Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thu...
Saved in:
Published in | PLoS biology Vol. 8; no. 9; p. e1000479 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.09.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.1000479 |
Cover
Loading…
Abstract | Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. |
---|---|
AbstractList | Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. The identification of NOX4 as a major source of oxidative stress in stroke and demonstration of dramatic protection after stroke in mice by NOX4 deletion or NOX inhibition, opens up new avenues for treatment. Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 ( Nox4 −/− ) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4 −/− mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. Stroke is the second leading cause of death worldwide. Today, only one approved therapy exists—a drug that breaks down blood clots—the effectiveness of which is moderate, and it can only be used in about 10% of patients because of contraindications. New therapeutic strategies that are translatable to humans and more rigid thresholds of relevance in pre-clinical stroke models are needed. One candidate mechanism is oxidative stress, which is the damage caused by reactive oxygen species (ROS). Antioxidant approaches that specifically target ROS have thus far failed in clinical trials. For a more effective approach, we focus here on targeting ROS at its source by investigating an enzyme involved in generating ROS, known as NADPH oxidase type 4, or NOX4. We found that NOX4 causes oxidative stress and death of nerve cells after a stroke. Deletion of the NOX4-coding gene in mice, as well as inhibiting the ROS-generating activity of NOX with a pharmacological inhibitor, reduces brain damage and improves neurological function, even when given hours after a stroke. Importantly, neuroprotection was preserved in old male and female Nox4 −/− mice as well as in Nox4 −/− mice subjected to permanent ischemia. NOX4 thus represents a most promising new therapeutic target for reducing oxidative stress in general, and in brain injury due to stroke in particular. Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4-/-) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4-/- mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 ([Nox4.sup.-/-]) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke- protective phenotype in [Nox4.sup.-/-] mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. |
Audience | Academic |
Author | Shah, Ajay M. Wingler, Kirstin Grund, Henrike Weissmann, Norbert Meuth, Sven G. de Angelis, Martin Hrabé Barit, David Schuhmann, Michael K. Schwarz, Tobias Barthel, Konstanze Stoll, Guido Herrmann, Alexander M. Becker, Lore Kleinschnitz, Christoph Meurer, Sabine Schmidt, Harald H. H. W. Mittal, Manish Jones, Emma Schrewe, Anja Klopstock, Thomas Fuchs, Helmut Gailus-Durner, Valérie Kraft, Peter Geis, Christian Armitage, Melanie E. Jandeleit-Dahm, Karin |
AuthorAffiliation | University of Edinburgh, United Kingdom 6 Baker IDI Heart and Diabetes Institute, Juvenile Diabetes Research Foundation (JDRF) International Center for Diabetic Complications Research, Melbourne, Australia 5 National Stroke Research Institute, Florey Neuroscience Institutes, Melbourne, Australia 7 Abteilung Neurologie, Georg-August Universität Göttingen, Göttingen, Germany 10 Friedrich-Baur-Institut an der Neurologischen Klinik, Klinikum der Ludwig-Maximilians-Universität München, München, Germany 1 Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany 8 Universitätsklinik Münster, Klinik und Poliklinik für Neurologie—Entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Münster, Germany 11 Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany 4 Department of Pharmacology and Toxicology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands 3 Department of Pharmacology and |
AuthorAffiliation_xml | – name: 2 Rudolf-Buchheim-Institut für Pharmakologie & Medizinische Klinik, Justus-Liebig-Universität, Gießen, Germany – name: 4 Department of Pharmacology and Toxicology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands – name: 6 Baker IDI Heart and Diabetes Institute, Juvenile Diabetes Research Foundation (JDRF) International Center for Diabetic Complications Research, Melbourne, Australia – name: 9 Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany – name: 3 Department of Pharmacology and Centre for Vascular Health, Monash University, Melbourne, Australia – name: 10 Friedrich-Baur-Institut an der Neurologischen Klinik, Klinikum der Ludwig-Maximilians-Universität München, München, Germany – name: 8 Universitätsklinik Münster, Klinik und Poliklinik für Neurologie—Entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Münster, Germany – name: 7 Abteilung Neurologie, Georg-August Universität Göttingen, Göttingen, Germany – name: University of Edinburgh, United Kingdom – name: 12 King's College London School of Medicine, The James Black Centre, Cardiovascular Division, London, United Kingdom – name: 5 National Stroke Research Institute, Florey Neuroscience Institutes, Melbourne, Australia – name: 11 Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany – name: 1 Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany |
Author_xml | – sequence: 1 givenname: Christoph surname: Kleinschnitz fullname: Kleinschnitz, Christoph – sequence: 2 givenname: Henrike surname: Grund fullname: Grund, Henrike – sequence: 3 givenname: Kirstin surname: Wingler fullname: Wingler, Kirstin – sequence: 4 givenname: Melanie E. surname: Armitage fullname: Armitage, Melanie E. – sequence: 5 givenname: Emma surname: Jones fullname: Jones, Emma – sequence: 6 givenname: Manish surname: Mittal fullname: Mittal, Manish – sequence: 7 givenname: David surname: Barit fullname: Barit, David – sequence: 8 givenname: Tobias surname: Schwarz fullname: Schwarz, Tobias – sequence: 9 givenname: Christian surname: Geis fullname: Geis, Christian – sequence: 10 givenname: Peter surname: Kraft fullname: Kraft, Peter – sequence: 11 givenname: Konstanze surname: Barthel fullname: Barthel, Konstanze – sequence: 12 givenname: Michael K. surname: Schuhmann fullname: Schuhmann, Michael K. – sequence: 13 givenname: Alexander M. surname: Herrmann fullname: Herrmann, Alexander M. – sequence: 14 givenname: Sven G. surname: Meuth fullname: Meuth, Sven G. – sequence: 15 givenname: Guido surname: Stoll fullname: Stoll, Guido – sequence: 16 givenname: Sabine surname: Meurer fullname: Meurer, Sabine – sequence: 17 givenname: Anja surname: Schrewe fullname: Schrewe, Anja – sequence: 18 givenname: Lore surname: Becker fullname: Becker, Lore – sequence: 19 givenname: Valérie surname: Gailus-Durner fullname: Gailus-Durner, Valérie – sequence: 20 givenname: Helmut surname: Fuchs fullname: Fuchs, Helmut – sequence: 21 givenname: Thomas surname: Klopstock fullname: Klopstock, Thomas – sequence: 22 givenname: Martin Hrabé surname: de Angelis fullname: de Angelis, Martin Hrabé – sequence: 23 givenname: Karin surname: Jandeleit-Dahm fullname: Jandeleit-Dahm, Karin – sequence: 24 givenname: Ajay M. surname: Shah fullname: Shah, Ajay M. – sequence: 25 givenname: Norbert surname: Weissmann fullname: Weissmann, Norbert – sequence: 26 givenname: Harald H. H. W. surname: Schmidt fullname: Schmidt, Harald H. H. W. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20877715$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAUhiM0xD7gHyCIxAXiosUfcRzvAmkaH6s0rRUb3FonznHnkcbFTqbt3-Ou3bQihECxlOTkeV9bb87Zz3Y632GWvaRkTLmk76_8EDpox8va-TElhBRSPcn2qCjESFaV2Hn0vJvtx3hFCGOKVc-yXUYqKSUVe5md-diPzvvgf2A-6S5d7Xrnu9zb9NYMBpv87Ojj7CSf3rgGIuYXt0vMi3wW8Bq7Pq7rvbvGPJlgjDl0SYJD8A3OscMAK7_n2VMLbcQXm_tB9u3zp4vjk9Hp9Mvk-Oh0ZCRn_ahWBSuhVLUsZWVqSpmyWEpaSiErK7jAmhg0YGpQpDZcNpUtVAPWoOCogB9kr9e-y9ZHvYko6uTDGOOlUImYrInGw5VeBreAcKs9OH1X8GGuIfTOtKgNUAGGK8MIK2TFAZgxBbFgGedludrtw2a3oV5gY1IgAdot0-0vnbvUc3-tmSp4UbBk8HZjEPzPAWOvFy4abFvo0A9RSyFUWaWVyDdrcg7pZK6zPhmaFa2PGK8UZZSLRI3_QKWrwYUzqX-sS_UtwbstQWJ6vOnnMMSoJ-df_4M9-3d2-n2bffU4xYf47ps0AcUaMMHHGNA-IJTo1Szc_2i9mgW9mYUkO_xNZlx_140pFNf-XfwL1GQQUQ |
CitedBy_id | crossref_primary_10_1016_j_bbi_2020_12_027 crossref_primary_10_1016_j_ijcard_2022_10_172 crossref_primary_10_1038_nrd3403 crossref_primary_10_1038_s41419_018_0270_1 crossref_primary_10_1111_jcmm_12885 crossref_primary_10_1371_journal_pone_0138551 crossref_primary_10_4103_2394_8108_195279 crossref_primary_10_3390_genes11050567 crossref_primary_10_1007_s00018_015_1845_y crossref_primary_10_3892_etm_2018_6377 crossref_primary_10_1016_j_chembiol_2011_12_017 crossref_primary_10_1080_09168451_2019_1664893 crossref_primary_10_1016_j_neuropharm_2019_107907 crossref_primary_10_2174_1874196701907010039 crossref_primary_10_1016_j_freeradbiomed_2012_06_027 crossref_primary_10_1016_j_pharmthera_2013_12_007 crossref_primary_10_3389_fphar_2016_00061 crossref_primary_10_3390_ijms18112500 crossref_primary_10_1007_s00424_014_1548_5 crossref_primary_10_52547_shefa_10_3_113 crossref_primary_10_1016_j_redox_2014_05_006 crossref_primary_10_1089_ars_2013_5607 crossref_primary_10_1371_journal_pone_0092103 crossref_primary_10_1371_journal_pone_0221039 crossref_primary_10_2174_1570159X21666230308090351 crossref_primary_10_1007_s00109_012_0963_3 crossref_primary_10_1038_srep00896 crossref_primary_10_1002_mnfr_201900779 crossref_primary_10_14814_phy2_12192 crossref_primary_10_1002_jnr_23532 crossref_primary_10_3390_cells8020196 crossref_primary_10_3390_antiox11061162 crossref_primary_10_1016_j_pharmthera_2017_08_010 crossref_primary_10_1016_j_clineuro_2022_107306 crossref_primary_10_1002_fsn3_3784 crossref_primary_10_1161_ATVBAHA_113_301913 crossref_primary_10_3390_antiox10050727 crossref_primary_10_1155_2020_7875396 crossref_primary_10_1016_j_cca_2021_02_007 crossref_primary_10_1016_j_expneurol_2016_11_008 crossref_primary_10_1093_cvr_cvx252 crossref_primary_10_1155_2018_6231482 crossref_primary_10_1002_jbt_23153 crossref_primary_10_1038_s41423_022_00858_1 crossref_primary_10_3390_antiox10050739 crossref_primary_10_1161_CIRCRESAHA_116_309326 crossref_primary_10_1089_ars_2023_0002 crossref_primary_10_1177_0271678X15606456 crossref_primary_10_3390_antiox14030256 crossref_primary_10_1007_s00441_018_2974_z crossref_primary_10_1016_j_chembiol_2012_02_001 crossref_primary_10_1089_ars_2013_5703 crossref_primary_10_1016_j_pneurobio_2016_01_005 crossref_primary_10_3390_ijms17121967 crossref_primary_10_1016_j_freeradbiomed_2017_01_034 crossref_primary_10_1155_2017_8539026 crossref_primary_10_1016_j_ejphar_2020_173360 crossref_primary_10_1021_acs_jmedchem_0c01914 crossref_primary_10_1002_jbm4_10080 crossref_primary_10_1016_j_neuroscience_2013_03_062 crossref_primary_10_1002_glia_24292 crossref_primary_10_1007_s00115_012_3536_3 crossref_primary_10_3390_stresses4030036 crossref_primary_10_1089_ars_2013_5814 crossref_primary_10_1155_2019_5618023 crossref_primary_10_1007_s00018_012_1014_5 crossref_primary_10_1016_j_drudis_2012_02_011 crossref_primary_10_1038_jcbfm_2012_62 crossref_primary_10_1080_15412555_2018_1464551 crossref_primary_10_1093_ndt_gfaa376 crossref_primary_10_4103_ijp_IJP_837_19 crossref_primary_10_1111_jnc_12747 crossref_primary_10_1016_j_bmc_2017_12_023 crossref_primary_10_1089_ars_2013_5374 crossref_primary_10_1161_ATVBAHA_115_307012 crossref_primary_10_1161_CIRCRESAHA_111_243972 crossref_primary_10_1177_0003319713506516 crossref_primary_10_1089_ars_2021_0040 crossref_primary_10_1016_j_mehy_2020_109558 crossref_primary_10_1016_j_pharmthera_2012_11_001 crossref_primary_10_1155_2021_5471347 crossref_primary_10_3109_10715762_2014_992893 crossref_primary_10_1038_ncomms1660 crossref_primary_10_1080_21655979_2022_2108266 crossref_primary_10_1155_2013_842827 crossref_primary_10_1016_j_ejphar_2016_03_006 crossref_primary_10_1089_ars_2012_4721 crossref_primary_10_3390_antiox14030275 crossref_primary_10_1016_j_freeradbiomed_2012_02_046 crossref_primary_10_1007_s12975_013_0289_7 crossref_primary_10_1042_CS20150404 crossref_primary_10_1155_2022_5815843 crossref_primary_10_1073_pnas_1705034114 crossref_primary_10_1016_j_ctim_2024_103123 crossref_primary_10_1161_CIRCRESAHA_117_311401 crossref_primary_10_1016_j_tcm_2014_03_003 crossref_primary_10_1155_2017_4590127 crossref_primary_10_1007_s00204_023_03562_9 crossref_primary_10_1016_j_neuint_2021_105081 crossref_primary_10_1016_j_yjmcc_2013_12_032 crossref_primary_10_1111_exd_12497 crossref_primary_10_5607_en_2017_26_4_195 crossref_primary_10_1016_j_freeradbiomed_2016_05_016 crossref_primary_10_1016_j_bbagen_2014_11_021 crossref_primary_10_1016_j_redox_2014_04_004 crossref_primary_10_3389_fcell_2018_00132 crossref_primary_10_1002_jcb_29004 crossref_primary_10_1161_CIRCRESAHA_111_255216 crossref_primary_10_3389_fnins_2021_596976 crossref_primary_10_1186_s13024_017_0150_7 crossref_primary_10_1152_physrev_00036_2017 crossref_primary_10_2174_0115701611308870240910115023 crossref_primary_10_1016_j_tips_2021_11_004 crossref_primary_10_1089_ars_2012_5149 crossref_primary_10_3390_ijms21155470 crossref_primary_10_1089_ars_2012_4970 crossref_primary_10_1152_ajpcell_00136_2018 crossref_primary_10_1038_s41440_019_0246_2 crossref_primary_10_3390_antiox3030472 crossref_primary_10_1089_ars_2013_5357 crossref_primary_10_1152_physrev_00011_2017 crossref_primary_10_1016_j_freeradbiomed_2011_09_016 crossref_primary_10_1086_687756 crossref_primary_10_1371_journal_pone_0063291 crossref_primary_10_1016_j_jtcvs_2018_07_095 crossref_primary_10_1186_s12974_017_1032_1 crossref_primary_10_3389_fncel_2016_00301 crossref_primary_10_1016_j_freeradbiomed_2019_12_038 crossref_primary_10_1155_2019_7850154 crossref_primary_10_1016_j_biopha_2022_113554 crossref_primary_10_11603_2414_4533_2019_2_10418 crossref_primary_10_1089_ars_2021_0135 crossref_primary_10_3389_fnmol_2024_1388759 crossref_primary_10_1016_j_tips_2016_01_006 crossref_primary_10_1186_2040_7378_4_11 crossref_primary_10_3390_antiox14030297 crossref_primary_10_1080_02699052_2017_1300835 crossref_primary_10_1681_ASN_2013070810 crossref_primary_10_1007_s00210_015_1125_2 crossref_primary_10_1007_s00018_012_1009_2 crossref_primary_10_3390_jcm9061995 crossref_primary_10_3892_mmr_2017_8062 crossref_primary_10_3389_fncel_2020_578060 crossref_primary_10_3389_fnagi_2022_1023161 crossref_primary_10_1155_2013_648061 crossref_primary_10_1039_D4FO01900H crossref_primary_10_1007_s00018_012_1107_1 crossref_primary_10_1016_j_brainres_2012_09_023 crossref_primary_10_1016_j_pathophys_2017_09_003 crossref_primary_10_1016_j_pharmthera_2014_09_003 crossref_primary_10_3390_biomedicines10030574 crossref_primary_10_1016_j_lfs_2020_117917 crossref_primary_10_1089_ars_2012_5129 crossref_primary_10_1111_bph_14703 crossref_primary_10_1093_jpp_rgab064 crossref_primary_10_1155_2012_730469 crossref_primary_10_1038_srep21086 crossref_primary_10_3390_antiox13101155 crossref_primary_10_3390_brainsci3020561 crossref_primary_10_1007_s11596_012_0081_z crossref_primary_10_1002_ana_24380 crossref_primary_10_1007_s12017_021_08646_2 crossref_primary_10_1089_ars_2014_5862 crossref_primary_10_1517_13543776_2011_584870 crossref_primary_10_1155_2015_963289 crossref_primary_10_1177_0271678X16657094 crossref_primary_10_1007_s00424_014_1664_2 crossref_primary_10_3389_fncel_2014_00269 crossref_primary_10_1038_s41598_021_91575_8 crossref_primary_10_1136_neurintsurg_2016_012377 crossref_primary_10_1371_journal_pone_0085660 crossref_primary_10_3390_antiox9070573 crossref_primary_10_1089_ars_2015_6562 crossref_primary_10_1371_journal_pone_0073428 crossref_primary_10_1159_000381727 crossref_primary_10_3389_fgene_2014_00310 crossref_primary_10_4103_1673_5374_250568 crossref_primary_10_1124_jpet_111_183210 crossref_primary_10_1161_ATVBAHA_116_308659 crossref_primary_10_1111_j_1476_5381_2011_01249_x crossref_primary_10_3390_antiox13040489 crossref_primary_10_1016_j_actbio_2025_02_061 crossref_primary_10_1155_2021_6631805 crossref_primary_10_1371_journal_pone_0064034 crossref_primary_10_1253_circj_CJ_11_0388 crossref_primary_10_1089_ars_2015_6433 crossref_primary_10_2147_IJGM_S366170 crossref_primary_10_1016_j_neuroscience_2018_11_046 crossref_primary_10_3390_antiox12091729 crossref_primary_10_1016_j_neuropharm_2018_07_006 crossref_primary_10_1089_ars_2015_6430 crossref_primary_10_1038_s41540_017_0039_7 crossref_primary_10_3390_antiox12061185 crossref_primary_10_1371_journal_pone_0313328 crossref_primary_10_1179_1743132812Y_0000000021 crossref_primary_10_1371_journal_pone_0054593 crossref_primary_10_3390_brainsci13070986 crossref_primary_10_1161_CIRCULATIONAHA_112_132159 crossref_primary_10_1515_med_2024_1041 crossref_primary_10_1007_s00018_012_1011_8 crossref_primary_10_1155_2017_7150376 crossref_primary_10_1161_JAHA_113_000555 crossref_primary_10_1016_j_biopha_2023_115052 crossref_primary_10_1038_jcbfm_2012_6 crossref_primary_10_1016_j_pharmthera_2017_02_022 crossref_primary_10_1042_CS20130065 crossref_primary_10_1155_2018_2468457 crossref_primary_10_1172_JCI124283 crossref_primary_10_3389_fphar_2024_1378335 crossref_primary_10_1007_s00335_012_9415_1 crossref_primary_10_1016_j_bioorg_2021_105562 crossref_primary_10_1007_s00125_017_4215_5 crossref_primary_10_1016_j_yjmcc_2013_05_009 crossref_primary_10_1161_CIRCRESAHA_112_269068 crossref_primary_10_1161_ATVBAHA_112_300956 crossref_primary_10_3390_antiox7110168 crossref_primary_10_5853_jos_2017_02901 crossref_primary_10_1021_acsami_3c13580 crossref_primary_10_3389_fmolb_2021_611367 crossref_primary_10_12677_OJNS_2015_32004 crossref_primary_10_1371_journal_pone_0116814 crossref_primary_10_1016_j_phymed_2022_154214 crossref_primary_10_1155_2016_3869610 crossref_primary_10_3390_ijms130911753 crossref_primary_10_1016_j_neuint_2012_11_009 crossref_primary_10_1016_j_freeradbiomed_2011_06_011 crossref_primary_10_2337_db21_1079 crossref_primary_10_1159_000516842 crossref_primary_10_1371_journal_pone_0028393 crossref_primary_10_1586_17446651_2014_887984 crossref_primary_10_1124_pr_120_019422 crossref_primary_10_1016_j_bcp_2011_01_007 crossref_primary_10_1038_s41419_017_0135_z crossref_primary_10_1517_14728214_2013_790363 crossref_primary_10_1042_CS20160249 crossref_primary_10_1111_ejn_12552 crossref_primary_10_1016_j_nbd_2011_01_027 crossref_primary_10_1016_j_freeradbiomed_2022_08_009 crossref_primary_10_1073_pnas_2111537119 crossref_primary_10_1093_cvr_cvaa168 crossref_primary_10_3389_fneur_2017_00467 crossref_primary_10_1111_bph_13532 crossref_primary_10_1586_14737175_2014_964210 crossref_primary_10_1371_journal_pone_0016172 crossref_primary_10_1111_j_1747_4949_2012_00770_x crossref_primary_10_1007_s00018_012_1010_9 