Fourth-Order Block Methods for the Numerical Solution of First Order Initial Value Problems

Block methods of order two and three for the numerical solution of initial value problems are extended to four order. The proposed two fourth order block methods might be efficient for implementation in multiprocessor computers. The matrix coefficients like block methods of order two and three of th...

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 2; no. 2; pp. 247 - 258
Main Author Abbas, Salman H.
Format Journal Article
LanguageEnglish
Published 12.06.2024
Online AccessGet full text
ISSN1840-0655
2233-1964
DOI10.5644/SJM.02.2.12

Cover

Loading…
Abstract Block methods of order two and three for the numerical solution of initial value problems are extended to four order. The proposed two fourth order block methods might be efficient for implementation in multiprocessor computers. The matrix coefficients like block methods of order two and three of these methods are chosen so that lower powers of blocksize appear in the principle local truncation errors. The stability polynomial is shown to be a perturbation of the $(p + 1)^{th}$ order explicit Runge-Kutta method, scaled according to block size. In order to show the linear stability properties of the block predictor corrector methods, the maximum absolute errors using Type I and Type II methods with blocksize $k = 10$ and various step sizes are investigated numerically.   2000 Mathematics Subject Classification. 65L05, 65Y05
AbstractList Block methods of order two and three for the numerical solution of initial value problems are extended to four order. The proposed two fourth order block methods might be efficient for implementation in multiprocessor computers. The matrix coefficients like block methods of order two and three of these methods are chosen so that lower powers of blocksize appear in the principle local truncation errors. The stability polynomial is shown to be a perturbation of the $(p + 1)^{th}$ order explicit Runge-Kutta method, scaled according to block size. In order to show the linear stability properties of the block predictor corrector methods, the maximum absolute errors using Type I and Type II methods with blocksize $k = 10$ and various step sizes are investigated numerically.   2000 Mathematics Subject Classification. 65L05, 65Y05
Author Abbas, Salman H.
Author_xml – sequence: 1
  givenname: Salman H.
  surname: Abbas
  fullname: Abbas, Salman H.
BookMark eNotkLFOwzAURS1UJNrCxA94RwnPduzaI1S0FLUUqRULg-UkfmogjZGdDPw9RWW6w9U9ujoTMupC5wm5ZZBLVRT3u5dNDjznOeMXZMy5EBkzqhiRMdMFZKCkvCKTlD4BlNAzOSYfizDE_pBtY-0jfWxD9UU3vj-EOlEMkfYHT1-Ho49N5Vq6C-3QN6GjAemiiamn592qa_rm1L-7dvD0LYay9cd0TS7Rtcnf_OeU7BdP-_lztt4uV_OHdVbNBM-UQWSotTSFrN0MyloZppVkSp6uG82g0oarUiFIITk48A5RojAaSzS1mJK7M7aKIaXo0X7H5ujij2Vg_7TYkxYL3HLLuPgFVn9Wuw
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5644/SJM.02.2.12
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2233-1964
EndPage 258
ExternalDocumentID 10_5644_SJM_02_2_12
GroupedDBID AAYXX
ACIPV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBS
EJD
FRJ
OK1
TR2
ID FETCH-LOGICAL-c732-69ff1f885945da70bd6918651659649810c8926b6f053520a0eaff5f398fbf9d3
ISSN 1840-0655
IngestDate Tue Jul 01 02:29:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c732-69ff1f885945da70bd6918651659649810c8926b6f053520a0eaff5f398fbf9d3
OpenAccessLink https://sjm.anubih.ba/index.php/sjm/article/download/422/419
PageCount 12
ParticipantIDs crossref_primary_10_5644_SJM_02_2_12
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-12
PublicationDateYYYYMMDD 2024-06-12
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-12
  day: 12
PublicationDecade 2020
PublicationTitle Sarajevo journal of mathematics
PublicationYear 2024
SSID ssj0063875
Score 2.2589781
Snippet Block methods of order two and three for the numerical solution of initial value problems are extended to four order. The proposed two fourth order block...
SourceID crossref
SourceType Index Database
StartPage 247
Title Fourth-Order Block Methods for the Numerical Solution of First Order Initial Value Problems
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuItD2xVSuLErjMCoipIZaEgJIYoTmwJKC2CloFfz52dpAYxFJaocn1J6y--h-37jpDjQgmlipgFhUrCIDFMBYqVScAkGEcWgkGWmCjcvxa92-Tqnt_XJe6r7JKJahefv-aV_AdVaANcMUv2D8g2N4UG-Az4whUQhutcGHehEy5NIn1m6wzM0nOrbytCvzenB6-nbktm2KoXwNA97D6C09dycpd4fAi-v8uHU42JA1hg5t13WnHV-El_jH2aiZeG7rVxyk-VctlhN_kQdwZ6bX9JgSWBrcXjaUGJZz6F489ta9sGbkQcIHuXrzqZ94YwXw06Fs3KojJHzv5TWXNwxXC7-KqPrKmsXf2Cb5TYP0xVc4AQQhcUz0A4C1nGMiw0vcQgVGB1WO2sMagXS7bc_CWXo4nCJ96TPa_Ecy8Ga2S1igvoqQN5nSzo0QZZ6c9GeZM8-HBTCzet4KYAN4WutIGb1nDTsaEWburkKriphZvWcG-RQfdicN4LqtoYQdGBmSVSYyIjJU8TXuadUJUijaTgkeAAUSqjsJApE0oYy98T5qHOjeEmTqVRJi3jbbI4Go_0DqE8LgzPo0LpMklK3ZEmynUEExbuCsF5ZxcmdDU02atjQMl-Gf69-brtk-XZG3dAFidvU30Ibt1EHVncvgAI8k1Y
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fourth-Order+Block+Methods+for+the+Numerical+Solution+of+First+Order+Initial+Value+Problems&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=Abbas%2C+Salman+H.&rft.date=2024-06-12&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=2&rft.issue=2&rft.spage=247&rft.epage=258&rft_id=info:doi/10.5644%2FSJM.02.2.12&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_02_2_12
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon