - J Neurosci. 2010 Jun 2;30(22):7604-12 10578103 - J Comp Neurol. 2000 Jan 3;416(1):79-92 11745645 - J Comp Neurol. 2001 Dec 17;441(3):197-222 18037343 - Clin Neurophysiol. 2008 Jan;119(1):116-33 19631273 - Neuroimage. 2010 Jan 1;49(1):150-7 15800024 - Cereb Cortex. 2006 Jan;16(1):18-30 11275528 - Clin Neurophysiol. 2001 Apr;112(4):565-82 14681146 - Ann N Y Acad Sci. 2003 Nov;999:218-33 9417972 - Neuroimage. 1997 Nov;6(4):288-304 12611946 - J Neurophysiol. 2003 Jun;89(6):2889-903 11077196 - Hear Res. 2000 Dec;150(1-2):104-18 11050211 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793-9 21160558 - Front Syst Neurosci. 2010 Dec 03;4:155 15342713 - J Neurophysiol. 2005 Jan;93(1):22-34 19365552 - PLoS One. 2009;4(4):e5183 15044682 - Physiol Rev. 2004 Apr;84(2):541-77 6771305 - J Comp Neurol. 1980 Apr 1;190(3):597-610 21417542 - Psychol Rev. 2011 Apr;118(2):219-46 21541252 - Front Hum Neurosci. 2011 Apr 20;5:42 19439673 - J Neurophysiol. 2009 Jul;102(1):377-86 8828578 - Brain Res. 1996 Jun 17;724(2):260-4 1900211 - Brain. 1991 Feb;114 ( Pt 1A):139-51 18207680 - Hear Res. 2008 Apr;238(1-2):12-24 11470183 - Hear Res. 2001 Jul;157(1-2):1-42 2137837 - J Acoust Soc Am. 1990 Feb;87(2):820-57 17701981 - J Comp Neurol. 2007 Oct 10;504(5):470-98 16134138 - J Comp Neurol. 2005 Oct 24;491(3):270-89 14622588 - Neuron. 2003 Nov 13;40(4):859-69 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15 12417674 - J Neurosci. 2002 Nov 1;22(21):9502-12 23048019 - Cereb Cortex. 2014 Feb;24(2):340-52 24146606 - PLoS Comput Biol. 2013;9(10):e1003271 7701330 - Science. 1995 Apr 7;268(5207):111-4 17071238 - Prog Brain Res. 2006;159:275-95 11313293 - Cereb Cortex. 2001 May;11(5):411-23 19471271 - Nat Neurosci. 2009 Jun;12(6):718-24 20408218 - Hum Brain Mapp. 1997;5(4):218-21 17184906 - Biosystems. 2007 May-Jun;89(1-3):198-207 11305897 - Neuroimage. 2001 Apr;13(4):684-701 11437112 - IEEE Trans Med Imaging. 2001 Jun;20(6):526-34 21925281 - Neuroimage. 2012 Jan 16;59(2):1904-11 11077206 - Hear Res. 2000 Dec;150(1-2):225-44 23236002 - J Neurophysiol. 2013 Mar;109(5):1283-95 22593076 - J Neurosci. 2012 May 16;32(20):7082-90 21368087 - Cereb Cortex. 2011 Oct;21(10):2332-47 24795550 - Front Neurosci. 2014 Apr 22;8:72 |
References_xml | – volume: 93 start-page: 22 year: 2005 end-page: 34 ident: bb0170 article-title: A comparison of neuron response properties in areas A1 and CM of the marmoset monkey auditory cortex: tones and broadband noise publication-title: J. Neurophysiol. – volume: 32 start-page: 7082 year: 2012 end-page: 7090 ident: bb0025 article-title: Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness publication-title: J. Neurosci. – volume: 20 start-page: 526 year: 2001 end-page: 534 ident: bb0290 article-title: Landmark-based elastic registration using approximating thin-plate splines publication-title: IEEE Trans. Med. Imaging – volume: 84 start-page: 541 year: 1994 end-page: 577 ident: bb0155 article-title: Neural processing of amplitude-modulated sounds publication-title: Physiol. Rev. – volume: 9 start-page: e1003271 year: 2013 ident: bb0210 article-title: Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness publication-title: PLoS Comput. Biol. – volume: 30 start-page: 7604 year: 2010 end-page: 7612 ident: bb0185 article-title: Cortical representation of natural complex sounds: effects of acoustic features and auditory object category publication-title: J. Neurosci. – volume: 24 start-page: 340 year: 2014 end-page: 352 ident: bb0240 article-title: Spectral organization of the human lateral superior temporal gyrus revealed by intracranial recordings publication-title: Cereb. Cortex – volume: 11 start-page: 567 year: 1989 end-page: 585 ident: bb0030 article-title: Principal warps: thin-plate splines and the decomposition of deformations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 102 start-page: 377 year: 2009 end-page: 386 ident: bb0080 article-title: Comparison of time–frequency responses and the event-related potential to auditory speech stimuli in human cortex publication-title: J. Neurophysiol. – volume: 102 start-page: 2358 year: 2009 end-page: 2374 ident: bb0050 article-title: Coding of repetitive transients by auditory cortex on Heschl's gyrus publication-title: J. Neurophysiol. – volume: 114 start-page: 139 year: 1991 end-page: 151 ident: bb0195 article-title: Localization of the primary auditory area in man publication-title: Brain – volume: 87 start-page: 820 year: 1990 end-page: 857 ident: bb0175 article-title: Analysis, synthesis, and perception of voice quality variations among female and male talkers publication-title: J. Acoust. Soc. Am. – start-page: 41 year: 2010 end-page: 74 ident: bb0340 article-title: A profile of auditory forebrain connections and circuits publication-title: The Auditory Cortex – volume: 504 start-page: 470 year: 2007 end-page: 498 ident: bb0105 article-title: Architectonic analysis of the auditory-related areas of the superior temporal region in human brain publication-title: J. Comp. Neurol. – volume: 238 start-page: 12 year: 2008 end-page: 24 ident: bb0045 article-title: Functional localization of auditory cortical fields of human: click-train stimulation publication-title: Hear. Res. – volume: 82 start-page: 2346 year: 1999 end-page: 2357 ident: bb0305 article-title: Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex publication-title: J. Neurophysiol. – volume: 8 start-page: 72 year: 2014 ident: bb0125 article-title: Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model publication-title: Front. Neurosci. – volume: 107 start-page: 115 year: 1984 end-page: 131 ident: bb0190 article-title: Recording of auditory evoked potentials in man using chronic subdural electrodes publication-title: Brain – volume: 64 start-page: 185 year: 2013 end-page: 196 ident: bb0205 article-title: Representations of the temporal envelope of sounds in human auditory cortex: can the results from invasive intracortical "depth" electrode recordings be replicated using non-invasive MEG "virtual electrodes"? publication-title: Neuroimage – volume: 7 start-page: 11 year: 2013 ident: bb0010 article-title: A unified framework for the organization of the primate auditory cortex publication-title: Front. Syst. Neurosci. – volume: 16 start-page: 18 year: 2006 end-page: 30 ident: bb0140 article-title: Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study publication-title: Cereb. Cortex – volume: 90 start-page: 3750 year: 2003 end-page: 3763 ident: bb0040 article-title: Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans publication-title: J. Neurophysiol. – volume: 268 start-page: 111 year: 1995 end-page: 114 ident: bb0265 article-title: Processing of complex sounds in the macaque nonprimary auditory cortex publication-title: Science – start-page: 116 year: 2009 ident: bb0230 article-title: General anesthesia differentially affects responses from auditory cortical fields in humans publication-title: 3rd International Conference on Auditory Cortex. August 29 – September 2, 2009, Magdeburg, Germany – volume: 150 start-page: 104 year: 2000 end-page: 118 ident: bb0275 article-title: Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys publication-title: Hear. Res. – volume: 394 start-page: 475 year: 1998 end-page: 495 ident: bb0115 article-title: Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys publication-title: J. Comp. Neurol. – volume: 89 start-page: 2889 year: 2003 end-page: 2903 ident: bb0300 article-title: Spatial sensitivity in field PAF of cat auditory cortex publication-title: J. Neurophysiol. – volume: 157 start-page: 1 year: 2001 end-page: 42 ident: bb0090 article-title: Between sound and perception: reviewing the search for a neural code publication-title: Hear. Res. – volume: 441 start-page: 197 year: 2001 end-page: 222 ident: bb0120 article-title: Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans publication-title: J. Comp. Neurol. – volume: 6 start-page: 288 year: 1997 end-page: 304 ident: bb0285 article-title: Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas publication-title: Neuroimage – volume: 80 start-page: 2743 year: 1998 end-page: 2764 ident: bb0085 article-title: Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences publication-title: J. Neurophysiol. – volume: 40 start-page: 859 year: 2003 end-page: 969 ident: bb0100 article-title: Mirror-symmetric tonotopic maps in human primary auditory cortex publication-title: Neuron – volume: 150 start-page: 225 year: 2000 end-page: 244 ident: bb0325 article-title: Frequency-dependent responses exhibited by multiple regions in human auditory cortex publication-title: Hear. Res. – year: 2011 ident: bb0005 article-title: LME4: linear mixed-effects models using S4 classes (R Package Version 0.9975-11) [Computer software manual] – volume: 21 start-page: 2332 year: 2011 end-page: 2347 ident: bb0315 article-title: Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus publication-title: Cereb. Cortex – volume: 403 start-page: 309 year: 2000 end-page: 312 ident: bb0015 article-title: Voice-selective areas in human auditory cortex publication-title: Nature – volume: 4 start-page: e5183 year: 2009 ident: bb0345 article-title: Functional maps of human auditory cortex: effects of acoustic features and attention publication-title: PLoS One – year: 2014 ident: bb0220 article-title: Invasive recordings in human auditory cortex publication-title: Hand. Clin. Neurol. – volume: 119 start-page: 116 year: 2008 end-page: 133 ident: bb0270 article-title: High-frequency gamma activity (80-150Hz) is increased in human cortex during selective attention publication-title: Clin. Neurophysiol. – volume: 118 start-page: 219 year: 2011 end-page: 246 ident: bb0200 article-title: What information is necessary for speech categorization? Harnessing variability in the speech signal by integrating cues computed relative to expectations publication-title: Psychol. Rev. – volume: 999 start-page: 218 year: 2003 end-page: 233 ident: bb0145 article-title: Chemically defined parallel pathways in the monkey auditory system publication-title: Ann. N. Y. Acad. Sci. – volume: 112 start-page: 565 year: 2001 end-page: 582 ident: bb0065 article-title: Induced electrocorticographic gamma activity during auditory perception publication-title: Clin. Neurophysiol. – volume: 94 start-page: 1904 year: 2005 end-page: 1911 ident: bb0180 article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex publication-title: J. Neurophysiol. – start-page: 429 year: 2002 end-page: 448 ident: bb0035 article-title: Hearing publication-title: Encyclopedia of the Human Brain – volume: 190 start-page: 597 year: 1980 end-page: 610 ident: bb0095 article-title: Cytoarchitectonic organization of the human auditory cortex publication-title: J. Comp. Neurol. – volume: 10 start-page: 512 year: 2000 end-page: 528 ident: bb0020 article-title: Human temporal lobe activation by speech and nonspeech sounds publication-title: Cereb. Cortex – start-page: 7 year: 2005 end-page: 26 ident: bb0165 article-title: Subdivisions and connections of auditory cortex in primates: a working model publication-title: Auditory Cortex. A Synthesis of Human and Animal Research – volume: 89 start-page: 198 year: 2007 end-page: 207 ident: bb0250 article-title: Functional connections between auditory cortical fields in humans revealed by Granger causality analysis of intra-cranial evoked potentials to sounds: comparison of two methods publication-title: Biosystems – volume: 5 start-page: 42 year: 2011 ident: bb0355 article-title: Phonological processing in human auditory cortical fields publication-title: Front. Hum. Neurosci. – volume: 13 start-page: 684 year: 2001 end-page: 701 ident: bb0215 article-title: Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system publication-title: Neuroimage – volume: 4 start-page: 155 year: 2010 ident: bb0350 article-title: Functional properties of human auditory cortical fields publication-title: Front. Syst. Neurosci. – volume: 168 start-page: 197 year: 1976 end-page: 247 ident: bb0150 article-title: Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates publication-title: J. Comp. Neurol. – volume: 157 start-page: 484 year: 2008 end-page: 494 ident: bb0335 article-title: Neural coding of temporal information in auditory thalamus and cortex publication-title: Neuroscience – volume: 53 start-page: 1 year: 2010 end-page: 15 ident: bb0075 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage – volume: 15 start-page: 170 year: 2005 end-page: 186 ident: bb0310 article-title: Intracortical responses in human and monkey primary auditory cortex support a temporal processing mechanism for encoding of the voice onset time phonetic parameter publication-title: Cereb. Cortex – volume: 416 start-page: 76 year: 2000 end-page: 92 ident: bb0135 article-title: Auditory cortex on the posterior superior temporal gyrus of human cerebral cortex publication-title: J. Comp. Neurol. – volume: 49 start-page: 150 year: 2010 end-page: 157 ident: bb0330 article-title: Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey publication-title: Neuroimage – volume: 11 start-page: 411 year: 2001 end-page: 423 ident: bb0360 article-title: Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans publication-title: Cereb. Cortex – volume: 109 start-page: 1283 year: 2013 end-page: 1295 ident: bb0235 article-title: Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study publication-title: J. Neurophysiol. – volume: 22 start-page: 9502 year: 2002 end-page: 9512 ident: bb0245 article-title: Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli publication-title: J. Neurosci. – volume: 112 start-page: 1301 year: 2010 end-page: 1307 ident: bb0280 article-title: A method for placing Heschl gyrus depth electrodes publication-title: J. Neurosurg. – volume: 5 start-page: 218 year: 2007 end-page: 221 ident: bb0365 article-title: Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture publication-title: Hum. Brain Mapp. – volume: 59 start-page: 1904 year: 2012 end-page: 1911 ident: bb0295 article-title: Gamma band pitch responses in human auditory cortex measured with magnetoencephalography publication-title: Neuroimage – volume: 12 start-page: 718 year: 2009 end-page: 724 ident: bb0260 article-title: Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing publication-title: Nat. Neurosci. – volume: 31 start-page: 9345 year: 2011 end-page: 9352 ident: bb0060 article-title: Functional correlates of the anterolateral processing hierarchy in human auditory cortex publication-title: J. Neurosci. – volume: 4 start-page: e215 year: 2006 ident: bb0255 article-title: Functional imaging reveals numerous fields in the monkey auditory cortex publication-title: PLoS Biol. – volume: 159 start-page: 275 year: 2006 end-page: 295 ident: bb0070 article-title: High-frequency gamma oscillations and human brain mapping with electrocorticography publication-title: Prog. Brain Res. – volume: 109 start-page: 18168 year: 2012 end-page: 18173 ident: bb0055 article-title: Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 97 start-page: 11793 year: 2000 end-page: 11799 ident: bb0160 article-title: Subdivisions of auditory cortex and processing streams in primates publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2009 ident: bb0225 article-title: Differential effects of general anesthesia on auditory cortical fields in humans publication-title: 15th Annual Meeting of the Organization for Human Brain Mapping. June 18 – 22, 2009, San Francisco, CA – volume: 491 start-page: 270 year: 2005 end-page: 289 ident: bb0320 article-title: Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus publication-title: J. Comp. Neurol. – volume: 724 start-page: 260 year: 1996 end-page: 264 ident: bb0130 article-title: A chronic microelectrode investigation of the tonotopic organization of human auditory cortex publication-title: Brain Res. – start-page: 109 year: 2007 end-page: 119 ident: bb0110 article-title: Organization and correspondence of the auditory cortex of humans and nonhuman primates publication-title: Evolution of Nervous Systems Vol. 4: Primates – volume: 403 start-page: 309 year: 2000 ident: 10.1016/j.neuroimage.2014.07.004_bb0015 article-title: Voice-selective areas in human auditory cortex publication-title: Nature doi: 10.1038/35002078 – year: 2009 ident: 10.1016/j.neuroimage.2014.07.004_bb0225 article-title: Differential effects of general anesthesia on auditory cortical fields in humans doi: 10.1016/S1053-8119(09)70939-5 – volume: 89 start-page: 198 year: 2007 ident: 10.1016/j.neuroimage.2014.07.004_bb0250 article-title: Functional connections between auditory cortical fields in humans revealed by Granger causality analysis of intra-cranial evoked potentials to sounds: comparison of two methods publication-title: Biosystems doi: 10.1016/j.biosystems.2006.05.018 – volume: 24 start-page: 340 year: 2014 ident: 10.1016/j.neuroimage.2014.07.004_bb0240 article-title: Spectral organization of the human lateral superior temporal gyrus revealed by intracranial recordings publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs314 – volume: 20 start-page: 526 year: 2001 ident: 10.1016/j.neuroimage.2014.07.004_bb0290 article-title: Landmark-based elastic registration using approximating thin-plate splines publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.929618 – volume: 238 start-page: 12 year: 2008 ident: 10.1016/j.neuroimage.2014.07.004_bb0045 article-title: Functional localization of auditory cortical fields of human: click-train stimulation publication-title: Hear. Res. doi: 10.1016/j.heares.2007.11.012 – volume: 82 start-page: 2346 year: 1999 ident: 10.1016/j.neuroimage.2014.07.004_bb0305 article-title: Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.1999.82.5.2346 – volume: 16 start-page: 18 year: 2006 ident: 10.1016/j.neuroimage.2014.07.004_bb0140 article-title: Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhi080 – volume: 15 start-page: 170 year: 2005 ident: 10.1016/j.neuroimage.2014.07.004_bb0310 article-title: Intracortical responses in human and monkey primary auditory cortex support a temporal processing mechanism for encoding of the voice onset time phonetic parameter publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh120 – volume: 40 start-page: 859 year: 2003 ident: 10.1016/j.neuroimage.2014.07.004_bb0100 article-title: Mirror-symmetric tonotopic maps in human primary auditory cortex publication-title: Neuron doi: 10.1016/S0896-6273(03)00669-X – volume: 5 start-page: 42 year: 2011 ident: 10.1016/j.neuroimage.2014.07.004_bb0355 article-title: Phonological processing in human auditory cortical fields publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2011.00042 – volume: 4 start-page: e215 year: 2006 ident: 10.1016/j.neuroimage.2014.07.004_bb0255 article-title: Functional imaging reveals numerous fields in the monkey auditory cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040215 – volume: 157 start-page: 484 year: 2008 ident: 10.1016/j.neuroimage.2014.07.004_bb0335 article-title: Neural coding of temporal information in auditory thalamus and cortex publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.07.050 – volume: 53 start-page: 1 year: 2010 ident: 10.1016/j.neuroimage.2014.07.004_bb0075 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 22 start-page: 9502 year: 2002 ident: 10.1016/j.neuroimage.2014.07.004_bb0245 article-title: Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-21-09502.2002 – volume: 87 start-page: 820 year: 1990 ident: 10.1016/j.neuroimage.2014.07.004_bb0175 article-title: Analysis, synthesis, and perception of voice quality variations among female and male talkers publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.398894 – volume: 49 start-page: 150 year: 2010 ident: 10.1016/j.neuroimage.2014.07.004_bb0330 article-title: Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.07.029 – volume: 30 start-page: 7604 year: 2010 ident: 10.1016/j.neuroimage.2014.07.004_bb0185 article-title: Cortical representation of natural complex sounds: effects of acoustic features and auditory object category publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0296-10.2010 – volume: 724 start-page: 260 year: 1996 ident: 10.1016/j.neuroimage.2014.07.004_bb0130 article-title: A chronic microelectrode investigation of the tonotopic organization of human auditory cortex publication-title: Brain Res. doi: 10.1016/0006-8993(96)00315-0 – volume: 107 start-page: 115 year: 1984 ident: 10.1016/j.neuroimage.2014.07.004_bb0190 article-title: Recording of auditory evoked potentials in man using chronic subdural electrodes publication-title: Brain doi: 10.1093/brain/107.1.115 – volume: 114 start-page: 139 year: 1991 ident: 10.1016/j.neuroimage.2014.07.004_bb0195 article-title: Localization of the primary auditory area in man publication-title: Brain – volume: 6 start-page: 288 year: 1997 ident: 10.1016/j.neuroimage.2014.07.004_bb0285 article-title: Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas publication-title: Neuroimage doi: 10.1006/nimg.1997.0304 – volume: 8 start-page: 72 year: 2014 ident: 10.1016/j.neuroimage.2014.07.004_bb0125 article-title: Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00072 – volume: 4 start-page: 155 year: 2010 ident: 10.1016/j.neuroimage.2014.07.004_bb0350 article-title: Functional properties of human auditory cortical fields publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2010.00155 – volume: 31 start-page: 9345 year: 2011 ident: 10.1016/j.neuroimage.2014.07.004_bb0060 article-title: Functional correlates of the anterolateral processing hierarchy in human auditory cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1448-11.2011 – volume: 64 start-page: 185 year: 2013 ident: 10.1016/j.neuroimage.2014.07.004_bb0205 article-title: Representations of the temporal envelope of sounds in human auditory cortex: can the results from invasive intracortical "depth" electrode recordings be replicated using non-invasive MEG "virtual electrodes"? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.017 – volume: 97 start-page: 11793 year: 2000 ident: 10.1016/j.neuroimage.2014.07.004_bb0160 article-title: Subdivisions of auditory cortex and processing streams in primates publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.97.22.11793 – volume: 441 start-page: 197 year: 2001 ident: 10.1016/j.neuroimage.2014.07.004_bb0120 article-title: Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans publication-title: J. Comp. Neurol. doi: 10.1002/cne.1407 – volume: 32 start-page: 7082 year: 2012 ident: 10.1016/j.neuroimage.2014.07.004_bb0025 article-title: Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3769-11.2012 – volume: 504 start-page: 470 year: 2007 ident: 10.1016/j.neuroimage.2014.07.004_bb0105 article-title: Architectonic analysis of the auditory-related areas of the superior temporal region in human brain publication-title: J. Comp. Neurol. doi: 10.1002/cne.21432 – volume: 89 start-page: 2889 year: 2003 ident: 10.1016/j.neuroimage.2014.07.004_bb0300 article-title: Spatial sensitivity in field PAF of cat auditory cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00980.2002 – volume: 80 start-page: 2743 year: 1998 ident: 10.1016/j.neuroimage.2014.07.004_bb0085 article-title: Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.80.5.2743 – volume: 94 start-page: 1904 year: 2005 ident: 10.1016/j.neuroimage.2014.07.004_bb0180 article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00263.2005 – volume: 491 start-page: 270 year: 2005 ident: 10.1016/j.neuroimage.2014.07.004_bb0320 article-title: Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus publication-title: J. Comp. Neurol. doi: 10.1002/cne.20702 – volume: 84 start-page: 541 year: 1994 ident: 10.1016/j.neuroimage.2014.07.004_bb0155 article-title: Neural processing of amplitude-modulated sounds publication-title: Physiol. Rev. doi: 10.1152/physrev.00029.2003 – volume: 150 start-page: 104 year: 2000 ident: 10.1016/j.neuroimage.2014.07.004_bb0275 article-title: Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys publication-title: Hear. Res. doi: 10.1016/S0378-5955(00)00194-5 – volume: 11 start-page: 411 year: 2001 ident: 10.1016/j.neuroimage.2014.07.004_bb0360 article-title: Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans publication-title: Cereb. Cortex doi: 10.1093/cercor/11.5.411 – start-page: 109 year: 2007 ident: 10.1016/j.neuroimage.2014.07.004_bb0110 article-title: Organization and correspondence of the auditory cortex of humans and nonhuman primates – volume: 999 start-page: 218 year: 2003 ident: 10.1016/j.neuroimage.2014.07.004_bb0145 article-title: Chemically defined parallel pathways in the monkey auditory system publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1284.033 – volume: 109 start-page: 18168 year: 2012 ident: 10.1016/j.neuroimage.2014.07.004_bb0055 article-title: Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1206387109 – volume: 5 start-page: 218 year: 2007 ident: 10.1016/j.neuroimage.2014.07.004_bb0365 article-title: Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1997)5:4<218::AID-HBM2>3.0.CO;2-6 – volume: 112 start-page: 1301 year: 2010 ident: 10.1016/j.neuroimage.2014.07.004_bb0280 article-title: A method for placing Heschl gyrus depth electrodes publication-title: J. Neurosurg. doi: 10.3171/2009.7.JNS09404 – volume: 9 start-page: e1003271 year: 2013 ident: 10.1016/j.neuroimage.2014.07.004_bb0210 article-title: Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003271 – volume: 90 start-page: 3750 year: 2003 ident: 10.1016/j.neuroimage.2014.07.004_bb0040 article-title: Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans publication-title: J. Neurophysiol. doi: 10.1152/jn.00500.2003 – volume: 118 start-page: 219 year: 2011 ident: 10.1016/j.neuroimage.2014.07.004_bb0200 article-title: What information is necessary for speech categorization? Harnessing variability in the speech signal by integrating cues computed relative to expectations publication-title: Psychol. Rev. doi: 10.1037/a0022325 – volume: 394 start-page: 475 year: 1998 ident: 10.1016/j.neuroimage.2014.07.004_bb0115 article-title: Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z – volume: 13 start-page: 684 year: 2001 ident: 10.1016/j.neuroimage.2014.07.004_bb0215 article-title: Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system publication-title: Neuroimage doi: 10.1006/nimg.2000.0715 – start-page: 41 year: 2010 ident: 10.1016/j.neuroimage.2014.07.004_bb0340 article-title: A profile of auditory forebrain connections and circuits – volume: 7 start-page: 11 year: 2013 ident: 10.1016/j.neuroimage.2014.07.004_bb0010 article-title: A unified framework for the organization of the primate auditory cortex publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2013.00011 – volume: 119 start-page: 116 year: 2008 ident: 10.1016/j.neuroimage.2014.07.004_bb0270 article-title: High-frequency gamma activity (80-150Hz) is increased in human cortex during selective attention publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.09.136 – volume: 102 start-page: 377 year: 2009 ident: 10.1016/j.neuroimage.2014.07.004_bb0080 article-title: Comparison of time–frequency responses and the event-related potential to auditory speech stimuli in human cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.90954.2008 – volume: 21 start-page: 2332 year: 2011 ident: 10.1016/j.neuroimage.2014.07.004_bb0315 article-title: Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr014 – year: 2011 ident: 10.1016/j.neuroimage.2014.07.004_bb0005 – volume: 168 start-page: 197 year: 1976 ident: 10.1016/j.neuroimage.2014.07.004_bb0150 article-title: Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates publication-title: J. Comp. Neurol. doi: 10.1002/cne.901680203 – year: 2014 ident: 10.1016/j.neuroimage.2014.07.004_bb0220 article-title: Invasive recordings in human auditory cortex publication-title: Hand. Clin. Neurol. – volume: 11 start-page: 567 year: 1989 ident: 10.1016/j.neuroimage.2014.07.004_bb0030 article-title: Principal warps: thin-plate splines and the decomposition of deformations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.24792 – volume: 93 start-page: 22 year: 2005 ident: 10.1016/j.neuroimage.2014.07.004_bb0170 article-title: A comparison of neuron response properties in areas A1 and CM of the marmoset monkey auditory cortex: tones and broadband noise publication-title: J. Neurophysiol. doi: 10.1152/jn.00248.2004 – start-page: 429 year: 2002 ident: 10.1016/j.neuroimage.2014.07.004_bb0035 article-title: Hearing – volume: 416 start-page: 76 year: 2000 ident: 10.1016/j.neuroimage.2014.07.004_bb0135 article-title: Auditory cortex on the posterior superior temporal gyrus of human cerebral cortex publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(20000103)416:1<79::AID-CNE6>3.0.CO;2-2 – volume: 102 start-page: 2358 year: 2009 ident: 10.1016/j.neuroimage.2014.07.004_bb0050 article-title: Coding of repetitive transients by auditory cortex on Heschl's gyrus publication-title: J. Neurophysiol. doi: 10.1152/jn.91346.2008 – start-page: 116 year: 2009 ident: 10.1016/j.neuroimage.2014.07.004_bb0230 article-title: General anesthesia differentially affects responses from auditory cortical fields in humans – volume: 12 start-page: 718 year: 2009 ident: 10.1016/j.neuroimage.2014.07.004_bb0260 article-title: Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing publication-title: Nat. Neurosci. doi: 10.1038/nn.2331 – volume: 159 start-page: 275 year: 2006 ident: 10.1016/j.neuroimage.2014.07.004_bb0070 article-title: High-frequency gamma oscillations and human brain mapping with electrocorticography publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)59019-3 – volume: 10 start-page: 512 year: 2000 ident: 10.1016/j.neuroimage.2014.07.004_bb0020 article-title: Human temporal lobe activation by speech and nonspeech sounds publication-title: Cereb. Cortex doi: 10.1093/cercor/10.5.512 – volume: 59 start-page: 1904 year: 2012 ident: 10.1016/j.neuroimage.2014.07.004_bb0295 article-title: Gamma band pitch responses in human auditory cortex measured with magnetoencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.098 – volume: 4 start-page: e5183 year: 2009 ident: 10.1016/j.neuroimage.2014.07.004_bb0345 article-title: Functional maps of human auditory cortex: effects of acoustic features and attention publication-title: PLoS One doi: 10.1371/journal.pone.0005183 – volume: 112 start-page: 565 year: 2001 ident: 10.1016/j.neuroimage.2014.07.004_bb0065 article-title: Induced electrocorticographic gamma activity during auditory perception publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00545-9 – volume: 190 start-page: 597 year: 1980 ident: 10.1016/j.neuroimage.2014.07.004_bb0095 article-title: Cytoarchitectonic organization of the human auditory cortex publication-title: J. Comp. Neurol. doi: 10.1002/cne.901900312 – volume: 150 start-page: 225 year: 2000 ident: 10.1016/j.neuroimage.2014.07.004_bb0325 article-title: Frequency-dependent responses exhibited by multiple regions in human auditory cortex publication-title: Hear. Res. doi: 10.1016/S0378-5955(00)00203-3 – volume: 268 start-page: 111 year: 1995 ident: 10.1016/j.neuroimage.2014.07.004_bb0265 article-title: Processing of complex sounds in the macaque nonprimary auditory cortex publication-title: Science doi: 10.1126/science.7701330 – volume: 109 start-page: 1283 year: 2013 ident: 10.1016/j.neuroimage.2014.07.004_bb0235 article-title: Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study publication-title: J. Neurophysiol. doi: 10.1152/jn.00718.2012 – volume: 157 start-page: 1 year: 2001 ident: 10.1016/j.neuroimage.2014.07.004_bb0090 article-title: Between sound and perception: reviewing the search for a neural code publication-title: Hear. Res. doi: 10.1016/S0378-5955(01)00259-3 – start-page: 7 year: 2005 ident: 10.1016/j.neuroimage.2014.07.004_bb0165 article-title: Subdivisions and connections of auditory cortex in primates: a working model – reference: 22989625 - Neuroimage. 2013 Jan 1;64:185-96 – reference: 15800024 - Cereb Cortex. 2006 Jan;16(1):18-30 – reference: 21541252 - Front Hum Neurosci. 2011 Apr 20;5:42 – reference: 25726272 - Handb Clin Neurol. 2015;129:225-44 – reference: 7701330 - Science. 1995 Apr 7;268(5207):111-4 – reference: 10578103 - J Comp Neurol. 2000 Jan 3;416(1):79-92 – reference: 6771305 - J Comp Neurol. 1980 Apr 1;190(3):597-610 – reference: 12417674 - J Neurosci. 2002 Nov 1;22(21):9502-12 – reference: 19471271 - Nat Neurosci. 2009 Jun;12(6):718-24 – reference: 23236002 - J Neurophysiol. 2013 Mar;109(5):1283-95 – reference: 9819278 - J Neurophysiol. 1998 Nov;80(5):2743-64 – reference: 11305897 - Neuroimage. 2001 Apr;13(4):684-701 – reference: 19663547 - J Neurosurg. 2010 Jun;112(6):1301-7 – reference: 11077196 - Hear Res. 2000 Dec;150(1-2):104-18 – reference: 19365552 - PLoS One. 2009;4(4):e5183 – reference: 18207680 - Hear Res. 2008 Apr;238(1-2):12-24 – reference: 16774452 - PLoS Biol. 2006 Jul;4(7):e215 – reference: 23048019 - Cereb Cortex. 2014 Feb;24(2):340-52 – reference: 11313293 - Cereb Cortex. 2001 May;11(5):411-23 – reference: 11437112 - IEEE Trans Med Imaging. 2001 Jun;20(6):526-34 – reference: 11050211 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793-9 – reference: 15901760 - J Neurophysiol. 2005 Sep;94(3):1904-11 – reference: 10561410 - J Neurophysiol. 1999 Nov;82(5):2346-57 – reference: 22593076 - J Neurosci. 2012 May 16;32(20):7082-90 – reference: 19675285 - J Neurophysiol. 2009 Oct;102(4):2358-74 – reference: 17701981 - J Comp Neurol. 2007 Oct 10;504(5):470-98 – reference: 17184906 - Biosystems. 2007 May-Jun;89(1-3):198-207 – reference: 21925281 - Neuroimage. 2012 Jan 16;59(2):1904-11 – reference: 20519535 - J Neurosci. 2010 Jun 2;30(22):7604-12 – reference: 19439673 - J Neurophysiol. 2009 Jul;102(1):377-86 – reference: 9590556 - J Comp Neurol. 1998 May 18;394(4):475-95 – reference: 17071238 - Prog Brain Res. 2006;159:275-95 – reference: 12968011 - J Neurophysiol. 2003 Dec;90(6):3750-63 – reference: 21160558 - Front Syst Neurosci. 2010 Dec 03;4:155 – reference: 14622588 - Neuron. 2003 Nov 13;40(4):859-69 – reference: 821974 - J Comp Neurol. 1976 Jul 15;168(2):197-247 – reference: 15044682 - Physiol Rev. 2004 Apr;84(2):541-77 – reference: 16134138 - J Comp Neurol. 2005 Oct 24;491(3):270-89 – reference: 11275528 - Clin Neurophysiol. 2001 Apr;112(4):565-82 – reference: 1900211 - Brain. 1991 Feb;114 ( Pt 1A):139-51 – reference: 19631273 - Neuroimage. 2010 Jan 1;49(1):150-7 – reference: 21417542 - Psychol Rev. 2011 Apr;118(2):219-46 – reference: 11077206 - Hear Res. 2000 Dec;150(1-2):225-44 – reference: 18037343 - Clin Neurophysiol. 2008 Jan;119(1):116-33 – reference: 19143093 - Neuroscience. 2008 Nov 19;157(2):484-94 – reference: 8828578 - Brain Res. 1996 Jun 17;724(2):260-4 – reference: 10847601 - Cereb Cortex. 2000 May;10(5):512-28 – reference: 15342713 - J Neurophysiol. 2005 Jan;93(1):22-34 – reference: 23641203 - Front Syst Neurosci. 2013 Apr 30;7:11 – reference: 9417972 - Neuroimage. 1997 Nov;6(4):288-304 – reference: 21697384 - J Neurosci. 2011 Jun 22;31(25):9345-52 – reference: 23074251 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18168-73 – reference: 24146606 - PLoS Comput Biol. 2013;9(10):e1003271 – reference: 2137837 - J Acoust Soc Am. 1990 Feb;87(2):820-57 – reference: 12611946 - J Neurophysiol. 2003 Jun;89(6):2889-903 – reference: 11745645 - J Comp Neurol. 2001 Dec 17;441(3):197-222 – reference: 14681146 - Ann N Y Acad Sci. 2003 Nov;999:218-33 – reference: 20408218 - Hum Brain Mapp. 1997;5(4):218-21 – reference: 21368087 - Cereb Cortex. 2011 Oct;21(10):2332-47 – reference: 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15 – reference: 15238437 - Cereb Cortex. 2005 Feb;15(2):170-86 – reference: 10659849 - Nature. 2000 Jan 20;403(6767):309-12 – reference: 24795550 - Front Neurosci. 2014 Apr 22;8:72 – reference: 11470183 - Hear Res. 2001 Jul;157(1-2):1-42 – reference: 6697149 - Brain. 1984 Mar;107 ( Pt 1):115-31 |
SSID | ssj0009148 |
Score | 2.4148846 |
Snippet | The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 598 |
SubjectTerms | Adult Auditory Cortex - anatomy & histology Auditory Cortex - physiology Auditory Perception - physiology Brain Brain Mapping - methods Ears & hearing Electrodes, Implanted Electroencephalography - methods Evoked Potentials, Auditory - physiology Female Gamma Rhythm - physiology Human subjects Humans Male Middle Aged Physiology Primates Reaction Time - physiology Sound Speech Perception - physiology Studies Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RaxQxEA61heKL1Fr1tEoEX4O7SfaS6EMpxaMU2qcW7i1kswlW6m69XkH_vTOb7N5VpdzzTmB3Mpn5djLzDSEfVahC1cTICqc8k9po5rTirOZOFEGVoYiYGji_mJ5eybN5Nc8Jt7tcVjn4xN5RN53HHPknQCYS0IuW1dHtT4ZTo_B2NY_QeEJ2kLoMS7rUXK1Id0uZWuEqwTQI5EqeVN_V80Ve_4BTiwVesqfwzOPa_hOe_oWff1dRroWl2R55lvEkPU4G8JxshXaf7J7nG_MXpJtB4Er5Ptqt9V3SLtJ-Ph912JfRLX5Tj3W3vz7TNeqNJLdIdbSB3jhE2PBvTfN4H5oiIk2pHky6H5Cr2dfLk1OWhywwr4RYsmltuDeRmyBNLJ1xXvQk9VzXpQvaNBEUX4vCmeikFj4KpUoepA9SN_C3Jl6S7bZrw2tCuWoCRDcTfB1kUN4pJJNRvKp5XckYJ0QNurU-M5DjIIwbO5SafberXbG4K7bA63E5IeW48jaxcGywxgzbZ4cuU_CLFkLFBmu_jGszEkn63HD14WAtNnuEO7uy3wn5MD6Gs4wXNK4N3T3IABgFeCrE9BGZKQDmEnH7hLxKBjiqBOAsOFRdgKIfmOYogFziD5-01996TnEpBYBx_ubxV39LnuJ3pl7MQ7K9XNyHdwDKlvX7_uT9AQD-O1M priority: 102 providerName: ProQuest |
Title | Functional organization of human auditory cortex: Investigation of response latencies through direct recordings |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191400576X https://dx.doi.org/10.1016/j.neuroimage.2014.07.004 https://www.ncbi.nlm.nih.gov/pubmed/25019680 https://www.proquest.com/docview/1614115845 https://www.proquest.com/docview/1562441336 https://www.proquest.com/docview/1622611397 https://pubmed.ncbi.nlm.nih.gov/PMC4430832 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fixMxEA7HCeKL-NvqeUTwde1ukt0k-nQeV6pyRdSDvoVsmnCVc_eoPdAX_3ZnNtm9VkUKvrS0mUA7mcx8m8x8Q8gL6UtfLkLIcitdJpRWmVWSZTWzPPey8HnAo4HTWTU9E-_m5XyPHPe1MJhWmXx_9Omdt07fjJM2x5fL5fgTIAMIN8hPhhWV1Rwr2IVEK3_58zrNA4ZjOVzJM5RO2Twxx6vjjFx-hZ2LSV6io_FMLdv-EqL-hKC_Z1JuhKbJHXI7YUp6FH_2XbLnm3vk5mm6Nb9P2gkEr3jmR9uN2kvaBtr16KMWazPa1Q_qMPf2-yu6Qb8R5VYxl9bTC4soG56vaWrxQ6MGaTzuwYP3B-RscvL5eJqlRguZk5yvs6rWzOnAtBc6FFZbxzuieqbqwnqlFwGCeM1zq4MVirvApSyYF84LtYAnNv6Q7Ddt4x8TyuTCQ4TT3tVeeOmsREIZycqa1aUIYURkr1vjEgs5NsO4MH262RdzvSoGV8XkeEUuRqQYZl5GJo4d5uh--UxfaQq-0UC42GHu62HulkXuOPugtxaTvMI3A-haAAJXohyR58Mw7Ge8pLGNb69ABgApQFTOq3_IVACaC8TuI_IoGuCgEoC04FRVDoreMs1BAPnEt0ea5XnHKy4EB0DOnvzXH39KbuGnWK55QPbXqyv_DHDbuj7sNia8yrk8JDeO3r6fzuD9zcnsw8dfhzFK7w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8UBhgJHiMS26ltEEJ8rOrYWiG0SXvLHMcWQyMZXSfYP8XfyDl22g7Q1Jc9x9cmvvPd7873AfBc2NzmlXNJqoVJuFQy0VLQpKSapVZkNnU-NDCeDEZ7_NN-vr8Gv7taGJ9W2enEVlFXjfEx8peITDiiF8nzt8c_Ej81yt-udiM0glhs27Of6LKdvNn6iPx9Qelwc_fDKIlTBRIjGJslg1JRoxxVliuXaaUNa7uyU1lm2kpVOfynkqVaOc0lM44JkVHLjeWyQveE4e9egXXO0JXpwfr7zcnnL4s2vxkPxXc5S2SWqZg7FDLK2g6Vh99RT_iUMt42DY0D4v5jEP8FvH_nbS4ZwuFNuBERLHkXRO4WrNn6Nlwdxzv6O9AM0VSGCCNplio9SeNIOxGQaF8J0kzPiPGZvr9ekaVmH2HdNGTuWnKkPaZHb57EgUIk2GASgks-zH8X9i6FAfegVze1fQCEisqiPVXWlJZbYbTw7WsEzUta5ty5PohubwsTe5770RtHRZfc9q1YcKXwXClSfyHP-5DNKY9D348VaFTHvqKra0VNXKBxWoH29Zw2Yp-wnytSb3TSUkQddFIsTkwfns0fo_bwV0K6ts0prkH4i4CYscEFawYI0TPvKfThfhDA-ZYggEYVLlPc6HOiOV_gu5eff1Iffm27mHPOEP7Thxe_-lO4Ntod7xQ7W5PtR3Ddf3OoBN2A3mx6ah8jJJyVT-I5JHBw2Uf_DzwpeR4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG4QE-ILwSsrqDXRxwnTy2xbDSFG3IAI8UGSfaudThsxMIPLEuWv-es8nXZmFzVkX3iednfm9Fy-c3ouCL0SrnBF5X2WG2EzLpXMjBQ0K6lhuRPE5T6EBg6PhnvH_OO4GC-h310tTEir7HRiq6irxoYY-RYgEw7oRfJiy6e0iM-7o53zH1mYIBVuWrtxGpFFDtzVT3DfLrb3d-GsX1M6-vDl_V6WJgxkVjA2zYalolZ5qhxXnhhlLGs7tFNZEuOkqjz8a8lyo7zhklnPhCDUceu4rMBVYfC7d9BdwQoSZEyMxazhL-GxDK9gmSREpSyimFvW9qo8OQONEZLLeNs-NI2K-49p_Bf6_p3BOWcSR2toNWFZ_C4y33205OoHaOUw3dY_RM0IjGaMNeJmruYTNx63swGxCTUhzeQK25Dz--sNnmv7EddNYg6vw6cmoHvw63EaLYSjNcYxzBQC_o_Q8a2Q_zFarpvarSNMReXAsipnS8edsEaERjaCFiUtC-79AImOttqm7udhCMep7tLcvuvZqehwKjoPV_N8gEi_8zx2AFlgj-qOT3cVrqCTNZipBfa-7fcmFBTpueDuzY5bdNJGF3omOwP0sn8MeiRcDpnaNZewBoAwQGPGhjesGQJYJ8FnGKAnkQF7kgCUBmUucyD0NdbsF4Q-5tef1Cff2n7mnDNwBOjTm1_9BVoBgdef9o8ONtC98MmxJHQTLU8nl-4ZYMNp-bwVQoy-3rbU_wFKJnvu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+organization+of+human+auditory+cortex%3A+Investigation+of+response+latencies+through+direct+recordings&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Nourski%2C+Kirill+V.&rft.au=Steinschneider%2C+Mitchell&rft.au=McMurray%2C+Bob&rft.au=Kovach%2C+Christopher+K.&rft.date=2014-11-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=101&rft.spage=598&rft.epage=609&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.07.004&rft.externalDocID=S105381191400576X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |