Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration

Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thu...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 8; no. 9; p. e1000479
Main Authors Kleinschnitz, Christoph, Grund, Henrike, Wingler, Kirstin, Armitage, Melanie E., Jones, Emma, Mittal, Manish, Barit, David, Schwarz, Tobias, Geis, Christian, Kraft, Peter, Barthel, Konstanze, Schuhmann, Michael K., Herrmann, Alexander M., Meuth, Sven G., Stoll, Guido, Meurer, Sabine, Schrewe, Anja, Becker, Lore, Gailus-Durner, Valérie, Fuchs, Helmut, Klopstock, Thomas, de Angelis, Martin Hrabé, Jandeleit-Dahm, Karin, Shah, Ajay M., Weissmann, Norbert, Schmidt, Harald H. H. W.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.1000479

Cover

Loading…
Abstract Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.
AbstractList Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.
The identification of NOX4 as a major source of oxidative stress in stroke and demonstration of dramatic protection after stroke in mice by NOX4 deletion or NOX inhibition, opens up new avenues for treatment. Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 ( Nox4 −/− ) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4 −/− mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. Stroke is the second leading cause of death worldwide. Today, only one approved therapy exists—a drug that breaks down blood clots—the effectiveness of which is moderate, and it can only be used in about 10% of patients because of contraindications. New therapeutic strategies that are translatable to humans and more rigid thresholds of relevance in pre-clinical stroke models are needed. One candidate mechanism is oxidative stress, which is the damage caused by reactive oxygen species (ROS). Antioxidant approaches that specifically target ROS have thus far failed in clinical trials. For a more effective approach, we focus here on targeting ROS at its source by investigating an enzyme involved in generating ROS, known as NADPH oxidase type 4, or NOX4. We found that NOX4 causes oxidative stress and death of nerve cells after a stroke. Deletion of the NOX4-coding gene in mice, as well as inhibiting the ROS-generating activity of NOX with a pharmacological inhibitor, reduces brain damage and improves neurological function, even when given hours after a stroke. Importantly, neuroprotection was preserved in old male and female Nox4 −/− mice as well as in Nox4 −/− mice subjected to permanent ischemia. NOX4 thus represents a most promising new therapeutic target for reducing oxidative stress in general, and in brain injury due to stroke in particular.
  Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4-/-) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4-/- mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 ([Nox4.sup.-/-]) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke- protective phenotype in [Nox4.sup.-/-] mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.
Audience Academic
Author Shah, Ajay M.
Wingler, Kirstin
Grund, Henrike
Weissmann, Norbert
Meuth, Sven G.
de Angelis, Martin Hrabé
Barit, David
Schuhmann, Michael K.
Schwarz, Tobias
Barthel, Konstanze
Stoll, Guido
Herrmann, Alexander M.
Becker, Lore
Kleinschnitz, Christoph
Meurer, Sabine
Schmidt, Harald H. H. W.
Mittal, Manish
Jones, Emma
Schrewe, Anja
Klopstock, Thomas
Fuchs, Helmut
Gailus-Durner, Valérie
Kraft, Peter
Geis, Christian
Armitage, Melanie E.
Jandeleit-Dahm, Karin
AuthorAffiliation University of Edinburgh, United Kingdom
6 Baker IDI Heart and Diabetes Institute, Juvenile Diabetes Research Foundation (JDRF) International Center for Diabetic Complications Research, Melbourne, Australia
5 National Stroke Research Institute, Florey Neuroscience Institutes, Melbourne, Australia
7 Abteilung Neurologie, Georg-August Universität Göttingen, Göttingen, Germany
10 Friedrich-Baur-Institut an der Neurologischen Klinik, Klinikum der Ludwig-Maximilians-Universität München, München, Germany
1 Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
8 Universitätsklinik Münster, Klinik und Poliklinik für Neurologie—Entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Münster, Germany
11 Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
4 Department of Pharmacology and Toxicology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
3 Department of Pharmacology and
AuthorAffiliation_xml – name: 2 Rudolf-Buchheim-Institut für Pharmakologie & Medizinische Klinik, Justus-Liebig-Universität, Gießen, Germany
– name: 4 Department of Pharmacology and Toxicology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
– name: 6 Baker IDI Heart and Diabetes Institute, Juvenile Diabetes Research Foundation (JDRF) International Center for Diabetic Complications Research, Melbourne, Australia
– name: 9 Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
– name: 3 Department of Pharmacology and Centre for Vascular Health, Monash University, Melbourne, Australia
– name: 10 Friedrich-Baur-Institut an der Neurologischen Klinik, Klinikum der Ludwig-Maximilians-Universität München, München, Germany
– name: 8 Universitätsklinik Münster, Klinik und Poliklinik für Neurologie—Entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Münster, Germany
– name: 7 Abteilung Neurologie, Georg-August Universität Göttingen, Göttingen, Germany
– name: University of Edinburgh, United Kingdom
– name: 12 King's College London School of Medicine, The James Black Centre, Cardiovascular Division, London, United Kingdom
– name: 5 National Stroke Research Institute, Florey Neuroscience Institutes, Melbourne, Australia
– name: 11 Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
– name: 1 Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
Author_xml – sequence: 1
  givenname: Christoph
  surname: Kleinschnitz
  fullname: Kleinschnitz, Christoph
– sequence: 2
  givenname: Henrike
  surname: Grund
  fullname: Grund, Henrike
– sequence: 3
  givenname: Kirstin
  surname: Wingler
  fullname: Wingler, Kirstin
– sequence: 4
  givenname: Melanie E.
  surname: Armitage
  fullname: Armitage, Melanie E.
– sequence: 5
  givenname: Emma
  surname: Jones
  fullname: Jones, Emma
– sequence: 6
  givenname: Manish
  surname: Mittal
  fullname: Mittal, Manish
– sequence: 7
  givenname: David
  surname: Barit
  fullname: Barit, David
– sequence: 8
  givenname: Tobias
  surname: Schwarz
  fullname: Schwarz, Tobias
– sequence: 9
  givenname: Christian
  surname: Geis
  fullname: Geis, Christian
– sequence: 10
  givenname: Peter
  surname: Kraft
  fullname: Kraft, Peter
– sequence: 11
  givenname: Konstanze
  surname: Barthel
  fullname: Barthel, Konstanze
– sequence: 12
  givenname: Michael K.
  surname: Schuhmann
  fullname: Schuhmann, Michael K.
– sequence: 13
  givenname: Alexander M.
  surname: Herrmann
  fullname: Herrmann, Alexander M.
– sequence: 14
  givenname: Sven G.
  surname: Meuth
  fullname: Meuth, Sven G.
– sequence: 15
  givenname: Guido
  surname: Stoll
  fullname: Stoll, Guido
– sequence: 16
  givenname: Sabine
  surname: Meurer
  fullname: Meurer, Sabine
– sequence: 17
  givenname: Anja
  surname: Schrewe
  fullname: Schrewe, Anja
– sequence: 18
  givenname: Lore
  surname: Becker
  fullname: Becker, Lore
– sequence: 19
  givenname: Valérie
  surname: Gailus-Durner
  fullname: Gailus-Durner, Valérie
– sequence: 20
  givenname: Helmut
  surname: Fuchs
  fullname: Fuchs, Helmut
– sequence: 21
  givenname: Thomas
  surname: Klopstock
  fullname: Klopstock, Thomas
– sequence: 22
  givenname: Martin Hrabé
  surname: de Angelis
  fullname: de Angelis, Martin Hrabé
– sequence: 23
  givenname: Karin
  surname: Jandeleit-Dahm
  fullname: Jandeleit-Dahm, Karin
– sequence: 24
  givenname: Ajay M.
  surname: Shah
  fullname: Shah, Ajay M.
– sequence: 25
  givenname: Norbert
  surname: Weissmann
  fullname: Weissmann, Norbert
– sequence: 26
  givenname: Harald H. H. W.
  surname: Schmidt
  fullname: Schmidt, Harald H. H. W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20877715$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAUhiM0xD7gHyCIxAXiosUfcRzvAmkaH6s0rRUb3FonznHnkcbFTqbt3-Ou3bQihECxlOTkeV9bb87Zz3Y632GWvaRkTLmk76_8EDpox8va-TElhBRSPcn2qCjESFaV2Hn0vJvtx3hFCGOKVc-yXUYqKSUVe5md-diPzvvgf2A-6S5d7Xrnu9zb9NYMBpv87Ojj7CSf3rgGIuYXt0vMi3wW8Bq7Pq7rvbvGPJlgjDl0SYJD8A3OscMAK7_n2VMLbcQXm_tB9u3zp4vjk9Hp9Mvk-Oh0ZCRn_ahWBSuhVLUsZWVqSpmyWEpaSiErK7jAmhg0YGpQpDZcNpUtVAPWoOCogB9kr9e-y9ZHvYko6uTDGOOlUImYrInGw5VeBreAcKs9OH1X8GGuIfTOtKgNUAGGK8MIK2TFAZgxBbFgGedludrtw2a3oV5gY1IgAdot0-0vnbvUc3-tmSp4UbBk8HZjEPzPAWOvFy4abFvo0A9RSyFUWaWVyDdrcg7pZK6zPhmaFa2PGK8UZZSLRI3_QKWrwYUzqX-sS_UtwbstQWJ6vOnnMMSoJ-df_4M9-3d2-n2bffU4xYf47ps0AcUaMMHHGNA-IJTo1Szc_2i9mgW9mYUkO_xNZlx_140pFNf-XfwL1GQQUQ
CitedBy_id crossref_primary_10_1016_j_bbi_2020_12_027
crossref_primary_10_1016_j_ijcard_2022_10_172
crossref_primary_10_1038_nrd3403
crossref_primary_10_1038_s41419_018_0270_1
crossref_primary_10_1111_jcmm_12885
crossref_primary_10_1371_journal_pone_0138551
crossref_primary_10_4103_2394_8108_195279
crossref_primary_10_3390_genes11050567
crossref_primary_10_1007_s00018_015_1845_y
crossref_primary_10_3892_etm_2018_6377
crossref_primary_10_1016_j_chembiol_2011_12_017
crossref_primary_10_1080_09168451_2019_1664893
crossref_primary_10_1016_j_neuropharm_2019_107907
crossref_primary_10_2174_1874196701907010039
crossref_primary_10_1016_j_freeradbiomed_2012_06_027
crossref_primary_10_1016_j_pharmthera_2013_12_007
crossref_primary_10_3389_fphar_2016_00061
crossref_primary_10_3390_ijms18112500
crossref_primary_10_1007_s00424_014_1548_5
crossref_primary_10_52547_shefa_10_3_113
crossref_primary_10_1016_j_redox_2014_05_006
crossref_primary_10_1089_ars_2013_5607
crossref_primary_10_1371_journal_pone_0092103
crossref_primary_10_1371_journal_pone_0221039
crossref_primary_10_2174_1570159X21666230308090351
crossref_primary_10_1007_s00109_012_0963_3
crossref_primary_10_1038_srep00896
crossref_primary_10_1002_mnfr_201900779
crossref_primary_10_14814_phy2_12192
crossref_primary_10_1002_jnr_23532
crossref_primary_10_3390_cells8020196
crossref_primary_10_3390_antiox11061162
crossref_primary_10_1016_j_pharmthera_2017_08_010
crossref_primary_10_1016_j_clineuro_2022_107306
crossref_primary_10_1002_fsn3_3784
crossref_primary_10_1161_ATVBAHA_113_301913
crossref_primary_10_3390_antiox10050727
crossref_primary_10_1155_2020_7875396
crossref_primary_10_1016_j_cca_2021_02_007
crossref_primary_10_1016_j_expneurol_2016_11_008
crossref_primary_10_1093_cvr_cvx252
crossref_primary_10_1155_2018_6231482
crossref_primary_10_1002_jbt_23153
crossref_primary_10_1038_s41423_022_00858_1
crossref_primary_10_3390_antiox10050739
crossref_primary_10_1161_CIRCRESAHA_116_309326
crossref_primary_10_1089_ars_2023_0002
crossref_primary_10_1177_0271678X15606456
crossref_primary_10_3390_antiox14030256
crossref_primary_10_1007_s00441_018_2974_z
crossref_primary_10_1016_j_chembiol_2012_02_001
crossref_primary_10_1089_ars_2013_5703
crossref_primary_10_1016_j_pneurobio_2016_01_005
crossref_primary_10_3390_ijms17121967
crossref_primary_10_1016_j_freeradbiomed_2017_01_034
crossref_primary_10_1155_2017_8539026
crossref_primary_10_1016_j_ejphar_2020_173360
crossref_primary_10_1021_acs_jmedchem_0c01914
crossref_primary_10_1002_jbm4_10080
crossref_primary_10_1016_j_neuroscience_2013_03_062
crossref_primary_10_1002_glia_24292
crossref_primary_10_1007_s00115_012_3536_3
crossref_primary_10_3390_stresses4030036
crossref_primary_10_1089_ars_2013_5814
crossref_primary_10_1155_2019_5618023
crossref_primary_10_1007_s00018_012_1014_5
crossref_primary_10_1016_j_drudis_2012_02_011
crossref_primary_10_1038_jcbfm_2012_62
crossref_primary_10_1080_15412555_2018_1464551
crossref_primary_10_1093_ndt_gfaa376
crossref_primary_10_4103_ijp_IJP_837_19
crossref_primary_10_1111_jnc_12747
crossref_primary_10_1016_j_bmc_2017_12_023
crossref_primary_10_1089_ars_2013_5374
crossref_primary_10_1161_ATVBAHA_115_307012
crossref_primary_10_1161_CIRCRESAHA_111_243972
crossref_primary_10_1177_0003319713506516
crossref_primary_10_1089_ars_2021_0040
crossref_primary_10_1016_j_mehy_2020_109558
crossref_primary_10_1016_j_pharmthera_2012_11_001
crossref_primary_10_1155_2021_5471347
crossref_primary_10_3109_10715762_2014_992893
crossref_primary_10_1038_ncomms1660
crossref_primary_10_1080_21655979_2022_2108266
crossref_primary_10_1155_2013_842827
crossref_primary_10_1016_j_ejphar_2016_03_006
crossref_primary_10_1089_ars_2012_4721
crossref_primary_10_3390_antiox14030275
crossref_primary_10_1016_j_freeradbiomed_2012_02_046
crossref_primary_10_1007_s12975_013_0289_7
crossref_primary_10_1042_CS20150404
crossref_primary_10_1155_2022_5815843
crossref_primary_10_1073_pnas_1705034114
crossref_primary_10_1016_j_ctim_2024_103123
crossref_primary_10_1161_CIRCRESAHA_117_311401
crossref_primary_10_1016_j_tcm_2014_03_003
crossref_primary_10_1155_2017_4590127
crossref_primary_10_1007_s00204_023_03562_9
crossref_primary_10_1016_j_neuint_2021_105081
crossref_primary_10_1016_j_yjmcc_2013_12_032
crossref_primary_10_1111_exd_12497
crossref_primary_10_5607_en_2017_26_4_195
crossref_primary_10_1016_j_freeradbiomed_2016_05_016
crossref_primary_10_1016_j_bbagen_2014_11_021
crossref_primary_10_1016_j_redox_2014_04_004
crossref_primary_10_3389_fcell_2018_00132
crossref_primary_10_1002_jcb_29004
crossref_primary_10_1161_CIRCRESAHA_111_255216
crossref_primary_10_3389_fnins_2021_596976
crossref_primary_10_1186_s13024_017_0150_7
crossref_primary_10_1152_physrev_00036_2017
crossref_primary_10_2174_0115701611308870240910115023
crossref_primary_10_1016_j_tips_2021_11_004
crossref_primary_10_1089_ars_2012_5149
crossref_primary_10_3390_ijms21155470
crossref_primary_10_1089_ars_2012_4970
crossref_primary_10_1152_ajpcell_00136_2018
crossref_primary_10_1038_s41440_019_0246_2
crossref_primary_10_3390_antiox3030472
crossref_primary_10_1089_ars_2013_5357
crossref_primary_10_1152_physrev_00011_2017
crossref_primary_10_1016_j_freeradbiomed_2011_09_016
crossref_primary_10_1086_687756
crossref_primary_10_1371_journal_pone_0063291
crossref_primary_10_1016_j_jtcvs_2018_07_095
crossref_primary_10_1186_s12974_017_1032_1
crossref_primary_10_3389_fncel_2016_00301
crossref_primary_10_1016_j_freeradbiomed_2019_12_038
crossref_primary_10_1155_2019_7850154
crossref_primary_10_1016_j_biopha_2022_113554
crossref_primary_10_11603_2414_4533_2019_2_10418
crossref_primary_10_1089_ars_2021_0135
crossref_primary_10_3389_fnmol_2024_1388759
crossref_primary_10_1016_j_tips_2016_01_006
crossref_primary_10_1186_2040_7378_4_11
crossref_primary_10_3390_antiox14030297
crossref_primary_10_1080_02699052_2017_1300835
crossref_primary_10_1681_ASN_2013070810
crossref_primary_10_1007_s00210_015_1125_2
crossref_primary_10_1007_s00018_012_1009_2
crossref_primary_10_3390_jcm9061995
crossref_primary_10_3892_mmr_2017_8062
crossref_primary_10_3389_fncel_2020_578060
crossref_primary_10_3389_fnagi_2022_1023161
crossref_primary_10_1155_2013_648061
crossref_primary_10_1039_D4FO01900H
crossref_primary_10_1007_s00018_012_1107_1
crossref_primary_10_1016_j_brainres_2012_09_023
crossref_primary_10_1016_j_pathophys_2017_09_003
crossref_primary_10_1016_j_pharmthera_2014_09_003
crossref_primary_10_3390_biomedicines10030574
crossref_primary_10_1016_j_lfs_2020_117917
crossref_primary_10_1089_ars_2012_5129
crossref_primary_10_1111_bph_14703
crossref_primary_10_1093_jpp_rgab064
crossref_primary_10_1155_2012_730469
crossref_primary_10_1038_srep21086
crossref_primary_10_3390_antiox13101155
crossref_primary_10_3390_brainsci3020561
crossref_primary_10_1007_s11596_012_0081_z
crossref_primary_10_1002_ana_24380
crossref_primary_10_1007_s12017_021_08646_2
crossref_primary_10_1089_ars_2014_5862
crossref_primary_10_1517_13543776_2011_584870
crossref_primary_10_1155_2015_963289
crossref_primary_10_1177_0271678X16657094
crossref_primary_10_1007_s00424_014_1664_2
crossref_primary_10_3389_fncel_2014_00269
crossref_primary_10_1038_s41598_021_91575_8
crossref_primary_10_1136_neurintsurg_2016_012377
crossref_primary_10_1371_journal_pone_0085660
crossref_primary_10_3390_antiox9070573
crossref_primary_10_1089_ars_2015_6562
crossref_primary_10_1371_journal_pone_0073428
crossref_primary_10_1159_000381727
crossref_primary_10_3389_fgene_2014_00310
crossref_primary_10_4103_1673_5374_250568
crossref_primary_10_1124_jpet_111_183210
crossref_primary_10_1161_ATVBAHA_116_308659
crossref_primary_10_1111_j_1476_5381_2011_01249_x
crossref_primary_10_3390_antiox13040489
crossref_primary_10_1016_j_actbio_2025_02_061
crossref_primary_10_1155_2021_6631805
crossref_primary_10_1371_journal_pone_0064034
crossref_primary_10_1253_circj_CJ_11_0388
crossref_primary_10_1089_ars_2015_6433
crossref_primary_10_2147_IJGM_S366170
crossref_primary_10_1016_j_neuroscience_2018_11_046
crossref_primary_10_3390_antiox12091729
crossref_primary_10_1016_j_neuropharm_2018_07_006
crossref_primary_10_1089_ars_2015_6430
crossref_primary_10_1038_s41540_017_0039_7
crossref_primary_10_3390_antiox12061185
crossref_primary_10_1371_journal_pone_0313328
crossref_primary_10_1179_1743132812Y_0000000021
crossref_primary_10_1371_journal_pone_0054593
crossref_primary_10_3390_brainsci13070986
crossref_primary_10_1161_CIRCULATIONAHA_112_132159
crossref_primary_10_1515_med_2024_1041
crossref_primary_10_1007_s00018_012_1011_8
crossref_primary_10_1155_2017_7150376
crossref_primary_10_1161_JAHA_113_000555
crossref_primary_10_1016_j_biopha_2023_115052
crossref_primary_10_1038_jcbfm_2012_6
crossref_primary_10_1016_j_pharmthera_2017_02_022
crossref_primary_10_1042_CS20130065
crossref_primary_10_1155_2018_2468457
crossref_primary_10_1172_JCI124283
crossref_primary_10_3389_fphar_2024_1378335
crossref_primary_10_1007_s00335_012_9415_1
crossref_primary_10_1016_j_bioorg_2021_105562
crossref_primary_10_1007_s00125_017_4215_5
crossref_primary_10_1016_j_yjmcc_2013_05_009
crossref_primary_10_1161_CIRCRESAHA_112_269068
crossref_primary_10_1161_ATVBAHA_112_300956
crossref_primary_10_3390_antiox7110168
crossref_primary_10_5853_jos_2017_02901
crossref_primary_10_1021_acsami_3c13580
crossref_primary_10_3389_fmolb_2021_611367
crossref_primary_10_12677_OJNS_2015_32004
crossref_primary_10_1371_journal_pone_0116814
crossref_primary_10_1016_j_phymed_2022_154214
crossref_primary_10_1155_2016_3869610
crossref_primary_10_3390_ijms130911753
crossref_primary_10_1016_j_neuint_2012_11_009
crossref_primary_10_1016_j_freeradbiomed_2011_06_011
crossref_primary_10_2337_db21_1079
crossref_primary_10_1159_000516842
crossref_primary_10_1371_journal_pone_0028393
crossref_primary_10_1586_17446651_2014_887984
crossref_primary_10_1124_pr_120_019422
crossref_primary_10_1016_j_bcp_2011_01_007
crossref_primary_10_1038_s41419_017_0135_z
crossref_primary_10_1517_14728214_2013_790363
crossref_primary_10_1042_CS20160249
crossref_primary_10_1111_ejn_12552
crossref_primary_10_1016_j_nbd_2011_01_027
crossref_primary_10_1016_j_freeradbiomed_2022_08_009
crossref_primary_10_1073_pnas_2111537119
crossref_primary_10_1093_cvr_cvaa168
crossref_primary_10_3389_fneur_2017_00467
crossref_primary_10_1111_bph_13532
crossref_primary_10_1586_14737175_2014_964210
crossref_primary_10_1371_journal_pone_0016172
crossref_primary_10_1111_j_1747_4949_2012_00770_x
crossref_primary_10_1007_s00018_012_1010_9
crossref_primary_10_1371_journal_pone_0110602
crossref_primary_10_1016_j_vph_2016_10_007
crossref_primary_10_1089_ars_2013_5778
crossref_primary_10_1111_nyas_15219
crossref_primary_10_1007_s00210_012_0790_7
crossref_primary_10_3390_antiox13040396
crossref_primary_10_3389_fphys_2017_01133
crossref_primary_10_1073_pnas_1820799116
crossref_primary_10_3389_fphar_2019_01635
crossref_primary_10_3390_antiox10121886
crossref_primary_10_1371_journal_pbio_3000885
crossref_primary_10_1016_j_bcp_2024_116186
crossref_primary_10_1182_blood_2014_10_605261
crossref_primary_10_1002_jor_24417
crossref_primary_10_1016_j_brainres_2012_07_025
crossref_primary_10_1016_j_vph_2015_04_001
crossref_primary_10_1074_jbc_M112_356899
crossref_primary_10_3390_antiox11101966
crossref_primary_10_1182_blood_2012_06_440057
crossref_primary_10_1016_j_phrs_2022_106240
crossref_primary_10_1089_ars_2013_5767
crossref_primary_10_1371_journal_pgen_1002458
crossref_primary_10_3390_ijms18091935
crossref_primary_10_1007_s11596_017_1798_5
crossref_primary_10_1111_jcmm_16537
crossref_primary_10_3390_brainsci3010294
crossref_primary_10_1007_s12010_019_03157_0
crossref_primary_10_3390_ijms18102123
crossref_primary_10_1016_j_obmed_2023_100515
crossref_primary_10_1016_j_freeradbiomed_2016_07_013
crossref_primary_10_1007_s12035_015_9294_z
crossref_primary_10_11603_ijmmr_2413_6077_2019_1_10308
crossref_primary_10_1186_s12938_021_00965_6
crossref_primary_10_1213_ANE_0000000000002186
crossref_primary_10_1038_ncomms7340
crossref_primary_10_1161_STROKEAHA_110_601369
crossref_primary_10_1161_STROKEAHA_112_660340
crossref_primary_10_1155_2016_5026984
crossref_primary_10_1007_s11064_019_02826_0
crossref_primary_10_1186_s40478_015_0189_z
crossref_primary_10_1016_j_lfs_2016_08_018
crossref_primary_10_1016_j_bbi_2017_07_004
crossref_primary_10_1016_j_jcyt_2021_11_005
crossref_primary_10_1093_jnen_nly035
crossref_primary_10_1111_jcmm_12263
crossref_primary_10_3389_fphar_2022_854249
crossref_primary_10_1016_j_exer_2020_107918
crossref_primary_10_3892_etm_2018_6874
crossref_primary_10_1016_j_pnpbp_2017_01_007
crossref_primary_10_1371_journal_pone_0281045
crossref_primary_10_1016_j_freeradbiomed_2018_01_031
crossref_primary_10_1038_s41598_022_15989_8
crossref_primary_10_1042_CS20160043
crossref_primary_10_1016_j_arr_2024_102472
crossref_primary_10_2967_jnumed_112_111112
crossref_primary_10_1093_cvr_cvt009
crossref_primary_10_1016_j_freeradbiomed_2013_02_028
crossref_primary_10_1161_CIRCRESAHA_112_271957
crossref_primary_10_1007_s00424_014_1626_8
crossref_primary_10_1016_j_jss_2013_12_025
crossref_primary_10_1016_j_niox_2011_01_007
crossref_primary_10_1016_j_tem_2019_02_006
crossref_primary_10_1165_rcmb_2013_0174OC
crossref_primary_10_1042_CS20140336
crossref_primary_10_1523_JNEUROSCI_4655_13_2014
crossref_primary_10_1155_2022_1148874
crossref_primary_10_1007_s00395_011_0188_6
crossref_primary_10_1016_j_freeradbiomed_2018_10_430
crossref_primary_10_1038_nn_3059
crossref_primary_10_1016_j_expneurol_2013_03_026
crossref_primary_10_1016_j_fra_2013_09_003
crossref_primary_10_1093_eurheartj_ehv564
crossref_primary_10_1093_mutage_ges033
crossref_primary_10_1016_j_redox_2015_08_020
crossref_primary_10_1038_s41374_018_0103_y
crossref_primary_10_1016_j_intimp_2021_107367
crossref_primary_10_1093_hmg_dds516
crossref_primary_10_1155_2018_3273654
crossref_primary_10_1016_j_phanu_2023_100368
crossref_primary_10_1089_ars_2012_4797
crossref_primary_10_1016_j_phrs_2016_12_017
crossref_primary_10_1186_s12929_016_0249_0
crossref_primary_10_3390_antiox14010079
Cites_doi 10.1161/HYPERTENSIONAHA.107.100214
10.1161/HYPERTENSIONAHA.107.103200
10.1002/ana.410170513
10.1016/j.expneurol.2006.03.014
10.1073/pnas.0906805106
10.1093/cvr/cvn258
10.1161/STROKEAHA.108.541128
10.1161/ATVBAHA.108.178699
10.1126/scisignal.2000551
10.1016/j.amjcard.2008.02.003
10.1126/scisignal.2000522
10.1182/blood-2008-09-180695
10.1038/nature08119
10.1161/01.STR.9.5.445
10.1371/journal.pmed.1000245
10.1161/01.HYP.0000032100.23772.98
10.1093/cvr/cvn185
10.1136/hrt.2003.029397
10.1111/j.1476-5381.2008.00073.x
10.1161/STROKEAHA.107.498725
10.1016/j.nbd.2008.09.006
10.1523/JNEUROSCI.18-01-00205.1998
10.1161/CIRCULATIONAHA.105.573709
10.1523/JNEUROSCI.23-16-06460.2003
10.1016/j.bbrc.2006.03.114
10.1161/STROKEAHA.108.526673
10.1161/STROKEAHA.108.525386
10.2174/156720506778249515
10.1038/sj.jcbfm.9600298
10.1161/HYPERTENSIONAHA.108.116731
10.1161/CIRCRESAHA.107.148015
10.1016/j.cardiores.2006.01.022
10.1038/nrd2118
10.1523/JNEUROSCI.19-14-05910.1999
10.1002/ana.20741
10.1007/s10495-007-0086-4
10.1161/STROKEAHA.107.496448
10.1161/01.STR.0000085829.60324.DE
10.1016/j.freeradbiomed.2006.11.003
10.1016/S0166-2236(99)01401-0
10.1161/CIRCULATIONAHA.107.691279
10.1161/01.STR.28.11.2252
10.1161/ATVBAHA.108.164277
10.1002/jnr.21700
10.1002/ana.10659
10.1097/01.WCB.0000090505.76664.DB
10.1073/pnas.130135897
10.1038/jcbfm.2009.47
10.1371/journal.pbio.1000344
10.1016/j.neuroimage.2009.11.061
10.1016/j.neuroscience.2004.12.038
10.1007/s00415-005-0802-3
10.1097/01.cej.0000215612.98132.18
10.1016/j.jneumeth.2003.09.015
10.1016/j.nbd.2008.08.005
10.1016/S0165-0270(02)00072-9
10.1016/j.febslet.2005.12.049
10.1161/01.RES.0000189301.10217.87
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
Kleinschnitz et al. 2010
2010 Kleinschnitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, et al. (2010) Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLoS Biol 8(9): e1000479. doi:10.1371/journal.pbio.1000479
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: Kleinschnitz et al. 2010
– notice: 2010 Kleinschnitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, et al. (2010) Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLoS Biol 8(9): e1000479. doi:10.1371/journal.pbio.1000479
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
CZG
DOI 10.1371/journal.pbio.1000479
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Role of NOX4 in Stroke
EISSN 1545-7885
ExternalDocumentID 1292223659
oai_doaj_org_article_ca15ac39c2024783aa2cc40faf23366a
PMC2943442
A238912135
20877715
10_1371_journal_pbio_1000479
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
IPNFZ
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PYCSY
QN7
RIG
RNS
RPM
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
3V.
AAPBV
ABPTK
AGJBV
CZG
M~E
ZA5
ID FETCH-LOGICAL-c732t-b9426a69b7678cb1129fe67167578f535eb0cecacba90bc37d8f49dafce53e9a3
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Sun Oct 01 00:20:29 EDT 2023
Wed Aug 27 01:31:55 EDT 2025
Thu Aug 21 13:47:51 EDT 2025
Thu Jul 10 20:27:37 EDT 2025
Tue Jun 17 22:02:03 EDT 2025
Tue Jun 10 21:02:03 EDT 2025
Fri Jun 27 05:31:32 EDT 2025
Fri Jun 27 05:31:16 EDT 2025
Fri Jun 27 05:30:02 EDT 2025
Thu Apr 03 04:55:15 EDT 2025
Tue Jul 01 03:38:15 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Brain
Phenotype
Stroke
Animals
Reactive Oxygen Species
Oxidative Stress
Female
Male
Mice
Blood-Brain Barrier
Mice, Knockout
NADPH Oxidase
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c732t-b9426a69b7678cb1129fe67167578f535eb0cecacba90bc37d8f49dafce53e9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CK AS MHdA KJD NW HHS. Performed the experiments: CK HG MEA EJ MM DB TS CG PK KB MKS AMH SGM GS SM AS LB VGD HF TK. Analyzed the data: CK MEA EJ MM DB LB VGD HF TK MHdA KJD NW HHHWS. Contributed reagents/materials/analysis tools: CK HG KW AMS HHHWS. Wrote the paper: CK KW HHHWS.
OpenAccessLink https://doaj.org/article/ca15ac39c2024783aa2cc40faf23366a
PMID 20877715
PQID 755968968
PQPubID 23479
ParticipantIDs plos_journals_1292223659
doaj_primary_oai_doaj_org_article_ca15ac39c2024783aa2cc40faf23366a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2943442
proquest_miscellaneous_755968968
gale_infotracmisc_A238912135
gale_infotracacademiconefile_A238912135
gale_incontextgauss_ISR_A238912135
gale_incontextgauss_ISN_A238912135
gale_incontextgauss_IOV_A238912135
pubmed_primary_20877715
crossref_primary_10_1371_journal_pbio_1000479
crossref_citationtrail_10_1371_journal_pbio_1000479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Austinat (ref19) 2009; 40
S. G Meuth (ref35) 2003; 23
V. E O'Collins (ref3) 2006; 59
P Niethammer (ref15) 2009; 459
H Chen (ref42) 2009; 29
W. P Wu (ref50) 2004; 133
(ref1) 2008
K Murakami (ref59) 1998; 18
M Mittal (ref23) 2007; 101
C Kleinschnitz (ref21) 2003; 23
C Kleinschnitz (ref51) 2008; 39
C Kleinschnitz (ref54) 2007; 115
M Pham (ref41) 2010; 49
U Dirnagl (ref4) 2006; 26
N Opitz (ref12) 2007; 42
C Stielow (ref32) 2006; 344
R. M Touyz (ref47) 2008; 51
K. P Loh (ref30) 2006; 3
S. G Meuth (ref57) 2009; 33
M Geiszt (ref22) 2000; 97
G Gavazzi (ref25) 2006; 580
K. A Jackman (ref43) 2009; 156
K Matsuno (ref27) 2005; 112
G. S Omenn (ref11) 2007; 16
M Elvers (ref48) 2010; 3
S. R Steinhubl (ref9) 2008; 101
K Whalley (ref5) 2006; 5
C. E Walder (ref44) 1997; 28
A. A Miller (ref13) 2005; 97
C Kleinschnitz (ref56) 2009; 113
Z Veresh (ref28) 2008; 52
P Vallet (ref18) 2005; 132
M. R Macleod (ref17) 2009; 40
S Heumuller (ref36) 2008; 51
K. K Griendling (ref24) 2004; 90
U Dirnagl (ref39) 1999; 22
H. B van der Worp (ref45) 2005; 252
S. K McCann (ref14) 2008; 86
K Block (ref46) 2009; 106
M. D Ginsberg (ref55) 2003; 54
N. A Crossley (ref40) 2008; 39
A Bobba (ref29) 2007; 12
S Lange (ref34) 2009; 81
E. S Sena (ref6) 2010; 8
M Schroeter (ref52) 2002; 117
H. B van der Worp (ref7) 2010; 7
B. D Watson (ref20) 1985; 17
J. S Elkins (ref2) 2003; 34
M Fisher (ref16) 2009; 40
U Landmesser (ref26) 2002; 40
H ten Freyhaus (ref33) 2006; 71
C Kleinschnitz (ref53) 2006; 200
K. E Sandoval (ref31) 2008; 32
A Berna-Erro (ref49) 2009; 2
T Schluter (ref37) 2008; 80
E. S Flamm (ref38) 1978; 9
N Anilkumar (ref58) 2008; 28
M. J Eliasson (ref8) 1999; 19
Y Dotan (ref10) 2009; 29
18292385 - Stroke. 2008 Apr;39(4):1262-8
10441299 - Trends Neurosci. 1999 Sep;22(9):391-7
14757346 - J Neurosci Methods. 2004 Feb 15;133(1-2):65-9
19706525 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14385-90
17017863 - Curr Alzheimer Res. 2006 Sep;3(4):327-37
18703798 - Stroke. 2009 Mar;40(3):e50-2
17415088 - Eur J Cancer Prev. 2007 Jun;16(3):184-91
12878686 - J Neurosci. 2003 Jul 23;23(16):6460-9
18988906 - Stroke. 2009 Jan;40(1):285-93
16210546 - Circ Res. 2005 Nov 11;97(10):1055-62
12364355 - Hypertension. 2002 Oct;40(4):511-5
20051593 - Sci Signal. 2010;3(103):ra1
10407030 - J Neurosci. 1999 Jul 15;19(14):5910-8
16246966 - Circulation. 2005 Oct 25;112(17):2677-85
16386251 - FEBS Lett. 2006 Jan 23;580(2):497-504
18474268 - Am J Cardiol. 2008 May 22;101(10A):14D-19D
16603125 - Biochem Biophys Res Commun. 2006 May 26;344(1):200-5
18930826 - Neurobiol Dis. 2009 Jan;33(1):1-11
18467643 - Arterioscler Thromb Vasc Biol. 2008 Jul;28(7):1347-54
15084538 - Heart. 2004 May;90(5):491-3
18438942 - J Neurosci Res. 2008 Aug 15;86(11):2524-34
17438148 - Circulation. 2007 May 1;115(17):2323-30
9412501 - J Neurosci. 1998 Jan 1;18(1):205-13
9368573 - Stroke. 1997 Nov;28(11):2252-8
18239164 - Stroke. 2008 Mar;39(3):929-34
20361022 - PLoS Biol. 2010 Mar;8(3):e1000344
12881608 - Stroke. 2003 Sep;34(9):2109-12
705824 - Stroke. 1978 Sep-Oct;9(5):445-7
16170651 - J Neurol. 2005 Sep;252(9):1108-14
19494811 - Nature. 2009 Jun 18;459(7249):996-9
19175604 - Br J Pharmacol. 2009 Feb;156(4):680-8
16525413 - J Cereb Blood Flow Metab. 2006 Dec;26(12):1465-78
20877473 - PLoS Biol. 2010;8(9). pii: e1000478. doi: 10.1371/journal.pbio.1000478
17585072 - Circ Res. 2007 Aug 3;101(3):258-67
18596059 - Cardiovasc Res. 2008 Nov 1;80(2):271-9
18086956 - Hypertension. 2008 Feb;51(2):211-7
12084563 - J Neurosci Methods. 2002 May 30;117(1):43-9
14600443 - J Cereb Blood Flow Metab. 2003 Nov;23(11):1356-61
18838625 - Hypertension. 2008 Nov;52(5):960-6
16453316 - Ann Neurol. 2006 Mar;59(3):467-77
18790057 - Neurobiol Dis. 2008 Nov;32(2):200-19
19182208 - Blood. 2009 Apr 9;113(15):3600-3
17189823 - Free Radic Biol Med. 2007 Jan 15;42(2):175-9
19246690 - Stroke. 2009 Jun;40(6):2244-50
10869423 - Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8010-4
17503222 - Apoptosis. 2007 Sep;12(9):1597-610
20361020 - PLoS Med. 2010 Mar;7(3):e1000245
19958838 - Neuroimage. 2010 Feb 15;49(4):2907-14
18086948 - Hypertension. 2008 Feb;51(2):172-4
19843959 - Sci Signal. 2009;2(93):ra67
16674943 - Exp Neurol. 2006 Aug;200(2):480-5
18806276 - Cardiovasc Res. 2009 Jan 1;81(1):159-68
19417757 - J Cereb Blood Flow Metab. 2009 Jul;29(7):1262-72
15802177 - Neuroscience. 2005;132(2):233-8
12953265 - Ann Neurol. 2003 Sep;54(3):330-42
19286632 - Arterioscler Thromb Vasc Biol. 2009 Sep;29(9):1304-9
16545786 - Cardiovasc Res. 2006 Jul 15;71(2):331-41
4004172 - Ann Neurol. 1985 May;17(5):497-504
References_xml – volume: 51
  start-page: 211
  year: 2008
  ident: ref36
  article-title: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant.
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.107.100214
– volume: 51
  start-page: 172
  year: 2008
  ident: ref47
  article-title: Apocynin, NADPH oxidase, and vascular cells: a complex matter.
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.107.103200
– year: 2008
  ident: ref1
  article-title: The top ten causes of death. Fact sheet number 310.
– volume: 17
  start-page: 497
  year: 1985
  ident: ref20
  article-title: Induction of reproducible brain infarction by photochemically initiated thrombosis.
  publication-title: Ann Neurol
  doi: 10.1002/ana.410170513
– volume: 200
  start-page: 480
  year: 2006
  ident: ref53
  article-title: T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression.
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2006.03.014
– volume: 106
  start-page: 14385
  year: 2009
  ident: ref46
  article-title: Subcellular localization of Nox4 and regulation in diabetes.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0906805106
– volume: 81
  start-page: 159
  year: 2009
  ident: ref34
  article-title: Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species.
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvn258
– volume: 40
  start-page: 224
  year: 2009
  ident: ref16
  article-title: Update of the stroke therapy academic industry roundtable preclinical recommendations.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.541128
– volume: 29
  start-page: 1304
  year: 2009
  ident: ref10
  article-title: Decision analysis supports the paradigm that indiscriminate supplementation of vitamin E does more harm than good.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.108.178699
– volume: 3
  start-page: ra1
  year: 2010
  ident: ref48
  article-title: Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1.
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2000551
– volume: 101
  start-page: 14D
  year: 2008
  ident: ref9
  article-title: Why have antioxidants failed in clinical trials?
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2008.02.003
– volume: 2
  start-page: ra67
  year: 2009
  ident: ref49
  article-title: STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death.
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2000522
– volume: 113
  start-page: 3600
  year: 2009
  ident: ref56
  article-title: Deficiency of von Willebrand factor protects mice from ischemic stroke.
  publication-title: Blood
  doi: 10.1182/blood-2008-09-180695
– volume: 459
  start-page: 996
  year: 2009
  ident: ref15
  article-title: A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish.
  publication-title: Nature
  doi: 10.1038/nature08119
– volume: 9
  start-page: 445
  year: 1978
  ident: ref38
  article-title: Free radicals in cerebral ischemia.
  publication-title: Stroke
  doi: 10.1161/01.STR.9.5.445
– volume: 7
  start-page: e1000245
  year: 2010
  ident: ref7
  article-title: Can animal models of disease reliably inform human studies?
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1000245
– volume: 40
  start-page: 511
  year: 2002
  ident: ref26
  article-title: Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II.
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000032100.23772.98
– volume: 80
  start-page: 271
  year: 2008
  ident: ref37
  article-title: Apocynin-induced vasodilation involves Rho kinase inhibition but not NADPH oxidase inhibition.
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvn185
– volume: 90
  start-page: 491
  year: 2004
  ident: ref24
  article-title: Novel NAD(P)H oxidases in the cardiovascular system.
  publication-title: Heart
  doi: 10.1136/hrt.2003.029397
– volume: 156
  start-page: 680
  year: 2009
  ident: ref43
  article-title: Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice.
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2008.00073.x
– volume: 39
  start-page: 929
  year: 2008
  ident: ref40
  article-title: Empirical evidence of bias in the design of experimental stroke studies: a metaepidemiologic approach.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.498725
– volume: 33
  start-page: 1
  year: 2009
  ident: ref57
  article-title: The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice.
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2008.09.006
– volume: 18
  start-page: 205
  year: 1998
  ident: ref59
  article-title: Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-01-00205.1998
– volume: 112
  start-page: 2677
  year: 2005
  ident: ref27
  article-title: Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice.
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.573709
– volume: 23
  start-page: 6460
  year: 2003
  ident: ref35
  article-title: Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-16-06460.2003
– volume: 344
  start-page: 200
  year: 2006
  ident: ref32
  article-title: Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2006.03.114
– volume: 40
  start-page: 285
  year: 2009
  ident: ref19
  article-title: Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.526673
– volume: 40
  start-page: e50
  year: 2009
  ident: ref17
  article-title: Good laboratory practice: preventing introduction of bias at the bench.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.525386
– volume: 3
  start-page: 327
  year: 2006
  ident: ref30
  article-title: Oxidative stress: apoptosis in neuronal injury.
  publication-title: Curr Alzheimer Res
  doi: 10.2174/156720506778249515
– volume: 26
  start-page: 1465
  year: 2006
  ident: ref4
  article-title: Bench to bedside: the quest for quality in experimental stroke research.
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/sj.jcbfm.9600298
– volume: 52
  start-page: 960
  year: 2008
  ident: ref28
  article-title: ADMA impairs nitric oxide-mediated arteriolar function due to increased superoxide production by angiotensin II-NAD(P)H oxidase pathway.
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.108.116731
– volume: 101
  start-page: 258
  year: 2007
  ident: ref23
  article-title: Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature.
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.107.148015
– volume: 71
  start-page: 331
  year: 2006
  ident: ref33
  article-title: Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation.
  publication-title: Cardiovasc Res
  doi: 10.1016/j.cardiores.2006.01.022
– volume: 5
  start-page: 632
  year: 2006
  ident: ref5
  article-title: Slicing into stroke therapeutics.
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2118
– volume: 19
  start-page: 5910
  year: 1999
  ident: ref8
  article-title: Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-14-05910.1999
– volume: 59
  start-page: 467
  year: 2006
  ident: ref3
  article-title: 1,026 experimental treatments in acute stroke.
  publication-title: Ann Neurol
  doi: 10.1002/ana.20741
– volume: 12
  start-page: 1597
  year: 2007
  ident: ref29
  article-title: Nitric oxide has dual opposite roles during early and late phases of apoptosis in cerebellar granule neurons.
  publication-title: Apoptosis
  doi: 10.1007/s10495-007-0086-4
– volume: 39
  start-page: 1262
  year: 2008
  ident: ref51
  article-title: Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosis.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.496448
– volume: 34
  start-page: 2109
  year: 2003
  ident: ref2
  article-title: Thirty-year projections for deaths from ischemic stroke in the United States.
  publication-title: Stroke
  doi: 10.1161/01.STR.0000085829.60324.DE
– volume: 42
  start-page: 175
  year: 2007
  ident: ref12
  article-title: The ‘A’s and ‘O’s of NADPH oxidase regulation: a commentary on “Subcellular localization and function of alternatively spliced Noxo1 isoforms”.
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2006.11.003
– volume: 22
  start-page: 391
  year: 1999
  ident: ref39
  article-title: Pathobiology of ischaemic stroke: an integrated view.
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(99)01401-0
– volume: 115
  start-page: 2323
  year: 2007
  ident: ref54
  article-title: Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding.
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.691279
– volume: 28
  start-page: 2252
  year: 1997
  ident: ref44
  article-title: Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase.
  publication-title: Stroke
  doi: 10.1161/01.STR.28.11.2252
– volume: 28
  start-page: 1347
  year: 2008
  ident: ref58
  article-title: Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.108.164277
– volume: 86
  start-page: 2524
  year: 2008
  ident: ref14
  article-title: Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats.
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.21700
– volume: 54
  start-page: 330
  year: 2003
  ident: ref55
  article-title: Stilbazulenyl nitrone, a novel antioxidant, is highly neuroprotective in focal ischemia.
  publication-title: Ann Neurol
  doi: 10.1002/ana.10659
– volume: 23
  start-page: 1356
  year: 2003
  ident: ref21
  article-title: In vivo monitoring of macrophage infiltration in experimental ischemic brain lesions by magnetic resonance imaging.
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/01.WCB.0000090505.76664.DB
– volume: 97
  start-page: 8010
  year: 2000
  ident: ref22
  article-title: Identification of renox, an NAD(P)H oxidase in kidney.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.130135897
– volume: 29
  start-page: 1262
  year: 2009
  ident: ref42
  article-title: Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion.
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2009.47
– volume: 8
  start-page: e1000344
  year: 2010
  ident: ref6
  article-title: Publication bias in reports of animal stroke studies leads to major overstatement of efficacy.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000344
– volume: 49
  start-page: 2907
  year: 2010
  ident: ref41
  article-title: Enhanced cortical reperfusion protects coagulation factor XII-deficient mice from ischemic stroke as revealed by high-field MRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.061
– volume: 132
  start-page: 233
  year: 2005
  ident: ref18
  article-title: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.12.038
– volume: 252
  start-page: 1108
  year: 2005
  ident: ref45
  article-title: Methodological quality of animal studies on neuroprotection in focal cerebral ischaemia.
  publication-title: J Neurol
  doi: 10.1007/s00415-005-0802-3
– volume: 16
  start-page: 184
  year: 2007
  ident: ref11
  article-title: Chemoprevention of lung cancers: lessons from CARET, the beta-carotene and retinol efficacy trial, and prospects for the future.
  publication-title: Eur J Cancer Prev
  doi: 10.1097/01.cej.0000215612.98132.18
– volume: 133
  start-page: 65
  year: 2004
  ident: ref50
  article-title: Chronic lumbar catheterization of the spinal subarachnoid space in mice.
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.09.015
– volume: 32
  start-page: 200
  year: 2008
  ident: ref31
  article-title: Blood-brain barrier tight junction permeability and ischemic stroke.
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2008.08.005
– volume: 117
  start-page: 43
  year: 2002
  ident: ref52
  article-title: Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses.
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(02)00072-9
– volume: 580
  start-page: 497
  year: 2006
  ident: ref25
  article-title: Decreased blood pressure in NOX1-deficient mice.
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2005.12.049
– volume: 97
  start-page: 1055
  year: 2005
  ident: ref13
  article-title: NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries.
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000189301.10217.87
– reference: 18438942 - J Neurosci Res. 2008 Aug 15;86(11):2524-34
– reference: 19182208 - Blood. 2009 Apr 9;113(15):3600-3
– reference: 19417757 - J Cereb Blood Flow Metab. 2009 Jul;29(7):1262-72
– reference: 18239164 - Stroke. 2008 Mar;39(3):929-34
– reference: 18086956 - Hypertension. 2008 Feb;51(2):211-7
– reference: 17438148 - Circulation. 2007 May 1;115(17):2323-30
– reference: 19706525 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14385-90
– reference: 17017863 - Curr Alzheimer Res. 2006 Sep;3(4):327-37
– reference: 20877473 - PLoS Biol. 2010;8(9). pii: e1000478. doi: 10.1371/journal.pbio.1000478
– reference: 14757346 - J Neurosci Methods. 2004 Feb 15;133(1-2):65-9
– reference: 19843959 - Sci Signal. 2009;2(93):ra67
– reference: 18703798 - Stroke. 2009 Mar;40(3):e50-2
– reference: 18838625 - Hypertension. 2008 Nov;52(5):960-6
– reference: 18988906 - Stroke. 2009 Jan;40(1):285-93
– reference: 16603125 - Biochem Biophys Res Commun. 2006 May 26;344(1):200-5
– reference: 9368573 - Stroke. 1997 Nov;28(11):2252-8
– reference: 18292385 - Stroke. 2008 Apr;39(4):1262-8
– reference: 12878686 - J Neurosci. 2003 Jul 23;23(16):6460-9
– reference: 18467643 - Arterioscler Thromb Vasc Biol. 2008 Jul;28(7):1347-54
– reference: 16246966 - Circulation. 2005 Oct 25;112(17):2677-85
– reference: 12084563 - J Neurosci Methods. 2002 May 30;117(1):43-9
– reference: 15802177 - Neuroscience. 2005;132(2):233-8
– reference: 9412501 - J Neurosci. 1998 Jan 1;18(1):205-13
– reference: 19246690 - Stroke. 2009 Jun;40(6):2244-50
– reference: 10869423 - Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8010-4
– reference: 20361020 - PLoS Med. 2010 Mar;7(3):e1000245
– reference: 18806276 - Cardiovasc Res. 2009 Jan 1;81(1):159-68
– reference: 16210546 - Circ Res. 2005 Nov 11;97(10):1055-62
– reference: 16386251 - FEBS Lett. 2006 Jan 23;580(2):497-504
– reference: 12881608 - Stroke. 2003 Sep;34(9):2109-12
– reference: 16545786 - Cardiovasc Res. 2006 Jul 15;71(2):331-41
– reference: 19958838 - Neuroimage. 2010 Feb 15;49(4):2907-14
– reference: 14600443 - J Cereb Blood Flow Metab. 2003 Nov;23(11):1356-61
– reference: 16453316 - Ann Neurol. 2006 Mar;59(3):467-77
– reference: 12364355 - Hypertension. 2002 Oct;40(4):511-5
– reference: 16170651 - J Neurol. 2005 Sep;252(9):1108-14
– reference: 4004172 - Ann Neurol. 1985 May;17(5):497-504
– reference: 18596059 - Cardiovasc Res. 2008 Nov 1;80(2):271-9
– reference: 17415088 - Eur J Cancer Prev. 2007 Jun;16(3):184-91
– reference: 18086948 - Hypertension. 2008 Feb;51(2):172-4
– reference: 705824 - Stroke. 1978 Sep-Oct;9(5):445-7
– reference: 15084538 - Heart. 2004 May;90(5):491-3
– reference: 18790057 - Neurobiol Dis. 2008 Nov;32(2):200-19
– reference: 17585072 - Circ Res. 2007 Aug 3;101(3):258-67
– reference: 20051593 - Sci Signal. 2010;3(103):ra1
– reference: 17503222 - Apoptosis. 2007 Sep;12(9):1597-610
– reference: 10441299 - Trends Neurosci. 1999 Sep;22(9):391-7
– reference: 18474268 - Am J Cardiol. 2008 May 22;101(10A):14D-19D
– reference: 17189823 - Free Radic Biol Med. 2007 Jan 15;42(2):175-9
– reference: 16674943 - Exp Neurol. 2006 Aug;200(2):480-5
– reference: 12953265 - Ann Neurol. 2003 Sep;54(3):330-42
– reference: 19494811 - Nature. 2009 Jun 18;459(7249):996-9
– reference: 16525413 - J Cereb Blood Flow Metab. 2006 Dec;26(12):1465-78
– reference: 19175604 - Br J Pharmacol. 2009 Feb;156(4):680-8
– reference: 20361022 - PLoS Biol. 2010 Mar;8(3):e1000344
– reference: 18930826 - Neurobiol Dis. 2009 Jan;33(1):1-11
– reference: 19286632 - Arterioscler Thromb Vasc Biol. 2009 Sep;29(9):1304-9
– reference: 10407030 - J Neurosci. 1999 Jul 15;19(14):5910-8
SSID ssj0022928
Score 2.5074413
Snippet Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of...