crossref_primary_10_1371_journal_pone_0110602 crossref_primary_10_1016_j_vph_2016_10_007 crossref_primary_10_1089_ars_2013_5778 crossref_primary_10_1111_nyas_15219 crossref_primary_10_1007_s00210_012_0790_7 crossref_primary_10_3390_antiox13040396 crossref_primary_10_3389_fphys_2017_01133 crossref_primary_10_1073_pnas_1820799116 crossref_primary_10_3389_fphar_2019_01635 crossref_primary_10_3390_antiox10121886 crossref_primary_10_1371_journal_pbio_3000885 crossref_primary_10_1016_j_bcp_2024_116186 crossref_primary_10_1182_blood_2014_10_605261 crossref_primary_10_1002_jor_24417 crossref_primary_10_1016_j_brainres_2012_07_025 crossref_primary_10_1016_j_vph_2015_04_001 crossref_primary_10_1074_jbc_M112_356899 crossref_primary_10_3390_antiox11101966 crossref_primary_10_1182_blood_2012_06_440057 crossref_primary_10_1016_j_phrs_2022_106240 crossref_primary_10_1089_ars_2013_5767 crossref_primary_10_1371_journal_pgen_1002458 crossref_primary_10_3390_ijms18091935 crossref_primary_10_1007_s11596_017_1798_5 crossref_primary_10_1111_jcmm_16537 crossref_primary_10_3390_brainsci3010294 crossref_primary_10_1007_s12010_019_03157_0 crossref_primary_10_3390_ijms18102123 crossref_primary_10_1016_j_obmed_2023_100515 crossref_primary_10_1016_j_freeradbiomed_2016_07_013 crossref_primary_10_1007_s12035_015_9294_z crossref_primary_10_11603_ijmmr_2413_6077_2019_1_10308 crossref_primary_10_1186_s12938_021_00965_6 crossref_primary_10_1213_ANE_0000000000002186 crossref_primary_10_1038_ncomms7340 crossref_primary_10_1161_STROKEAHA_110_601369 crossref_primary_10_1161_STROKEAHA_112_660340 crossref_primary_10_1155_2016_5026984 crossref_primary_10_1007_s11064_019_02826_0 crossref_primary_10_1186_s40478_015_0189_z crossref_primary_10_1016_j_lfs_2016_08_018 crossref_primary_10_1016_j_bbi_2017_07_004 crossref_primary_10_1016_j_jcyt_2021_11_005 crossref_primary_10_1093_jnen_nly035 crossref_primary_10_1111_jcmm_12263 crossref_primary_10_3389_fphar_2022_854249 crossref_primary_10_1016_j_exer_2020_107918 crossref_primary_10_3892_etm_2018_6874 crossref_primary_10_1016_j_pnpbp_2017_01_007 crossref_primary_10_1371_journal_pone_0281045 crossref_primary_10_1016_j_freeradbiomed_2018_01_031 crossref_primary_10_1038_s41598_022_15989_8 crossref_primary_10_1042_CS20160043 crossref_primary_10_1016_j_arr_2024_102472 crossref_primary_10_2967_jnumed_112_111112 crossref_primary_10_1093_cvr_cvt009 crossref_primary_10_1016_j_freeradbiomed_2013_02_028 crossref_primary_10_1161_CIRCRESAHA_112_271957 crossref_primary_10_1007_s00424_014_1626_8 crossref_primary_10_1016_j_jss_2013_12_025 crossref_primary_10_1016_j_niox_2011_01_007 crossref_primary_10_1016_j_tem_2019_02_006 crossref_primary_10_1165_rcmb_2013_0174OC crossref_primary_10_1042_CS20140336 crossref_primary_10_1523_JNEUROSCI_4655_13_2014 crossref_primary_10_1155_2022_1148874 crossref_primary_10_1007_s00395_011_0188_6 crossref_primary_10_1016_j_freeradbiomed_2018_10_430 crossref_primary_10_1038_nn_3059 crossref_primary_10_1016_j_expneurol_2013_03_026 crossref_primary_10_1016_j_fra_2013_09_003 crossref_primary_10_1093_eurheartj_ehv564 crossref_primary_10_1093_mutage_ges033 crossref_primary_10_1016_j_redox_2015_08_020 crossref_primary_10_1038_s41374_018_0103_y crossref_primary_10_1016_j_intimp_2021_107367 crossref_primary_10_1093_hmg_dds516 crossref_primary_10_1155_2018_3273654 crossref_primary_10_1016_j_phanu_2023_100368 crossref_primary_10_1089_ars_2012_4797 crossref_primary_10_1016_j_phrs_2016_12_017 crossref_primary_10_1186_s12929_016_0249_0 crossref_primary_10_3390_antiox14010079 |
Cites_doi | 10.1161/HYPERTENSIONAHA.107.100214 10.1161/HYPERTENSIONAHA.107.103200 10.1002/ana.410170513 10.1016/j.expneurol.2006.03.014 10.1073/pnas.0906805106 10.1093/cvr/cvn258 10.1161/STROKEAHA.108.541128 10.1161/ATVBAHA.108.178699 10.1126/scisignal.2000551 10.1016/j.amjcard.2008.02.003 10.1126/scisignal.2000522 10.1182/blood-2008-09-180695 10.1038/nature08119 10.1161/01.STR.9.5.445 10.1371/journal.pmed.1000245 10.1161/01.HYP.0000032100.23772.98 10.1093/cvr/cvn185 10.1136/hrt.2003.029397 10.1111/j.1476-5381.2008.00073.x 10.1161/STROKEAHA.107.498725 10.1016/j.nbd.2008.09.006 10.1523/JNEUROSCI.18-01-00205.1998 10.1161/CIRCULATIONAHA.105.573709 10.1523/JNEUROSCI.23-16-06460.2003 10.1016/j.bbrc.2006.03.114 10.1161/STROKEAHA.108.526673 10.1161/STROKEAHA.108.525386 10.2174/156720506778249515 10.1038/sj.jcbfm.9600298 10.1161/HYPERTENSIONAHA.108.116731 10.1161/CIRCRESAHA.107.148015 10.1016/j.cardiores.2006.01.022 10.1038/nrd2118 10.1523/JNEUROSCI.19-14-05910.1999 10.1002/ana.20741 10.1007/s10495-007-0086-4 10.1161/STROKEAHA.107.496448 10.1161/01.STR.0000085829.60324.DE 10.1016/j.freeradbiomed.2006.11.003 10.1016/S0166-2236(99)01401-0 10.1161/CIRCULATIONAHA.107.691279 10.1161/01.STR.28.11.2252 10.1161/ATVBAHA.108.164277 10.1002/jnr.21700 10.1002/ana.10659 10.1097/01.WCB.0000090505.76664.DB 10.1073/pnas.130135897 10.1038/jcbfm.2009.47 10.1371/journal.pbio.1000344 10.1016/j.neuroimage.2009.11.061 10.1016/j.neuroscience.2004.12.038 10.1007/s00415-005-0802-3 10.1097/01.cej.0000215612.98132.18 10.1016/j.jneumeth.2003.09.015 10.1016/j.nbd.2008.08.005 10.1016/S0165-0270(02)00072-9 10.1016/j.febslet.2005.12.049 10.1161/01.RES.0000189301.10217.87 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science Kleinschnitz et al. 2010 2010 Kleinschnitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, et al. (2010) Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLoS Biol 8(9): e1000479. doi:10.1371/journal.pbio.1000479 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: Kleinschnitz et al. 2010 – notice: 2010 Kleinschnitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, et al. (2010) Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLoS Biol 8(9): e1000479. doi:10.1371/journal.pbio.1000479 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.1000479 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Role of NOX4 in Stroke |
EISSN | 1545-7885 |
ExternalDocumentID | 1292223659 oai_doaj_org_article_ca15ac39c2024783aa2cc40faf23366a PMC2943442 A238912135 20877715 10_1371_journal_pbio_1000479 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV IPNFZ ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY QN7 RIG RNS RPM SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO 3V. AAPBV ABPTK AGJBV CZG M~E ZA5 |
ID | FETCH-LOGICAL-c732t-b9426a69b7678cb1129fe67167578f535eb0cecacba90bc37d8f49dafce53e9a3 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:29 EDT 2023 Wed Aug 27 01:31:55 EDT 2025 Thu Aug 21 13:47:51 EDT 2025 Thu Jul 10 20:27:37 EDT 2025 Tue Jun 17 22:02:03 EDT 2025 Tue Jun 10 21:02:03 EDT 2025 Fri Jun 27 05:31:32 EDT 2025 Fri Jun 27 05:31:16 EDT 2025 Fri Jun 27 05:30:02 EDT 2025 Thu Apr 03 04:55:15 EDT 2025 Tue Jul 01 03:38:15 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Brain Phenotype Stroke Animals Reactive Oxygen Species Oxidative Stress Female Male Mice Blood-Brain Barrier Mice, Knockout NADPH Oxidase |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c732t-b9426a69b7678cb1129fe67167578f535eb0cecacba90bc37d8f49dafce53e9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CK AS MHdA KJD NW HHS. Performed the experiments: CK HG MEA EJ MM DB TS CG PK KB MKS AMH SGM GS SM AS LB VGD HF TK. Analyzed the data: CK MEA EJ MM DB LB VGD HF TK MHdA KJD NW HHHWS. Contributed reagents/materials/analysis tools: CK HG KW AMS HHHWS. Wrote the paper: CK KW HHHWS. |
OpenAccessLink | https://doaj.org/article/ca15ac39c2024783aa2cc40faf23366a |
PMID | 20877715 |
PQID | 755968968 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1292223659 doaj_primary_oai_doaj_org_article_ca15ac39c2024783aa2cc40faf23366a pubmedcentral_primary_oai_pubmedcentral_nih_gov_2943442 proquest_miscellaneous_755968968 gale_infotracmisc_A238912135 gale_infotracacademiconefile_A238912135 gale_incontextgauss_ISR_A238912135 gale_incontextgauss_ISN_A238912135 gale_incontextgauss_IOV_A238912135 pubmed_primary_20877715 crossref_primary_10_1371_journal_pbio_1000479 crossref_citationtrail_10_1371_journal_pbio_1000479 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M Austinat (ref19) 2009; 40 S. G Meuth (ref35) 2003; 23 V. E O'Collins (ref3) 2006; 59 P Niethammer (ref15) 2009; 459 H Chen (ref42) 2009; 29 W. P Wu (ref50) 2004; 133 (ref1) 2008 K Murakami (ref59) 1998; 18 M Mittal (ref23) 2007; 101 C Kleinschnitz (ref21) 2003; 23 C Kleinschnitz (ref51) 2008; 39 C Kleinschnitz (ref54) 2007; 115 M Pham (ref41) 2010; 49 U Dirnagl (ref4) 2006; 26 N Opitz (ref12) 2007; 42 C Stielow (ref32) 2006; 344 R. M Touyz (ref47) 2008; 51 K. P Loh (ref30) 2006; 3 S. G Meuth (ref57) 2009; 33 M Geiszt (ref22) 2000; 97 G Gavazzi (ref25) 2006; 580 K. A Jackman (ref43) 2009; 156 K Matsuno (ref27) 2005; 112 G. S Omenn (ref11) 2007; 16 M Elvers (ref48) 2010; 3 S. R Steinhubl (ref9) 2008; 101 K Whalley (ref5) 2006; 5 C. E Walder (ref44) 1997; 28 A. A Miller (ref13) 2005; 97 C Kleinschnitz (ref56) 2009; 113 Z Veresh (ref28) 2008; 52 P Vallet (ref18) 2005; 132 M. R Macleod (ref17) 2009; 40 S Heumuller (ref36) 2008; 51 K. K Griendling (ref24) 2004; 90 U Dirnagl (ref39) 1999; 22 H. B van der Worp (ref45) 2005; 252 S. K McCann (ref14) 2008; 86 K Block (ref46) 2009; 106 M. D Ginsberg (ref55) 2003; 54 N. A Crossley (ref40) 2008; 39 A Bobba (ref29) 2007; 12 S Lange (ref34) 2009; 81 E. S Sena (ref6) 2010; 8 M Schroeter (ref52) 2002; 117 H. B van der Worp (ref7) 2010; 7 B. D Watson (ref20) 1985; 17 J. S Elkins (ref2) 2003; 34 M Fisher (ref16) 2009; 40 U Landmesser (ref26) 2002; 40 H ten Freyhaus (ref33) 2006; 71 C Kleinschnitz (ref53) 2006; 200 K. E Sandoval (ref31) 2008; 32 A Berna-Erro (ref49) 2009; 2 T Schluter (ref37) 2008; 80 E. S Flamm (ref38) 1978; 9 N Anilkumar (ref58) 2008; 28 M. J Eliasson (ref8) 1999; 19 Y Dotan (ref10) 2009; 29 18292385 - Stroke. 2008 Apr;39(4):1262-8 10441299 - Trends Neurosci. 1999 Sep;22(9):391-7 14757346 - J Neurosci Methods. 2004 Feb 15;133(1-2):65-9 19706525 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14385-90 17017863 - Curr Alzheimer Res. 2006 Sep;3(4):327-37 18703798 - Stroke. 2009 Mar;40(3):e50-2 17415088 - Eur J Cancer Prev. 2007 Jun;16(3):184-91 12878686 - J Neurosci. 2003 Jul 23;23(16):6460-9 18988906 - Stroke. 2009 Jan;40(1):285-93 16210546 - Circ Res. 2005 Nov 11;97(10):1055-62 12364355 - Hypertension. 2002 Oct;40(4):511-5 20051593 - Sci Signal. 2010;3(103):ra1 10407030 - J Neurosci. 1999 Jul 15;19(14):5910-8 16246966 - Circulation. 2005 Oct 25;112(17):2677-85 16386251 - FEBS Lett. 2006 Jan 23;580(2):497-504 18474268 - Am J Cardiol. 2008 May 22;101(10A):14D-19D 16603125 - Biochem Biophys Res Commun. 2006 May 26;344(1):200-5 18930826 - Neurobiol Dis. 2009 Jan;33(1):1-11 18467643 - Arterioscler Thromb Vasc Biol. 2008 Jul;28(7):1347-54 15084538 - Heart. 2004 May;90(5):491-3 18438942 - J Neurosci Res. 2008 Aug 15;86(11):2524-34 17438148 - Circulation. 2007 May 1;115(17):2323-30 9412501 - J Neurosci. 1998 Jan 1;18(1):205-13 9368573 - Stroke. 1997 Nov;28(11):2252-8 18239164 - Stroke. 2008 Mar;39(3):929-34 20361022 - PLoS Biol. 2010 Mar;8(3):e1000344 12881608 - Stroke. 2003 Sep;34(9):2109-12 705824 - Stroke. 1978 Sep-Oct;9(5):445-7 16170651 - J Neurol. 2005 Sep;252(9):1108-14 19494811 - Nature. 2009 Jun 18;459(7249):996-9 19175604 - Br J Pharmacol. 2009 Feb;156(4):680-8 16525413 - J Cereb Blood Flow Metab. 2006 Dec;26(12):1465-78 20877473 - PLoS Biol. 2010;8(9). pii: e1000478. doi: 10.1371/journal.pbio.1000478 17585072 - Circ Res. 2007 Aug 3;101(3):258-67 18596059 - Cardiovasc Res. 2008 Nov 1;80(2):271-9 18086956 - Hypertension. 2008 Feb;51(2):211-7 12084563 - J Neurosci Methods. 2002 May 30;117(1):43-9 14600443 - J Cereb Blood Flow Metab. 2003 Nov;23(11):1356-61 18838625 - Hypertension. 2008 Nov;52(5):960-6 16453316 - Ann Neurol. 2006 Mar;59(3):467-77 18790057 - Neurobiol Dis. 2008 Nov;32(2):200-19 19182208 - Blood. 2009 Apr 9;113(15):3600-3 17189823 - Free Radic Biol Med. 2007 Jan 15;42(2):175-9 19246690 - Stroke. 2009 Jun;40(6):2244-50 10869423 - Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8010-4 17503222 - Apoptosis. 2007 Sep;12(9):1597-610 20361020 - PLoS Med. 2010 Mar;7(3):e1000245 19958838 - Neuroimage. 2010 Feb 15;49(4):2907-14 18086948 - Hypertension. 2008 Feb;51(2):172-4 19843959 - Sci Signal. 2009;2(93):ra67 16674943 - Exp Neurol. 2006 Aug;200(2):480-5 18806276 - Cardiovasc Res. 2009 Jan 1;81(1):159-68 19417757 - J Cereb Blood Flow Metab. 2009 Jul;29(7):1262-72 15802177 - Neuroscience. 2005;132(2):233-8 12953265 - Ann Neurol. 2003 Sep;54(3):330-42 19286632 - Arterioscler Thromb Vasc Biol. 2009 Sep;29(9):1304-9 16545786 - Cardiovasc Res. 2006 Jul 15;71(2):331-41 4004172 - Ann Neurol. 1985 May;17(5):497-504 |
References_xml | – volume: 51 start-page: 211 year: 2008 ident: ref36 article-title: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.107.100214 – volume: 51 start-page: 172 year: 2008 ident: ref47 article-title: Apocynin, NADPH oxidase, and vascular cells: a complex matter. publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.107.103200 – year: 2008 ident: ref1 article-title: The top ten causes of death. Fact sheet number 310. – volume: 17 start-page: 497 year: 1985 ident: ref20 article-title: Induction of reproducible brain infarction by photochemically initiated thrombosis. publication-title: Ann Neurol doi: 10.1002/ana.410170513 – volume: 200 start-page: 480 year: 2006 ident: ref53 article-title: T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. publication-title: Exp Neurol doi: 10.1016/j.expneurol.2006.03.014 – volume: 106 start-page: 14385 year: 2009 ident: ref46 article-title: Subcellular localization of Nox4 and regulation in diabetes. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0906805106 – volume: 81 start-page: 159 year: 2009 ident: ref34 article-title: Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. publication-title: Cardiovasc Res doi: 10.1093/cvr/cvn258 – volume: 40 start-page: 224 year: 2009 ident: ref16 article-title: Update of the stroke therapy academic industry roundtable preclinical recommendations. publication-title: Stroke doi: 10.1161/STROKEAHA.108.541128 – volume: 29 start-page: 1304 year: 2009 ident: ref10 article-title: Decision analysis supports the paradigm that indiscriminate supplementation of vitamin E does more harm than good. publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.108.178699 – volume: 3 start-page: ra1 year: 2010 ident: ref48 article-title: Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. publication-title: Sci Signal doi: 10.1126/scisignal.2000551 – volume: 101 start-page: 14D year: 2008 ident: ref9 article-title: Why have antioxidants failed in clinical trials? publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2008.02.003 – volume: 2 start-page: ra67 year: 2009 ident: ref49 article-title: STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. publication-title: Sci Signal doi: 10.1126/scisignal.2000522 – volume: 113 start-page: 3600 year: 2009 ident: ref56 article-title: Deficiency of von Willebrand factor protects mice from ischemic stroke. publication-title: Blood doi: 10.1182/blood-2008-09-180695 – volume: 459 start-page: 996 year: 2009 ident: ref15 article-title: A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. publication-title: Nature doi: 10.1038/nature08119 – volume: 9 start-page: 445 year: 1978 ident: ref38 article-title: Free radicals in cerebral ischemia. publication-title: Stroke doi: 10.1161/01.STR.9.5.445 – volume: 7 start-page: e1000245 year: 2010 ident: ref7 article-title: Can animal models of disease reliably inform human studies? publication-title: PLoS Med doi: 10.1371/journal.pmed.1000245 – volume: 40 start-page: 511 year: 2002 ident: ref26 article-title: Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. publication-title: Hypertension doi: 10.1161/01.HYP.0000032100.23772.98 – volume: 80 start-page: 271 year: 2008 ident: ref37 article-title: Apocynin-induced vasodilation involves Rho kinase inhibition but not NADPH oxidase inhibition. publication-title: Cardiovasc Res doi: 10.1093/cvr/cvn185 – volume: 90 start-page: 491 year: 2004 ident: ref24 article-title: Novel NAD(P)H oxidases in the cardiovascular system. publication-title: Heart doi: 10.1136/hrt.2003.029397 – volume: 156 start-page: 680 year: 2009 ident: ref43 article-title: Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2008.00073.x – volume: 39 start-page: 929 year: 2008 ident: ref40 article-title: Empirical evidence of bias in the design of experimental stroke studies: a metaepidemiologic approach. publication-title: Stroke doi: 10.1161/STROKEAHA.107.498725 – volume: 33 start-page: 1 year: 2009 ident: ref57 article-title: The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2008.09.006 – volume: 18 start-page: 205 year: 1998 ident: ref59 article-title: Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-01-00205.1998 – volume: 112 start-page: 2677 year: 2005 ident: ref27 article-title: Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.573709 – volume: 23 start-page: 6460 year: 2003 ident: ref35 article-title: Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-16-06460.2003 – volume: 344 start-page: 200 year: 2006 ident: ref32 article-title: Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2006.03.114 – volume: 40 start-page: 285 year: 2009 ident: ref19 article-title: Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. publication-title: Stroke doi: 10.1161/STROKEAHA.108.526673 – volume: 40 start-page: e50 year: 2009 ident: ref17 article-title: Good laboratory practice: preventing introduction of bias at the bench. publication-title: Stroke doi: 10.1161/STROKEAHA.108.525386 – volume: 3 start-page: 327 year: 2006 ident: ref30 article-title: Oxidative stress: apoptosis in neuronal injury. publication-title: Curr Alzheimer Res doi: 10.2174/156720506778249515 – volume: 26 start-page: 1465 year: 2006 ident: ref4 article-title: Bench to bedside: the quest for quality in experimental stroke research. publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600298 – volume: 52 start-page: 960 year: 2008 ident: ref28 article-title: ADMA impairs nitric oxide-mediated arteriolar function due to increased superoxide production by angiotensin II-NAD(P)H oxidase pathway. publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.108.116731 – volume: 101 start-page: 258 year: 2007 ident: ref23 article-title: Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. publication-title: Circ Res doi: 10.1161/CIRCRESAHA.107.148015 – volume: 71 start-page: 331 year: 2006 ident: ref33 article-title: Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2006.01.022 – volume: 5 start-page: 632 year: 2006 ident: ref5 article-title: Slicing into stroke therapeutics. publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2118 – volume: 19 start-page: 5910 year: 1999 ident: ref8 article-title: Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-14-05910.1999 – volume: 59 start-page: 467 year: 2006 ident: ref3 article-title: 1,026 experimental treatments in acute stroke. publication-title: Ann Neurol doi: 10.1002/ana.20741 – volume: 12 start-page: 1597 year: 2007 ident: ref29 article-title: Nitric oxide has dual opposite roles during early and late phases of apoptosis in cerebellar granule neurons. publication-title: Apoptosis doi: 10.1007/s10495-007-0086-4 – volume: 39 start-page: 1262 year: 2008 ident: ref51 article-title: Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosis. publication-title: Stroke doi: 10.1161/STROKEAHA.107.496448 – volume: 34 start-page: 2109 year: 2003 ident: ref2 article-title: Thirty-year projections for deaths from ischemic stroke in the United States. publication-title: Stroke doi: 10.1161/01.STR.0000085829.60324.DE – volume: 42 start-page: 175 year: 2007 ident: ref12 article-title: The ‘A’s and ‘O’s of NADPH oxidase regulation: a commentary on “Subcellular localization and function of alternatively spliced Noxo1 isoforms”. publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2006.11.003 – volume: 22 start-page: 391 year: 1999 ident: ref39 article-title: Pathobiology of ischaemic stroke: an integrated view. publication-title: Trends Neurosci doi: 10.1016/S0166-2236(99)01401-0 – volume: 115 start-page: 2323 year: 2007 ident: ref54 article-title: Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.691279 – volume: 28 start-page: 2252 year: 1997 ident: ref44 article-title: Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. publication-title: Stroke doi: 10.1161/01.STR.28.11.2252 – volume: 28 start-page: 1347 year: 2008 ident: ref58 article-title: Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.108.164277 – volume: 86 start-page: 2524 year: 2008 ident: ref14 article-title: Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. publication-title: J Neurosci Res doi: 10.1002/jnr.21700 – volume: 54 start-page: 330 year: 2003 ident: ref55 article-title: Stilbazulenyl nitrone, a novel antioxidant, is highly neuroprotective in focal ischemia. publication-title: Ann Neurol doi: 10.1002/ana.10659 – volume: 23 start-page: 1356 year: 2003 ident: ref21 article-title: In vivo monitoring of macrophage infiltration in experimental ischemic brain lesions by magnetic resonance imaging. publication-title: J Cereb Blood Flow Metab doi: 10.1097/01.WCB.0000090505.76664.DB – volume: 97 start-page: 8010 year: 2000 ident: ref22 article-title: Identification of renox, an NAD(P)H oxidase in kidney. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.130135897 – volume: 29 start-page: 1262 year: 2009 ident: ref42 article-title: Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2009.47 – volume: 8 start-page: e1000344 year: 2010 ident: ref6 article-title: Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000344 – volume: 49 start-page: 2907 year: 2010 ident: ref41 article-title: Enhanced cortical reperfusion protects coagulation factor XII-deficient mice from ischemic stroke as revealed by high-field MRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.061 – volume: 132 start-page: 233 year: 2005 ident: ref18 article-title: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.12.038 – volume: 252 start-page: 1108 year: 2005 ident: ref45 article-title: Methodological quality of animal studies on neuroprotection in focal cerebral ischaemia. publication-title: J Neurol doi: 10.1007/s00415-005-0802-3 – volume: 16 start-page: 184 year: 2007 ident: ref11 article-title: Chemoprevention of lung cancers: lessons from CARET, the beta-carotene and retinol efficacy trial, and prospects for the future. publication-title: Eur J Cancer Prev doi: 10.1097/01.cej.0000215612.98132.18 – volume: 133 start-page: 65 year: 2004 ident: ref50 article-title: Chronic lumbar catheterization of the spinal subarachnoid space in mice. publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.09.015 – volume: 32 start-page: 200 year: 2008 ident: ref31 article-title: Blood-brain barrier tight junction permeability and ischemic stroke. publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2008.08.005 – volume: 117 start-page: 43 year: 2002 ident: ref52 article-title: Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses. publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(02)00072-9 – volume: 580 start-page: 497 year: 2006 ident: ref25 article-title: Decreased blood pressure in NOX1-deficient mice. publication-title: FEBS Lett doi: 10.1016/j.febslet.2005.12.049 – volume: 97 start-page: 1055 year: 2005 ident: ref13 article-title: NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. publication-title: Circ Res doi: 10.1161/01.RES.0000189301.10217.87 – reference: 18438942 - J Neurosci Res. 2008 Aug 15;86(11):2524-34 – reference: 19182208 - Blood. 2009 Apr 9;113(15):3600-3 – reference: 19417757 - J Cereb Blood Flow Metab. 2009 Jul;29(7):1262-72 – reference: 18239164 - Stroke. 2008 Mar;39(3):929-34 – reference: 18086956 - Hypertension. 2008 Feb;51(2):211-7 – reference: 17438148 - Circulation. 2007 May 1;115(17):2323-30 – reference: 19706525 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14385-90 – reference: 17017863 - Curr Alzheimer Res. 2006 Sep;3(4):327-37 – reference: 20877473 - PLoS Biol. 2010;8(9). pii: e1000478. doi: 10.1371/journal.pbio.1000478 – reference: 14757346 - J Neurosci Methods. 2004 Feb 15;133(1-2):65-9 – reference: 19843959 - Sci Signal. 2009;2(93):ra67 – reference: 18703798 - Stroke. 2009 Mar;40(3):e50-2 – reference: 18838625 - Hypertension. 2008 Nov;52(5):960-6 – reference: 18988906 - Stroke. 2009 Jan;40(1):285-93 – reference: 16603125 - Biochem Biophys Res Commun. 2006 May 26;344(1):200-5 – reference: 9368573 - Stroke. 1997 Nov;28(11):2252-8 – reference: 18292385 - Stroke. 2008 Apr;39(4):1262-8 – reference: 12878686 - J Neurosci. 2003 Jul 23;23(16):6460-9 – reference: 18467643 - Arterioscler Thromb Vasc Biol. 2008 Jul;28(7):1347-54 – reference: 16246966 - Circulation. 2005 Oct 25;112(17):2677-85 – reference: 12084563 - J Neurosci Methods. 2002 May 30;117(1):43-9 – reference: 15802177 - Neuroscience. 2005;132(2):233-8 – reference: 9412501 - J Neurosci. 1998 Jan 1;18(1):205-13 – reference: 19246690 - Stroke. 2009 Jun;40(6):2244-50 – reference: 10869423 - Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8010-4 – reference: 20361020 - PLoS Med. 2010 Mar;7(3):e1000245 – reference: 18806276 - Cardiovasc Res. 2009 Jan 1;81(1):159-68 – reference: 16210546 - Circ Res. 2005 Nov 11;97(10):1055-62 – reference: 16386251 - FEBS Lett. 2006 Jan 23;580(2):497-504 – reference: 12881608 - Stroke. 2003 Sep;34(9):2109-12 – reference: 16545786 - Cardiovasc Res. 2006 Jul 15;71(2):331-41 – reference: 19958838 - Neuroimage. 2010 Feb 15;49(4):2907-14 – reference: 14600443 - J Cereb Blood Flow Metab. 2003 Nov;23(11):1356-61 – reference: 16453316 - Ann Neurol. 2006 Mar;59(3):467-77 – reference: 12364355 - Hypertension. 2002 Oct;40(4):511-5 – reference: 16170651 - J Neurol. 2005 Sep;252(9):1108-14 – reference: 4004172 - Ann Neurol. 1985 May;17(5):497-504 – reference: 18596059 - Cardiovasc Res. 2008 Nov 1;80(2):271-9 – reference: 17415088 - Eur J Cancer Prev. 2007 Jun;16(3):184-91 – reference: 18086948 - Hypertension. 2008 Feb;51(2):172-4 – reference: 705824 - Stroke. 1978 Sep-Oct;9(5):445-7 – reference: 15084538 - Heart. 2004 May;90(5):491-3 – reference: 18790057 - Neurobiol Dis. 2008 Nov;32(2):200-19 – reference: 17585072 - Circ Res. 2007 Aug 3;101(3):258-67 – reference: 20051593 - Sci Signal. 2010;3(103):ra1 – reference: 17503222 - Apoptosis. 2007 Sep;12(9):1597-610 – reference: 10441299 - Trends Neurosci. 1999 Sep;22(9):391-7 – reference: 18474268 - Am J Cardiol. 2008 May 22;101(10A):14D-19D – reference: 17189823 - Free Radic Biol Med. 2007 Jan 15;42(2):175-9 – reference: 16674943 - Exp Neurol. 2006 Aug;200(2):480-5 – reference: 12953265 - Ann Neurol. 2003 Sep;54(3):330-42 – reference: 19494811 - Nature. 2009 Jun 18;459(7249):996-9 – reference: 16525413 - J Cereb Blood Flow Metab. 2006 Dec;26(12):1465-78 – reference: 19175604 - Br J Pharmacol. 2009 Feb;156(4):680-8 – reference: 20361022 - PLoS Biol. 2010 Mar;8(3):e1000344 – reference: 18930826 - Neurobiol Dis. 2009 Jan;33(1):1-11 – reference: 19286632 - Arterioscler Thromb Vasc Biol. 2009 Sep;29(9):1304-9 – reference: 10407030 - J Neurosci. 1999 Jul 15;19(14):5910-8 |
SSID | ssj0022928 |
Score | 2.5074413 |
Snippet | Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of... The identification of NOX4 as a major source of oxidative stress in stroke and demonstration of dramatic protection after stroke in mice by NOX4 deletion or... Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90%... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1000479 |
SubjectTerms | Animals Antioxidants Blood clots Blood-Brain Barrier Brain - metabolism Brain - pathology Brain damage Cardiovascular Disorders/Cardiovascular Pharmacology Colleges & universities Drug therapy Female Genetics and Genomics/Gene Function Health aspects Ischemia Male Mice Mice, Knockout Mortality NADPH Oxidase 4 NADPH Oxidases - antagonists & inhibitors NADPH Oxidases - genetics NADPH Oxidases - metabolism Neurodegeneration Neurological Disorders/Cerebrovascular Disease Neurological Disorders/Neuropharmacology Nitric oxide Non-Clinical Medicine/Research Methods Oxidases Oxidative Stress Pharmacology/Drug Development Phenotype Physiology/Cardiovascular Physiology and Circulation Prevention Reactive Oxygen Species - metabolism Stroke Stroke (Disease) Stroke - enzymology Stroke - metabolism Stroke - pathology Veins & arteries |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_O5plUUEn2KT3SR7eTw_yil4ilrp2zL7kTa0JEdzB_a_78xu7mhEqQ9CXpJMFu43szszt7O_YeyVBGdx3a8SAyZNcsCpCEaqxFW0CSas8wWdRv68LBdH-afj4vhaqy-qCYv0wBG4AwtZAVZWFrP0XM0kgLA2T2uohZRlGUIj9HnbZGpItUQVuqoS1QxOZyWHQ3NSZQeDjt6sTNNRjQBxrI-cUuDu363Qk9V51_8p_Py9ivKaWzq8x-4O8SSfx99xn93y7QN2O3aYvHzIamrGm_Tri-7M86Y9bUwo0eJdjXcO1er4cv7-64J3vxqHDo3TX7I856vI7NTH57Qk8niqhEPreCDBdP4kUFbTeI_Y0eGHH-8WydBaIbFKinViKvTMUFZGobOyhoKu2peYOxG9fV3IwpvUegvWQJUaK5Wb1XnloLa-kL4C-ZhN2q71e4zPijRzHjMblMjBAQ7tM5hRoCBSl9opk1tstR14x6n9xbkOm2kK848IlSaN6EEjU5bsvlpF3o0b5N-S2nayxJodHqAt6cGW9E22NGUvSemaeDFaKrw5gU3f649ffuq5oA1dkcnib0Lfl_8i9G0k9HoQqjtEBNGOJyIQVyLlGknujyRxCbCj13tkpVtgeo3qpLivLBAXvrVcTV9RSV3ru02vFeaS5QyvKXsSDXkHnggskRmOq0YmPkJ3_KZtTgM3uSC-wVw8_R_qeMbuxFoNqujbZ5P1xcY_xxBwbV6E2X4Fcq5aJQ priority: 102 providerName: Directory of Open Access Journals |
Title | Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20877715 https://www.proquest.com/docview/755968968 https://pubmed.ncbi.nlm.nih.gov/PMC2943442 https://doaj.org/article/ca15ac39c2024783aa2cc40faf23366a http://dx.doi.org/10.1371/journal.pbio.1000479 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvY9_N1gUxBntysSXbsh_GSLeWbKNZ1y2jb0JfTsOCncUJtP_97mQnzKNlBROwfRLkPnR31ul3hLzhyhpY9_NAKx0GsQJTVJqLwOa4CcaMdQmeRj4dp6NJ_Pkiudghm56tLQPrG1M77Cc1Wc4Pr35fvweDf-e7NohoM-hwoWcV7vojavou2QPfJLCZw2m83VdgLPfdVhGCBsxc8PYw3W2zdJyVx_Tfrty9xbyqbwpL_62u_MtdnTwkD9o4kw4bxXhEdlz5mNxrOk9ePyEFNukN6tWy-uXorLycaV-6RasC7iyI29Lx8OPZiFZXMwuOjuKnWhrTRYP4VDfPcamkzWkTqkpLPTimdVMPZY3zPSWTk-MfH0ZB23IhMIKzVaBz8NgqzbUAJ2Y0BmOFSyGnQtj7IuGJ06FxRhmt8lAbLmxWxLlVhXEJd7niz0ivrEq3T2iWhJF1kPEARaysgqldpDIMIFhoQ9MnfMNbaVo8cmyLMZd-k01AXtKwSqJEZCuRPgm2oxYNHsd_6I9QbFtaRNP2D6rlVLbGKY2KEmV4bhhELCLjSjFj4rBQBeM8TVWfvEahS8TLKLEgZ6rWdS0_ff0phww3elnEk9uIvo_vQnTeIXrbEhUVcAS43ZyUAL4iWFeH8qBDCUuD6bzeRy3dMKaWIE6MB9ME-EI3mitxFJbala5a11JAjplmcPXJ80aRt8xjHj0ygnlFR8U73O2-KWeXHrOcIQ5hzF7c-a-9JPebQg0s5zsgvdVy7V5B_LfSA7IrLsSA7B0dj8_OB_4rCvx--ZYNvLH_AfYNX68 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-stroke+inhibition+of+induced+NADPH+oxidase+type+4+prevents+oxidative+stress+and+neurodegeneration&rft.jtitle=PLoS+biology&rft.au=Kleinschnitz%2C+Christoph&rft.au=Grund%2C+Henrike&rft.au=Wingler%2C+Kirstin&rft.au=Armitage%2C+Melanie+E&rft.date=2010-09-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.volume=8&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pbio.1000479&rft.externalDocID=A238912135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |