Central regulation of body fluid homeostasis

Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135–145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life becau...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Japan Academy, Series B Vol. 98; no. 7; pp. 283 - 324
Main Authors NODA, Masaharu, MATSUDA, Takashi
Format Journal Article
LanguageEnglish
Published Ueno Park The Japan Academy 29.07.2022
Subjects
Online AccessGet full text
ISSN0386-2208
1349-2896
1349-2896
DOI10.2183/pjab.98.016

Cover

Abstract Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135–145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve “body fluid homeostasis” or “Na homeostasis”, the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
AbstractList Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve body fluid homeostasis or Na homeostasis, the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na + concentration ([Na + ]) in body fluids is maintained at 135–145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na + is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve “body fluid homeostasis” or “Na homeostasis”, the brain continuously monitors [Na + ] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na + ] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na + ] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na + ] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
ArticleNumber PJA9807B-01
Author NODA, Masaharu
MATSUDA, Takashi
Author_xml – sequence: 1
  fullname: NODA, Masaharu
  organization: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology
– sequence: 1
  fullname: MATSUDA, Takashi
  organization: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology
BookMark eNptkUtrGzEUhUVISZy0q_yBgW4Kzbh6jF6bQmryaAm0i3YtJM0dW2Y8cqWZQv595TgxJGQjLfSdo3vuOUPHQxwAoQuC55Qo9mW7tm6u1RwTcYRmhDW6pkqLYzTDTImaUqxO0VnOa4wZ5YqcoFPGNVaaNzN0uYBhTLavEiyn3o4hDlXsKhfbh6rrp9BWq7iBmEebQ36P3nW2z_Dh6T5Hf26ufy_u6vuft98XV_e1l4yONeO8JZJTTJhqJfXEykZIrtums465lrWcStdQoK4RyjWeSRBSAHQNU9h5do6-7n23k9tA6_cjmm0KG5seTLTBvHwZwsos4z-jmSjReDH49GSQ4t8J8mg2IXvoeztAnLKhQkusudasoB9foes4paHEe6Qk0YKqQpE95VPMOUFnfBgft1X-D70h2Oy6MLsujFamdFE0n19pngO8Td_s6XXZ9RIOrE1j8D0cWLk7fv240grLb0V5APzKJgMD-w-8M6RN
CitedBy_id crossref_primary_10_3390_ijms25126680
crossref_primary_10_1523_JNEUROSCI_1203_23_2023
crossref_primary_10_1016_j_celrep_2023_113619
crossref_primary_10_3390_ijms252010911
crossref_primary_10_1007_s41969_022_00179_8
crossref_primary_10_1038_s41421_023_00628_x
crossref_primary_10_1002_wnan_70006
crossref_primary_10_1111_cbdd_14586
crossref_primary_10_1172_JCI164222
crossref_primary_10_1016_j_amjms_2024_06_016
crossref_primary_10_1016_j_autneu_2024_103208
crossref_primary_10_3390_dietetics3040039
crossref_primary_10_1080_00365513_2023_2241368
crossref_primary_10_4274_BMB_galenos_2024_2024_03_028
crossref_primary_10_1016_j_nefroe_2023_09_008
crossref_primary_10_1038_s41440_024_02025_7
crossref_primary_10_1016_j_nefro_2023_09_004
crossref_primary_10_3389_fnins_2023_1223836
crossref_primary_10_1038_s41598_023_50970_z
crossref_primary_10_3390_nu15020395
crossref_primary_10_1007_s00508_024_02325_5
crossref_primary_10_1007_s11906_023_01241_9
Cites_doi 10.1016/j.celrep.2021.108866
10.1016/0361-9230(93)90054-F
10.1152/ajpregu.1995.269.5.R1044
10.1164/rccm.201407-1262OC
10.1037/0735-7044.97.5.746
10.1037/0735-7044.104.2.365
10.1152/ajpregu.1987.252.1.R1
10.1016/0304-3940(93)90609-O
10.1016/0031-9384(84)90072-6
10.1016/0091-3057(75)90020-9
10.1016/j.neuron.2018.11.017
10.1152/ajpregu.1980.239.5.R382
10.1093/chemse/bjh105
10.1096/fj.10-165399
10.1016/j.neuron.2007.03.014
10.1152/ajpendo.00407.2011
10.1159/000071312
10.1002/cphy.c110020
10.1016/j.peptides.2010.02.020
10.3389/fnins.2015.00390
10.1053/ajkd.2002.34908
10.1152/japplphysiol.00825.2006
10.1016/j.neuron.2019.04.039
10.1038/nn.4463
10.1038/nrn.2017.71
10.1152/ajprenal.00200.2003
10.1038/250733a0
10.1096/fj.13-246868
10.1152/ajpregu.00311.2001
10.1016/S0092-8674(00)00143-4
10.1016/0006-8993(87)90128-4
10.1038/srep30168
10.1016/0006-8993(92)90749-Y
10.1007/978-3-642-55532-9_1
10.1016/j.tins.2013.08.004
10.1038/nrn1902
10.1152/ajpregu.00352.2015
10.1126/science.aav3932
10.1006/frne.1997.0153
10.1038/emboj.2008.233
10.1385/MB:24:1:27
10.1016/j.cell.2019.11.040
10.1152/ajpregu.00102.2014
10.1038/s41593-021-00850-4
10.1038/nn1614
10.1016/B978-0-08-027337-2.50045-6
10.1016/j.neuroscience.2006.04.015
10.1113/EP085349
10.1038/ncb1137
10.1016/j.brainres.2010.03.055
10.1073/pnas.0606894103
10.1385/MN:26:1:097
10.1111/j.0953-8194.2004.01184.x
10.1152/ajpregu.00063.2005
10.1016/0006-8993(81)90707-1
10.1002/cne.902930404
10.1186/1824-7288-36-78
10.1038/nature19756
10.1113/JP274667
10.1016/j.amjhyper.2004.10.032
10.1523/JNEUROSCI.3218-05.2006
10.1016/0167-0115(96)00058-4
10.1016/0006-8993(84)90140-9
10.1016/0028-3908(87)90118-3
10.1016/j.brainres.2010.11.075
10.1016/j.cmet.2010.09.011
10.1152/ajpregu.1999.276.4.R1180
10.1016/0361-9230(92)90234-O
10.1159/000125265
10.1016/S0006-8993(98)00530-7
10.1111/apha.13006
10.1016/0006-8993(94)91645-4
10.1056/NEJM200005183422006
10.1038/301628a0
10.1007/s00213-001-0932-y
10.1006/exnr.2002.8054
10.1016/j.neuroscience.2012.07.068
10.1006/exnr.2001.7776
10.1016/S0006-8993(99)01672-8
10.1152/ajpregu.1977.233.1.R44
10.1046/j.1365-2826.2003.00969.x
10.1073/pnas.1834556100
10.1523/JNEUROSCI.2208-19.2020
10.1016/0091-3057(76)90248-3
10.3389/fphys.2014.00436
10.1111/j.1365-2826.1992.tb00194.x
10.1152/ajpregu.1986.251.4.R762
10.1016/0006-8993(88)91633-2
10.1016/0006-8993(78)91125-3
10.1016/j.neuroscience.2008.06.011
10.1002/glia.22488
10.1113/jphysiol.1902.sp000920
10.1073/pnas.1616664113
10.1016/j.neuron.2016.11.021
10.1038/s41586-019-1053-2
10.1016/0079-6107(93)90009-9
10.1152/ajpcell.1997.272.1.C90
10.1210/jcem.86.12.8111
10.1016/0361-9230(85)90044-9
10.1002/cne.20993
10.1016/0091-3057(93)90382-4
10.1152/ajpcell.1996.271.5.C1629
10.1037/0735-7044.101.4.560
10.1038/sj.emboj.7600177
10.1038/nature18950
10.1016/j.neuroscience.2013.09.008
10.1016/0167-0115(88)90422-3
10.1016/j.neuroscience.2006.05.059
10.1016/0167-0115(96)00052-3
10.1111/bph.13659
10.1038/nature12041
10.1016/j.neuron.2017.11.041
10.1016/0361-9230(95)02084-5
10.1152/physrev.2001.81.2.629
10.1523/JNEUROSCI.0877-06.2006
10.1038/nrn2400
10.1152/ajpregu.00003.2008
10.1111/j.1523-1755.2004.66018.x
10.1038/s41586-020-2167-2
10.1097/HJH.0b013e32834f6de1
10.1038/s41593-017-0014-z
10.1152/ajpregu.00078.2015
10.1152/ajpregu.00242.2013
10.1002/cphy.c120001
10.1016/S0031-9384(03)00095-7
10.1016/0014-2999(88)90769-8
10.1016/S0006-8993(96)00615-4
10.1037/h0092457
10.1097/00001756-199309000-00003
10.1152/ajpheart.1984.247.3.H422
10.1073/pnas.81.5.1575
10.1152/ajprenal.2000.278.4.F585
10.1523/JNEUROSCI.2795-04.2004
10.1016/j.cmet.2013.02.018
10.1152/ajpregu.00486.2014
10.1016/S0092-8674(02)00670-0
10.1016/S0140-6736(01)36734-X
10.1016/j.celrep.2018.04.090
10.1038/nature01807
10.1016/j.neuroscience.2012.12.026
10.1037/h0024357
10.1126/science.6691151
10.1038/nature02196
10.1016/j.brainres.2006.07.091
10.1152/ajpregu.00869.2007
10.1016/j.cub.2016.11.019
10.1016/0306-4522(85)90281-7
10.1016/j.conb.2019.01.014
10.1161/HYPERTENSIONAHA.109.141994
10.3181/00379727-23-3107
10.1113/expphysiol.2006.035659
10.1152/physrev.00021.2001
10.1016/j.neuroscience.2005.02.004
10.1016/S0079-6123(08)64377-0
10.1016/j.neuroscience.2011.07.008
10.1523/JNEUROSCI.0237-05.2005
10.1016/j.cell.2020.07.031
10.1016/j.neulet.2003.12.040
10.1016/0006-8993(90)90245-7
10.1073/pnas.91.25.12022
10.1038/nature14108
10.1152/physrev.00036.2005
10.1038/35038090
10.1016/0006-8993(96)00277-6
10.1074/jbc.M003643200
10.1007/s13730-021-00638-2
10.1016/0006-8993(78)90619-4
10.1037/h0077759
10.1126/science.aan6747
10.1016/j.neuron.2017.09.014
10.1073/pnas.2009233117
10.1113/expphysiol.2007.039891
10.1002/(SICI)1096-9861(19990315)405:3<406::AID-CNE10>3.0.CO;2-F
10.1038/nature11905
10.1152/physrev.1998.78.3.583
10.1002/cne.902720408
10.1515/jbcpp-2014-0117
10.1016/0006-8993(94)01453-O
10.1016/j.brainres.2010.08.085
10.1016/j.jchemneu.2011.05.003
10.1038/nature25488
10.1111/bpa.12409
10.1152/ajpregu.00130.2003
10.1155/2013/175428
10.1159/000102536
10.1210/jendso/bvab048.1052
10.1016/j.pbb.2010.05.026
10.1093/chemse/bjn081
10.1152/ajpregu.1991.260.6.R1082
10.1038/35036318
10.1371/journal.pone.0022246
10.1152/jn.00177.2003
10.1152/ajpcell.00559.2002
10.1016/S0896-6273(00)00116-1
10.1056/NEJM200005253422107
10.1073/pnas.89.15.6828
10.1016/0031-9384(82)90348-1
10.1016/S0304-3940(02)00708-5
10.1074/jbc.M114.585067
10.1002/jcb.26552
10.1152/ajpregu.1987.253.1.R108
10.1210/endo-118-4-1726
10.1016/j.neuroscience.2011.02.019
10.1073/pnas.93.14.7397
10.1371/journal.pone.0126109
10.1210/en.2011-0006
10.1152/ajpcell.00601.2001
10.1152/ajpcell.00163.2011
10.1038/s41586-020-2821-8
10.1152/ajpregu.00391.2006
10.1096/fasebj.7.8.8500693
10.1016/S0306-4522(03)00316-6
10.1111/joa.12771
10.1152/ajpregu.1995.268.6.R1401
10.1038/477410a
10.1016/j.neuron.2014.12.048
10.1038/nature08783
10.1073/pnas.88.7.2956
10.1007/s11906-013-0385-9
10.1126/science.181.4105.1172
10.1073/pnas.0903695106
10.1056/NEJMoa1311989
10.1016/0361-9230(91)90148-D
10.1161/HYPERTENSIONAHA.115.05936
10.1046/j.1467-3010.2001.00097.x
10.1038/ki.1994.446
10.1016/S0031-9384(02)00751-5
10.1126/scisignal.2000769
10.1016/0165-0173(84)90012-2
10.1016/S0306-4522(00)00313-4
10.1038/nature14416
10.1073/pnas.2002825117
10.1016/S0304-3940(02)00203-3
10.1152/ajprenal.00191.2015
10.1002/cne.21025
10.1136/bmj.297.6644.319
10.1037/0735-7044.104.4.637
10.1152/ajpheart.01237.2003
10.1016/j.neuron.2010.04.017
10.1038/280490a0
10.1038/bjp.2008.92
10.1016/j.brainres.2010.11.028
10.3389/fnana.2017.00133
10.1002/cne.22442
10.1016/j.neuroscience.2009.08.048
10.1016/S0031-9384(75)80032-1
10.1159/000338163
10.1006/mcne.1993.1018
10.1016/j.celrep.2015.08.061
10.1016/S0169-328X(98)00308-8
10.1152/ajpregu.90560.2008
10.1152/ajpheart.00515.2002
10.1113/expphysiol.2008.044446
10.1016/j.physbeh.2008.08.004
10.1038/s41467-020-19191-0
10.1016/j.neures.2019.05.006
10.1113/jphysiol.1969.sp008848
10.3138/9781487578466-018
10.1016/0304-3940(85)90319-2
10.1016/j.bbr.2015.03.047
10.1210/en.130.4.1885
10.1016/S0006-8993(03)03015-4
10.1146/annurev.ph.39.030177.001153
10.1113/jphysiol.1970.sp009220
10.1016/j.neuroscience.2004.07.042
10.1016/j.neuron.2011.05.028
10.1152/ajpregu.00222.2013
10.1007/s11064-017-2336-3
10.1016/S0021-9258(18)43937-3
10.1016/0167-0115(84)90011-9
10.1523/ENEURO.0064-18.2018
10.1007/s00424-014-1662-4
10.1016/0361-9230(88)90223-7
10.1523/JNEUROSCI.3115-05.2006
10.1016/0196-9781(82)90113-9
10.1152/ajplegacy.1936.115.1.155
10.1016/j.cmet.2016.04.006
10.1073/pnas.1735416100
10.1016/j.bbr.2017.08.044
10.1146/annurev.biochem.68.1.425
10.1152/ajpregu.1998.275.5.R1431
10.1038/37610
10.1038/s41586-019-1066-x
10.1038/45230
10.1152/ajpregu.1980.238.5.R372
10.1210/endo-107-3-691
10.1007/s00424-020-02389-y
10.1038/nature12596
10.1016/0006-8993(89)91006-8
10.1073/pnas.82.24.8720
10.1152/ajpregu.00618.2005
10.1152/nips.01470.2003
10.1056/NEJMra064486
10.1126/science.1241812
10.1152/ajpregu.00251.2012
10.1152/ajpregu.1996.270.1.R162
10.1161/CIRCULATIONAHA.115.019341
10.1038/nn.4451
10.1590/S0001-37652004000100008
10.1016/0169-328X(94)00272-G
10.1007/s00213-016-4403-x
10.1152/ajpregu.00312.2015
10.1523/JNEUROSCI.20-20-07743.2000
10.1074/jbc.273.30.18677
10.1038/nn.4575
10.1037/0735-7044.104.4.643
10.1016/j.brainres.2009.08.094
10.1038/s41593-019-0573-2
10.1152/ajpregu.00460.2013
10.1038/nn0602-856
ContentType Journal Article
Copyright 2022 The Author(s).
Copyright The Japan Academy Jul 2022
Copyright_xml – notice: 2022 The Author(s).
– notice: Copyright The Japan Academy Jul 2022
DBID AAYXX
CITATION
3V.
7QP
7QR
7TK
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BVBZV
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOI 10.2183/pjab.98.016
DatabaseName CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
ProQuest Research Library
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
East & South Asia Database
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Central regulation of body fluid homeostasis
EISSN 1349-2896
EndPage 324
ExternalDocumentID PMC9363595
10_2183_pjab_98_016
article_pjab_98_7_98_PJA9807B_01_article_char_en
GroupedDBID ---
-~X
.55
29P
2WC
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
ABJCF
ABUWG
ACIWK
ACPRK
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVBZV
BVXVI
CCPQU
DIK
DWQXO
E3Z
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IEA
ITC
JSF
JSH
KQ8
L6V
LK8
M1P
M2O
M48
M7P
M7S
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
RJT
RNS
RPM
RZJ
RZL
SV3
TN5
TR2
TUS
UKHRP
WH7
X7M
XSB
YNT
~02
AAYXX
ALIPV
CITATION
3V.
7QP
7QR
7TK
7XB
8FD
8FK
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c732t-355d17520138d72c1a746759d4fab3bd3d527b42e2b468b4c37e676eef4380bc3
IEDL.DBID M48
ISSN 0386-2208
1349-2896
IngestDate Thu Aug 21 18:33:26 EDT 2025
Thu Sep 04 16:13:56 EDT 2025
Fri Jul 25 12:10:55 EDT 2025
Tue Jul 01 01:25:16 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Wed Sep 03 06:31:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by-nc/4.0
Published under the terms of the CC BY-NC license https://creativecommons.org/licenses/by-nc/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c732t-355d17520138d72c1a746759d4fab3bd3d527b42e2b468b4c37e676eef4380bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by Shigetada NAKANISHI, M.J.A.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2183/pjab.98.016
PMID 35908954
PQID 2697719628
PQPubID 1066378
PageCount 42
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9363595
proquest_miscellaneous_2697095993
proquest_journals_2697719628
crossref_citationtrail_10_2183_pjab_98_016
crossref_primary_10_2183_pjab_98_016
jstage_primary_article_pjab_98_7_98_PJA9807B_01_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220729
PublicationDateYYYYMMDD 2022-07-29
PublicationDate_xml – month: 7
  year: 2022
  text: 20220729
  day: 29
PublicationDecade 2020
PublicationPlace Ueno Park
PublicationPlace_xml – name: Ueno Park
– name: Tokyo, Japan
PublicationTitle Proceedings of the Japan Academy, Series B
PublicationTitleAlternate Proc. Jpn. Acad., Ser. B
PublicationYear 2022
Publisher The Japan Academy
Publisher_xml – name: The Japan Academy
References 203) de Kloet, A.D., Liu, M., Rodríguez, V., Krause, E.G. and Sumners, C. (2015) Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R444–R458.
66) Tang, W., Strachan, R.T., Lefkowitz, R.J. and Rockman, H.A. (2014) Allosteric modulation of β-arrestin-biased angiotensin II type 1 receptor signaling by membrane stretch. J. Biol. Chem. 289, 28271–28283.
90) Hosutt, J.A., Rowland, N. and Stricker, E.M. (1981) Impaired drinking responses of rats with lesions on the subfornical organ. J. Comp. Physiol. Psychol. 95, 104–113.
73) Leib, D.E., Zimmerman, C.A. and Knight, Z.A. (2016) Thirst. Curr. Biol. 26, R1260–R1265.
211) Geerling, J.C. and Loewy, A.D. (2007) Sodium depletion activates the aldosterone-sensitive neurons in the NTS independently of thirst. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1338–R1348.
279) Gimpl, G. and Fahrenholz, F. (2001) The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629–683.
91) Johnson, R.F., Beltz, T.G., Thunhorst, R.L. and Johnson, A.K. (2003) Investigations on the physiological controls of water and saline intake in C57BL/6 mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R394–R403.
119) Allen, W.E., Chen, M.Z., Pichamoorthy, N., Tien, R.H., Pachitariu, M., Luo, L. et al. (2019) Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 364, 253.
50) Hollis, J.H., McKinley, M.J., D’Souza, M., Kampe, J. and Oldfield, B.J. (2008) The trajectory of sensory pathways from the lamina terminalis to the insular and cingulate cortex: a neuroanatomical framework for the generation of thirst. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1390–R1401.
142) Augustine, V., Lee, S. and Oka, Y. (2020) Neural control and modulation of thirst, sodium appetite, and hunger. Cell 180, 25–32.
291) Group, I.C.R. (1988) Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297, 319.
108) Fitzsimons, J.T. and Simons, B.J. (1969) The effect on drinking in the rat of intravenous infusion of angiotensin, given alone or in combination with other stimuli of thirst. J. Physiol. 203, 45–57.
245) Zardetto-Smith, A.M., Beltz, T.G. and Johnson, A.K. (1994) Role of the central nucleus of the amygdala and bed nucleus of the stria terminalis in experimentally-induced salt appetite. Brain Res. 645, 123–134.
31) Bookstein, C., Musch, M.W., DePaoli, A., Xie, Y., Rabenau, K., Villereal, M. et al. (1996) Characterization of the rat Na+/H+ exchanger isoform NHE4 and localization in rat hippocampus. Am. J. Physiol. 271, C1629–C1638.
165) Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H. and Kangawa, K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660.
283) Katoh, A., Fujihara, H., Ohbuchi, T., Onaka, T., Hashimoto, T., Kawata, M. et al. (2011) Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology 152, 2768–2774.
1) Cox, P.S., Denton, D.A., Mouw, D.R. and Tarjan, E. (1987) Natriuresis induced by localized perfusion within the third cerebral ventricle of sheep. Am. J. Physiol. 252, R1–R6.
43) Clapham, D.E. (2003) TRP channels as cellular sensors. Nature 426, 517–524.
46) Nishihara, E., Hiyama, T.Y. and Noda, M. (2011) Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons. PLoS One 6, e22246.
175) Nakamura, M., Katsuura, G., Nakao, K. and Imura, H. (1985) Antidipsogenic action of α-human atrial natriuretic polypeptide administered intracerebroventricularly in rats. Neurosci. Lett. 58, 1–6.
206) Sunn, N., McKinley, M.J. and Oldfield, B.J. (2003) Circulating angiotensin II activates neurones in circumventricular organs of the lamina terminalis that project to the bed nucleus of the stria terminalis. J. Neuroendocrinol. 15, 725–731.
243) Nogueiras, R., Romero-Picó, A., Vazquez, M.J., Novelle, M.G., López, M. and Diéguez, C. (2012) The opioid system and food intake: homeostatic and hedonic mechanisms. Obes. Facts 5, 196–207.
250) Chieng, B.C.H., Christie, M.J. and Osborne, P.B. (2006) Characterization of neurons in the rat central nucleus of the amygdala: Cellular physiology, morphology, and opioid sensitivity. J. Comp. Neurol. 497, 910–927.
195) Titze, J., Lang, R., Ilies, C., Schwind, K.H., Kirsch, K.A., Dietsch, P. et al. (2003) Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Renal Physiol. 285, F1108–F1117.
164) Xue, B., Johnson, A.K. and Hay, M. (2013) Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R459–R463.
307) Bohlen, C.J., Chesler, A.T., Sharif-Naeini, R., Medzihradszky, K.F., Zhou, S., King, D. et al. (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479, 410–414.
210) Geerling, J.C. and Loewy, A.D. (2006) Aldosterone-sensitive NTS neurons are inhibited by saline ingestion during chronic mineralocorticoid treatment. Brain Res. 1115, 54–64.
47) Liedtke, W., Choe, Y., Martí-Renom, M.A., Bell, A.M., Denis, C.S., Sali, A. et al. (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535.
130) de Avila, C., Chometton, S., Lenglos, C., Calvez, J., Gundlach, A.L. and Timofeeva, E. (2018) Differential effects of relaxin-3 and a selective relaxin-3 receptor agonist on food and water intake and hypothalamic neuronal activity in rats. Behav. Brain Res. 336, 135–144.
45) Bourque, C.W. (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531.
197) Wiig, H., Luft, F.C. and Titze, J.M. (2018) The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol. (Oxf.) 222, e13006.
135) Olszewski, P.K., Klockars, A., Schioth, H.B. and Levine, A.S. (2010) Oxytocin as feeding inhibitor: maintaining homeostasis in consummatory behavior. Pharmacol. Biochem. Behav. 97, 47–54.
262) Krukoff, T.L., Harris, K.H. and Jhamandas, J.H. (1993) Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res. Bull. 30, 163–172.
54) Ahern, G.P., Brooks, I.M., Miyares, R.L. and Wang, X.B. (2005) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J. Neurosci. 25, 5109–5116.
177) Weisinger, R.S., Blair-West, J.R., Denton, D.A. and Tarjan, E. (1992) Central administration of atrial natriuretic peptide suppresses sodium and water intake of sheep. Brain Res. 579, 113–118.
139) Honda, T., Wada, E., Battey, J.F. and Wank, S.A. (1993) Differential gene expression of CCK(A) and CCK(B) receptors in the rat brain. Mol. Cell. Neurosci. 4, 143–154.
155) Allen, W.E., DeNardo, L.A., Chen, M.Z., Liu, C.D., Loh, K.M., Fenno, L.E. et al. (2017) Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357, 1149–1155.
193) Heer, M., Baisch, F., Kropp, J., Gerzer, R. and Drummer, C. (2000) High dietary sodium chloride consumption may not induce body fluid retention in humans. Am. J. Physiol. Renal Physiol. 278, F585–F595.
32) Arena, E.A., Longo, W.E., Roberts, K.E., Geibel, P., Nateqi, J., Brandstetter, M. et al. (2012) Functional role of NHE4 as a pH regulator in rat and human colonic crypts. Am. J. Physiol. Cell Physiol. 302, C412–C418.
107) Johnson, A.K. and Schwob, J.E. (1975) Cephalic angiotensin receptors mediating drinking to systemic angiotensin II. Pharmacol. Biochem. Behav. 3, 1077–1084.
25) Rauh, A., Windischhofer, W., Kovacevic, A., DeVaney, T., Huber, E., Semlitsch, M. et al. (2008) Endothelin (ET)-1 and ET-3 promote expression of c-fos and c-jun in human choriocarcinoma via ET(B) receptor-mediated G(i)- and G(q)-pathways and MAP kinase activation. Br. J. Pharmacol. 154, 13–24.
68) Lefkowitz, R.J. (1998) G protein-coupled receptors: III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677–18680.
111) Fitts, D.A. and Masson, D.B. (1990) Preoptic angiotensin and salt appetite. Behav. Neurosci. 104, 643–650.
10) Andersson, B. (1971) Thirst—and brain control of water balance. Am. Sci. 59, 408–415.
304) Stocker, S.D., Lang, S.M., Simmonds, S.S., Wenner, M.M. and Farquhar, W.B. (2015) Cerebrospinal fluid hypernatremia elevates sympathetic nerve activity and blood pressure via the rostral ventrolateral medulla. Hypertension 66, 1184–1190.
284) Boadle-Biber, M.C. (1993) Regulation of serotonin synthesis. Prog. Biophys. Mol. Biol. 60, 1–15.
277) Heck, G.L., Mierson, S. and DeSimone, J.A. (1984) Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223, 403–405.
182) Antunes-Rodrigues, J., Ramalho, M.J., Reis, L.C., Menani, J.V., Turrin, M.Q., Gutkowska, J. et al. (1991) Lesions of the hypothalamus and pituitary inhibit volume-expansion-induced release of atrial natriuretic peptide. Proc. Natl. Acad. Sci. U.S.A. 88, 2956–2960.
184) Bosler, O. and Descarries, L. (1988) Monoamine innervation of the organum vasculosum laminae terminalis (OVLT): a high resolution radioautographic study in the rat. J. Comp. Neurol. 272, 545–561.
181) Antunes-Rodrigues, J., McCann, S.M. and Samson, W.K. (1986) Central administration of atrial natriuretic factor inhibits saline preference in the rat. Endocrinology 118, 1726–1728.
19) Matsumoto, M., Hiyama, T.Y., Kuboyama, K., Suzuki, R., Fujikawa, A. and Noda, M. (2015) Channel properties of Nax expressed in neurons. PLoS One 10, e0126109.
92) Lind, R.W., Thunhorst, R.L.
230
110
231
111
232
112
233
113
234
114
235
115
236
116
237
117
238
118
239
119
10
11
12
13
14
15
16
17
18
19
240
120
241
121
242
1
122
243
2
123
244
3
124
245
4
125
246
5
126
247
6
127
248
7
128
249
8
129
9
20
21
22
23
24
25
26
27
28
29
250
130
251
131
252
132
253
133
254
134
135
256
136
257
137
258
138
259
139
30
31
32
33
34
35
36
37
38
39
260
140
261
141
262
142
263
143
264
144
265
145
266
146
267
147
268
148
269
149
40
41
42
43
44
45
46
47
48
49
270
150
271
151
272
152
273
153
274
154
275
155
276
156
277
157
278
158
279
159
50
51
52
53
54
55
56
57
58
59
280
160
281
161
282
162
283
163
284
164
285
165
286
287
167
288
168
289
169
60
61
62
63
64
65
66
67
68
69
290
170
291
171
292
172
293
173
294
174
295
175
296
176
297
177
298
178
J. Antunes-Rodrigues (181) 1986
T. Yamamoto (255) 1993
299
179
70
71
72
73
74
75
76
77
78
79
180
182
183
184
185
186
187
188
189
80
81
82
83
84
85
86
87
88
89
190
191
192
193
194
195
196
197
198
199
90
91
92
93
94
95
96
97
98
99
M. Tschop (166) 2000
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
100
221
101
222
102
223
103
224
104
225
105
226
106
227
107
228
108
229
109
References_xml – reference: 120) Bayliss, W.M. and Starling, E.H. (1902) The mechanism of pancreatic secretion. J. Physiol. 28, 325–353.
– reference: 185) Stein, J.M., Lind, R.W. and Johnson, A.K. (1987) Central serotonergic influences on renal electrolyte and water excretion. Neuropharmacology 26, 1685–1692.
– reference: 63) Mederos y Schnitzler, M., Storch, U., Meibers, S., Nurwakagari, P., Breit, A., Essin, K. et al. (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J. 27, 3092–3103.
– reference: 247) Wang, Q., Li, J.R., Yang, X.J., Chen, K., Sun, B. and Yan, J.Q. (2012) Inhibitory effect of activation of GABAA receptor in the central nucleus of amygdala on the sodium intake in the sodium-depleted rat. Neuroscience 223, 277–284.
– reference: 113) Weisinger, R.S., Denton, D.A., Di Nicolantonio, R., Hards, D.K., McKinley, M.J., Oldfield, B. et al. (1990) Subfornical organ lesion decreases sodium appetite in the sodium-depleted rat. Brain Res. 526, 23–30.
– reference: 138) Matsuda, T., Hiyama, T.Y., Kobayashi, K., Kobayashi, K. and Noda, M. (2020) Distinct CCK-positive SFO neurons are involved in persistent or transient suppression of water intake. Nat. Commun. 11, 5692.
– reference: 286) Lima, H.R., Cavalcante-Lima, H.R., Cedraz-Mercez, P.L., Costa, E.S.R.H., Olivares, E.L., Badaue-Passos, D. Jr. et al. (2004) Brain serotonin depletion enhances the sodium appetite induced by sodium depletion or beta-adrenergic stimulation. An. Acad. Bras. Cienc. 76, 85–92.
– reference: 12) McKinley, M.J., Denton, D.A. and Weisinger, R.S. (1978) Sensors for antidiuresis and thirst—osmoreceptors or CSF sodium detectors? Brain Res. 141, 89–103.
– reference: 302) Choe, K.Y., Han, S.Y., Gaub, P., Shell, B., Voisin, D.L., Knapp, B.A. et al. (2015) High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron 85, 549–560.
– reference: 168) Cabral, A., Fernandez, G. and Perello, M. (2013) Analysis of brain nuclei accessible to ghrelin present in the cerebrospinal fluid. Neuroscience 253, 406–415.
– reference: 197) Wiig, H., Luft, F.C. and Titze, J.M. (2018) The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol. (Oxf.) 222, e13006.
– reference: 5) Johnson, A.K. and Gross, P.M. (1993) Sensory circumventricular organs and brain homeostatic pathways. FASEB J. 7, 678–686.
– reference: 223) Curtis, K.S., Verbalis, J.G. and Stricker, E.M. (1996) Area postrema lesions in rats appear to disrupt rapid feedback inhibition of fluid intake. Brain Res. 726, 31–38.
– reference: 42) Montell, C., Birnbaumer, L. and Flockerzi, V. (2002) The TRP channels, a remarkably functional family. Cell 108, 595–598.
– reference: 35) Miller, R.L., Wang, M.H., Gray, P.A., Salkoff, L.B. and Loewy, A.D. (2013) ENaC-expressing neurons in the sensory circumventricular organs become c-Fos activated following systemic sodium changes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1141–R1152.
– reference: 224) Geerling, J.C. and Loewy, A.D. (2006) Aldosterone-sensitive neurons in the nucleus of the solitary tract: efferent projections. J. Comp. Neurol. 497, 223–250.
– reference: 268) Menani, J.V., Barbosa, S.P., De Luca, L.A., De Gobbi, J.I.F. and Johnson, A.K. (2002) Serotonergic mechanisms of the lateral parabrachial nucleus and cholinergic-induced sodium appetite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R837–R841.
– reference: 161) Krause, E.G., Curtis, K.S., Davis, L.M., Stowe, J.R. and Contreras, R.J. (2003) Estrogen influences stimulated water intake by ovariectomized female rats. Physiol. Behav. 79, 267–274.
– reference: 26) Robin, P., Boulven, I., Desmyter, C., Harbon, S. and Leiber, D. (2002) ET-1 stimulates ERK signaling pathway through sequential activation of PKC and Src in rat myometrial cells. Am. J. Physiol. Cell Physiol. 283, C251–C260.
– reference: 75) McKinley, M.J. and Johnson, A.K. (2004) The physiological regulation of thirst and fluid intake. News Physiol. Sci. 19, 1–6.
– reference: 171) Antunes-Rodrigues, J., McCann, S.M., Rogers, L.C. and Samson, W.K. (1985) Atrial natriuretic factor inhibits dehydration- and angiotensin II-induced water intake in the conscious, unrestrained rat. Proc. Natl. Acad. Sci. U.S.A. 82, 8720.
– reference: 254) Kobashi, M., Ichikawa, H., Sugimoto, T. and Adachi, A. (1993) Response of neurons in the solitary tract nucleus, area postrema and lateral parabrachial nucleus to gastric load of hypertonic saline. Neurosci. Lett. 158, 47–50.
– reference: 172) Masotto, C. and Negro-Vilar, A. (1985) Inhibition of spontaneous or angiotensin II-stimulated water intake by atrial natriuretic factor. Brain Res. Bull. 15, 523–526.
– reference: 76) Zimmerman, C.A., Leib, D.E. and Knight, Z.A. (2017) Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18, 459–469.
– reference: 252) Andrade-Franzé, G.M.F., Andrade, C.A.F., De Luca, L.A., De Paula, P.M., Colombari, D.S.A. and Menani, J.V. (2010) Lesions in the central amygdala impair sodium intake induced by the blockade of the lateral parabrachial nucleus. Brain Res. 1332, 57–64.
– reference: 284) Boadle-Biber, M.C. (1993) Regulation of serotonin synthesis. Prog. Biophys. Mol. Biol. 60, 1–15.
– reference: 233) Smith, C.M. and Lawrence, A.J. (2018) Salt Appetite, and the Influence of Opioids. Neurochem. Res. 43, 12–18.
– reference: 248) Yan, J., Li, J., Yan, J., Sun, H., Wang, Q., Chen, K. et al. (2013) Activation of μ-opioid receptors in the central nucleus of the amygdala induces hypertonic sodium intake. Neuroscience 233, 28–43.
– reference: 102) Paul, M., Poyan Mehr, A. and Kreutz, R. (2006) Physiology of local renin-angiotensin systems. Physiol. Rev. 86, 747–803.
– reference: 139) Honda, T., Wada, E., Battey, J.F. and Wank, S.A. (1993) Differential gene expression of CCK(A) and CCK(B) receptors in the rat brain. Mol. Cell. Neurosci. 4, 143–154.
– reference: 146) Davern, P.J. (2014) A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis. Front. Physiol. 5, 436.
– reference: 131) Smith, C.M., Shen, P.J., Banerjee, A., Bonaventure, P., Ma, S., Bathgate, R.A. et al. (2010) Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J. Comp. Neurol. 518, 4016–4045.
– reference: 165) Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H. and Kangawa, K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660.
– reference: 201) Epstein, A.N. (1982) Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 3, 493–494.
– reference: 128) Sherwood, O.D., Crnekovic, V.E., Gordon, W.L. and Rutherford, J.E. (1980) Radioimmunoassay of relaxin throughout pregnancy and during parturition in the rat. Endocrinology 107, 691–698.
– reference: 264) Jhamandas, J.H., Harris, K.H., Petrov, T. and Krukoff, T.L. (1992) Characterization of the Parabrachial Nucleus Input to the Hypothalamic Paraventricular Nucleus in the Rat. J. Neuroendocrinol. 4, 461–471.
– reference: 294) de Wardener, H.E., He, F.J. and MacGregor, G.A. (2004) Plasma sodium and hypertension. Kidney Int. 66, 2454–2466.
– reference: 93) Watanabe, H., Vriens, J., Prenen, J., Droogmans, G., Voets, T. and Nilius, B. (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438.
– reference: 115) Leib, D.E., Zimmerman, C.A., Poormoghaddam, A., Huey, E.L., Ahn, J.S., Lin, Y.C. et al. (2017) The forebrain thirst circuit drives drinking through negative reinforcement. Neuron 96, 1272–1281.e1274.
– reference: 309) Hiyama, T.Y., Matsuda, S., Fujikawa, A., Matsumoto, M., Watanabe, E., Kajiwara, H. et al. (2010) Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia. Neuron 66, 508–522.
– reference: 142) Augustine, V., Lee, S. and Oka, Y. (2020) Neural control and modulation of thirst, sodium appetite, and hunger. Cell 180, 25–32.
– reference: 118) Abbott, S.B.G. and Saper, C.B. (2017) Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. J. Physiol. 595, 6569–6583.
– reference: 182) Antunes-Rodrigues, J., Ramalho, M.J., Reis, L.C., Menani, J.V., Turrin, M.Q., Gutkowska, J. et al. (1991) Lesions of the hypothalamus and pituitary inhibit volume-expansion-induced release of atrial natriuretic peptide. Proc. Natl. Acad. Sci. U.S.A. 88, 2956–2960.
– reference: 217) Daniels, D., Mietlicki, E.G., Nowak, E.L. and Fluharty, S.J. (2009) Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats. Exp. Physiol. 94, 130–137.
– reference: 23) Hindmarch, C., Fry, M., Yao, S.T., Smith, P.M., Murphy, D. and Ferguson, A.V. (2008) Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1914–R1920.
– reference: 273) Gasparini, S., de Luca, L.A., Colombari, D.S.A., de Paula, P.M., Barbosa, S.P. and Menani, J.V. (2009) Adrenergic mechanisms of the Kölliker-Fuse/A7 area on the control of water and sodium intake. Neuroscience 164, 370–379.
– reference: 232) Lee, S., Augustine, V., Zhao, Y., Ebisu, H., Ho, B., Kong, D. et al. (2019) Chemosensory modulation of neural circuits for sodium appetite. Nature 568, 93–97.
– reference: 225) Evans, L.C., Ivy, J.R., Wyrwoll, C., McNairn, J.A., Menzies, R.I., Christensen, T.H. et al. (2016) Conditional deletion of Hsd11b2 in the brain causes salt appetite and hypertension. Circulation 133, 1360–1370.
– reference: 237) Zhang, M. and Kelley, A.E. (2002) Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu opioid agonist into the nucleus accumbens. Psychopharmacology (Berl) 159, 415–423.
– reference: 269) De luca, L.A., Barbosa, S.P. and Menani, J.V. (2003) Brain serotonin blockade and paradoxical salt intake in rats. Neuroscience 121, 1055–1061.
– reference: 119) Allen, W.E., Chen, M.Z., Pichamoorthy, N., Tien, R.H., Pachitariu, M., Luo, L. et al. (2019) Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 364, 253.
– reference: 145) Zocchi, D., Wennemuth, G. and Oka, Y. (2017) The cellular mechanism for water detection in the mammalian taste system. Nat. Neurosci. 20, 927–933.
– reference: 141) Augustine, V., Ebisu, H., Zhao, Y., Lee, S., Ho, B., Mizuno, G.O. et al. (2019) Temporally and spatially distinct thirst satiation signals. Neuron 103, 242–249.e244.
– reference: 262) Krukoff, T.L., Harris, K.H. and Jhamandas, J.H. (1993) Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res. Bull. 30, 163–172.
– reference: 125) Lee, L.T., Ng, S.Y., Chu, J.Y., Sekar, R., Harikumar, K.G., Miller, L.J. et al. (2014) Transmembrane peptides as unique tools to demonstrate the in vivo action of a cross-class GPCR heterocomplex. FASEB J. 28, 2632–2644.
– reference: 51) Liedtke, W. and Friedman, J.M. (2003) Abnormal osmotic regulation in trpv4−/− mice. Proc. Natl. Acad. Sci. U.S.A. 100, 13698–13703.
– reference: 8) Peruzzo, M., Milani, G.P., Garzoni, L., Longoni, L., Simonetti, G.D., Bettinelli, A. et al. (2010) Body fluids and salt metabolism - part II. Ital. J. Pediatr. 36, 78.
– reference: 164) Xue, B., Johnson, A.K. and Hay, M. (2013) Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R459–R463.
– reference: 206) Sunn, N., McKinley, M.J. and Oldfield, B.J. (2003) Circulating angiotensin II activates neurones in circumventricular organs of the lamina terminalis that project to the bed nucleus of the stria terminalis. J. Neuroendocrinol. 15, 725–731.
– reference: 239) Pavan, C.G., Roncari, C.F., Barbosa, S.P., De Paula, P.M., Colombari, D.S., De Luca, L.A. Jr. et al. (2015) Activation of μ opioid receptors in the LPBN facilitates sodium intake in rats. Behav. Brain Res. 288, 20–25.
– reference: 106) Grobe, J.L., Grobe, C.L., Beltz, T.G., Westphal, S.G., Morgan, D.A., Xu, D. et al. (2010) The brain Renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Cell Metab. 12, 431–442.
– reference: 288) Park, S., Williams, K.W., Liu, C. and Sohn, J.W. (2020) A neural basis for tonic suppression of sodium appetite. Nat. Neurosci. 23, 423–432.
– reference: 147) Menani, J.V., De Luca, L.A. Jr. and Johnson, A.K. (2014) Role of the lateral parabrachial nucleus in the control of sodium appetite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R201–R210.
– reference: 263) Jhamandas, J.H., Petrov, T., Harris, K.H., Vu, T. and Krukoff, T.L. (1996) Parabrachial nucleus projection to the amygdala in the rat: Electrophysiological and anatomical observations. Brain Res. Bull. 39, 115–126.
– reference: 53) Zheng, J. (2013) Molecular mechanism of TRP channels. Compr. Physiol. 3, 221–242.
– reference: 103) Abdelaal, A.E., Mercer, P.F. and Mogenson, G.J. (1976) Plasma angiotensin II levels and water intake following β-adrenergic stimulation, hypovolemia, cellular dehydration and water deprivation. Pharmacol. Biochem. Behav. 4, 317–321.
– reference: 123) Ng, S.S., Yung, W.H. and Chow, B.K. (2002) Secretin as a neuropeptide. Mol. Neurobiol. 26, 97–107.
– reference: 137) Willis, G.L., Hansky, J. and Smith, G.C. (1984) Ventricular, paraventricular and circumventricular structures involved in peptide-induced satiety. Regul. Pept. 9, 87–99.
– reference: 158) Mandelblat-Cerf, Y., Kim, A., Burgess, C.R., Subramanian, S., Tannous, B.A., Lowell, B.B. et al. (2017) Bidirectional anticipation of future osmotic challenges by vasopressin neurons. Neuron 93, 57–65.
– reference: 211) Geerling, J.C. and Loewy, A.D. (2007) Sodium depletion activates the aldosterone-sensitive neurons in the NTS independently of thirst. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1338–R1348.
– reference: 65) Rakesh, K., Yoo, B., Kim, I.-M., Salazar, N., Kim, K.-S. and Rockman, H.A. (2010) β-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci. Signal. 3, ra46.
– reference: 90) Hosutt, J.A., Rowland, N. and Stricker, E.M. (1981) Impaired drinking responses of rats with lesions on the subfornical organ. J. Comp. Physiol. Psychol. 95, 104–113.
– reference: 208) Terenzi, M.G. and Ingram, C.D. (1995) A combined immunocytochemical and retrograde tracing study of noradrenergic connections between the caudal medulla and bed nuclei of the stria terminalis. Brain Res. 672, 289–297.
– reference: 144) Winzeler, B.F., Sailer, C.O., Coynel, D., Deborah, V., Davide, Z., Urwyler, S. et al. (2021) GLP1 receptor agonists reduce fluid intake in primary polydipsia. J. Endocr. Soc. 5, A514–A515.
– reference: 287) Menani, J.V., Colombari, D.S., Beltz, T.G., Thunhorst, R.L. and Johnson, A.K. (1998) Salt appetite: interaction of forebrain angiotensinergic and hindbrain serotonergic mechanisms. Brain Res. 801, 29–35.
– reference: 155) Allen, W.E., DeNardo, L.A., Chen, M.Z., Liu, C.D., Loh, K.M., Fenno, L.E. et al. (2017) Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357, 1149–1155.
– reference: 71) Adrogué, H.J. and Madias, N.E. (2000) Hypernatremia. N. Engl. J. Med. 342, 1493–1499.
– reference: 20) Hiyama, T.Y., Watanabe, E., Okado, H. and Noda, M. (2004) The subfornical organ is the primary locus of sodium-level sensing by Nax sodium channels for the control of salt-intake behavior. J. Neurosci. 24, 9276.
– reference: 97) Mann, J.F., Johnson, A.K. and Ganten, D. (1980) Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin. Am. J. Physiol. 238, R372–R377.
– reference: 212) Li, Z., Iwai, M., Wu, L., Shiuchi, T., Jinno, T., Cui, T.X. et al. (2003) Role of AT2 receptor in the brain in regulation of blood pressure and water intake. Am. J. Physiol. Heart Circ. Physiol. 284, H116–H121.
– reference: 258) Ciriello, J., Lawrence, D. and Pittman, Q.J. (1984) Electrophysiological identification of neurons in the parabrachial nucleus projecting directly to the hypothalamus in the rat. Brain Res. 322, 388–392.
– reference: 276) Tanaka, J., Hayashi, Y., Yamato, K., Miyakubo, H. and Nomura, M. (2004) Involvement of serotonergic systems in the lateral parabrachial nucleus in sodium and water intake: a microdialysis study in the rat. Neurosci. Lett. 357, 41–44.
– reference: 116) Vong, L., Ye, C., Yang, Z., Choi, B., Chua, S. Jr. and Lowell, B.B. (2011) Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154.
– reference: 226) Jarvie, B.C. and Palmiter, R.D. (2017) HSD2 neurons in the hindbrain drive sodium appetite. Nat. Neurosci. 20, 167–169.
– reference: 73) Leib, D.E., Zimmerman, C.A. and Knight, Z.A. (2016) Thirst. Curr. Biol. 26, R1260–R1265.
– reference: 249) Zhu, W. and Pan, Z.Z. (2005) μ-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons. Neuroscience 133, 97–103.
– reference: 47) Liedtke, W., Choe, Y., Martí-Renom, M.A., Bell, A.M., Denis, C.S., Sali, A. et al. (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535.
– reference: 257) Norgren, R. (1981) The central organization of the gustatory and visceral afferent systems in the nucleus of the solitary tract. Brain mechanisms of sensation, 143–160.
– reference: 34) Chambrey, R., Achard, J.M. and Warnock, D.G. (1997) Heterologous expression of rat NHE4: a highly amiloride-resistant Na+/H+ exchanger isoform. Am. J. Physiol. 272, C90–C98.
– reference: 304) Stocker, S.D., Lang, S.M., Simmonds, S.S., Wenner, M.M. and Farquhar, W.B. (2015) Cerebrospinal fluid hypernatremia elevates sympathetic nerve activity and blood pressure via the rostral ventrolateral medulla. Hypertension 66, 1184–1190.
– reference: 70) Fitzsimons, J.T. (1998) Angiotensin, thirst, and sodium appetite. Physiol. Rev. 78, 583–686.
– reference: 58) Taylor, A.C., McCarthy, J.J. and Stocker, S.D. (2008) Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1285–R1293.
– reference: 221) Contreras, R.J. and Stetson, P.W. (1981) Changes in salt intake after lesions of the area postrema and the nucleus of the solitary tract in rats. Brain Res. 211, 355–366.
– reference: 305) Escoubas, P., De Weille, J.R., Lecoq, A., Diochot, S., Waldmann, R., Champigny, G. et al. (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 275, 25116–25121.
– reference: 272) De Gobbi, J.I.F., Beltz, T.G., Johnson, R.F., Menani, J.V., Thunhorst, R.L. and Johnson, A.K. (2009) Non-NMDA receptors in the lateral parabrachial nucleus modulate sodium appetite. Brain Res. 1301, 44–51.
– reference: 167) Wren, A.M., Seal, L.J., Cohen, M.A., Brynes, A.E., Frost, G.S., Murphy, K.G. et al. (2001) Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992–5995.
– reference: 83) Simpson, J.B. and Routtenberg, A. (1973) Subfornical organ: site of drinking elicitation by angiotensin II. Science 181, 1172.
– reference: 46) Nishihara, E., Hiyama, T.Y. and Noda, M. (2011) Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons. PLoS One 6, e22246.
– reference: 313) Eiselt, A.K., Chen, S., Chen, J., Arnold, J., Kim, T., Pachitariu, M. et al. (2021) Hunger or thirst state uncertainty is resolved by outcome evaluation in medial prefrontal cortex to guide decision-making. Nat. Neurosci. 24, 907–912.
– reference: 149) Ryan, P.J., Ross, S.I., Campos, C.A., Derkach, V.A. and Palmiter, R.D. (2017) Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake. Nat. Neurosci. 20, 1722–1733.
– reference: 246) Covian, M.R., Antunes-Rodrigues, J., Gentil, C.G., Saad, W.A., Camargo, L.A. and Neto, C.R.S. (2019) Central control of salt balance. In Neural Integration of Physiological Mechanisms and Behaviour (eds. Mogenson, G. and Calaresu, F.). University of Toronto Press, Toronto, pp. 267–282.
– reference: 275) Menezes, M.F., Barbosa, S.P., De Andrade, C.A.F., Menani, J.V. and De Paula, P.M. (2011) Purinergic mechanisms of lateral parabrachial nucleus facilitate sodium depletion-induced NaCl intake. Brain Res. 1372, 49–58.
– reference: 153) Hsu, T.M., Bazzino, P., Hurh, S.J., Konanur, V.R., Roitman, J.D. and Roitman, M.F. (2020) Thirst recruits phasic dopamine signaling through subfornical organ neurons. Proc. Natl. Acad. Sci. U.S.A. 117, 30744–30754.
– reference: 265) Menani, J.V. and Johnson, A.K. (1995) Lateral parabrachial serotonergic mechanisms: Angiotensin-induced pressor and drinking responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 269, R1044–R1049.
– reference: 195) Titze, J., Lang, R., Ilies, C., Schwind, K.H., Kirsch, K.A., Dietsch, P. et al. (2003) Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Renal Physiol. 285, F1108–F1117.
– reference: 67) Wang, J., Hanada, K., Gareri, C. and Rockman, H.A. (2018) Mechanoactivation of the angiotensin II type 1 receptor induces β-arrestin-biased signaling through Gα(i) coupling. J. Cell. Biochem. 119, 3586–3597.
– reference: 188) McCance, R. (1936) Experimental human salt deficiency. Lancet 1, 823–830.
– reference: 36) Amin, M.S., Wang, H.W., Reza, E., Whitman, S.C., Tuana, B.S. and Leenen, F.H. (2005) Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1787–R1797.
– reference: 64) Zou, Y., Akazawa, H., Qin, Y., Sano, M., Takano, H., Minamino, T. et al. (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat. Cell Biol. 6, 499–506.
– reference: 82) Noda, M. and Hiyama, T.Y. (2015) Sodium sensing in the brain. Pflugers Arch. 467, 465–474.
– reference: 187) Reis, L.C., Ramalho, M.J., Favaretto, A.L., Gutkowska, J., McCann, S.M. and Antunes-Rodrigues, J. (1994) Participation of the ascending serotonergic system in the stimulation of atrial natriuretic peptide release. Proc. Natl. Acad. Sci. U.S.A. 91, 12022–12026.
– reference: 190) Contreras, R.J. and Hatton, G.I. (1975) Gustatory adaptation as an explanation for dietary-induced sodium appetite. Physiol. Behav. 15, 569–576.
– reference: 15) Watanabe, E., Fujikawa, A., Matsunaga, H., Yasoshima, Y., Sako, N., Yamamoto, T. et al. (2000) Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J. Neurosci. 20, 7743–7751.
– reference: 25) Rauh, A., Windischhofer, W., Kovacevic, A., DeVaney, T., Huber, E., Semlitsch, M. et al. (2008) Endothelin (ET)-1 and ET-3 promote expression of c-fos and c-jun in human choriocarcinoma via ET(B) receptor-mediated G(i)- and G(q)-pathways and MAP kinase activation. Br. J. Pharmacol. 154, 13–24.
– reference: 54) Ahern, G.P., Brooks, I.M., Miyares, R.L. and Wang, X.B. (2005) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J. Neurosci. 25, 5109–5116.
– reference: 57) Kinsman, B., Cowles, J., Lay, J., Simmonds, S.S., Browning, K.N. and Stocker, S.D. (2014) Osmoregulatory thirst in mice lacking the transient receptor potential vanilloid type 1 (TRPV1) and/or type 4 (TRPV4) receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1092–R1100.
– reference: 216) Wei, H., Ahn, S., Shenoy, S.K., Karnik, S.S., Hunyady, L., Luttrell, L.M. et al. (2003) Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. U.S.A. 100, 10782–10787.
– reference: 14) Goldin, A.L., Barchi, R.L., Caldwell, J.H., Hofmann, F., Howe, J.R., Hunter, J.C. et al. (2000) Nomenclature of voltage-gated sodium channels. Neuron 28, 365–368.
– reference: 236) Lucas, L.R., Grillo, C.A. and McEwen, B.S. (2007) Salt appetite in sodium-depleted or sodium-replete conditions: possible role of opioid receptors. Neuroendocrinology 85, 139–147.
– reference: 94) Roman, R.J. (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185.
– reference: 129) Otsubo, H., Onaka, T., Suzuki, H., Katoh, A., Ohbuchi, T., Todoroki, M. et al. (2010) Centrally administered relaxin-3 induces Fos expression in the osmosensitive areas in rat brain and facilitates water intake. Peptides 31, 1124–1130.
– reference: 274) De Oliveira, L.B., Kimura, E.H., Callera, J.C., De Luca, L.A., Colombari, D.S.A. and Menani, J.V. (2011) Baclofen into the lateral parabrachial nucleus induces hypertonic sodium chloride and sucrose intake in rats. Neuroscience 183, 160–170.
– reference: 105) Premer, C., Lamondin, C., Mitzey, A., Speth, R.C. and Brownfield, M.S. (2013) Immunohistochemical localization of AT1a, AT1b, and AT2 angiotensin II receptor subtypes in the rat adrenal, pituitary, and brain with a perspective commentary. Int. J. Hypertens. 2013, 175428.
– reference: 299) Frithiof, R., Xing, T., McKinley, M.J., May, C.N. and Ramchandra, R. (2014) Intracarotid hypertonic sodium chloride differentially modulates sympathetic nerve activity to the heart and kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R567–R575.
– reference: 130) de Avila, C., Chometton, S., Lenglos, C., Calvez, J., Gundlach, A.L. and Timofeeva, E. (2018) Differential effects of relaxin-3 and a selective relaxin-3 receptor agonist on food and water intake and hypothalamic neuronal activity in rats. Behav. Brain Res. 336, 135–144.
– reference: 98) Nomura, K., Hiyama, T.Y., Sakuta, H., Matsuda, T., Lin, C.H., Kobayashi, K. et al. (2019) [Na+] increases in body fluids sensed by central Nax induce sympathetically mediated blood pressure elevations via H+-dependent activation of ASIC1a. Neuron 101, 60–75.e66.
– reference: 193) Heer, M., Baisch, F., Kropp, J., Gerzer, R. and Drummer, C. (2000) High dietary sodium chloride consumption may not induce body fluid retention in humans. Am. J. Physiol. Renal Physiol. 278, F585–F595.
– reference: 228) Sequeira, S.M., Geerling, J.C. and Loewy, A.D. (2006) Local inputs to aldosterone-sensitive neurons of the nucleus tractus solitarius. Neuroscience 141, 1995–2005.
– reference: 52) Mannari, T., Morita, S., Furube, E., Tominaga, M. and Miyata, S. (2013) Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains. Glia 61, 957–971.
– reference: 56) Zaelzer, C., Hua, P., Prager-Khoutorsky, M., Ciura, S., Voisin, D.L., Liedtke, W. et al. (2015) ΔN-TRPV1: A molecular co-detector of body temperature and osmotic stress. Cell Rep. 13, 23–30.
– reference: 154) Betley, J.N., Xu, S., Cao, Z.F.H., Gong, R., Magnus, C.J., Yu, Y. et al. (2015) Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185.
– reference: 293) Adrogué, H.J. and Madias, N.E. (2007) Sodium and potassium in the pathogenesis of hypertension. N. Engl. J. Med. 356, 1966–1978.
– reference: 80) Thrasher, T.N. and Keil, L.C. (1987) Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis. Am. J. Physiol. 253, R108–R120.
– reference: 295) Stocker, S.D., Monahan, K.D. and Browning, K.N. (2013) Neurogenic and sympathoexcitatory actions of NaCl in hypertension. Curr. Hypertens. Rep. 15, 538–546.
– reference: 2) Park, R., Denton, D.A., McKinley, M.J., Pennington, G. and Weisinger, R.S. (1989) Intracerebroventricular saccharide infusions inhibit thirst induced by systemic hypertonicity. Brain Res. 493, 123–128.
– reference: 74) Ramsay, D.J. and Thrasher, T.N. (1991) Regulation of fluid intake in dogs following water deprivation. Brain Res. Bull. 27, 495–499.
– reference: 230) Geerling, J.C., Stein, M.K., Miller, R.L., Shin, J.W., Gray, P.A. and Loewy, A.D. (2011) FoxP2 expression defines dorsolateral pontine neurons activated by sodium deprivation. Brain Res. 1375, 19–27.
– reference: 19) Matsumoto, M., Hiyama, T.Y., Kuboyama, K., Suzuki, R., Fujikawa, A. and Noda, M. (2015) Channel properties of Nax expressed in neurons. PLoS One 10, e0126109.
– reference: 235) Lucas, L.R., Grillo, C.A. and McEwen, B.S. (2003) Involvement of mesolimbic structures in short-term sodium depletion: in situ hybridization and ligand-binding analyses. Neuroendocrinology 77, 406–415.
– reference: 135) Olszewski, P.K., Klockars, A., Schioth, H.B. and Levine, A.S. (2010) Oxytocin as feeding inhibitor: maintaining homeostasis in consummatory behavior. Pharmacol. Biochem. Behav. 97, 47–54.
– reference: 220) Fitts, D.A. and Masson, D.B. (1989) Forebrain sites of action for drinking and salt appetite to angiotensin or captopril. Behav. Neurosci. 103, 865–872.
– reference: 282) Stricker, E.M. and Verbalis, J.G. (1987) Central inhibitory control of sodium appetite in rats: correlation with pituitary oxytocin secretion. Behav. Neurosci. 101, 560–567.
– reference: 96) Matsuda, T., Hiyama, T.Y., Niimura, F., Matsusaka, T., Fukamizu, A., Kobayashi, K. et al. (2017) Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 20, 230–241.
– reference: 298) Guyenet, P.G. (2006) The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346.
– reference: 66) Tang, W., Strachan, R.T., Lefkowitz, R.J. and Rockman, H.A. (2014) Allosteric modulation of β-arrestin-biased angiotensin II type 1 receptor signaling by membrane stretch. J. Biol. Chem. 289, 28271–28283.
– reference: 157) Gizowski, C., Zaelzer, C. and Bourque, C.W. (2016) Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature 537, 685–688.
– reference: 9) Andersson, B. (1977) Regulation of body fluids. Annu. Rev. Physiol. 39, 185–200.
– reference: 108) Fitzsimons, J.T. and Simons, B.J. (1969) The effect on drinking in the rat of intravenous infusion of angiotensin, given alone or in combination with other stimuli of thirst. J. Physiol. 203, 45–57.
– reference: 3) Denton, D.A., McKinley, M.J. and Weisinger, R.S. (1996) Hypothalamic integration of body fluid regulation. Proc. Natl. Acad. Sci. U.S.A. 93, 7397–7404.
– reference: 6) Miyata, S. (2015) New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front. Neurosci. 9, 390.
– reference: 266) Menani, J.V., Thunhorst, R.L. and Johnson, A.K. (1996) Lateral parabrachial nucleus and serotonergic mechanisms in the control of salt appetite in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 270, R162–R168.
– reference: 124) Lee, V.H., Lee, L.T., Chu, J.Y., Lam, I.P., Siu, F.K., Vaudry, H. et al. (2010) An indispensable role of secretin in mediating the osmoregulatory functions of angiotensin II. FASEB J. 24, 5024–5032.
– reference: 300) Kawano, Y. and Ferrario, C.M. (1984) Neurohormonal characteristics of cardiovascular response due to intraventricular hypertonic NaCl. Am. J. Physiol. Heart Circ. Physiol. 247, H422–H428.
– reference: 173) Tarjan, E., Denton, D.A. and Weisinger, R.S. (1988) Atrial natriuretic peptide inhibits water and sodium intake in rabbits. Regul. Pept. 23, 63–75.
– reference: 196) Titze, J., Shakibaei, M., Schafflhuber, M., Schulze-Tanzil, G., Porst, M., Schwind, K.H. et al. (2004) Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am. J. Physiol. Heart Circ. Physiol. 287, H203–H208.
– reference: 241) Eikemo, M., Løseth, G.E., Johnstone, T., Gjerstad, J., Willoch, F. and Leknes, S. (2016) Sweet taste pleasantness is modulated by morphine and naltrexone. Psychopharmacology (Berl) 233, 3711–3723.
– reference: 314) Noda, M. (2007) Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain. Exp. Physiol. 92, 513–522.
– reference: 126) Hisaw, F.L. (1926) Experimental relaxation of the pubic ligament of the guinea pig. Proc. Soc. Exp. Biol. Med. 23, 661–663.
– reference: 210) Geerling, J.C. and Loewy, A.D. (2006) Aldosterone-sensitive NTS neurons are inhibited by saline ingestion during chronic mineralocorticoid treatment. Brain Res. 1115, 54–64.
– reference: 176) Zhu, B. and Herbert, J. (1996) Central antagonism of atrial natriuretic peptides on behavioral and hormonal responses to angiotensin II: mapping with c-fos. Brain Res. 734, 55–60.
– reference: 151) Campos, C.A., Bowen, A.J., Schwartz, M.W. and Palmiter, R.D. (2016) Parabrachial CGRP neurons control meal termination. Cell Metab. 23, 811–820.
– reference: 214) Jennings, J.H., Rizzi, G., Stamatakis, A.M., Ung, R.L. and Stuber, G.D. (2013) The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517–1521.
– reference: 110) Buggy, J. and Fisher, A.E. (1974) Evidence for a dual central role for angiotensin in water and sodium intake. Nature 250, 733–735.
– reference: 136) Smith, C.M., Walker, L.L., Chua, B.E., McKinley, M.J., Gundlach, A.L., Denton, D.A. et al. (2015) Involvement of central relaxin-3 signalling in sodium (salt) appetite. Exp. Physiol. 100, 1064–1072.
– reference: 260) Lança, A.J. and Van Der Kooy, D. (1985) A serotonin-containing pathway from the area postrema to the parabrachial nucleus in the rat. Neuroscience 14, 1117–1126.
– reference: 163) Rosas-Arellano, M.P., Solano-Flores, L.P. and Ciriello, J. (1999) Co-localization of estrogen and angiotensin receptors within subfornical organ neurons. Brain Res. 837, 254–262.
– reference: 219) Yamada, H. and Mendelsohn, F.A. (1989) Angiotensin II receptor binding in the rat hypothalamus and circumventricular organs during dietary sodium deprivation. Neuroendocrinology 50, 469–475.
– reference: 296) Gavras, I. and Gavras, H. (2012) ‘Volume-expanded’ hypertension: the effect of fluid overload and the role of the sympathetic nervous system in salt-dependent hypertension. J. Hypertens. 30, 655–659.
– reference: 234) Hubbell, C.L. and McCutcheon, N.B. (1993) Opioidergic manipulations affect intake of 3% NaCl in sodium-deficient rats. Pharmacol. Biochem. Behav. 46, 473–476.
– reference: 204) Johnson, A.K. and Thunhorst, R.L. (1997) The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front. Neuroendocrinol. 18, 292–353.
– reference: 290) Biondolillo, J.W., Williams, L.A. and King, M.S. (2009) Blocking glutamate receptors in the waist area of the parabrachial nucleus decreases taste reactivity behaviors in conscious rats. Chem. Senses 34, 221–230.
– reference: 13) Weisinger, R.S., Considine, P., Denton, D.A., McKinley, M.J. and Mouw, D. (1979) Rapid effect of change in cerebrospinal fluid sodium concentration on salt appetite. Nature 280, 490–491.
– reference: 89) Buggy, J. and Johnson, A.K. (1977) Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 233, R44–R52.
– reference: 112) Thunhorst, R.L., Ehrlich, K.J. and Simpson, J.B. (1990) Subfornical organ participates in salt appetite. Behav. Neurosci. 104, 637–642.
– reference: 278) Oka, Y., Butnaru, M., von Buchholtz, L., Ryba, N.J. and Zuker, C.S. (2013) High salt recruits aversive taste pathways. Nature 494, 472–475.
– reference: 44) Spassova, M.A., Hewavitharana, T., Xu, W., Soboloff, J. and Gill, D.L. (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc. Natl. Acad. Sci. U.S.A. 103, 16586–16591.
– reference: 7) Kiecker, C. (2018) The origins of the circumventricular organs. J. Anat. 232, 540–553.
– reference: 148) Kim, D.Y., Heo, G., Kim, M., Kim, H., Jin, J.A., Kim, H.K. et al. (2020) A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580, 376–380.
– reference: 253) Di Lorenzo, P.M. and Victor, J.D. (2003) Taste response variability and temporal coding in the nucleus of the solitary tract of the rat. J. Neurophysiol. 90, 1418–1431.
– reference: 49) Ciura, S. and Bourque, C.W. (2006) Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J. Neurosci. 26, 9069–9075.
– reference: 178) Buranarugsa, P. and Hubbard, J.I. (1988) Excitatory effects of atrial natriuretic peptide on rat subfornical organ neurons in vitro. Brain Res. Bull. 20, 627–631.
– reference: 256) Franchini, L.F. and Vivas, L. (1999) Distribution of Fos immunoreactivity in rat brain after sodium consumption induced by peritoneal dialysis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R1180–R1187.
– reference: 114) Matsusaka, T., Asano, T., Niimura, F., Kinomura, M., Shimizu, A., Shintani, A. et al. (2010) Angiotensin receptor blocker protection against podocyte-induced sclerosis is podocyte angiotensin II type 1 receptor-independent. Hypertension 55, 967–973.
– reference: 270) Andrade, C.A.F., Barbosa, S.P., De Luca, L.A. and Menani, J.V. (2004) Activation of α2-adrenergic receptors into the lateral parabrachial nucleus enhances NaCl intake in rats. Neuroscience 129, 25–34.
– reference: 227) Resch, J.M., Fenselau, H., Madara, J.C., Wu, C., Campbell, J.N., Lyubetskaya, A. et al. (2017) Aldosterone-sensing neurons in the NTS exhibit state-dependent pacemaker activity and drive sodium appetite via synergy with angiotensin II signaling. Neuron 96, 190–206.e197.
– reference: 86) Lenkei, Z., Corvol, P. and Llorens-Cortes, C. (1995) The angiotensin receptor subtype AT1A predominates in rat forebrain areas involved in blood pressure, body fluid homeostasis and neuroendocrine control. Brain Res. Mol. Brain Res. 30, 53–60.
– reference: 81) Anderson, J.W., Washburn, D.L.S. and Ferguson, A.V. (2000) Intrinsic osmosensitivity of subfornical organ neurons. Neuroscience 100, 539–547.
– reference: 79) Mangiapane, M.L. and Simpson, J.B. (1980) Subfornical organ: forebrain site of pressor and dipsogenic action of angiotensin II. Am. J. Physiol. 239, R382–R389.
– reference: 160) Tanaka, J., Kariya, K., Miyakubo, H., Sakamaki, K. and Nomura, M. (2002) Attenuated drinking response induced by angiotensinergic activation of subfornical organ projections to the paraventricular nucleus in estrogen-treated rats. Neurosci. Lett. 324, 242–246.
– reference: 16) Watanabe, E., Hiyama, T.Y., Kodama, R. and Noda, M. (2002) Nax sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice. Neurosci. Lett. 330, 109–113.
– reference: 213) Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., Pleil, K.E., Kash, T.L. et al. (2013) Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228.
– reference: 170) Mietlicki, E.G., Nowak, E.L. and Daniels, D. (2009) The effect of ghrelin on water intake during dipsogenic conditions. Physiol. Behav. 96, 37–43.
– reference: 205) Geerling, J.C. and Loewy, A.D. (2008) Central regulation of sodium appetite. Exp. Physiol. 93, 177–209.
– reference: 99) Bellin, S.I., Bhatnagar, R.K. and Johnson, A.K. (1987) Periventricular noradrenergic systems are critical for angiotensin-induced drinking and blood pressure responses. Brain Res. 403, 105–112.
– reference: 207) Ricardo, J.A. and Koh, E.T. (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 153, 1–26.
– reference: 22) Hori, S., Komatsu, Y., Shigemoto, R., Mizuno, N. and Nakanishi, S. (1992) Distinct tissue distribution and cellular localization of two messenger ribonucleic acids encoding different subtypes of rat endothelin receptors. Endocrinology 130, 1885–1895.
– reference: 306) Diochot, S., Baron, A., Rash, L.D., Deval, E., Escoubas, P., Scarzello, S. et al. (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J. 23, 1516–1525.
– reference: 45) Bourque, C.W. (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531.
– reference: 179) Ehrlich, K.J. and Fitts, D.A. (1990) Atrial natriuretic peptide in the subfornical organ reduces drinking induced by angiotensin or in response to water deprivation. Behav. Neurosci. 104, 365–372.
– reference: 43) Clapham, D.E. (2003) TRP channels as cellular sensors. Nature 426, 517–524.
– reference: 87) Barth, S.W. and Gerstberger, R. (1999) Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration. Brain Res. Mol. Brain Res. 64, 151–164.
– reference: 37) Teruyama, R., Sakuraba, M., Wilson, L.L., Wandrey, N.E. and Armstrong, W.E. (2012) Epithelial Na+ sodium channels in magnocellular cells of the rat supraoptic and paraventricular nuclei. Am. J. Physiol. Endocrinol. Metab. 302, E273–E285.
– reference: 166) Tschop, M., Smiley, D.L. and Heiman, M.L. (2000) Ghrelin induces adiposity in rodents. Nature 407, 908–913.
– reference: 255) Yamamoto, T., Shimura, T., Sako, N., Sakai, N., Tanimizu, T. and Wakisaka, S. (1993) C-Fos expression in the parabrachial nucleus after ingestion of sodium chloride in the rat. Neuroreport 4, 1223–1226.
– reference: 159) Levi, D.I., Wyrosdic, J.C., Hicks, A.I., Andrade, M.A., Toney, G.M., Prager-Khoutorsky, M. et al. (2021) High dietary salt amplifies osmoresponsiveness in vasopressin-releasing neurons. Cell Rep. 34, 108866.
– reference: 191) Stricker, E.M., Thiels, E. and Verbalis, J.G. (1991) Sodium appetite in rats after prolonged dietary sodium deprivation: a sexually dimorphic phenomenon. Am. J. Physiol. 260, R1082–R1088.
– reference: 261) Herbert, H., Moga, M.M. and Saper, C.B. (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J. Comp. Neurol. 293, 540–580.
– reference: 186) Reis, L.C., Ramalho, M.J. and Antunes-Rodrigues, J. (1991) Participation of the median raphe nucleus and central serotoninergic pathways in the control of water electrolyte excretion. Braz. J. Med. Biol. Res. 24, 847–854.
– reference: 251) Vaughan, C.W., Ingram, S.L., Connor, M.A. and Christie, M.J. (1997) How opioids inhibit GABA-mediated neurotransmission. Nature 390, 611–614.
– reference: 243) Nogueiras, R., Romero-Picó, A., Vazquez, M.J., Novelle, M.G., López, M. and Diéguez, C. (2012) The opioid system and food intake: homeostatic and hedonic mechanisms. Obes. Facts 5, 196–207.
– reference: 21) Watanabe, E., Hiyama, T.Y., Shimizu, H., Kodama, R., Hayashi, N., Miyata, S. et al. (2006) Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R568–R576.
– reference: 32) Arena, E.A., Longo, W.E., Roberts, K.E., Geibel, P., Nateqi, J., Brandstetter, M. et al. (2012) Functional role of NHE4 as a pH regulator in rat and human colonic crypts. Am. J. Physiol. Cell Physiol. 302, C412–C418.
– reference: 50) Hollis, J.H., McKinley, M.J., D’Souza, M., Kampe, J. and Oldfield, B.J. (2008) The trajectory of sensory pathways from the lamina terminalis to the insular and cingulate cortex: a neuroanatomical framework for the generation of thirst. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1390–R1401.
– reference: 132) Albert-Gasco, H., Ma, S., Ros-Bernal, F., Sanchez-Perez, A.M., Gundlach, A.L. and Olucha-Bordonau, F.E. (2017) GABAergic neurons in the rat medial septal complex express relaxin-3 receptor (RXFP3) mRNA. Front. Neuroanat. 11, 133.
– reference: 88) Sakuta, H., Lin, C.-H., Yamada, M., Kita, Y., Tokuoka, S.M., Shimizu, T. et al. (2020) Nax-positive glial cells in the organum vasculosum laminae terminalis produce epoxyeicosatrienoic acids to induce water intake in response to increases in [Na+] in body fluids. Neurosci. Res. 154, 45–51.
– reference: 69) Saltmarsh, M. (2001) Thirst: or, why do people drink? Nutr. Bull. 26, 53–58.
– reference: 127) Hudson, P., Haley, J., John, M., Cronk, M., Crawford, R., Haralambidis, J. et al. (1983) Structure of a genomic clone encoding biologically active human relaxin. Nature 301, 628–631.
– reference: 245) Zardetto-Smith, A.M., Beltz, T.G. and Johnson, A.K. (1994) Role of the central nucleus of the amygdala and bed nucleus of the stria terminalis in experimentally-induced salt appetite. Brain Res. 645, 123–134.
– reference: 30) Sakuta, H., Lin, C.H., Hiyama, T.Y., Matsuda, T., Yamaguchi, K., Shigenobu, S. et al. (2020) SLC9A4 in the organum vasculosum of the lamina terminalis is a [Na+] sensor for the control of water intake. Pflugers Arch. 472, 609–624.
– reference: 31) Bookstein, C., Musch, M.W., DePaoli, A., Xie, Y., Rabenau, K., Villereal, M. et al. (1996) Characterization of the rat Na+/H+ exchanger isoform NHE4 and localization in rat hippocampus. Am. J. Physiol. 271, C1629–C1638.
– reference: 38) Chandrashekar, J., Kuhn, C., Oka, Y., Yarmolinsky, D.A., Hummler, E., Ryba, N.J.P. et al. (2010) The cells and peripheral representation of sodium taste in mice. Nature 464, 297–301.
– reference: 11) Fitzsimons, J.T. (1989) Bengt Andersson’s pioneering demonstration of the hypothalamic “drinking area” and the subsequent osmoreceptor/sodium receptor controversy. Acta Physiol. Scand. Suppl. 583, 15–25.
– reference: 181) Antunes-Rodrigues, J., McCann, S.M. and Samson, W.K. (1986) Central administration of atrial natriuretic factor inhibits saline preference in the rat. Endocrinology 118, 1726–1728.
– reference: 311) Shirai, Y., Miura, K., Nakamura-Utsunomiya, A., Ishizuka, K., Hattori, M. and Hattori, M. (2021) Analysis of water and electrolyte imbalance in a patient with adipsic hypernatremia associated with subfornical organ-targeting antibody. CEN Case Reports.
– reference: 250) Chieng, B.C.H., Christie, M.J. and Osborne, P.B. (2006) Characterization of neurons in the rat central nucleus of the amygdala: Cellular physiology, morphology, and opioid sensitivity. J. Comp. Neurol. 497, 910–927.
– reference: 109) Epstein, A.N., Fitzsimons, J.T. and Rolls, B.J. (1970) Drinking induced by injection of angiotensin into the rain of the rat. J. Physiol. 210, 457–474.
– reference: 156) Zimmerman, C.A., Lin, Y.C., Leib, D.E., Guo, L., Huey, E.L., Daly, G.E. et al. (2016) Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature 537, 680–684.
– reference: 242) Kelley, A.E., Bakshi, V.P., Haber, S.N., Steininger, T.L., Will, M.J. and Zhang, M. (2002) Opioid modulation of taste hedonics within the ventral striatum. Physiol. Behav. 76, 365–377.
– reference: 72) Adrogué, H.J. and Madias, N.E. (2000) Hyponatremia. N. Engl. J. Med. 342, 1581–1589.
– reference: 280) Stricker, E.M. and Verbalis, J.G. (1996) Central inhibition of salt appetite by oxytocin in rats. Regul. Pept. 66, 83–85.
– reference: 194) Titze, J., Maillet, A., Lang, R., Gunga, H.C., Johannes, B., Gauquelin-Koch, G. et al. (2002) Long-term sodium balance in humans in a terrestrial space station simulation study. Am. J. Kidney Dis. 40, 508–516.
– reference: 101) Hall, J.E. (2003) Historical perspective of the renin-angiotensin system. Mol. Biotechnol. 24, 27–39.
– reference: 150) Carter, M.E., Soden, M.E., Zweifel, L.S. and Palmiter, R.D. (2013) Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114.
– reference: 310) Hiyama, T.Y., Utsunomiya, A.N., Matsumoto, M., Fujikawa, A., Lin, C.H., Hara, K. et al. (2017) Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ. Brain Pathol. 27, 323–331.
– reference: 85) el Ghissassi, M., Thornton, S.N. and Nicolaïdis, S. (1995) Angiotensin II-induced thirst, but not sodium appetite, via AT1 receptors in organum cavum prelamina terminalis. Am. J. Physiol. 268, R1401–R1405.
– reference: 104) Weisinger, R.S., Blair-West, J.R., Burns, P., Denton, D.A., McKinley, M.J. and Tarjan, E. (1996) The role of angiotensin II in ingestive behaviour: a brief review of angiotensin II, thirst and Na appetite. Regul. Pept. 66, 73–81.
– reference: 303) Nicol, C.J., Adachi, M., Akiyama, T.E. and Gonzalez, F.J. (2005) PPARγ in endothelial cells influences high fat diet-induced hypertension. Am. J. Hypertens. 18, 549–556.
– reference: 41) Borgnia, M., Nielsen, S., Engel, A. and Agre, P. (1999) Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 68, 425–458.
– reference: 198) Richter, C.P. (1936) Increased salt appetite in adrenalectomized rats. Am. J. Physiol. Leg. Cont. 115, 155–161.
– reference: 279) Gimpl, G. and Fahrenholz, F. (2001) The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629–683.
– reference: 291) Group, I.C.R. (1988) Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297, 319.
– reference: 59) Sakuta, H., Nishihara, E., Hiyama, T.Y., Lin, C.H. and Noda, M. (2016) Nax signaling evoked by an increase in [Na+] in CSF induces water intake via EET-mediated TRPV4 activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R299–R306.
– reference: 55) Sharif Naeini, R., Witty, M.F., Séguéla, P. and Bourque, C.W. (2006) An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat. Neurosci. 9, 93–98.
– reference: 100) Deschepper, C.F. (1994) Angiotensinogen: hormonal regulation and relative importance in the generation of angiotensin II. Kidney Int. 46, 1561–1563.
– reference: 107) Johnson, A.K. and Schwob, J.E. (1975) Cephalic angiotensin receptors mediating drinking to systemic angiotensin II. Pharmacol. Biochem. Behav. 3, 1077–1084.
– reference: 18) Noda, M. and Hiyama, T.Y. (2005) Sodium-level-sensitive Sodium Channel and Salt-Intake Behavior. Chem. Senses 30, i44–i45.
– reference: 117) Oka, Y., Ye, M. and Zuker, C.S. (2015) Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520, 349–352.
– reference: 28) Orlowski, J. and Grinstein, S. (2011) Na+/H+ exchangers. Compr. Physiol. 2011, 2083–2100.
– reference: 189) Bojesen, E. (1966) Concentrations of aldosterone and corticosterone in peripheral plasma of rats. The effects of salt depletion, salt repletion, potassium loading and intravenous injections of renin and angiotensin II. Eur. J. Steroids 1, 145–169.
– reference: 238) De Oliveira, L.B., De Luca, L.A. and Menani, J.V. (2008) Opioid activation in the lateral parabrachial nucleus induces hypertonic sodium intake. Neuroscience 155, 350–358.
– reference: 289) Miller, R.L., Stein, M.K. and Loewy, A.D. (2011) Serotonergic inputs to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei that project to the ventral tegmental area. Neuroscience 193, 229–240.
– reference: 17) Hiyama, T.Y., Watanabe, E., Ono, K., Inenaga, K., Tamkun, M.M., Yoshida, S. et al. (2002) Nax channel involved in CNS sodium-level sensing. Nat. Neurosci. 5, 511–512.
– reference: 175) Nakamura, M., Katsuura, G., Nakao, K. and Imura, H. (1985) Antidipsogenic action of α-human atrial natriuretic polypeptide administered intracerebroventricularly in rats. Neurosci. Lett. 58, 1–6.
– reference: 277) Heck, G.L., Mierson, S. and DeSimone, J.A. (1984) Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223, 403–405.
– reference: 48) Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. and Plant, T.D. (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2, 695–702.
– reference: 60) Yang, F., Zhou, L., Wang, D., Yang, L.L., Yuan, G.R. and Huang, Q.Y. (2016) Suppression of TRPV4 channels ameliorates anti-dipsogenic effects under hypoxia in the subfornical organ of rats. Sci. Rep. 6, 30168.
– reference: 174) Itoh, H., Nakao, K., Yamada, T., Shirakami, G., Kangawa, K., Minamimo, N. et al. (1988) Antidipsogenic action of a novel peptide, ‘brain natriuretic peptide’, in rats. Eur. J. Pharmacol. 150, 193–196.
– reference: 203) de Kloet, A.D., Liu, M., Rodríguez, V., Krause, E.G. and Sumners, C. (2015) Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R444–R458.
– reference: 134) McKinley, M.J., Mathai, M.L., McAllen, R.M., McClear, R.C., Miselis, R.R., Pennington, G.L. et al. (2004) Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. J. Neuroendocrinol. 16, 340–347.
– reference: 68) Lefkowitz, R.J. (1998) G protein-coupled receptors: III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677–18680.
– reference: 111) Fitts, D.A. and Masson, D.B. (1990) Preoptic angiotensin and salt appetite. Behav. Neurosci. 104, 643–650.
– reference: 222) Edwards, G.L. and Ritter, R.C. (1982) Area postrema lesions increase drinking to angiotensin and extracellular dehydration. Physiol. Behav. 29, 943–947.
– reference: 77) Ichiki, T., Augustine, V. and Oka, Y. (2019) Neural populations for maintaining body fluid balance. Curr. Opin. Neurobiol. 57, 134–140.
– reference: 122) Chu, J.Y.S., Lee, L.T.O., Lai, C.H., Vaudry, H., Chan, Y.S., Yung, W.H. et al. (2009) Secretin as a neurohypophysial factor regulating body water homeostasis. Proc. Natl. Acad. Sci. U.S.A. 106, 15961–15966.
– reference: 133) Ma, S., Smith, C.M., Blasiak, A. and Gundlach, A.L. (2017) Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br. J. Pharmacol. 174, 1034–1048.
– reference: 95) Kinsman, B.J., Simmonds, S.S., Browning, K.N., Wenner, M.M., Farquhar, W.B. and Stocker, S.D. (2020) Integration of hypernatremia and angiotensin II by the organum vasculosum of the lamina terminalis regulates thirst. J. Neurosci. 40, 2069.
– reference: 62) Mizuno, A., Matsumoto, N., Imai, M. and Suzuki, M. (2003) Impaired osmotic sensation in mice lacking TRPV4. Am. J. Physiol. Cell Physiol. 285, C96–C101.
– reference: 84) Pool, A.H., Wang, T., Stafford, D.A., Chance, R.K., Lee, S., Ngai, J. et al. (2020) The cellular basis of distinct thirst modalities. Nature 588, 112–117.
– reference: 29) Verma, V., Bali, A., Singh, N. and Jaggi, A.S. (2015) Implications of sodium hydrogen exchangers in various brain diseases. J. Basic Clin. Physiol. Pharmacol. 26, 417–426.
– reference: 192) Wolf, G. and Stricker, E.M. (1967) Sodium appetite elicited by hypovolemia in adrenalectomized rats: Reevaluation of the “reservoir” hypothesis. J. Comp. Physiol. Psychol. 63, 252–257.
– reference: 121) Bai, J.J., Tan, C.D. and Chow, B.K.C. (2016) Secretin, at the hub of water-salt homeostasis. Am. J. Physiol. Renal Physiol. 312, F852–F860.
– reference: 169) Pulman, K.J., Fry, W.M., Cottrell, G.T. and Ferguson, A.V. (2006) The subfornical organ: a central target for circulating feeding signals. J. Neurosci. 26, 2022–2030.
– reference: 281) Puryear, R., Rigatto, K.V., Amico, J.A. and Morris, M. (2001) Enhanced salt intake in oxytocin deficient mice. Exp. Neurol. 171, 323–328.
– reference: 27) Shimizu, H., Watanabe, E., Hiyama, T.Y., Nagakura, A., Fujikawa, A., Okado, H. et al. (2007) Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron 54, 59–72.
– reference: 143) Augustine, V., Gokce, S.K., Lee, S., Wang, B., Davidson, T.J., Reimann, F. et al. (2018) Hierarchical neural architecture underlying thirst regulation. Nature 555, 204–209.
– reference: 33) Bookstein, C., Musch, M.W., DePaoli, A., Xie, Y., Villereal, M., Rao, M.C. et al. (1994) A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity. J. Biol. Chem. 269, 29704–29709.
– reference: 40) Ramsay, D.J., Thrasher, T.N. and Keil, L.C. (1983) The organum vasculosum laminae terminalis: a critical area for osmoreception. Prog. Brain Res. 60, 91–98.
– reference: 229) Stein, M.K. and Loewy, A.D. (2010) Area postrema projects to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei: brainstem sites implicated in sodium appetite regulation. Brain Res. 1359, 116–127.
– reference: 244) Galaverna, O., De Luca, L.A., Schulkin, J., Yao, S.-Z. and Epstein, A.N. (1992) Deficits in NaCl ingestion after damage to the central nucleus of the amygdala in the rat. Brain Res. Bull. 28, 89–98.
– reference: 162) Tanaka, J., Miyakubo, H., Fujisawa, S. and Nomura, M. (2003) Reduced dipsogenic response induced by angiotensin II activation of subfornical organ projections to the median preoptic nucleus in estrogen-treated rats. Exp. Neurol. 179, 83–89.
– reference: 301) Ribeiro, N., Panizza Hdo, N., Santos, K.M., Ferreira-Neto, H.C. and Antunes, V.R. (2015) Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R1369–R1379.
– reference: 91) Johnson, R.F., Beltz, T.G., Thunhorst, R.L. and Johnson, A.K. (2003) Investigations on the physiological controls of water and saline intake in C57BL/6 mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R394–R403.
– reference: 152) Gong, R., Xu, S., Hermundstad, A., Yu, Y. and Sternson, S.M. (2020) Hindbrain double-negative feedback mediates palatability-guided food and water consumption. Cell 182, 1589–1605.e1522.
– reference: 259) Fulwiler, C.E. and Saper, C.B. (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. Rev. 7, 229–259.
– reference: 297) Henderson, K.K. and Byron, K.L. (2007) Vasopressin-induced vasoconstriction: two concentration-dependent signaling pathways. J. Appl. Physiol. 102, 1402–1409.
– reference: 140) Zimmerman, C.A., Huey, E.L., Ahn, J.S., Beutler, L.R., Tan, C.L., Kosar, S. et al. (2019) A gut-to-brain signal of fluid osmolarity controls thirst satiation. Nature 568, 98–102.
– reference: 183) Antunes-Rodrigues, J., Machado, B.H., Andrade, H.A., Mauad, H., Ramalho, M.J., Reis, L.C. et al. (1992) Carotid-aortic and renal baroreceptors mediate the atrial natriuretic peptide release induced by blood volume expansion. Proc. Natl. Acad. Sci. U.S.A. 89, 6828.
– reference: 283) Katoh, A., Fujihara, H., Ohbuchi, T., Onaka, T., Hashimoto, T., Kawata, M. et al. (2011) Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology 152, 2768–2774.
– reference: 180) Hattori, Y., Kasai, M., Uesugi, S., Kawata, M. and Yamashita, H. (1988) Atrial natriuretic polypeptide depresses angiotensin II induced excitation of neurons in the rat subfornical organ in vitro. Brain Res. 443, 355–359.
– reference: 199) Sakai, R.R., Nicolaidis, S. and Epstein, A.N. (1986) Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 251, R762–R768.
– reference: 92) Lind, R.W., Thunhorst, R.L. and Johnson, A.K. (1984) The subfornical organ and the integration of multiple factors in thirst. Physiol. Behav. 32, 69–74.
– reference: 61) Ciura, S., Prager-Khoutorsky, M., Thirouin, Z.S., Wyrosdic, J.C., Olson, J.E., Liedtke, W. et al. (2018) Trpv4 mediates hypotonic inhibition of central osmosensory neurons via taurine gliotransmission. Cell Rep. 23, 2245–2253.
– reference: 177) Weisinger, R.S., Blair-West, J.R., Denton, D.A. and Tarjan, E. (1992) Central administration of atrial natriuretic peptide suppresses sodium and water intake of sheep. Brain Res. 579, 113–118.
– reference: 10) Andersson, B. (1971) Thirst—and brain control of water balance. Am. Sci. 59, 408–415.
– reference: 267) Menani, J.V. and Johnson, A.K. (1998) Cholecystokinin actions in the parabrachial nucleus: Effects on thirst and salt appetite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 275, R1431–R1437.
– reference: 285) Castro, L., Athanazio, R., Barbetta, M., Ramos, A.C., Angelo, A.L., Campos, I. et al. (2003) Central 5-HT2B/2C and 5-HT3 receptor stimulation decreases salt intake in sodium-depleted rats. Brain Res. 981, 151–159.
– reference: 24) Hiyama, T.Y., Yoshida, M., Matsumoto, M., Suzuki, R., Matsuda, T., Watanabe, E. et al. (2013) Endothelin-3 expression in the subfornical organ enhances the sensitivity of Nax, the brain sodium-level sensor, to suppress salt intake. Cell Metab. 17, 507–519.
– reference: 4) McKinley, M.J., McAllen, R.M., Davern, P., Giles, M.E., Penschow, J., Sunn, N. et al. (2003) The sensory circumventricular organs of the mammalian brain. Adv. Anat. Embryol. Cell Biol. 172, III–XII, 1–122, back cover.
– reference: 200) Fluharty, S.J. and Epstein, A.N. (1983) Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav. Neurosci. 97, 746–758.
– reference: 209) Geerling, J.C., Engeland, W.C., Kawata, M. and Loewy, A.D. (2006) Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J. Neurosci. 26, 411–417.
– reference: 184) Bosler, O. and Descarries, L. (1988) Monoamine innervation of the organum vasculosum laminae terminalis (OVLT): a high resolution radioautographic study in the rat. J. Comp. Neurol. 272, 545–561.
– reference: 292) Mente, A., O’Donnell, M.J., Rangarajan, S., McQueen, M.J., Poirier, P., Wielgosz, A. et al. (2014) Association of urinary sodium and potassium excretion with blood pressure. N. Engl. J. Med. 371, 601–611.
– reference: 312) Saker, P., Carey, S., Grohmann, M., Farrell, M.J., Ryan, P.J., Egan, G.F. et al. (2020) Regional brain responses associated with using imagination to evoke and satiate thirst. Proc. Natl. Acad. Sci. U.S.A. 117, 13750–13756.
– reference: 1) Cox, P.S., Denton, D.A., Mouw, D.R. and Tarjan, E. (1987) Natriuresis induced by localized perfusion within the third cerebral ventricle of sheep. Am. J. Physiol. 252, R1–R6.
– reference: 218) Mendelsohn, F.A., Quirion, R., Saavedra, J.M., Aguilera, G. and Catt, K.J. (1984) Autoradiographic localization of angiotensin II receptors in rat brain. Proc. Natl. Acad. Sci. U.S.A. 81, 1575–1579.
– reference: 231) Shin, J.W., Geerling, J.C., Stein, M.K., Miller, R.L. and Loewy, A.D. (2011) FoxP2 brainstem neurons project to sodium appetite regulatory sites. J. Chem. Neuroanat. 42, 1–23.
– reference: 308) Burke, P.G., Abbott, S.B., Coates, M.B., Viar, K.E., Stornetta, R.L. and Guyenet, P.G. (2014) Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats. Am. J. Respir. Crit. Care Med. 190, 1301–1310.
– reference: 271) Andrade, C.A.F., De Luca, L.A., Colombari, D.S.A. and Menani, J.V. (2006) Alpha2-adrenergic activation in the lateral parabrachial nucleus induces NaCl intake under conditions of systemic hyperosmolarity. Neuroscience 142, 21–28.
– reference: 215) Sandhu, E.C., Fernando, A.B.P., Irvine, E.E., Tossell, K., Kokkinou, M., Glegola, J. et al. (2018) Phasic stimulation of midbrain dopamine neuron activity reduces salt consumption. eNeuro 5, ENEURO.0064-18.2018.
– reference: 240) Smith, C.M., Walker, L.L., Leeboonngam, T., McKinley, M.J., Denton, D.A. and Lawrence, A.J. (2016) Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice. Proc. Natl. Acad. Sci. U.S.A. 113, 13893–13898.
– reference: 78) Noda, M. and Sakuta, H. (2013) Central regulation of body-fluid homeostasis. Trends Neurosci. 36, 661–673.
– reference: 202) Coble, J.P., Grobe, J.L., Johnson, A.K. and Sigmund, C.D. (2015) Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R238–R249.
– reference: 39) Lin, W., Finger, T.E., Rossier, B.C. and Kinnamon, S.C. (1999) Epithelial Na+ channel subunits in rat taste cells: localization and regulation by aldosterone. J. Comp. Neurol. 405, 406–420.
– reference: 307) Bohlen, C.J., Chesler, A.T., Sharif-Naeini, R., Medzihradszky, K.F., Zhou, S., King, D. et al. (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479, 410–414.
– ident: 159
  doi: 10.1016/j.celrep.2021.108866
– ident: 262
  doi: 10.1016/0361-9230(93)90054-F
– ident: 265
  doi: 10.1152/ajpregu.1995.269.5.R1044
– ident: 308
  doi: 10.1164/rccm.201407-1262OC
– ident: 200
  doi: 10.1037/0735-7044.97.5.746
– ident: 179
  doi: 10.1037/0735-7044.104.2.365
– ident: 1
  doi: 10.1152/ajpregu.1987.252.1.R1
– ident: 254
  doi: 10.1016/0304-3940(93)90609-O
– ident: 92
  doi: 10.1016/0031-9384(84)90072-6
– ident: 107
  doi: 10.1016/0091-3057(75)90020-9
– ident: 98
  doi: 10.1016/j.neuron.2018.11.017
– ident: 79
  doi: 10.1152/ajpregu.1980.239.5.R382
– ident: 18
  doi: 10.1093/chemse/bjh105
– ident: 124
  doi: 10.1096/fj.10-165399
– ident: 27
  doi: 10.1016/j.neuron.2007.03.014
– ident: 37
  doi: 10.1152/ajpendo.00407.2011
– ident: 235
  doi: 10.1159/000071312
– ident: 28
  doi: 10.1002/cphy.c110020
– ident: 129
  doi: 10.1016/j.peptides.2010.02.020
– ident: 6
  doi: 10.3389/fnins.2015.00390
– ident: 194
  doi: 10.1053/ajkd.2002.34908
– ident: 297
  doi: 10.1152/japplphysiol.00825.2006
– ident: 141
  doi: 10.1016/j.neuron.2019.04.039
– ident: 96
  doi: 10.1038/nn.4463
– ident: 76
  doi: 10.1038/nrn.2017.71
– ident: 195
  doi: 10.1152/ajprenal.00200.2003
– ident: 110
  doi: 10.1038/250733a0
– ident: 125
  doi: 10.1096/fj.13-246868
– ident: 186
– ident: 268
  doi: 10.1152/ajpregu.00311.2001
– ident: 47
  doi: 10.1016/S0092-8674(00)00143-4
– ident: 99
  doi: 10.1016/0006-8993(87)90128-4
– ident: 60
  doi: 10.1038/srep30168
– ident: 177
  doi: 10.1016/0006-8993(92)90749-Y
– ident: 4
  doi: 10.1007/978-3-642-55532-9_1
– ident: 78
  doi: 10.1016/j.tins.2013.08.004
– ident: 298
  doi: 10.1038/nrn1902
– ident: 59
  doi: 10.1152/ajpregu.00352.2015
– ident: 119
  doi: 10.1126/science.aav3932
– ident: 204
  doi: 10.1006/frne.1997.0153
– ident: 63
  doi: 10.1038/emboj.2008.233
– ident: 101
  doi: 10.1385/MB:24:1:27
– ident: 142
  doi: 10.1016/j.cell.2019.11.040
– ident: 57
  doi: 10.1152/ajpregu.00102.2014
– ident: 313
  doi: 10.1038/s41593-021-00850-4
– ident: 10
– ident: 55
  doi: 10.1038/nn1614
– ident: 257
  doi: 10.1016/B978-0-08-027337-2.50045-6
– ident: 271
  doi: 10.1016/j.neuroscience.2006.04.015
– ident: 136
  doi: 10.1113/EP085349
– ident: 64
  doi: 10.1038/ncb1137
– ident: 252
  doi: 10.1016/j.brainres.2010.03.055
– ident: 44
  doi: 10.1073/pnas.0606894103
– ident: 123
  doi: 10.1385/MN:26:1:097
– ident: 134
  doi: 10.1111/j.0953-8194.2004.01184.x
– ident: 36
  doi: 10.1152/ajpregu.00063.2005
– ident: 221
  doi: 10.1016/0006-8993(81)90707-1
– ident: 261
  doi: 10.1002/cne.902930404
– ident: 8
  doi: 10.1186/1824-7288-36-78
– ident: 157
  doi: 10.1038/nature19756
– ident: 118
  doi: 10.1113/JP274667
– ident: 303
  doi: 10.1016/j.amjhyper.2004.10.032
– ident: 169
  doi: 10.1523/JNEUROSCI.3218-05.2006
– ident: 280
  doi: 10.1016/0167-0115(96)00058-4
– ident: 258
  doi: 10.1016/0006-8993(84)90140-9
– ident: 185
  doi: 10.1016/0028-3908(87)90118-3
– ident: 275
  doi: 10.1016/j.brainres.2010.11.075
– ident: 106
  doi: 10.1016/j.cmet.2010.09.011
– ident: 256
  doi: 10.1152/ajpregu.1999.276.4.R1180
– ident: 244
  doi: 10.1016/0361-9230(92)90234-O
– ident: 219
  doi: 10.1159/000125265
– ident: 287
  doi: 10.1016/S0006-8993(98)00530-7
– ident: 197
  doi: 10.1111/apha.13006
– ident: 245
  doi: 10.1016/0006-8993(94)91645-4
– ident: 71
  doi: 10.1056/NEJM200005183422006
– ident: 127
  doi: 10.1038/301628a0
– ident: 237
  doi: 10.1007/s00213-001-0932-y
– ident: 162
  doi: 10.1006/exnr.2002.8054
– ident: 247
  doi: 10.1016/j.neuroscience.2012.07.068
– ident: 281
  doi: 10.1006/exnr.2001.7776
– ident: 163
  doi: 10.1016/S0006-8993(99)01672-8
– ident: 89
  doi: 10.1152/ajpregu.1977.233.1.R44
– ident: 206
  doi: 10.1046/j.1365-2826.2003.00969.x
– ident: 216
  doi: 10.1073/pnas.1834556100
– ident: 95
  doi: 10.1523/JNEUROSCI.2208-19.2020
– ident: 103
  doi: 10.1016/0091-3057(76)90248-3
– ident: 146
  doi: 10.3389/fphys.2014.00436
– ident: 264
  doi: 10.1111/j.1365-2826.1992.tb00194.x
– ident: 199
  doi: 10.1152/ajpregu.1986.251.4.R762
– ident: 180
  doi: 10.1016/0006-8993(88)91633-2
– ident: 207
  doi: 10.1016/0006-8993(78)91125-3
– ident: 238
  doi: 10.1016/j.neuroscience.2008.06.011
– ident: 52
  doi: 10.1002/glia.22488
– ident: 120
  doi: 10.1113/jphysiol.1902.sp000920
– ident: 240
  doi: 10.1073/pnas.1616664113
– ident: 158
  doi: 10.1016/j.neuron.2016.11.021
– ident: 232
  doi: 10.1038/s41586-019-1053-2
– ident: 284
  doi: 10.1016/0079-6107(93)90009-9
– ident: 34
  doi: 10.1152/ajpcell.1997.272.1.C90
– ident: 167
  doi: 10.1210/jcem.86.12.8111
– ident: 172
  doi: 10.1016/0361-9230(85)90044-9
– ident: 224
  doi: 10.1002/cne.20993
– ident: 234
  doi: 10.1016/0091-3057(93)90382-4
– ident: 31
  doi: 10.1152/ajpcell.1996.271.5.C1629
– ident: 282
  doi: 10.1037/0735-7044.101.4.560
– ident: 306
  doi: 10.1038/sj.emboj.7600177
– ident: 156
  doi: 10.1038/nature18950
– ident: 168
  doi: 10.1016/j.neuroscience.2013.09.008
– ident: 173
  doi: 10.1016/0167-0115(88)90422-3
– ident: 228
  doi: 10.1016/j.neuroscience.2006.05.059
– ident: 104
  doi: 10.1016/0167-0115(96)00052-3
– ident: 133
  doi: 10.1111/bph.13659
– ident: 213
  doi: 10.1038/nature12041
– ident: 115
  doi: 10.1016/j.neuron.2017.11.041
– ident: 263
  doi: 10.1016/0361-9230(95)02084-5
– ident: 279
  doi: 10.1152/physrev.2001.81.2.629
– ident: 49
  doi: 10.1523/JNEUROSCI.0877-06.2006
– ident: 45
  doi: 10.1038/nrn2400
– ident: 58
  doi: 10.1152/ajpregu.00003.2008
– ident: 294
  doi: 10.1111/j.1523-1755.2004.66018.x
– ident: 148
  doi: 10.1038/s41586-020-2167-2
– ident: 296
  doi: 10.1097/HJH.0b013e32834f6de1
– ident: 149
  doi: 10.1038/s41593-017-0014-z
– ident: 203
  doi: 10.1152/ajpregu.00078.2015
– ident: 35
  doi: 10.1152/ajpregu.00242.2013
– ident: 53
  doi: 10.1002/cphy.c120001
– ident: 161
  doi: 10.1016/S0031-9384(03)00095-7
– ident: 174
  doi: 10.1016/0014-2999(88)90769-8
– ident: 176
  doi: 10.1016/S0006-8993(96)00615-4
– ident: 220
  doi: 10.1037/h0092457
– start-page: 1223
  issn: 0959-4965
  year: 1993
  ident: 255
  publication-title: Neuroreport
  doi: 10.1097/00001756-199309000-00003
– ident: 300
  doi: 10.1152/ajpheart.1984.247.3.H422
– ident: 218
  doi: 10.1073/pnas.81.5.1575
– ident: 193
  doi: 10.1152/ajprenal.2000.278.4.F585
– ident: 20
  doi: 10.1523/JNEUROSCI.2795-04.2004
– ident: 24
  doi: 10.1016/j.cmet.2013.02.018
– ident: 202
  doi: 10.1152/ajpregu.00486.2014
– ident: 42
  doi: 10.1016/S0092-8674(02)00670-0
– ident: 188
  doi: 10.1016/S0140-6736(01)36734-X
– ident: 61
  doi: 10.1016/j.celrep.2018.04.090
– ident: 93
  doi: 10.1038/nature01807
– ident: 248
  doi: 10.1016/j.neuroscience.2012.12.026
– ident: 192
  doi: 10.1037/h0024357
– ident: 277
  doi: 10.1126/science.6691151
– ident: 43
  doi: 10.1038/nature02196
– ident: 210
  doi: 10.1016/j.brainres.2006.07.091
– ident: 50
  doi: 10.1152/ajpregu.00869.2007
– ident: 73
  doi: 10.1016/j.cub.2016.11.019
– ident: 260
  doi: 10.1016/0306-4522(85)90281-7
– ident: 77
  doi: 10.1016/j.conb.2019.01.014
– ident: 114
  doi: 10.1161/HYPERTENSIONAHA.109.141994
– ident: 126
  doi: 10.3181/00379727-23-3107
– ident: 314
  doi: 10.1113/expphysiol.2006.035659
– ident: 94
  doi: 10.1152/physrev.00021.2001
– ident: 249
  doi: 10.1016/j.neuroscience.2005.02.004
– ident: 40
  doi: 10.1016/S0079-6123(08)64377-0
– ident: 289
  doi: 10.1016/j.neuroscience.2011.07.008
– ident: 54
  doi: 10.1523/JNEUROSCI.0237-05.2005
– ident: 152
  doi: 10.1016/j.cell.2020.07.031
– ident: 276
  doi: 10.1016/j.neulet.2003.12.040
– ident: 113
  doi: 10.1016/0006-8993(90)90245-7
– ident: 187
  doi: 10.1073/pnas.91.25.12022
– ident: 117
  doi: 10.1038/nature14108
– ident: 102
  doi: 10.1152/physrev.00036.2005
– start-page: 908
  issn: 0028-0836
  year: 2000
  ident: 166
  publication-title: ?Nature
  doi: 10.1038/35038090
– ident: 223
  doi: 10.1016/0006-8993(96)00277-6
– ident: 305
  doi: 10.1074/jbc.M003643200
– ident: 311
  doi: 10.1007/s13730-021-00638-2
– ident: 12
  doi: 10.1016/0006-8993(78)90619-4
– ident: 90
  doi: 10.1037/h0077759
– ident: 155
  doi: 10.1126/science.aan6747
– ident: 227
  doi: 10.1016/j.neuron.2017.09.014
– ident: 153
  doi: 10.1073/pnas.2009233117
– ident: 205
  doi: 10.1113/expphysiol.2007.039891
– ident: 39
  doi: 10.1002/(SICI)1096-9861(19990315)405:3<406::AID-CNE10>3.0.CO;2-F
– ident: 278
  doi: 10.1038/nature11905
– ident: 70
  doi: 10.1152/physrev.1998.78.3.583
– ident: 184
  doi: 10.1002/cne.902720408
– ident: 29
  doi: 10.1515/jbcpp-2014-0117
– ident: 208
  doi: 10.1016/0006-8993(94)01453-O
– ident: 229
  doi: 10.1016/j.brainres.2010.08.085
– ident: 231
  doi: 10.1016/j.jchemneu.2011.05.003
– ident: 143
  doi: 10.1038/nature25488
– ident: 310
  doi: 10.1111/bpa.12409
– ident: 91
  doi: 10.1152/ajpregu.00130.2003
– ident: 105
  doi: 10.1155/2013/175428
– ident: 236
  doi: 10.1159/000102536
– ident: 144
  doi: 10.1210/jendso/bvab048.1052
– ident: 135
  doi: 10.1016/j.pbb.2010.05.026
– ident: 290
  doi: 10.1093/chemse/bjn081
– ident: 191
  doi: 10.1152/ajpregu.1991.260.6.R1082
– ident: 48
  doi: 10.1038/35036318
– ident: 46
  doi: 10.1371/journal.pone.0022246
– ident: 253
  doi: 10.1152/jn.00177.2003
– ident: 62
  doi: 10.1152/ajpcell.00559.2002
– ident: 14
  doi: 10.1016/S0896-6273(00)00116-1
– ident: 72
  doi: 10.1056/NEJM200005253422107
– ident: 183
  doi: 10.1073/pnas.89.15.6828
– ident: 222
  doi: 10.1016/0031-9384(82)90348-1
– ident: 16
  doi: 10.1016/S0304-3940(02)00708-5
– ident: 66
  doi: 10.1074/jbc.M114.585067
– ident: 67
  doi: 10.1002/jcb.26552
– ident: 80
  doi: 10.1152/ajpregu.1987.253.1.R108
– start-page: 1726
  issn: 0013-7227
  year: 1986
  ident: 181
  publication-title: Endocrinology
  doi: 10.1210/endo-118-4-1726
– ident: 274
  doi: 10.1016/j.neuroscience.2011.02.019
– ident: 3
  doi: 10.1073/pnas.93.14.7397
– ident: 19
  doi: 10.1371/journal.pone.0126109
– ident: 283
  doi: 10.1210/en.2011-0006
– ident: 26
  doi: 10.1152/ajpcell.00601.2001
– ident: 32
  doi: 10.1152/ajpcell.00163.2011
– ident: 84
  doi: 10.1038/s41586-020-2821-8
– ident: 211
  doi: 10.1152/ajpregu.00391.2006
– ident: 189
– ident: 5
  doi: 10.1096/fasebj.7.8.8500693
– ident: 269
  doi: 10.1016/S0306-4522(03)00316-6
– ident: 7
  doi: 10.1111/joa.12771
– ident: 85
  doi: 10.1152/ajpregu.1995.268.6.R1401
– ident: 307
  doi: 10.1038/477410a
– ident: 302
  doi: 10.1016/j.neuron.2014.12.048
– ident: 38
  doi: 10.1038/nature08783
– ident: 182
  doi: 10.1073/pnas.88.7.2956
– ident: 295
  doi: 10.1007/s11906-013-0385-9
– ident: 83
  doi: 10.1126/science.181.4105.1172
– ident: 122
  doi: 10.1073/pnas.0903695106
– ident: 292
  doi: 10.1056/NEJMoa1311989
– ident: 74
  doi: 10.1016/0361-9230(91)90148-D
– ident: 304
  doi: 10.1161/HYPERTENSIONAHA.115.05936
– ident: 69
  doi: 10.1046/j.1467-3010.2001.00097.x
– ident: 100
  doi: 10.1038/ki.1994.446
– ident: 242
  doi: 10.1016/S0031-9384(02)00751-5
– ident: 65
  doi: 10.1126/scisignal.2000769
– ident: 259
  doi: 10.1016/0165-0173(84)90012-2
– ident: 81
  doi: 10.1016/S0306-4522(00)00313-4
– ident: 154
  doi: 10.1038/nature14416
– ident: 312
  doi: 10.1073/pnas.2002825117
– ident: 160
  doi: 10.1016/S0304-3940(02)00203-3
– ident: 121
  doi: 10.1152/ajprenal.00191.2015
– ident: 250
  doi: 10.1002/cne.21025
– ident: 291
  doi: 10.1136/bmj.297.6644.319
– ident: 112
  doi: 10.1037/0735-7044.104.4.637
– ident: 196
  doi: 10.1152/ajpheart.01237.2003
– ident: 309
  doi: 10.1016/j.neuron.2010.04.017
– ident: 13
  doi: 10.1038/280490a0
– ident: 25
  doi: 10.1038/bjp.2008.92
– ident: 230
  doi: 10.1016/j.brainres.2010.11.028
– ident: 132
  doi: 10.3389/fnana.2017.00133
– ident: 131
  doi: 10.1002/cne.22442
– ident: 273
  doi: 10.1016/j.neuroscience.2009.08.048
– ident: 190
  doi: 10.1016/S0031-9384(75)80032-1
– ident: 243
  doi: 10.1159/000338163
– ident: 139
  doi: 10.1006/mcne.1993.1018
– ident: 56
  doi: 10.1016/j.celrep.2015.08.061
– ident: 87
  doi: 10.1016/S0169-328X(98)00308-8
– ident: 23
  doi: 10.1152/ajpregu.90560.2008
– ident: 212
  doi: 10.1152/ajpheart.00515.2002
– ident: 217
  doi: 10.1113/expphysiol.2008.044446
– ident: 170
  doi: 10.1016/j.physbeh.2008.08.004
– ident: 138
  doi: 10.1038/s41467-020-19191-0
– ident: 88
  doi: 10.1016/j.neures.2019.05.006
– ident: 108
  doi: 10.1113/jphysiol.1969.sp008848
– ident: 246
  doi: 10.3138/9781487578466-018
– ident: 175
  doi: 10.1016/0304-3940(85)90319-2
– ident: 239
  doi: 10.1016/j.bbr.2015.03.047
– ident: 22
  doi: 10.1210/en.130.4.1885
– ident: 285
  doi: 10.1016/S0006-8993(03)03015-4
– ident: 9
  doi: 10.1146/annurev.ph.39.030177.001153
– ident: 109
  doi: 10.1113/jphysiol.1970.sp009220
– ident: 270
  doi: 10.1016/j.neuroscience.2004.07.042
– ident: 116
  doi: 10.1016/j.neuron.2011.05.028
– ident: 164
  doi: 10.1152/ajpregu.00222.2013
– ident: 233
  doi: 10.1007/s11064-017-2336-3
– ident: 33
  doi: 10.1016/S0021-9258(18)43937-3
– ident: 137
  doi: 10.1016/0167-0115(84)90011-9
– ident: 215
  doi: 10.1523/ENEURO.0064-18.2018
– ident: 82
  doi: 10.1007/s00424-014-1662-4
– ident: 178
  doi: 10.1016/0361-9230(88)90223-7
– ident: 209
  doi: 10.1523/JNEUROSCI.3115-05.2006
– ident: 201
  doi: 10.1016/0196-9781(82)90113-9
– ident: 198
  doi: 10.1152/ajplegacy.1936.115.1.155
– ident: 151
  doi: 10.1016/j.cmet.2016.04.006
– ident: 51
  doi: 10.1073/pnas.1735416100
– ident: 130
  doi: 10.1016/j.bbr.2017.08.044
– ident: 41
  doi: 10.1146/annurev.biochem.68.1.425
– ident: 267
  doi: 10.1152/ajpregu.1998.275.5.R1431
– ident: 251
  doi: 10.1038/37610
– ident: 140
  doi: 10.1038/s41586-019-1066-x
– ident: 165
  doi: 10.1038/45230
– ident: 97
  doi: 10.1152/ajpregu.1980.238.5.R372
– ident: 128
  doi: 10.1210/endo-107-3-691
– ident: 30
  doi: 10.1007/s00424-020-02389-y
– ident: 150
  doi: 10.1038/nature12596
– ident: 2
  doi: 10.1016/0006-8993(89)91006-8
– ident: 171
  doi: 10.1073/pnas.82.24.8720
– ident: 21
  doi: 10.1152/ajpregu.00618.2005
– ident: 75
  doi: 10.1152/nips.01470.2003
– ident: 293
  doi: 10.1056/NEJMra064486
– ident: 214
  doi: 10.1126/science.1241812
– ident: 147
  doi: 10.1152/ajpregu.00251.2012
– ident: 11
– ident: 266
  doi: 10.1152/ajpregu.1996.270.1.R162
– ident: 225
  doi: 10.1161/CIRCULATIONAHA.115.019341
– ident: 226
  doi: 10.1038/nn.4451
– ident: 286
  doi: 10.1590/S0001-37652004000100008
– ident: 86
  doi: 10.1016/0169-328X(94)00272-G
– ident: 241
  doi: 10.1007/s00213-016-4403-x
– ident: 301
  doi: 10.1152/ajpregu.00312.2015
– ident: 15
  doi: 10.1523/JNEUROSCI.20-20-07743.2000
– ident: 68
  doi: 10.1074/jbc.273.30.18677
– ident: 145
  doi: 10.1038/nn.4575
– ident: 111
  doi: 10.1037/0735-7044.104.4.643
– ident: 272
  doi: 10.1016/j.brainres.2009.08.094
– ident: 288
  doi: 10.1038/s41593-019-0573-2
– ident: 299
  doi: 10.1152/ajpregu.00460.2013
– ident: 17
  doi: 10.1038/nn0602-856
SSID ssj0032581
Score 2.5215962
SecondaryResourceType review_article
Snippet Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body...
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na + concentration ([Na + ]) in body...
SourceID pubmedcentral
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 283
SubjectTerms [Na+] sensor
Aldosterone
Angiotensin
Angiotensin II
Blood pressure
body fluid homeostasis
Body fluids
Brain
Cerebrospinal fluid
Electrolytes
Homeostasis
Hormones
Hypertension
Hypotonicity
Kidneys
Osmoregulation
osmosensor
Physiology
Review
Rodents
Salt
salt appetite
Sensors
thirst
Trauma
Vasopressin
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB6xhZW4IJ7a8FKQOCEMqZ3YzgkBAiEOiANIvUVx7EARmxTaHvrvmUncQKXVXnLxRInm4XnYMx_AsXbox0ubMhsbTFCSPGdGlJbFTipXWKm5bS7IPsi75_h-kAx8wW3sr1XO98Rmo7Z1QTXycy4xUkF14fpi9MEINYpOVz2Exi9YbkaXoT6rQZdwCZ40IKWR0JJxHum2P4-CgvPRW27OUn0WEdD5D4-08oZB2YtbiDcXb0v-cD-367Dm48bwshX0Biy5ahN-t0iSsy049VXa8LPFlkduh3UZmtrOwvJ9OrTha_3X1fjV8XC8Dc-3N0_Xd8wDIbBCCT5hGBNYdPOcThWt4kU_J5CQJLVxmRthrLAJVybmjptYahMXQiGrpXMlzZM3hdiBXlVX7g-Epu8wR3F91c8dplZRLq0qVRSRyIRJdAAnc2ZkhZ8STmAV7xlmC8S5jDiXpTpDzgVw3BGP2uEY_ya7aLnaEXmr6IgUPR7vL1MdqSt8pSOg1jO03wD25-LIvI2Ns2-NCOCoW0broCOPvHL1tKWhSmcqAlALYuz-heZrL65Uw9dmznYqJLUt7_7_43uwyqklIlKMp_vQm3xO3QEGKhNz2GjjF-Og6fo
  priority: 102
  providerName: ProQuest
Title Central regulation of body fluid homeostasis
URI https://www.jstage.jst.go.jp/article/pjab/98/7/98_PJA9807B-01/_article/-char/en
https://www.proquest.com/docview/2697719628
https://www.proquest.com/docview/2697095993
https://pubmed.ncbi.nlm.nih.gov/PMC9363595
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Proceedings of the Japan Academy, Series B, 2022/07/29, Vol.98(7), pp.283-324
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6scJeRte1NP0ILvRp1Kkj2ZL8MErbNf0YLWUskDdjWfKSktptPmD573dnO6YeZS8CoxMSdzrfnaS7H8CxsmjHUxO6xtcYoARx7GqeGte3QtrECMVM8UD2Qdz0_btBMFiBJRhnxcDpu6Ed4Un1J-POn9fFGSr8N3rGjDvy9OUp1p1QddB7WYV1NEmCorB7v75O4Cwo0Eo9roTLmKfKRL1_BzdM04cn9M5-24bj2Xw2-cYO9TbhU-VAOuelxD_Dis22YKOElFx8gZPquNaZlCDzyHYnTx2dm4WTjucj4wzzZ5vjrNPRdBv6vatflzduhYjgJpKzmYvOgUF7z-h60UiWdGNCCwlC46ex5tpwEzCpfWaZ9oXSfsIl8lxYm1JheZ3wHVjL8szugqO7FoMV25Xd2GKM5cXCyFR6HsmO60C14OuSGVFSlQsn1IpxhGEDcS4izkWhipBzLTiuiV_KKhnvk52VXK2JKvWoiSQ1j3fnofLkBQ6pCSgHDRW5BQdLcUTLvRIxgU4s_kkYLvqo7kY1obuPOLP5vKShI8-Qt0A2xFivhQptN3uy0bAouB1yQfnLe_-ffB8-MsqN8KTLwgNYm03m9hA9lpluw6ocSGxV77oN6xdXD48_8ev77Y92cQbQLnbrX2_p8aE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RpVV7qfpU0wJNJXqpGsjaie0cEIIWtDy6QhVI3FI7dsoimmzZXVX75_htzORVVqp645KLJ695eGZsz3wA68qhH89tEtjIYIISax0YntsgckK6zArFbHVAdigGZ9HheXy-BDdtLQwdq2znxGqitmVGa-SbTGCkgurC1Pb4d0CoUbS72kJo6AZawW5VLcaawo4jN_-DKdxk6-AryvsjY_t7p18GQYMyEGSSs2mADteiD2W0ZWcly_qaEDjixEa5NtxYbmMmTcQcM5FQJsq4xP8QzuXUrN1kHJ_7AJYjqnDtwfLu3vDke-sLOIsrmNSQKxEwFqq6QpDCks3xpTYbidoICWr9jk98eIlh4U-3EPEunte84wD3n8HTJnL1d2pVew5LrngBj2osy_lL-NysE_vXNbo9ytsvc9-Udu7nV7OR9S_KX67Et05Gk1dwdi9Meg29oizcG_BN32GW5Pqyrx0md6EWVuYyDElpuImVB59aZqRZ06ec4DKuUsxXiHMpcS5NVIqc82C9Ix7X7Tn-TbZdc7UjauyyI5J0OTncSVQod_GWjoCK33AG8WClFUfaWPkk_auTHnzohtE-adNFF66c1TS01ppwD-SCGLtvoQ7fiyPF6KLq9J1wQWr19v8vfw-PB6ffjtPjg-HRO3jCqEAjlAFLVqA3vZ65VQybpmat0U0ffty3OdwCO6osjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLVRcEE8RKBCkckGkm7WT2DlUVUu76gOtVohKvQU7duhWbbJ0d4X2L_KrmEmc0JUQt15y8eQ1nvHM2DPzAWxJi3a8MGlgIo0BSqxUoHlhgsgmwuYmkczUCbKj5OgsOjmPz9fgd1sLQ2mV7ZpYL9SmymmPvM8S9FRQXJjsFy4tYnww3J3-DAhBik5aWzgN5WAWzE7dbswVeZza5S8M52Y7xwc49x8YGx5--3wUOMSBIBeczQM0vgbtKaPjOyNYPlCExhGnJiqU5tpwEzOhI2aZjhKpo5wL_KfE2oIat-uc43PvwbpAKxn1YH3_cDT-2toFzuIaMjXkMgkYC2VTLUguSn96qfR2KrdDgl2_ZR_vX6KL-MOueL-ruZu3jOHwMTxyXqy_14jdE1iz5VN40OBaLp_BJ7dn7N80SPc4935V-LoyS7-4WkyMf1Fd2wrfOpvMnsPZnTDpBfTKqrQvwdcDixGTHYiBshjohSoxohBhSALEdSw9-NgyI8tdz3KCzrjKMHYhzmXEuSyVGXLOg62OeNq06vg32W7D1Y7I6WhHJOgyPtlLZSj28ZaOgArhcDXxYLOdjsxp_Cz7K58evO-GUVfpAEaVtlo0NLTvmnIPxMo0dt9C3b5XR8rJRd31O-UJFVG_-v_L38EGqkX25Xh0-hoeMqrVCEXA0k3ozW8W9g16UHP91ommD9_vWhv-AOvnMLs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Central+regulation+of+body+fluid+homeostasis&rft.jtitle=Proceedings+of+the+Japan+Academy.+Series+B.+Physical+and+biological+sciences&rft.au=Noda%2C+Masaharu&rft.au=Matsuda%2C+Takashi&rft.date=2022-07-29&rft.pub=The+Japan+Academy&rft.issn=0386-2208&rft.eissn=1349-2896&rft.volume=98&rft.issue=7&rft.spage=283&rft.epage=324&rft_id=info:doi/10.2183%2Fpjab.98.016&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-2208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-2208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-2208&client=summon