The identification of NOX4 as a major source of oxidative stress in stroke and demonstration of dramatic protection after stroke in mice by NOX4 deletion or...
  Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90%...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000479
SubjectTerms Animals
Antioxidants
Blood clots
Blood-Brain Barrier
Brain - metabolism
Brain - pathology
Brain damage
Cardiovascular Disorders/Cardiovascular Pharmacology
Colleges & universities
Drug therapy
Female
Genetics and Genomics/Gene Function
Health aspects
Ischemia
Male
Mice
Mice, Knockout
Mortality
NADPH Oxidase 4
NADPH Oxidases - antagonists & inhibitors
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
Neurodegeneration
Neurological Disorders/Cerebrovascular Disease
Neurological Disorders/Neuropharmacology
Nitric oxide
Non-Clinical Medicine/Research Methods
Oxidases
Oxidative Stress
Pharmacology/Drug Development
Phenotype
Physiology/Cardiovascular Physiology and Circulation
Prevention
Reactive Oxygen Species - metabolism
Stroke
Stroke (Disease)
Stroke - enzymology
Stroke - metabolism
Stroke - pathology
Veins & arteries
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_O5plUUEn2KT3SR7eTw_yil4ilrp2zL7kTa0JEdzB_a_78xu7mhEqQ9CXpJMFu43szszt7O_YeyVBGdx3a8SAyZNcsCpCEaqxFW0CSas8wWdRv68LBdH-afj4vhaqy-qCYv0wBG4AwtZAVZWFrP0XM0kgLA2T2uohZRlGUIj9HnbZGpItUQVuqoS1QxOZyWHQ3NSZQeDjt6sTNNRjQBxrI-cUuDu363Qk9V51_8p_Py9ivKaWzq8x-4O8SSfx99xn93y7QN2O3aYvHzIamrGm_Tri-7M86Y9bUwo0eJdjXcO1er4cv7-64J3vxqHDo3TX7I856vI7NTH57Qk8niqhEPreCDBdP4kUFbTeI_Y0eGHH-8WydBaIbFKinViKvTMUFZGobOyhoKu2peYOxG9fV3IwpvUegvWQJUaK5Wb1XnloLa-kL4C-ZhN2q71e4zPijRzHjMblMjBAQ7tM5hRoCBSl9opk1tstR14x6n9xbkOm2kK848IlSaN6EEjU5bsvlpF3o0b5N-S2nayxJodHqAt6cGW9E22NGUvSemaeDFaKrw5gU3f649ffuq5oA1dkcnib0Lfl_8i9G0k9HoQqjtEBNGOJyIQVyLlGknujyRxCbCj13tkpVtgeo3qpLivLBAXvrVcTV9RSV3ru02vFeaS5QyvKXsSDXkHnggskRmOq0YmPkJ3_KZtTgM3uSC-wVw8_R_qeMbuxFoNqujbZ5P1xcY_xxBwbV6E2X4Fcq5aJQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/20877715
https://www.proquest.com/docview/755968968
https://pubmed.ncbi.nlm.nih.gov/PMC2943442
https://doaj.org/article/ca15ac39c2024783aa2cc40faf23366a
http://dx.doi.org/10.1371/journal.pbio.1000479
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvY9_N1gUxBntysSXbsh_GSLeWbKNZ1y2jb0JfTsOCncUJtP_97mQnzKNlBROwfRLkPnR31ul3hLzhyhpY9_NAKx0GsQJTVJqLwOa4CcaMdQmeRj4dp6NJ_Pkiudghm56tLQPrG1M77Cc1Wc4Pr35fvweDf-e7NohoM-hwoWcV7vojavou2QPfJLCZw2m83VdgLPfdVhGCBsxc8PYw3W2zdJyVx_Tfrty9xbyqbwpL_62u_MtdnTwkD9o4kw4bxXhEdlz5mNxrOk9ePyEFNukN6tWy-uXorLycaV-6RasC7iyI29Lx8OPZiFZXMwuOjuKnWhrTRYP4VDfPcamkzWkTqkpLPTimdVMPZY3zPSWTk-MfH0ZB23IhMIKzVaBz8NgqzbUAJ2Y0BmOFSyGnQtj7IuGJ06FxRhmt8lAbLmxWxLlVhXEJd7niz0ivrEq3T2iWhJF1kPEARaysgqldpDIMIFhoQ9MnfMNbaVo8cmyLMZd-k01AXtKwSqJEZCuRPgm2oxYNHsd_6I9QbFtaRNP2D6rlVLbGKY2KEmV4bhhELCLjSjFj4rBQBeM8TVWfvEahS8TLKLEgZ6rWdS0_ff0phww3elnEk9uIvo_vQnTeIXrbEhUVcAS43ZyUAL4iWFeH8qBDCUuD6bzeRy3dMKaWIE6MB9ME-EI3mitxFJbala5a11JAjplmcPXJ80aRt8xjHj0ygnlFR8U73O2-KWeXHrOcIQ5hzF7c-a-9JPebQg0s5zsgvdVy7V5B_LfSA7IrLsSA7B0dj8_OB_4rCvx--ZYNvLH_AfYNX68
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-stroke+inhibition+of+induced+NADPH+oxidase+type+4+prevents+oxidative+stress+and+neurodegeneration&rft.jtitle=PLoS+biology&rft.au=Kleinschnitz%2C+Christoph&rft.au=Grund%2C+Henrike&rft.au=Wingler%2C+Kirstin&rft.au=Armitage%2C+Melanie+E&rft.date=2010-09-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.volume=8&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pbio.1000479&rft.externalDocID=A238912135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon