Connectivity derived thalamic segmentation in deep brain stimulation for tremor

The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network co...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 18; pp. 130 - 142
Main Authors Akram, Harith, Dayal, Viswas, Mahlknecht, Philipp, Georgiev, Dejan, Hyam, Jonathan, Foltynie, Thomas, Limousin, Patricia, De Vita, Enrico, Jahanshahi, Marjan, Ashburner, John, Behrens, Tim, Hariz, Marwan, Zrinzo, Ludvic
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2018
Elsevier
Subjects
DBS
DRT
DWI
VIM
IPG
DF
M1
DRT
GLM
FoV
PFC
STN
DBS
HFS
DWI
FSL
VBM
AC
SMA
EV
MMS
VL
VP
S1
VTA
SAR
MNI
SD
SE
cZI
SNR
CON
CI
PMC
BET
PC
PD
LC
TMS
VIM
Online AccessGet full text

Cover

Loading…
Abstract The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. •The thalamic target for surgery for tremor is not readily visible on conventional MRI.•Probabilistic tractography is used to segment the thalamus based on connectivity.•The best target area is connected to the contralateral dentate cerebellar nucleus.•GPU processing is used to segment the thalamus in a clinically feasible timescale.•This technique can map out the DRT tract with clear mesencephalic crossing.
AbstractList AbstractThe ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. •The thalamic target for surgery for tremor is not readily visible on conventional MRI.•Probabilistic tractography is used to segment the thalamus based on connectivity.•The best target area is connected to the contralateral dentate cerebellar nucleus.•GPU processing is used to segment the thalamus in a clinically feasible timescale.•This technique can map out the DRT tract with clear mesencephalic crossing.
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. • The thalamic target for surgery for tremor is not readily visible on conventional MRI. • Probabilistic tractography is used to segment the thalamus based on connectivity. • The best target area is connected to the contralateral dentate cerebellar nucleus. • GPU processing is used to segment the thalamus in a clinically feasible timescale. • This technique can map out the DRT tract with clear mesencephalic crossing.
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. Keywords: Diffusion weighted imaging, DWI, Connectivity, Parkinson's disease, PD, Ventrointermedialis, VIM, Dentato-rubro-thalamic tract, DRT, Ventrolateral nucleus, VL, Dentate nucleus, Tremor, Deep brain stimulation, DBS
Author Mahlknecht, Philipp
Georgiev, Dejan
Jahanshahi, Marjan
Dayal, Viswas
De Vita, Enrico
Foltynie, Thomas
Hariz, Marwan
Limousin, Patricia
Zrinzo, Ludvic
Hyam, Jonathan
Behrens, Tim
Akram, Harith
Ashburner, John
AuthorAffiliation h Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
f Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
a Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
b Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
c Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
d Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
e Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford OX3 9DU, UK
g Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
AuthorAffiliation_xml – name: g Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
– name: c Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
– name: h Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
– name: e Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford OX3 9DU, UK
– name: a Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– name: b Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
– name: f Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– name: d Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
Author_xml – sequence: 1
  givenname: Harith
  orcidid: 0000-0002-2899-628X
  surname: Akram
  fullname: Akram, Harith
  email: Harith.akram.12@ucl.ac.uk
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 2
  givenname: Viswas
  surname: Dayal
  fullname: Dayal, Viswas
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 3
  givenname: Philipp
  orcidid: 0000-0003-0671-0516
  surname: Mahlknecht
  fullname: Mahlknecht, Philipp
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 4
  givenname: Dejan
  surname: Georgiev
  fullname: Georgiev, Dejan
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 5
  givenname: Jonathan
  surname: Hyam
  fullname: Hyam, Jonathan
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 6
  givenname: Thomas
  surname: Foltynie
  fullname: Foltynie, Thomas
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 7
  givenname: Patricia
  surname: Limousin
  fullname: Limousin, Patricia
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 8
  givenname: Enrico
  surname: De Vita
  fullname: De Vita, Enrico
  organization: Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 9
  givenname: Marjan
  orcidid: 0000-0001-8018-7482
  surname: Jahanshahi
  fullname: Jahanshahi, Marjan
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 10
  givenname: John
  surname: Ashburner
  fullname: Ashburner, John
  organization: Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 11
  givenname: Tim
  surname: Behrens
  fullname: Behrens, Tim
  organization: Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 12
  givenname: Marwan
  surname: Hariz
  fullname: Hariz, Marwan
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
– sequence: 13
  givenname: Ludvic
  surname: Zrinzo
  fullname: Zrinzo, Ludvic
  organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29387530$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-151204$$DView record from Swedish Publication Index
BookMark eNqFUk1r3DAQFSWlSbf5Az0UH3vZrWStbbmUQNh-BQI5NPQ6yPJ4o60tbSV7w_77juOkZANN7YOF532gN-81O3LeIWNvBV8ILvIPm4Wzpl2kXKgFFwvO1Qt2kqZCzkWm0qNH52N2GuOG06M4L_L8FTtOS6mKTPITdrXyzqHp7c72-6TGYHdYJ_2NbnVnTRJx3aHrdW-9S6wjAG6TKmg6xt52QztNGh-SPmDnwxv2stFtxNP774xdf_1yvfo-v7z6drE6v5ybQop-Tu6l1gWvqxKxElzlupFCaqWEqFEaURWFVNlyqbWiN89oILEywjSp0kbO2MUkW3u9gW2wnQ578NrC3Q8f1qBDTwEhVFiXQhXKNKRXUlx5oTOei6XSuiyqnLTmk1a8xe1QHah9tj_P79SGbgCRiZQvCX824QncYW0on6DbA9rhxNkbWPsdZEXJOW1lxt7fCwT_e8DYQ2ejwbbVDv0QQZSlpMunShL03WOvvyYPCySAmgAm-BgDNmDstC6yti0IDmNdYANjXWCsC3AB1AWipk-oD-rPkj5NJKTl7iwGiMaiM1jbQDWi-O3z9LMndNNaQun2F-4xbvwQHNUGBMQUOPwYSzx2WChJ_S3HQD7-W-B_7n8A2LYCKw
CitedBy_id crossref_primary_10_1016_j_neuroimage_2019_116511
crossref_primary_10_1002_ana_26326
crossref_primary_10_1016_j_neuroimage_2020_117180
crossref_primary_10_1002_hbm_25157
crossref_primary_10_1002_mds_29130
crossref_primary_10_1001_jamaneurol_2024_2294
crossref_primary_10_1177_0333102419839992
crossref_primary_10_3389_fnimg_2023_1272061
crossref_primary_10_1007_s13311_022_01321_9
crossref_primary_10_3171_2018_10_JNS18993
crossref_primary_10_1002_mds_27463
crossref_primary_10_1016_j_neuroscience_2021_02_019
crossref_primary_10_1016_j_nicl_2018_11_001
crossref_primary_10_1093_neuros_nyz395
crossref_primary_10_1097_WCO_0000000000000584
crossref_primary_10_1016_j_nicl_2018_05_010
crossref_primary_10_1089_brain_2021_0157
crossref_primary_10_1002_hbm_24730
crossref_primary_10_1016_j_neuroimage_2023_120243
crossref_primary_10_1162_imag_a_00139
crossref_primary_10_3174_ajnr_A6429
crossref_primary_10_3390_brainsci10090642
crossref_primary_10_34133_hds_0157
crossref_primary_10_1016_j_nicl_2019_102026
crossref_primary_10_3171_2021_7_JNS211140
crossref_primary_10_3171_2020_4_FOCUS20170
crossref_primary_10_1111_head_13989
crossref_primary_10_3233_JPD_202259
crossref_primary_10_1016_j_neurom_2022_01_003
crossref_primary_10_1002_hbm_24569
crossref_primary_10_1016_j_neurot_2023_e00313
crossref_primary_10_3390_app13095284
crossref_primary_10_1002_mdc3_12955
crossref_primary_10_1002_ana_26324
crossref_primary_10_3174_ng_2200035
crossref_primary_10_1007_s10143_022_01752_0
crossref_primary_10_3389_fpsyt_2021_680484
crossref_primary_10_1007_s00701_021_04890_4
crossref_primary_10_14302_issn_2470_5020_jnrt_18_2185
crossref_primary_10_3389_fneur_2024_1499652
crossref_primary_10_1016_j_nicl_2024_103587
crossref_primary_10_3389_fneur_2024_1450699
crossref_primary_10_1038_s41531_024_00774_3
crossref_primary_10_1007_s00429_019_01939_0
crossref_primary_10_1007_s00330_023_10431_7
crossref_primary_10_3389_fneur_2022_825178
crossref_primary_10_1016_j_jocn_2019_07_027
crossref_primary_10_1016_j_mric_2020_09_006
crossref_primary_10_1016_j_wneu_2022_06_132
crossref_primary_10_3171_2020_8_JNS201125
crossref_primary_10_1016_j_brs_2019_07_014
crossref_primary_10_1159_000534014
crossref_primary_10_1002_acn3_52067
crossref_primary_10_1016_j_neurom_2021_11_015
crossref_primary_10_1016_j_nicl_2024_103576
crossref_primary_10_1016_j_nicl_2019_101758
crossref_primary_10_2147_JPRLS_S306244
crossref_primary_10_3389_fneur_2022_793693
crossref_primary_10_1088_1741_2552_ad4742
crossref_primary_10_1093_ons_opab324
crossref_primary_10_1002_mds_28045
crossref_primary_10_1093_braincomms_fcac273
crossref_primary_10_1016_j_neuroimage_2018_08_012
crossref_primary_10_1097_WCO_0000000000000679
crossref_primary_10_1016_j_parkreldis_2021_09_013
crossref_primary_10_1002_hbm_24900
crossref_primary_10_1007_s11910_019_0961_8
crossref_primary_10_1159_000511716
crossref_primary_10_1111_cns_13878
crossref_primary_10_2176_nmc_ra_2021_0214
crossref_primary_10_2174_1570159X21666221121094343
crossref_primary_10_1093_brain_awab074
crossref_primary_10_1016_j_nicl_2021_102628
crossref_primary_10_1016_j_nicl_2019_101761
crossref_primary_10_1016_j_neurom_2022_09_013
crossref_primary_10_3389_fnins_2019_00985
crossref_primary_10_3171_2018_5_FOCUS18151
crossref_primary_10_1016_j_nicl_2018_10_009
crossref_primary_10_1080_14737175_2018_1445526
crossref_primary_10_1016_j_neuroimage_2020_117144
crossref_primary_10_1016_j_neuroimage_2021_118231
crossref_primary_10_1038_s41598_024_52410_y
crossref_primary_10_1186_s41983_020_00200_4
crossref_primary_10_1109_TBME_2022_3222072
crossref_primary_10_1016_j_neurom_2022_04_040
crossref_primary_10_1016_j_schres_2019_05_027
crossref_primary_10_1038_s41598_020_58966_9
crossref_primary_10_1134_S1819712422010111
crossref_primary_10_3390_diagnostics12123132
crossref_primary_10_1111_epi_17430
crossref_primary_10_7759_cureus_54284
crossref_primary_10_1016_j_neuroimage_2021_118519
crossref_primary_10_1093_psyrad_kkab012
crossref_primary_10_1016_j_neuroimage_2020_117018
crossref_primary_10_1002_mdc3_13729
crossref_primary_10_1016_j_neuroimage_2021_118649
crossref_primary_10_3171_2020_6_JNS192157
crossref_primary_10_1016_j_pneurobio_2021_102211
crossref_primary_10_1007_s00701_020_04248_2
crossref_primary_10_1016_j_nicl_2022_103150
crossref_primary_10_1016_j_nicl_2024_103709
crossref_primary_10_1016_j_brs_2024_05_013
crossref_primary_10_1093_cercor_bhab184
crossref_primary_10_3389_fneur_2023_1265082
crossref_primary_10_1002_hbm_25137
crossref_primary_10_2217_nmt_2021_0002
crossref_primary_10_1016_j_neuroimage_2019_06_019
crossref_primary_10_1002_mds_30026
crossref_primary_10_1016_j_nicl_2021_102846
crossref_primary_10_1177_19714009211036689
crossref_primary_10_3390_onco3010001
crossref_primary_10_1111_ejn_15575
crossref_primary_10_3389_fneur_2019_00419
crossref_primary_10_1038_s41597_020_00644_6
crossref_primary_10_3171_2021_5_JNS21552
crossref_primary_10_3174_ajnr_A7778
crossref_primary_10_1080_02688697_2020_1849542
crossref_primary_10_1093_brain_awz236
crossref_primary_10_1093_ons_opab136
crossref_primary_10_1159_000507030
crossref_primary_10_1016_j_neuroimage_2018_08_068
crossref_primary_10_1002_acn3_589
crossref_primary_10_1093_brain_awz239
crossref_primary_10_1093_cercor_bhaa377
crossref_primary_10_1016_j_brs_2023_05_006
crossref_primary_10_3390_brainsci10121015
crossref_primary_10_1016_j_neuroimage_2022_119616
crossref_primary_10_1097_WCO_0000000000001280
crossref_primary_10_2139_ssrn_4055117
crossref_primary_10_1007_s00701_020_04495_3
crossref_primary_10_1002_mdc3_14237
crossref_primary_10_1002_ana_25975
crossref_primary_10_3174_ajnr_A6693
Cites_doi 10.1016/S1361-8415(01)00036-6
10.1007/PL00007781
10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O
10.1136/jnnp.55.3.181
10.1159/000100588
10.1093/cercor/bhh105
10.1093/cercor/bhm167
10.1159/000075167
10.3171/jns.2003.99.4.0708
10.1212/WNL.54.4.14A
10.1016/j.neuroimage.2013.05.057
10.1002/mds.25162
10.1016/j.neuroimage.2011.03.070
10.1016/j.jmr.2013.02.002
10.1016/j.nicl.2013.04.017
10.1007/s00701-016-2725-4
10.1136/jnnp.2010.205542
10.1089/brain.2011.0033
10.1136/jnnp.2006.112334
10.1016/j.brs.2011.10.007
10.1212/WNL.0000000000004295
10.3174/ajnr.A3140
10.1002/mds.10154
10.1016/j.nbd.2009.09.022
10.1002/cne.902560202
10.1016/j.neuroimage.2011.01.083
10.1002/cne.901830410
10.3171/2011.7.JNS11250
10.1016/0006-8993(76)90206-7
10.1093/brain/93.1.37
10.1002/mus.1063
10.1007/s00429-007-0170-0
10.3174/ajnr.A2638
10.1002/hbm.22836
10.1002/mds.21412
10.1111/j.1469-7793.1999.551ae.x
10.1152/jn.1980.43.1.69
10.1016/0006-8993(82)90802-2
10.1007/s11517-008-0411-2
10.1136/jnnp.2007.126219
10.1002/ana.22221
10.1016/j.neuroimage.2012.09.055
10.1523/JNEUROSCI.04-02-00539.1984
10.1016/j.neuroimage.2004.07.051
10.1227/NEU.0b013e3182262c9a
10.3389/fnhum.2013.00462
10.1007/s00701-014-2103-z
10.1002/(SICI)1096-9861(20000207)417:2<164::AID-CNE3>3.0.CO;2-6
10.1006/nimg.2002.1132
10.1016/0006-8993(75)90930-0
10.1227/01.NEU.0000345643.69486.BC
10.1002/mds.22059
10.1007/s004290050204
10.1002/mds.20960
10.1016/j.neuroimage.2013.05.043
10.1016/j.neuroimage.2006.01.015
10.1016/0006-8993(73)90485-X
10.1080/02688690701552278
10.1016/j.neuroimage.2015.10.019
10.1007/BF00238104
10.1002/mrm.10609
10.1227/NEU.0b013e3182296a42
10.1093/brain/aws023
10.1152/jn.00626.2002
10.1038/nn1075
10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z
10.1016/0140-6736(91)91175-T
10.1212/WNL.0000000000002087
10.1227/NEU.0b013e31820a1a20
10.3109/00207458708987143
10.1002/ana.22361
10.1227/NEU.0000000000000540
10.1093/cercor/bhg087
10.1212/WNL.0b013e318249f702
10.1002/1531-8257(200101)16:1<140::AID-MDS1025>3.0.CO;2-T
10.1016/j.neuroimage.2007.06.022
10.1016/j.expneurol.2010.08.019
10.1371/journal.pone.0061892
10.1136/jnnp.2007.118653
10.1159/000092683
10.1016/S0896-6273(02)00569-X
10.1002/mrm.24204
10.1002/mds.26633
10.1002/hbm.10062
10.1002/mds.22758
10.1093/brain/awt304
10.1016/S1053-8119(03)00336-7
10.1016/0165-0173(89)90007-6
10.1016/0165-0173(83)90015-2
10.1016/j.neuroimage.2006.09.018
10.1002/mds.25648
10.1056/NEJMoa1600159
10.1159/000441393
10.1002/cne.901510302
ContentType Journal Article
Copyright 2018 The Author(s)
The Author(s)
2018 The Author(s) 2018
Copyright_xml – notice: 2018 The Author(s)
– notice: The Author(s)
– notice: 2018 The Author(s) 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOA
DOI 10.1016/j.nicl.2018.01.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList




MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 142
ExternalDocumentID oai_doaj_org_article_bed91878cf854901867a506148aa97b6
oai_DiVA_org_umu_151204
PMC5790021
29387530
10_1016_j_nicl_2018_01_008
S2213158218300093
1_s2_0_S2213158218300093
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ID FETCH-LOGICAL-c731t-8759aa70db9eeb1086af313a8811de3c1b7738544aa8a8a658813ebc1cf28ac3
IEDL.DBID DOA
ISSN 2213-1582
IngestDate Wed Aug 27 01:24:24 EDT 2025
Thu Aug 21 06:33:54 EDT 2025
Thu Aug 21 14:24:09 EDT 2025
Fri Jul 11 16:39:19 EDT 2025
Thu Jan 02 22:24:33 EST 2025
Tue Jul 01 01:09:39 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Wed May 17 01:21:54 EDT 2023
Sun Feb 23 10:19:29 EST 2025
Tue Aug 26 16:33:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords IPG
DF
MPRAGE
Parkinson's disease
M1
Dentato-rubro-thalamic tract
Deep brain stimulation
DRT
GLM
FoV
PFC
STN
DBS
HFS
DWI
LEDD
FSL
VBM
AC
SMA
SSEPI
HARDI
NIfTI
EV
MMS
Ventrolateral nucleus
VL
Connectivity
FMRIB
VP
FLIRT
S1
VTA
SAR
BEDPOSTX
MNI
Ventrointermedialis
SD
SE
cZI
SNR
UPDRS
DICOM
Dentate nucleus
NHNN
CON
Tremor
CI
PMC
BET
PC
TFCE
PD
LC
MPTP
TMS
VIM
FNIRT
Diffusion weighted imaging
primary sensory cortex
transcranial magnetic stimulation
anterior commissure
connectivity
mini-mental score
caudal zona incerta
brain extraction tool
field of view
high angular resolution diffusion imaging
neuroimaging informatics technology initiative
standard error
l-DOPA equivalent daily dose
Oxford centre for functional MRI of the brain
magnetization-prepared rapid gradient-echo
unified Parkinson's disease rating scale
single-shot echo planar imaging
primary motor cortex
threshold-free cluster enhancement
ventral posterior
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
signal-to-noise ratio
confidence interval
ventral lateral
high frequency stimulation
diffusion weighted imaging
premotor cortex
digital imaging and communications in medicine
explanatory variable
Montreal neurological institute
deep brain stimulation
general linear model
supplementary motor area
subthalamic nucleus
specific absorption rate
standard deviation
prefrontal cortex
FMRIB's non-linear image registration tool
voxel based morphometry
FMRIB's software library
FMRIB's linear image registration tool
Levodopa challenge
implantable pulse generator
degrees of freedom
posterior commissure
National Hospital for Neurology and Neurosurgery
volume of tissue activated
Bayesian estimation of diffusion parameters obtained using sampling techniques X
CI, confidence interval
DBS, deep brain stimulation
PMC, premotor cortex
TMS, transcranial magnetic stimulation
LEDD, l-DOPA equivalent daily dose
STN, subthalamic nucleus
DICOM, digital imaging and communications in medicine
FLIRT, FMRIB's linear image registration tool
AC, anterior commissure
S1, primary sensory cortex
SMA, supplementary motor area
VL, ventral lateral
DF, degrees of freedom
SAR, specific absorption rate
IPG, implantable pulse generator
SNR, signal-to-noise ratio
PFC, prefrontal cortex
TFCE, threshold-free cluster enhancement
PC, posterior commissure
NIfTI, neuroimaging informatics technology initiative
DWI, diffusion weighted imaging
GLM, general linear model
UPDRS, unified Parkinson's disease rating scale
cZI, caudal zona incerta
MNI, Montreal neurological institute
MMS, mini-mental score
BEDPOSTX, Bayesian estimation of diffusion parameters obtained using sampling techniques X
FNIRT, FMRIB's non-linear image registration tool
SD, standard deviation
EV, explanatory variable
LC, Levodopa challenge
HFS, high frequency stimulation
M1, primary motor cortex
NHNN, National Hospital for Neurology and Neurosurgery
HARDI, high angular resolution diffusion imaging
MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
FSL, FMRIB's software library
VTA, volume of tissue activated
VBM, voxel based morphometry
SE, standard error
BET, brain extraction tool
CON, connectivity
FoV, field of view
MPRAGE, magnetization-prepared rapid gradient-echo
VP, ventral posterior
FMRIB, Oxford centre for functional MRI of the brain
SSEPI, single-shot echo planar imaging
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c731t-8759aa70db9eeb1086af313a8811de3c1b7738544aa8a8a658813ebc1cf28ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8018-7482
0000-0002-2899-628X
0000-0003-0671-0516
OpenAccessLink https://doaj.org/article/bed91878cf854901867a506148aa97b6
PMID 29387530
PQID 1993385283
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_bed91878cf854901867a506148aa97b6
swepub_primary_oai_DiVA_org_umu_151204
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5790021
proquest_miscellaneous_1993385283
pubmed_primary_29387530
crossref_citationtrail_10_1016_j_nicl_2018_01_008
crossref_primary_10_1016_j_nicl_2018_01_008
elsevier_sciencedirect_doi_10_1016_j_nicl_2018_01_008
elsevier_clinicalkeyesjournals_1_s2_0_S2213158218300093
elsevier_clinicalkey_doi_10_1016_j_nicl_2018_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Witjas, Carron, Krack, Eusebio, Vaugoyeau, Hariz, Azulay, Régis (bb0570) 2015; 85
Lemaire, Sakka, Ouchchane, Caire, Gabrillargues, Bonny (bb0385) 2010; 66
Deistung, Schäfer, Schweser, Biedermann, Turner, Reichenbach (bb0130) 2013; 65
Åström, Diczfalusy, Martens, Wårdell (bb0040) 2015; 62
DeVito, Anderson (bb0150) 1982; 46
Foltynie, Zrinzo, Martinez-Torres, Tripoliti, Petersen, Holl, Aviles-Olmos, Jahanshahi, Hariz, Limousin (bb0195) 2011; 82
Pollak, Benabid, Gervason, Hoffmann, Seigneuret, Perret (bb0465) 1993; 60
Hirai, Jones (bb0265) 1989; 14
Ramnani, Behrens, Penny, Matthews (bb0475) 2004; 56
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bb0580) 2006; 31
Vassal, Coste, Derost, Mendes, Gabrillargues, Nuti, Durif, Lemaire (bb0565) 2012; 5
Helmich, Hallett, Deuschl, Toni, Bloem (bb0240) 2012; 135
Cury, Fraix, Castrioto, Pérez Fernández, Krack, Chabardes, Seigneuret, Alho, Benabid, Moro (bb0125) 2017; 89
Tanaka (bb0550) 1976; 110
Markowitsch, Irle, Emmans (bb0395) 1987; 37
Elias, Lipsman, Ondo, Ghanouni, Kim, Lee, Schwartz, Hynynen, Lozano, Shah, Huss, Dallapiazza, Gwinn, Witt, Ro, Eisenberg, Fishman, Gandhi, Halpern, Chuang, Butts Pauly, Tierney, Hayes, Cosgrove, Yamaguchi, Abe, Taira, Chang (bb0175) 2016; 375
Gross, Krack, Rodriguez-Oroz, Rezai, Benabid (bb0215) 2006; 21
Lambert, Chowdhury, Fitzgerald, Fleming, Lutti, Hutton, Draganski, Frackowiak, Ashburner (bb0365) 2013; 7
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bb0525) 2004; 23
Coenen, Allert, Paus, Kronenburger, Urbach, Mädler (bb0115) 2014; 75
Jakab, Blanc, Berényi, Székely (bb0285) 2012; 33
Hernandez-Fernandez, Reguly, Giles, Jbabdi, Smith, Sotiropoulos (bb0250) 2016
Jones, Wise, Coulter (bb0335) 1979; 183
Andersson, Jenkinson, Smith (bb0020) 2007
Schuurman, Bosch, Merkus, Speelman (bb0510) 2008; 23
Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bb0055) 2003; 50
Dyrby, Søgaard, Parker, Alexander, Lind, Baaré, Hay-Schmidt, Eriksen, Pakkenberg, Paulson, Jelsing (bb0160) 2007; 37
Lefranc, Carron, Régis (bb0380) 2015; 93
Behrens, Berg, Jbabdi, Rushworth, Woolrich (bb0060) 2007; 34
Traynor, Barker, Crum, Williams, Richardson (bb0560) 2011; 56
Andersson, Skare, Ashburner (bb0015) 2003; 20
Blomstedt, Sandvik, Fytagoridis, Tisch (bb0090) 2009; 64
Fischl, van der Kouwe, Destrieux, Halgren, Ségonne, Salat, Busa, Seidman, Goldstein, Kennedy, Caviness, Makris, Rosen, Dale (bb0190) 2004; 14
Pahwa, Lyons, Wilkinson, Tröster, Overman, Kieltyka, Koller (bb0435) 2001; 16
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bb0185) 2002; 33
Åström, Zrinzo, Tisch, Tripoliti, Hariz, Wårdell (bb0035) 2008; 47
Baker, Schuster, Cooperrider, Machado (bb0045) 2010; 226
Johansen-Berg (bb0315) 2004; 15
Nauta (bb0420) 1979; 4
Deuschl, Raethjen, Baron, Lindemann, Wilms, Krack (bb0140) 2000; 247
Hyam, Owen, Kringelbach, Jenkinson, Stein, Green, Aziz (bb0280) 2012; 70
Hassler (bb0230) 1950; 184
Behrens, Johansen-Berg, Woolrich, Smith, Wheeler-Kingshott, Boulby, Barker, Sillery, Sheehan, Ciccarelli, Thompson, Brady, Matthews (bb0050) 2003; 6
Pouratian, Zheng, Bari, Behnke, Elias, Desalles (bb0470) 2011; 115
Nieuwenhuys, Voogd, van Huijzen (bb0430) 2013
Hernandez, Guerrero, Cecilia, García, Inuggi, Jbabdi, Behrens, Sotiropoulos (bb0245) 2013; 8
Jbabdi, Sotiropoulos, Savio, Graña, Behrens (bb0300) 2012; 68
Coenen, Rijntjes, Prokop, Piroth, Amtage, Urbach, Reinacher (bb0120) 2016; 158
Grabner, Janke, Budge, Smith, Pruessner, Collins (bb0205) 2006; 9
Elble, Comella, Fahn, Hallett, Jankovic, Juncos, Lewitt, Lyons, Ondo, Pahwa, Sethi, Stover, Tarsy, Testa, Tintner, Watts, Zesiewicz (bb0165) 2012; 27
Benabid, Pollak, Gervason, Hoffmann, Gao, Hommel, Perret, de Rougemont (bb0070) 1991; 337
Benabid, Pollak, Seigneuret, Hoffmann, Gay, Perret (bb0075) 1993; 58
Deuschl, Elble (bb0135) 2000; 54
Stacy, Elble, Ondo, Wu, Hulihan, TRS Study Group (bb0540) 2007; 22
Maks, Butson, Walter, Vitek, McIntyre (bb0390) 2009; 80
Klein, Barbe, Seifried, Baudrexel, Runge, Maarouf, Gasser, Hattingen, Liebig, Deichmann, Timmermann, Weise, Hilker (bb0350) 2012; 78
Calabrese, Hickey, Hulette, Zhang, Parente, Lad, Johnson (bb0100) 2015; 36
Tobias (bb0555) 1975; 83
Deuschl, Raethjen, Lindemann, Krack (bb0145) 2001; 24
Lambert, Zrinzo, Nagy, Lutti, Hariz, Foltynie, Draganski, Ashburner, Frackowiak (bb0360) 2011; 1–12
Berk, Carr, Sinden, Martzke, Honey (bb0080) 2004; 75
Jbabdi, Johansen-Berg (bb0295) 2011; 1
Schaltenbrand, Wahren, Hassler (bb0500) 1977
Lambert, Simon, Colman, Barrick (bb0375) 2016
Morel, Magnin, Jeanmonod (bb0410) 1997; 387
Dum, Strick (bb0155) 2003; 89
Anthofer, Steib, Fellner, Lange, Brawanski, Schlaier (bb0025) 2014; 156
Percheron, François, Talbi, Meder, Fénelon, Yelnik (bb0445) 1993; 60
Jones (bb0325) 2012
Lambert, Lutti, Helms, Frackowiak, Ashburner (bb0370) 2013; 2
Helmich, Janssen, Oyen, Bloem, Toni (bb0235) 2011; 69
Parent, De Bellefeuille (bb0440) 1982; 245
Petersen, Lund, Sunde, Frandsen, Rosendal, Juul, Østergaard (bb0455) 2016; 1–12
Elble, Bain, Forjaz, Haubenberger, Testa, Goetz, Leentjens, Martínez-Martín, Pavy-Le Traon, Post, Sampaio, Stebbins, Weintraub, Schrag (bb0170) 2013; 28
Miller, Stagg, Douaud, Jbabdi, Smith, Behrens, Jenkinson, Chance, Esiri, Voets, Jenkinson, Aziz, Turner, Johansen-Berg, McNab (bb0405) 2011; 57
Russchen, Amaral, Price (bb0480) 1987; 256
Jenkinson, Bannister, Brady, Smith (bb0310) 2002; 17
Jörntell, Ekerot (bb0345) 1999; 514
Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach, Glasser, Hernandez, Sapiro, Jenkinson, Feinberg, Yacoub, Lenglet, Van Essen, Ugurbil, Behrens, WU-Minn HCP Consortium (bb0530) 2013; 80
Benabid, Pollak, Hommel, Gaio, de Rougemont, Perret (bb0065) 1989; 145
Hughes, Daniel, Kilford, Lees (bb0275) 1992; 55
Feinberg, Setsompop (bb0180) 2013; 229
Hirabayashi, Tengvar, Hariz (bb0260) 2002; 17
Johansen-Berg, Gutman, Behrens, Matthews, Rushworth, Katz, Lozano, Mayberg (bb0320) 2008; 18
Kuo, Carpenter (bb0355) 1973; 151
Smith (bb0520) 2002; 17
Andersson, Sotiropoulos (bb0010) 2016; 125
Petersen, Holl, Martinez-Torres, Foltynie, Limousin, Hariz, Zrinzo (bb0450) 2010; 67
Blomstedt, Sandvik, Tisch (bb0095) 2010; 25
Sammartino, Krishna, King, Lozano, Schwartz, Huang, Hodaie (bb0495) 2016; 31
Spiegelmann, Nissim, Daniels, Ocherashvilli, Mardor (bb0535) 2006; 84
Yarita, Iino, Tanabe, Kogure, Takagi (bb0575) 1980; 43
Schell, Strick (bb0505) 1984; 4
Sedrak, Gorgulho, Frew, Behnke, DeSalles, Pouratian (bb0515) 2011; 69
Anderson, Dhatt, Ferguson, Lopez-Larson, Schrock, House, Yurgelun-Todd (bb0005) 2011; 32
Jones, Powell (bb0330) 1970; 93
Jankovic, Tolosa (bb0290) 2007
Asanuma, Thach, Jones (bb0030) 1983; 286
Plaha, Khan, Gill (bb0460) 2008; 79
Coenen, Mädler, Schiffbauer, Urbach, Allert (bb0110) 2011; 68
Holl, Petersen, Foltynie, Martinez-Torres, Limousin, Hariz, Zrinzo (bb0270) 2010; 67
Jenkinson, Smith (bb0305) 2001; 5
Hess, Pullman (bb0255) 2012; 2
Jones, Simmons, Williams, Horsfield (bb0340) 1999; 42
Ni, Pinto, Lang, Chen (bb0425) 2010; 68
Hariz, Krack, Alesch, Augustinsson, Bosch, Ekberg, Johansson, Johnels, Meyerson, Nguyen, Pinter, Pollak, von Raison, Rehncrona, Speelman, Sydow, Benabid (bb0225) 2007; 79
Strick (bb0545) 1973; 55
Chowdhury, Lambert, Dolan, Düzel (bb0105) 2013; 81
Blomstedt, Hariz, Hariz, Koskinen (bb0085) 2007; 21
Sakai, Inase, Tanji (bb0485) 1999; 199
Gallay, Jeanmonod, Liu, Morel (bb0200) 2008; 212
Hariz, Krack, Melvill, Jorgensen, Hamel, Hirabayashi, Lenders, Wesslen, Tengvar, Yousry (bb0220) 2003; 80
Murata, Kitagawa, Uesugi, Saito, Iwasaki, Kikuchi, Tashiro, Sawamura (bb0415) 2003; 99
Groppa, Herzog, Falk, Riedel, Deuschl, Volkmann (bb0210) 2014; 137
Sakai, Stepniewska, Qi, Kaas (bb0490) 2000; 417
McIntyre, Hahn (bb0400) 2010; 38
Sakai (10.1016/j.nicl.2018.01.008_bb0490) 2000; 417
Morel (10.1016/j.nicl.2018.01.008_bb0410) 1997; 387
Berk (10.1016/j.nicl.2018.01.008_bb0080) 2004; 75
Jakab (10.1016/j.nicl.2018.01.008_bb0285) 2012; 33
Percheron (10.1016/j.nicl.2018.01.008_bb0445) 1993; 60
Plaha (10.1016/j.nicl.2018.01.008_bb0460) 2008; 79
Witjas (10.1016/j.nicl.2018.01.008_bb0570) 2015; 85
Sotiropoulos (10.1016/j.nicl.2018.01.008_bb0530) 2013; 80
Anthofer (10.1016/j.nicl.2018.01.008_bb0025) 2014; 156
McIntyre (10.1016/j.nicl.2018.01.008_bb0400) 2010; 38
Åström (10.1016/j.nicl.2018.01.008_bb0040) 2015; 62
Dyrby (10.1016/j.nicl.2018.01.008_bb0160) 2007; 37
Jbabdi (10.1016/j.nicl.2018.01.008_bb0300) 2012; 68
Fischl (10.1016/j.nicl.2018.01.008_bb0190) 2004; 14
Johansen-Berg (10.1016/j.nicl.2018.01.008_bb0320) 2008; 18
Baker (10.1016/j.nicl.2018.01.008_bb0045) 2010; 226
Lambert (10.1016/j.nicl.2018.01.008_bb0370) 2013; 2
Lambert (10.1016/j.nicl.2018.01.008_bb0375) 2016
Andersson (10.1016/j.nicl.2018.01.008_bb0020)
Deuschl (10.1016/j.nicl.2018.01.008_bb0140) 2000; 247
Jones (10.1016/j.nicl.2018.01.008_bb0335) 1979; 183
Smith (10.1016/j.nicl.2018.01.008_bb0525) 2004; 23
Benabid (10.1016/j.nicl.2018.01.008_bb0070) 1991; 337
Hernandez-Fernandez (10.1016/j.nicl.2018.01.008_bb0250) 2016
Benabid (10.1016/j.nicl.2018.01.008_bb0065) 1989; 145
Helmich (10.1016/j.nicl.2018.01.008_bb0235) 2011; 69
Petersen (10.1016/j.nicl.2018.01.008_bb0455) 2016; 1–12
Dum (10.1016/j.nicl.2018.01.008_bb0155) 2003; 89
Johansen-Berg (10.1016/j.nicl.2018.01.008_bb0315) 2004; 15
Groppa (10.1016/j.nicl.2018.01.008_bb0210) 2014; 137
Tobias (10.1016/j.nicl.2018.01.008_bb0555) 1975; 83
Behrens (10.1016/j.nicl.2018.01.008_bb0050) 2003; 6
Strick (10.1016/j.nicl.2018.01.008_bb0545) 1973; 55
Jörntell (10.1016/j.nicl.2018.01.008_bb0345) 1999; 514
Murata (10.1016/j.nicl.2018.01.008_bb0415) 2003; 99
Calabrese (10.1016/j.nicl.2018.01.008_bb0100) 2015; 36
Smith (10.1016/j.nicl.2018.01.008_bb0520) 2002; 17
Spiegelmann (10.1016/j.nicl.2018.01.008_bb0535) 2006; 84
Lemaire (10.1016/j.nicl.2018.01.008_bb0385) 2010; 66
Blomstedt (10.1016/j.nicl.2018.01.008_bb0095) 2010; 25
Yushkevich (10.1016/j.nicl.2018.01.008_bb0580) 2006; 31
Jones (10.1016/j.nicl.2018.01.008_bb0340) 1999; 42
Lefranc (10.1016/j.nicl.2018.01.008_bb0380) 2015; 93
Parent (10.1016/j.nicl.2018.01.008_bb0440) 1982; 245
Sammartino (10.1016/j.nicl.2018.01.008_bb0495) 2016; 31
Elias (10.1016/j.nicl.2018.01.008_bb0175) 2016; 375
Blomstedt (10.1016/j.nicl.2018.01.008_bb0090) 2009; 64
Jones (10.1016/j.nicl.2018.01.008_bb0330) 1970; 93
Klein (10.1016/j.nicl.2018.01.008_bb0350) 2012; 78
DeVito (10.1016/j.nicl.2018.01.008_bb0150) 1982; 46
Hariz (10.1016/j.nicl.2018.01.008_bb0225) 2007; 79
Benabid (10.1016/j.nicl.2018.01.008_bb0075) 1993; 58
Ramnani (10.1016/j.nicl.2018.01.008_bb0475) 2004; 56
Asanuma (10.1016/j.nicl.2018.01.008_bb0030) 1983; 286
Feinberg (10.1016/j.nicl.2018.01.008_bb0180) 2013; 229
Schaltenbrand (10.1016/j.nicl.2018.01.008_bb0500) 1977
Deuschl (10.1016/j.nicl.2018.01.008_bb0145) 2001; 24
Markowitsch (10.1016/j.nicl.2018.01.008_bb0395) 1987; 37
Foltynie (10.1016/j.nicl.2018.01.008_bb0195) 2011; 82
Russchen (10.1016/j.nicl.2018.01.008_bb0480) 1987; 256
Petersen (10.1016/j.nicl.2018.01.008_bb0450) 2010; 67
Gallay (10.1016/j.nicl.2018.01.008_bb0200) 2008; 212
Schell (10.1016/j.nicl.2018.01.008_bb0505) 1984; 4
Jenkinson (10.1016/j.nicl.2018.01.008_bb0310) 2002; 17
Anderson (10.1016/j.nicl.2018.01.008_bb0005) 2011; 32
Stacy (10.1016/j.nicl.2018.01.008_bb0540) 2007; 22
Cury (10.1016/j.nicl.2018.01.008_bb0125) 2017; 89
Hirabayashi (10.1016/j.nicl.2018.01.008_bb0260) 2002; 17
Gross (10.1016/j.nicl.2018.01.008_bb0215) 2006; 21
Hess (10.1016/j.nicl.2018.01.008_bb0255) 2012; 2
Sedrak (10.1016/j.nicl.2018.01.008_bb0515) 2011; 69
Elble (10.1016/j.nicl.2018.01.008_bb0170) 2013; 28
Tanaka (10.1016/j.nicl.2018.01.008_bb0550) 1976; 110
Pouratian (10.1016/j.nicl.2018.01.008_bb0470) 2011; 115
Lambert (10.1016/j.nicl.2018.01.008_bb0365) 2013; 7
Pahwa (10.1016/j.nicl.2018.01.008_bb0435) 2001; 16
Nauta (10.1016/j.nicl.2018.01.008_bb0420) 1979; 4
Hernandez (10.1016/j.nicl.2018.01.008_bb0245) 2013; 8
Jones (10.1016/j.nicl.2018.01.008_bb0325) 2012
Jankovic (10.1016/j.nicl.2018.01.008_bb0290) 2007
Behrens (10.1016/j.nicl.2018.01.008_bb0055) 2003; 50
Maks (10.1016/j.nicl.2018.01.008_bb0390) 2009; 80
Holl (10.1016/j.nicl.2018.01.008_bb0270) 2010; 67
Miller (10.1016/j.nicl.2018.01.008_bb0405) 2011; 57
Schuurman (10.1016/j.nicl.2018.01.008_bb0510) 2008; 23
Coenen (10.1016/j.nicl.2018.01.008_bb0120) 2016; 158
Deistung (10.1016/j.nicl.2018.01.008_bb0130) 2013; 65
Hirai (10.1016/j.nicl.2018.01.008_bb0265) 1989; 14
Helmich (10.1016/j.nicl.2018.01.008_bb0240) 2012; 135
Grabner (10.1016/j.nicl.2018.01.008_bb0205) 2006; 9
Hyam (10.1016/j.nicl.2018.01.008_bb0280) 2012; 70
Andersson (10.1016/j.nicl.2018.01.008_bb0010) 2016; 125
Deuschl (10.1016/j.nicl.2018.01.008_bb0135) 2000; 54
Chowdhury (10.1016/j.nicl.2018.01.008_bb0105) 2013; 81
Elble (10.1016/j.nicl.2018.01.008_bb0165) 2012; 27
Åström (10.1016/j.nicl.2018.01.008_bb0035) 2008; 47
Sakai (10.1016/j.nicl.2018.01.008_bb0485) 1999; 199
Andersson (10.1016/j.nicl.2018.01.008_bb0015) 2003; 20
Kuo (10.1016/j.nicl.2018.01.008_bb0355) 1973; 151
Nieuwenhuys (10.1016/j.nicl.2018.01.008_bb0430) 2013
Yarita (10.1016/j.nicl.2018.01.008_bb0575) 1980; 43
Jbabdi (10.1016/j.nicl.2018.01.008_bb0295) 2011; 1
Blomstedt (10.1016/j.nicl.2018.01.008_bb0085) 2007; 21
Ni (10.1016/j.nicl.2018.01.008_bb0425) 2010; 68
Vassal (10.1016/j.nicl.2018.01.008_bb0565) 2012; 5
Fischl (10.1016/j.nicl.2018.01.008_bb0185) 2002; 33
Pollak (10.1016/j.nicl.2018.01.008_bb0465) 1993; 60
Lambert (10.1016/j.nicl.2018.01.008_bb0360) 2011; 1–12
Hariz (10.1016/j.nicl.2018.01.008_bb0220) 2003; 80
Hughes (10.1016/j.nicl.2018.01.008_bb0275) 1992; 55
Jenkinson (10.1016/j.nicl.2018.01.008_bb0305) 2001; 5
Behrens (10.1016/j.nicl.2018.01.008_bb0060) 2007; 34
Coenen (10.1016/j.nicl.2018.01.008_bb0115) 2014; 75
Hassler (10.1016/j.nicl.2018.01.008_bb0230) 1950; 184
Traynor (10.1016/j.nicl.2018.01.008_bb0560) 2011; 56
Coenen (10.1016/j.nicl.2018.01.008_bb0110) 2011; 68
References_xml – volume: 55
  start-page: 181
  year: 1992
  end-page: 184
  ident: bb0275
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 70
  start-page: 162
  year: 2012
  end-page: 169
  ident: bb0280
  article-title: Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography
  publication-title: Neurosurgery
– volume: 256
  start-page: 175
  year: 1987
  end-page: 210
  ident: bb0480
  article-title: The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey,
  publication-title: J. Comp. Neurol.
– volume: 2
  year: 2012
  ident: bb0255
  article-title: Tremor: clinical phenomenology and assessment techniques
  publication-title: Tremor Other Hyperkinet Mov (N Y)
– volume: 229
  start-page: 90
  year: 2013
  end-page: 100
  ident: bb0180
  article-title: Ultra-fast MRI of the human brain with simultaneous multi-slice imaging
  publication-title: J. Magn. Reson.
– volume: 5
  start-page: 625
  year: 2012
  end-page: 633
  ident: bb0565
  article-title: Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence
  publication-title: Brain Stimul.
– volume: 337
  start-page: 403
  year: 1991
  end-page: 406
  ident: bb0070
  article-title: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus
  publication-title: Lancet
– year: 1977
  ident: bb0500
  article-title: Atlas for Stereotaxy of the Human Brain
– volume: 89
  start-page: 1416
  year: 2017
  end-page: 1423
  ident: bb0125
  article-title: Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia
  publication-title: Neurology
– volume: 93
  start-page: 400
  year: 2015
  end-page: 406
  ident: bb0380
  article-title: Prelemniscal radiations: a new reliable landmark of the thalamic nucleus ventralis intermedius location
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 226
  start-page: 259
  year: 2010
  end-page: 264
  ident: bb0045
  article-title: Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo
  publication-title: Exp. Neurol.
– volume: 65
  start-page: 299
  year: 2013
  end-page: 314
  ident: bb0130
  article-title: Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2⁎-imaging at ultra-high magnetic field strength
  publication-title: NeuroImage
– volume: 43
  start-page: 69
  year: 1980
  end-page: 85
  ident: bb0575
  article-title: A transthalamic olfactory pathway to orbitofrontal cortex in the monkey
  publication-title: J. Neurophysiol.
– volume: 184
  start-page: 249
  year: 1950
  end-page: 256
  ident: bb0230
  article-title: Anatomy of the thalamus
  publication-title: Arch. Psychiatr. Nervenkr. Z Gesamte. Neurol. Psychiatr.
– volume: 18
  start-page: 1374
  year: 2008
  end-page: 1383
  ident: bb0320
  article-title: Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression
  publication-title: Cereb. Cortex
– volume: 80
  start-page: 659
  year: 2009
  end-page: 666
  ident: bb0390
  article-title: Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 17
  start-page: S130
  year: 2002
  end-page: S134
  ident: bb0260
  article-title: Stereotactic imaging of the pallidal target
  publication-title: Mov. Disord.
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bb0580
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
– volume: 212
  start-page: 443
  year: 2008
  end-page: 463
  ident: bb0200
  article-title: Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery
  publication-title: Brain Struct. Funct.
– year: 2016
  ident: bb0375
  article-title: Defining thalamic nuclei and topographic connectivity gradients in vivo
  publication-title: NeuroImage
– volume: 514
  start-page: 551
  year: 1999
  end-page: 566
  ident: bb0345
  article-title: Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin
  publication-title: J. Physiol.
– volume: 64
  year: 2009
  ident: bb0090
  article-title: The posterior subthalamic area in the treatment of movement disorders: past, present, and future
  publication-title: Neurosurgery
– volume: 80
  start-page: 96
  year: 2003
  end-page: 101
  ident: bb0220
  article-title: A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 15
  start-page: 31
  year: 2004
  end-page: 39
  ident: bb0315
  article-title: Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus
  publication-title: Cereb. Cortex
– volume: 79
  start-page: 694
  year: 2007
  end-page: 699
  ident: bb0225
  article-title: Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 78
  start-page: 787
  year: 2012
  end-page: 795
  ident: bb0350
  article-title: The tremor network targeted by successful VIM deep brain stimulation in humans
  publication-title: Neurology
– volume: 38
  start-page: 329
  year: 2010
  end-page: 337
  ident: bb0400
  article-title: Network perspectives on the mechanisms of deep brain stimulation
  publication-title: Neurobiol. Dis.
– volume: 21
  start-page: S259
  year: 2006
  end-page: S283
  ident: bb0215
  article-title: Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor
  publication-title: Mov. Disord.
– volume: 387
  start-page: 588
  year: 1997
  end-page: 630
  ident: bb0410
  article-title: Multiarchitectonic and stereotactic atlas of the human thalamus
  publication-title: J. Comp. Neurol.
– year: 2016
  ident: bb0250
  article-title: A fast and flexible toolbox for tracking brain connections in diffusion MRI datasets using GPUs
  publication-title: Presented at the Organization for Human Brain Mapping (OHBM), Geneva, Switzerland
– volume: 69
  start-page: 269
  year: 2011
  end-page: 281
  ident: bb0235
  article-title: Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor
  publication-title: Ann. Neurol.
– volume: 199
  start-page: 9
  year: 1999
  end-page: 19
  ident: bb0485
  article-title: Pallidal and cerebellar inputs to thalamocortical neurons projecting to the supplementary motor area in
  publication-title: Anat. Embryol.
– volume: 23
  start-page: 1146
  year: 2008
  end-page: 1153
  ident: bb0510
  article-title: Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression
  publication-title: Mov. Disord.
– volume: 23
  start-page: S208
  year: 2004
  end-page: 19
  ident: bb0525
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– volume: 84
  start-page: 19
  year: 2006
  end-page: 23
  ident: bb0535
  article-title: Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 1–12
  year: 2011
  ident: bb0360
  article-title: Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging
  publication-title: NeuroImage
– volume: 2
  start-page: 684
  year: 2013
  end-page: 694
  ident: bb0370
  article-title: Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians
  publication-title: Neuroimage Clin.
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bb0010
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: NeuroImage
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  ident: bb0305
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– volume: 82
  start-page: 358
  year: 2011
  end-page: 363
  ident: bb0195
  article-title: MRI-guided STN DBS in Parkinson's disease without microelectrode recording: efficacy and safety
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 68
  start-page: 816
  year: 2010
  end-page: 824
  ident: bb0425
  article-title: Involvement of the cerebellothalamocortical pathway in Parkinson disease
  publication-title: Ann. Neurol.
– volume: 135
  start-page: 3206
  year: 2012
  end-page: 3226
  ident: bb0240
  article-title: Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?
  publication-title: Brain
– volume: 115
  start-page: 995
  year: 2011
  end-page: 1004
  ident: bb0470
  article-title: Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation
  publication-title: J. Neurosurg.
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  ident: bb0530
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: NeuroImage
– volume: 68
  year: 2011
  ident: bb0110
  article-title: Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression
  publication-title: Neurosurgery
– volume: 27
  start-page: 1567
  year: 2012
  end-page: 1569
  ident: bb0165
  article-title: Reliability of a new scale for essential tremor
  publication-title: Mov. Disord.
– volume: 93
  start-page: 37
  year: 1970
  end-page: 56
  ident: bb0330
  article-title: Connexions of the somatic sensory cortex of the rhesus monkey. 3. Thalamic connexions
  publication-title: Brain
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bb0015
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
– volume: 247
  start-page: V33
  year: 2000
  end-page: 48
  ident: bb0140
  article-title: The pathophysiology of parkinsonian tremor: a review
  publication-title: J. Neurol.
– volume: 42
  start-page: 37
  year: 1999
  end-page: 41
  ident: bb0340
  article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI
  publication-title: Magn. Reson. Med.
– volume: 25
  start-page: 1350
  year: 2010
  end-page: 1356
  ident: bb0095
  article-title: Deep brain stimulation in the posterior subthalamic area in the treatment of essential tremor
  publication-title: Mov. Disord.
– volume: 69
  year: 2011
  ident: bb0515
  article-title: Diffusion tensor imaging and colored fractional anisotropy mapping of the ventralis intermedius nucleus of the thalamus
  publication-title: Neurosurgery
– volume: 31
  start-page: 1217
  year: 2016
  end-page: 1225
  ident: bb0495
  article-title: Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation
  publication-title: Mov. Disord.
– volume: 57
  start-page: 167
  year: 2011
  end-page: 181
  ident: bb0405
  article-title: Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner
  publication-title: NeuroImage
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bb0310
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 183
  start-page: 833
  year: 1979
  end-page: 881
  ident: bb0335
  article-title: Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys
  publication-title: J. Comp. Neurol.
– volume: 145
  start-page: 320
  year: 1989
  end-page: 323
  ident: bb0065
  article-title: Treatment of Parkinson tremor by chronic stimulation of the ventral intermediate nucleus of the thalamus
  publication-title: Rev. Neurol. (Paris)
– volume: 375
  start-page: 730
  year: 2016
  end-page: 739
  ident: bb0175
  article-title: A randomized trial of focused ultrasound thalamotomy for essential tremor
  publication-title: N. Engl. J. Med.
– volume: 22
  start-page: 833
  year: 2007
  end-page: 838
  ident: bb0540
  article-title: Assessment of interrater and intrarater reliability of the Fahn-Tolosa-Marin Tremor Rating Scale in essential tremor
  publication-title: Mov. Disord.
– volume: 1
  start-page: 169
  year: 2011
  end-page: 183
  ident: bb0295
  article-title: Tractography: where do we go from here?
  publication-title: Brain Connect.
– volume: 9
  start-page: 58
  year: 2006
  end-page: 66
  ident: bb0205
  article-title: Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 158
  start-page: 773
  year: 2016
  end-page: 781
  ident: bb0120
  article-title: One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease
  publication-title: Acta Neurochir.
– volume: 67
  year: 2010
  ident: bb0450
  article-title: Minimizing brain shift in stereotactic functional neurosurgery
  publication-title: Neurosurgery
– volume: 89
  start-page: 634
  year: 2003
  end-page: 639
  ident: bb0155
  article-title: An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex
  publication-title: J. Neurophysiol.
– volume: 37
  start-page: 1267
  year: 2007
  end-page: 1277
  ident: bb0160
  article-title: Validation of in vitro probabilistic tractography
  publication-title: NeuroImage
– volume: 33
  start-page: 2110
  year: 2012
  end-page: 2116
  ident: bb0285
  article-title: Generation of individualized thalamus target maps by using statistical shape models and thalamocortical tractography
  publication-title: Am. J. Neuroradiol.
– volume: 110
  start-page: 21
  year: 1976
  end-page: 38
  ident: bb0550
  article-title: Thalamic projections of the dorsomedial prefrontal cortex in the rhesus monkey (
  publication-title: Brain Res.
– volume: 56
  start-page: 613
  year: 2004
  end-page: 619
  ident: bb0475
  article-title: New approaches for exploring anatomical and functional connectivity in the human brain
  publication-title: BPS
– volume: 417
  start-page: 164
  year: 2000
  end-page: 180
  ident: bb0490
  article-title: Pallidal and cerebellar afferents to pre-supplementary motor area thalamocortical neurons in the owl monkey: a multiple labeling study
  publication-title: J. Comp. Neurol.
– volume: 156
  start-page: 1497
  year: 2014
  end-page: 1504
  ident: bb0025
  article-title: The variability of atlas-based targets in relation to surrounding major fibre tracts in thalamic deep brain stimulation
  publication-title: Acta Neurochir.
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  ident: bb0055
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
– volume: 36
  start-page: 3167
  year: 2015
  end-page: 3178
  ident: bb0100
  article-title: Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization
  publication-title: Hum. Brain Mapp.
– year: 2007
  ident: bb0020
  article-title: Non-linear Registration Aka Spatial Normalisation [WWW Document]
– year: 2007
  ident: bb0290
  article-title: Parkinson's Disease and Movement Disorders
– volume: 68
  start-page: 1846
  year: 2012
  end-page: 1855
  ident: bb0300
  article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems
  publication-title: Magn. Reson. Med.
– volume: 7
  start-page: 462
  year: 2013
  ident: bb0365
  article-title: Characterizing aging in the human brainstem using quantitative multimodal MRI analysis
  publication-title: Front. Hum. Neurosci.
– volume: 6
  start-page: 750
  year: 2003
  end-page: 757
  ident: bb0050
  article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging
  publication-title: Nat. Neurosci.
– volume: 60
  start-page: 408
  year: 1993
  end-page: 413
  ident: bb0465
  article-title: Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor
  publication-title: Adv. Neurol.
– volume: 151
  start-page: 201
  year: 1973
  end-page: 236
  ident: bb0355
  article-title: Organization of pallidothalamic projections in the rhesus monkey
  publication-title: J. Comp. Neurol.
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bb0185
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 16
  start-page: 140
  year: 2001
  end-page: 143
  ident: bb0435
  article-title: Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor
  publication-title: Mov. Disord.
– volume: 56
  start-page: 939
  year: 2011
  end-page: 950
  ident: bb0560
  article-title: Segmentation of the thalamus in MRI based on T1 and T2
  publication-title: NeuroImage
– volume: 137
  start-page: 109
  year: 2014
  end-page: 121
  ident: bb0210
  article-title: Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor
  publication-title: Brain
– volume: 55
  start-page: 1
  year: 1973
  end-page: 24
  ident: bb0545
  article-title: Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat
  publication-title: Brain Res.
– volume: 99
  start-page: 708
  year: 2003
  end-page: 715
  ident: bb0415
  article-title: Electrical stimulation of the posterior subthalamic area for the treatment of intractable proximal tremor
  publication-title: J. Neurosurg.
– volume: 47
  start-page: 21
  year: 2008
  end-page: 28
  ident: bb0035
  article-title: Method for patient-specific finite element modeling and simulation of deep brain stimulation
  publication-title: Med. Biol. Eng. Comput.
– volume: 58
  start-page: 39
  year: 1993
  end-page: 44
  ident: bb0075
  article-title: Chronic VIM thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal dyskinesias
  publication-title: Acta Neurochir. Suppl. (Wien)
– volume: 62
  start-page: 664
  year: 2015
  end-page: 672
  ident: bb0040
  article-title: Relationship between neural activation and electric field distribution during deep brain stimulation
  publication-title: I.E.E.E. Trans. Biomed. Eng.
– volume: 24
  start-page: 716
  year: 2001
  end-page: 735
  ident: bb0145
  article-title: The pathophysiology of tremor
  publication-title: Muscle Nerve
– volume: 54
  start-page: S14
  year: 2000
  end-page: 20
  ident: bb0135
  article-title: The pathophysiology of essential tremor
  publication-title: Neurology
– volume: 75
  year: 2004
  ident: bb0080
  article-title: Assessing tremor reduction and quality of life following thalamic deep brain stimulation for the treatment of tremor in multiple sclerosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 14
  start-page: 11
  year: 2004
  end-page: 22
  ident: bb0190
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
– volume: 28
  start-page: 1793
  year: 2013
  end-page: 1800
  ident: bb0170
  article-title: Task force report: scales for screening and evaluating tremor: critique and recommendations
  publication-title: Mov. Disord.
– volume: 66
  start-page: 161
  year: 2010
  end-page: 172
  ident: bb0385
  article-title: Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging
  publication-title: Neurosurgery
– volume: 286
  start-page: 237
  year: 1983
  end-page: 265
  ident: bb0030
  article-title: Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey
  publication-title: Brain Res.
– volume: 37
  start-page: 127
  year: 1987
  end-page: 148
  ident: bb0395
  article-title: Cortical and subcortical afferent connections of the squirrel monkey's (lateral) premotor cortex: evidence for visual cortical afferents
  publication-title: Int. J. Neurosci.
– volume: 34
  start-page: 144
  year: 2007
  end-page: 155
  ident: bb0060
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: NeuroImage
– volume: 79
  start-page: 504
  year: 2008
  end-page: 513
  ident: bb0460
  article-title: Bilateral stimulation of the caudal zona incerta nucleus for tremor control
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 4
  start-page: 1853
  year: 1979
  end-page: 1873
  ident: bb0420
  article-title: Projections of the pallidal complex: an autoradiographic study in the cat
  publication-title: NSC
– volume: 83
  start-page: 191
  year: 1975
  end-page: 212
  ident: bb0555
  article-title: Afferents to prefrontal cortex from the thalamic mediodorsal nucleus in the rhesus monkey
  publication-title: Brain Res.
– volume: 14
  start-page: 1
  year: 1989
  end-page: 34
  ident: bb0265
  article-title: A new parcellation of the human thalamus on the basis of histochemical staining
  publication-title: Brain Res. Brain Res. Rev.
– year: 2012
  ident: bb0325
  article-title: The Thalamus
– volume: 4
  start-page: 539
  year: 1984
  end-page: 560
  ident: bb0505
  article-title: The origin of thalamic inputs to the arcuate premotor and supplementary motor areas
  publication-title: J. Neurosci.
– volume: 1–12
  year: 2016
  ident: bb0455
  article-title: Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation
  publication-title: J. Neurosurg.
– volume: 21
  start-page: 504
  year: 2007
  end-page: 509
  ident: bb0085
  article-title: Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up
  publication-title: Br. J. Neurosurg.
– volume: 67
  start-page: ons437
  year: 2010
  end-page: ons447
  ident: bb0270
  article-title: Improving targeting in image-guided frame-based deep brain stimulation
  publication-title: Neurosurgery
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bb0520
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– year: 2013
  ident: bb0430
  article-title: The Human Central Nervous System
– volume: 245
  start-page: 201
  year: 1982
  end-page: 213
  ident: bb0440
  article-title: Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method
  publication-title: Brain Res.
– volume: 81
  start-page: 191
  year: 2013
  end-page: 198
  ident: bb0105
  article-title: Parcellation of the human substantia nigra based on anatomical connectivity to the striatum
  publication-title: NeuroImage
– volume: 8
  year: 2013
  ident: bb0245
  article-title: Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs
  publication-title: PLoS One
– volume: 46
  start-page: 107
  year: 1982
  end-page: 117
  ident: bb0150
  article-title: An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta
  publication-title: Exp. Brain Res.
– volume: 75
  year: 2014
  ident: bb0115
  article-title: Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study
  publication-title: Neurosurgery
– volume: 85
  start-page: 1562
  year: 2015
  end-page: 1568
  ident: bb0570
  article-title: A prospective single-blind study of Gamma Knife thalamotomy for tremor
  publication-title: Neurology
– volume: 32
  start-page: 1963
  year: 2011
  end-page: 1968
  ident: bb0005
  article-title: Functional connectivity targeting for deep brain stimulation in essential tremor
  publication-title: Am. J. Neuroradiol.
– volume: 60
  start-page: 32
  year: 1993
  end-page: 41
  ident: bb0445
  article-title: The primate motor thalamus analysed with reference to subcortical afferent territories
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 5
  start-page: 143
  year: 2001
  ident: 10.1016/j.nicl.2018.01.008_bb0305
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 247
  start-page: V33
  issue: Suppl. 5
  year: 2000
  ident: 10.1016/j.nicl.2018.01.008_bb0140
  article-title: The pathophysiology of parkinsonian tremor: a review
  publication-title: J. Neurol.
  doi: 10.1007/PL00007781
– volume: 42
  start-page: 37
  year: 1999
  ident: 10.1016/j.nicl.2018.01.008_bb0340
  article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O
– volume: 55
  start-page: 181
  year: 1992
  ident: 10.1016/j.nicl.2018.01.008_bb0275
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.55.3.181
– volume: 60
  start-page: 32
  year: 1993
  ident: 10.1016/j.nicl.2018.01.008_bb0445
  article-title: The primate motor thalamus analysed with reference to subcortical afferent territories
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000100588
– volume: 15
  start-page: 31
  year: 2004
  ident: 10.1016/j.nicl.2018.01.008_bb0315
  article-title: Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh105
– volume: 18
  start-page: 1374
  year: 2008
  ident: 10.1016/j.nicl.2018.01.008_bb0320
  article-title: Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm167
– year: 2016
  ident: 10.1016/j.nicl.2018.01.008_bb0375
  article-title: Defining thalamic nuclei and topographic connectivity gradients in vivo
  publication-title: NeuroImage
– ident: 10.1016/j.nicl.2018.01.008_bb0020
– volume: 80
  start-page: 96
  year: 2003
  ident: 10.1016/j.nicl.2018.01.008_bb0220
  article-title: A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000075167
– volume: 99
  start-page: 708
  year: 2003
  ident: 10.1016/j.nicl.2018.01.008_bb0415
  article-title: Electrical stimulation of the posterior subthalamic area for the treatment of intractable proximal tremor
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2003.99.4.0708
– volume: 54
  start-page: S14
  year: 2000
  ident: 10.1016/j.nicl.2018.01.008_bb0135
  article-title: The pathophysiology of essential tremor
  publication-title: Neurology
  doi: 10.1212/WNL.54.4.14A
– year: 2016
  ident: 10.1016/j.nicl.2018.01.008_bb0250
  article-title: A fast and flexible toolbox for tracking brain connections in diffusion MRI datasets using GPUs
– volume: 80
  start-page: 125
  year: 2013
  ident: 10.1016/j.nicl.2018.01.008_bb0530
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 27
  start-page: 1567
  year: 2012
  ident: 10.1016/j.nicl.2018.01.008_bb0165
  article-title: Reliability of a new scale for essential tremor
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25162
– volume: 184
  start-page: 249
  year: 1950
  ident: 10.1016/j.nicl.2018.01.008_bb0230
  article-title: Anatomy of the thalamus
  publication-title: Arch. Psychiatr. Nervenkr. Z Gesamte. Neurol. Psychiatr.
– volume: 1–12
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0360
  article-title: Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging
  publication-title: NeuroImage
– volume: 57
  start-page: 167
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0405
  article-title: Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.070
– volume: 229
  start-page: 90
  year: 2013
  ident: 10.1016/j.nicl.2018.01.008_bb0180
  article-title: Ultra-fast MRI of the human brain with simultaneous multi-slice imaging
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2013.02.002
– volume: 2
  start-page: 684
  year: 2013
  ident: 10.1016/j.nicl.2018.01.008_bb0370
  article-title: Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2013.04.017
– volume: 158
  start-page: 773
  year: 2016
  ident: 10.1016/j.nicl.2018.01.008_bb0120
  article-title: One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease
  publication-title: Acta Neurochir.
  doi: 10.1007/s00701-016-2725-4
– volume: 82
  start-page: 358
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0195
  article-title: MRI-guided STN DBS in Parkinson's disease without microelectrode recording: efficacy and safety
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2010.205542
– volume: 1
  start-page: 169
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0295
  article-title: Tractography: where do we go from here?
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0033
– volume: 79
  start-page: 504
  year: 2008
  ident: 10.1016/j.nicl.2018.01.008_bb0460
  article-title: Bilateral stimulation of the caudal zona incerta nucleus for tremor control
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2006.112334
– volume: 5
  start-page: 625
  year: 2012
  ident: 10.1016/j.nicl.2018.01.008_bb0565
  article-title: Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2011.10.007
– volume: 89
  start-page: 1416
  year: 2017
  ident: 10.1016/j.nicl.2018.01.008_bb0125
  article-title: Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004295
– volume: 33
  start-page: 2110
  year: 2012
  ident: 10.1016/j.nicl.2018.01.008_bb0285
  article-title: Generation of individualized thalamus target maps by using statistical shape models and thalamocortical tractography
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3140
– volume: 17
  start-page: S130
  year: 2002
  ident: 10.1016/j.nicl.2018.01.008_bb0260
  article-title: Stereotactic imaging of the pallidal target
  publication-title: Mov. Disord.
  doi: 10.1002/mds.10154
– volume: 38
  start-page: 329
  year: 2010
  ident: 10.1016/j.nicl.2018.01.008_bb0400
  article-title: Network perspectives on the mechanisms of deep brain stimulation
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2009.09.022
– volume: 256
  start-page: 175
  year: 1987
  ident: 10.1016/j.nicl.2018.01.008_bb0480
  article-title: The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902560202
– year: 1977
  ident: 10.1016/j.nicl.2018.01.008_bb0500
– volume: 67
  start-page: ons437
  year: 2010
  ident: 10.1016/j.nicl.2018.01.008_bb0270
  article-title: Improving targeting in image-guided frame-based deep brain stimulation
  publication-title: Neurosurgery
– volume: 56
  start-page: 939
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0560
  article-title: Segmentation of the thalamus in MRI based on T1 and T2
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.083
– volume: 60
  start-page: 408
  year: 1993
  ident: 10.1016/j.nicl.2018.01.008_bb0465
  article-title: Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor
  publication-title: Adv. Neurol.
– volume: 183
  start-page: 833
  year: 1979
  ident: 10.1016/j.nicl.2018.01.008_bb0335
  article-title: Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.901830410
– volume: 2
  year: 2012
  ident: 10.1016/j.nicl.2018.01.008_bb0255
  article-title: Tremor: clinical phenomenology and assessment techniques
– volume: 115
  start-page: 995
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0470
  article-title: Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation
  publication-title: J. Neurosurg.
  doi: 10.3171/2011.7.JNS11250
– volume: 110
  start-page: 21
  year: 1976
  ident: 10.1016/j.nicl.2018.01.008_bb0550
  article-title: Thalamic projections of the dorsomedial prefrontal cortex in the rhesus monkey (Macaca mulatta)
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(76)90206-7
– volume: 93
  start-page: 37
  year: 1970
  ident: 10.1016/j.nicl.2018.01.008_bb0330
  article-title: Connexions of the somatic sensory cortex of the rhesus monkey. 3. Thalamic connexions
  publication-title: Brain
  doi: 10.1093/brain/93.1.37
– volume: 24
  start-page: 716
  year: 2001
  ident: 10.1016/j.nicl.2018.01.008_bb0145
  article-title: The pathophysiology of tremor
  publication-title: Muscle Nerve
  doi: 10.1002/mus.1063
– volume: 212
  start-page: 443
  year: 2008
  ident: 10.1016/j.nicl.2018.01.008_bb0200
  article-title: Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-007-0170-0
– volume: 32
  start-page: 1963
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0005
  article-title: Functional connectivity targeting for deep brain stimulation in essential tremor
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2638
– volume: 36
  start-page: 3167
  year: 2015
  ident: 10.1016/j.nicl.2018.01.008_bb0100
  article-title: Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22836
– volume: 22
  start-page: 833
  year: 2007
  ident: 10.1016/j.nicl.2018.01.008_bb0540
  article-title: Assessment of interrater and intrarater reliability of the Fahn-Tolosa-Marin Tremor Rating Scale in essential tremor
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21412
– volume: 514
  start-page: 551
  issue: Pt 2
  year: 1999
  ident: 10.1016/j.nicl.2018.01.008_bb0345
  article-title: Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1999.551ae.x
– volume: 43
  start-page: 69
  year: 1980
  ident: 10.1016/j.nicl.2018.01.008_bb0575
  article-title: A transthalamic olfactory pathway to orbitofrontal cortex in the monkey
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1980.43.1.69
– volume: 245
  start-page: 201
  year: 1982
  ident: 10.1016/j.nicl.2018.01.008_bb0440
  article-title: Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(82)90802-2
– volume: 47
  start-page: 21
  year: 2008
  ident: 10.1016/j.nicl.2018.01.008_bb0035
  article-title: Method for patient-specific finite element modeling and simulation of deep brain stimulation
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0411-2
– volume: 80
  start-page: 659
  year: 2009
  ident: 10.1016/j.nicl.2018.01.008_bb0390
  article-title: Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.126219
– volume: 68
  start-page: 816
  year: 2010
  ident: 10.1016/j.nicl.2018.01.008_bb0425
  article-title: Involvement of the cerebellothalamocortical pathway in Parkinson disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22221
– volume: 65
  start-page: 299
  year: 2013
  ident: 10.1016/j.nicl.2018.01.008_bb0130
  article-title: Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2⁎-imaging at ultra-high magnetic field strength
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.055
– year: 2012
  ident: 10.1016/j.nicl.2018.01.008_bb0325
– volume: 62
  start-page: 664
  year: 2015
  ident: 10.1016/j.nicl.2018.01.008_bb0040
  article-title: Relationship between neural activation and electric field distribution during deep brain stimulation
  publication-title: I.E.E.E. Trans. Biomed. Eng.
– volume: 4
  start-page: 539
  year: 1984
  ident: 10.1016/j.nicl.2018.01.008_bb0505
  article-title: The origin of thalamic inputs to the arcuate premotor and supplementary motor areas
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.04-02-00539.1984
– volume: 23
  start-page: S208
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.nicl.2018.01.008_bb0525
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 70
  start-page: 162
  year: 2012
  ident: 10.1016/j.nicl.2018.01.008_bb0280
  article-title: Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e3182262c9a
– volume: 7
  start-page: 462
  year: 2013
  ident: 10.1016/j.nicl.2018.01.008_bb0365
  article-title: Characterizing aging in the human brainstem using quantitative multimodal MRI analysis
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00462
– volume: 156
  start-page: 1497
  year: 2014
  ident: 10.1016/j.nicl.2018.01.008_bb0025
  article-title: The variability of atlas-based targets in relation to surrounding major fibre tracts in thalamic deep brain stimulation
  publication-title: Acta Neurochir.
  doi: 10.1007/s00701-014-2103-z
– volume: 417
  start-page: 164
  year: 2000
  ident: 10.1016/j.nicl.2018.01.008_bb0490
  article-title: Pallidal and cerebellar afferents to pre-supplementary motor area thalamocortical neurons in the owl monkey: a multiple labeling study
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(20000207)417:2<164::AID-CNE3>3.0.CO;2-6
– volume: 56
  start-page: 613
  year: 2004
  ident: 10.1016/j.nicl.2018.01.008_bb0475
  article-title: New approaches for exploring anatomical and functional connectivity in the human brain
  publication-title: BPS
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.nicl.2018.01.008_bb0310
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 83
  start-page: 191
  year: 1975
  ident: 10.1016/j.nicl.2018.01.008_bb0555
  article-title: Afferents to prefrontal cortex from the thalamic mediodorsal nucleus in the rhesus monkey
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(75)90930-0
– volume: 64
  year: 2009
  ident: 10.1016/j.nicl.2018.01.008_bb0090
  article-title: The posterior subthalamic area in the treatment of movement disorders: past, present, and future
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000345643.69486.BC
– volume: 23
  start-page: 1146
  year: 2008
  ident: 10.1016/j.nicl.2018.01.008_bb0510
  article-title: Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22059
– volume: 66
  start-page: 161
  year: 2010
  ident: 10.1016/j.nicl.2018.01.008_bb0385
  article-title: Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging
  publication-title: Neurosurgery
– year: 2013
  ident: 10.1016/j.nicl.2018.01.008_bb0430
– volume: 199
  start-page: 9
  year: 1999
  ident: 10.1016/j.nicl.2018.01.008_bb0485
  article-title: Pallidal and cerebellar inputs to thalamocortical neurons projecting to the supplementary motor area in Macaca fuscata: a triple-labeling light microscopic study
  publication-title: Anat. Embryol.
  doi: 10.1007/s004290050204
– volume: 21
  start-page: S259
  year: 2006
  ident: 10.1016/j.nicl.2018.01.008_bb0215
  article-title: Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor
  publication-title: Mov. Disord.
  doi: 10.1002/mds.20960
– volume: 81
  start-page: 191
  year: 2013
  ident: 10.1016/j.nicl.2018.01.008_bb0105
  article-title: Parcellation of the human substantia nigra based on anatomical connectivity to the striatum
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.043
– volume: 31
  start-page: 1116
  year: 2006
  ident: 10.1016/j.nicl.2018.01.008_bb0580
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 67
  year: 2010
  ident: 10.1016/j.nicl.2018.01.008_bb0450
  article-title: Minimizing brain shift in stereotactic functional neurosurgery
  publication-title: Neurosurgery
– volume: 55
  start-page: 1
  year: 1973
  ident: 10.1016/j.nicl.2018.01.008_bb0545
  article-title: Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(73)90485-X
– volume: 21
  start-page: 504
  year: 2007
  ident: 10.1016/j.nicl.2018.01.008_bb0085
  article-title: Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up
  publication-title: Br. J. Neurosurg.
  doi: 10.1080/02688690701552278
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.nicl.2018.01.008_bb0010
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 46
  start-page: 107
  year: 1982
  ident: 10.1016/j.nicl.2018.01.008_bb0150
  article-title: An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00238104
– volume: 50
  start-page: 1077
  year: 2003
  ident: 10.1016/j.nicl.2018.01.008_bb0055
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10609
– volume: 69
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0515
  article-title: Diffusion tensor imaging and colored fractional anisotropy mapping of the ventralis intermedius nucleus of the thalamus
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e3182296a42
– volume: 145
  start-page: 320
  year: 1989
  ident: 10.1016/j.nicl.2018.01.008_bb0065
  article-title: Treatment of Parkinson tremor by chronic stimulation of the ventral intermediate nucleus of the thalamus
  publication-title: Rev. Neurol. (Paris)
– volume: 4
  start-page: 1853
  year: 1979
  ident: 10.1016/j.nicl.2018.01.008_bb0420
  article-title: Projections of the pallidal complex: an autoradiographic study in the cat
  publication-title: NSC
– volume: 135
  start-page: 3206
  year: 2012
  ident: 10.1016/j.nicl.2018.01.008_bb0240
  article-title: Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?
  publication-title: Brain
  doi: 10.1093/brain/aws023
– volume: 89
  start-page: 634
  year: 2003
  ident: 10.1016/j.nicl.2018.01.008_bb0155
  article-title: An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00626.2002
– volume: 6
  start-page: 750
  year: 2003
  ident: 10.1016/j.nicl.2018.01.008_bb0050
  article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1075
– volume: 387
  start-page: 588
  year: 1997
  ident: 10.1016/j.nicl.2018.01.008_bb0410
  article-title: Multiarchitectonic and stereotactic atlas of the human thalamus
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z
– volume: 75
  year: 2004
  ident: 10.1016/j.nicl.2018.01.008_bb0080
  article-title: Assessing tremor reduction and quality of life following thalamic deep brain stimulation for the treatment of tremor in multiple sclerosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 337
  start-page: 403
  year: 1991
  ident: 10.1016/j.nicl.2018.01.008_bb0070
  article-title: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus
  publication-title: Lancet
  doi: 10.1016/0140-6736(91)91175-T
– volume: 85
  start-page: 1562
  year: 2015
  ident: 10.1016/j.nicl.2018.01.008_bb0570
  article-title: A prospective single-blind study of Gamma Knife thalamotomy for tremor
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002087
– volume: 68
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0110
  article-title: Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e31820a1a20
– year: 2007
  ident: 10.1016/j.nicl.2018.01.008_bb0290
– volume: 37
  start-page: 127
  year: 1987
  ident: 10.1016/j.nicl.2018.01.008_bb0395
  article-title: Cortical and subcortical afferent connections of the squirrel monkey's (lateral) premotor cortex: evidence for visual cortical afferents
  publication-title: Int. J. Neurosci.
  doi: 10.3109/00207458708987143
– volume: 69
  start-page: 269
  year: 2011
  ident: 10.1016/j.nicl.2018.01.008_bb0235
  article-title: Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22361
– volume: 75
  year: 2014
  ident: 10.1016/j.nicl.2018.01.008_bb0115
  article-title: Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0000000000000540
– volume: 14
  start-page: 11
  year: 2004
  ident: 10.1016/j.nicl.2018.01.008_bb0190
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg087
– volume: 78
  start-page: 787
  year: 2012
  ident: 10.1016/j.nicl.2018.01.008_bb0350
  article-title: The tremor network targeted by successful VIM deep brain stimulation in humans
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318249f702
– volume: 16
  start-page: 140
  year: 2001
  ident: 10.1016/j.nicl.2018.01.008_bb0435
  article-title: Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor
  publication-title: Mov. Disord.
  doi: 10.1002/1531-8257(200101)16:1<140::AID-MDS1025>3.0.CO;2-T
– volume: 37
  start-page: 1267
  year: 2007
  ident: 10.1016/j.nicl.2018.01.008_bb0160
  article-title: Validation of in vitro probabilistic tractography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.06.022
– volume: 226
  start-page: 259
  year: 2010
  ident: 10.1016/j.nicl.2018.01.008_bb0045
  article-title: Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2010.08.019
– volume: 8
  year: 2013
  ident: 10.1016/j.nicl.2018.01.008_bb0245
  article-title: Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061892
– volume: 58
  start-page: 39
  year: 1993
  ident: 10.1016/j.nicl.2018.01.008_bb0075
  article-title: Chronic VIM thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal dyskinesias
  publication-title: Acta Neurochir. Suppl. (Wien)
– volume: 79
  start-page: 694
  year: 2007
  ident: 10.1016/j.nicl.2018.01.008_bb0225
  article-title: Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.118653
– volume: 9
  start-page: 58
  year: 2006
  ident: 10.1016/j.nicl.2018.01.008_bb0205
  article-title: Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 84
  start-page: 19
  year: 2006
  ident: 10.1016/j.nicl.2018.01.008_bb0535
  article-title: Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000092683
– volume: 33
  start-page: 341
  year: 2002
  ident: 10.1016/j.nicl.2018.01.008_bb0185
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 68
  start-page: 1846
  year: 2012
  ident: 10.1016/j.nicl.2018.01.008_bb0300
  article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24204
– volume: 31
  start-page: 1217
  year: 2016
  ident: 10.1016/j.nicl.2018.01.008_bb0495
  article-title: Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26633
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.nicl.2018.01.008_bb0520
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 25
  start-page: 1350
  year: 2010
  ident: 10.1016/j.nicl.2018.01.008_bb0095
  article-title: Deep brain stimulation in the posterior subthalamic area in the treatment of essential tremor
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22758
– volume: 137
  start-page: 109
  year: 2014
  ident: 10.1016/j.nicl.2018.01.008_bb0210
  article-title: Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor
  publication-title: Brain
  doi: 10.1093/brain/awt304
– volume: 20
  start-page: 870
  year: 2003
  ident: 10.1016/j.nicl.2018.01.008_bb0015
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 1–12
  year: 2016
  ident: 10.1016/j.nicl.2018.01.008_bb0455
  article-title: Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation
  publication-title: J. Neurosurg.
– volume: 14
  start-page: 1
  year: 1989
  ident: 10.1016/j.nicl.2018.01.008_bb0265
  article-title: A new parcellation of the human thalamus on the basis of histochemical staining
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/0165-0173(89)90007-6
– volume: 286
  start-page: 237
  year: 1983
  ident: 10.1016/j.nicl.2018.01.008_bb0030
  article-title: Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey
  publication-title: Brain Res.
  doi: 10.1016/0165-0173(83)90015-2
– volume: 34
  start-page: 144
  year: 2007
  ident: 10.1016/j.nicl.2018.01.008_bb0060
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 28
  start-page: 1793
  year: 2013
  ident: 10.1016/j.nicl.2018.01.008_bb0170
  article-title: Task force report: scales for screening and evaluating tremor: critique and recommendations
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25648
– volume: 375
  start-page: 730
  year: 2016
  ident: 10.1016/j.nicl.2018.01.008_bb0175
  article-title: A randomized trial of focused ultrasound thalamotomy for essential tremor
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1600159
– volume: 93
  start-page: 400
  year: 2015
  ident: 10.1016/j.nicl.2018.01.008_bb0380
  article-title: Prelemniscal radiations: a new reliable landmark of the thalamic nucleus ventralis intermedius location
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000441393
– volume: 151
  start-page: 201
  year: 1973
  ident: 10.1016/j.nicl.2018.01.008_bb0355
  article-title: Organization of pallidothalamic projections in the rhesus monkey
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.901510302
SSID ssj0000800766
Score 2.4925253
Snippet The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the...
AbstractThe ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130
SubjectTerms Aged
Connectivity
DBS
Deep Brain Stimulation
Deep brain stimulation DBS
Dentate nucleus
Dentate nucleus Tremor
Dentato-rubro-thalamic tract
Dentato-rubro-thalamic tract DRT
Diffusion Magnetic Resonance Imaging
Diffusion weighted imaging
Diffusion weighted imaging DWI
DRT
DWI
Essential Tremor - diagnostic imaging
Essential Tremor - physiopathology
Essential Tremor - therapy
Female
Humans
Male
Middle Aged
Parkinson Disease - diagnostic imaging
Parkinson Disease - physiopathology
Parkinson Disease - therapy
Parkinson's disease
Parkinson's disease PD
Radiology
Regular
Thalamus - diagnostic imaging
Thalamus - physiopathology
Tremor
Ventrointermedialis
Ventrointermedialis VIM
Ventrolateral nucleus
Ventrolateral nucleus VL
VIM
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXxJtAQUZCXFC0cZzEzrEtVBVS4UBBe7MmjtOm6mZX--D3d8ZxIqJFRUJ7StazXs9Mxt_E82DsQ1O4xiryTlSTxpmDKibcHOcSBV67WjifSHvxrTj_mX2d5_MDdjrkwlBYZbD9vU331jrcmQVuzlZtO_uRpkIKyvPU0jvmaIdlpn0S3_xkfM9CiEj5I0saHxNByJ3pw7yo_ixFeGlfvZO6TP6xP_ky_pNtah-G7kdTTmqO-n3q7DF7FAAmP-7X8IQduO4pe3ARjtCfse8-tMX2TSN4jQr429V8ew231Jmeb9zVIqQjdbztcIBb8Yr6SHA0BovQ7Isj1OXbNUXpPmeXZ18uT8_j0FUhtkqKLZq_vARQSV2VDg01ujTQSCFBa4HCkVZUiircZBmAxg8iFC2kq6ywTarByhfssFt27hXjZZNaAGtVVukM0roq0lRBU2ZNDiIBiJgYWGlsqDhOjS9uzRBadmOI_YbYbxJhkP0R-zTSrPp6G_eOPiEJjSOpVra_sVxfmaAspnJ1KbTStsFVIfzRhYKcHGENUKqqiJgc5GuGdFQ0oPhD7b1Tq79RuU2wARsjzCY1idnT04jlI-VE1f854_tB-QzaADrYgc4tdzgTgkwUGSLFiL3slXFkCcI5ckkT_L8TNZ3wbPpN1177OuO5KgkCRuxjr9ATks_tr2PP5t1iZwg2Jtnr_1zYG_aQrvoXW0fscLveubcI9bbVO_8s3wF_r1Iq
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqIiEuiDdpARkJcUFBcV52DgiVR1UhLRxoUW_W2HHarXazZTdbwb9nxnEWRV2VC8otseNkZjz-xp4HY6-a0jVWknUimzTOHZiYcHNcZMjw2tXC-UDaydfy6CT_clqc7rCh3FEg4GqraUf1pE6Ws7e_fv5-jxP-3V9fLUoiS25ayqfgpNjfW7gySZqokwD3LwI6kv74Mk1FFotCpSGOZvtrRmuVT-k_WrKuQ9LrnpWj_KN-zTq8x-4GsMkPeum4z3Zc-4DdnoTj9Ifsm3dzsX0BCV6jMF65mnfnMKMq9XzlzuYhNKnl0xYbuEtuqKYER8UwD4W_OMJe3i3JY_cROz78fPzxKA4VFmIrM9GhKiwqAJnUpnKotNG8gSYTGSglkFGZFUZStps8B1B4IVpRInPGCtukCmz2mO22i9Y9ZbxqUgtgrcyNyiGtTZmmEpoqbwoQCUDExEBKbUP2cSqCMdODm9mFJvJrIr9OhEbyR-zNps9ln3vjxtYfiEOblpQ3299YLM90mIbauLoSSirb4F8hFFKlhIKMYgVQSVNGLBv4q4fQVFSm-KLpjUPLbb3cahBnLfQq1Yn-TnJHYoeK1G8mRazY9AyQp4cy_xzx5SB8GvUBHfJA6xZrHAkBJ7IMUWPEnvTCuCEJQjsyTxP83pGYjmg2ftJOz33O8UJWBAcj9roX6FGXT9MfB57M6_laE4RM8r3_wY19dof-ud_xesZ2u-XaPUcM2JkXfmL_AQFIWc0
  priority: 102
  providerName: Scholars Portal
Title Connectivity derived thalamic segmentation in deep brain stimulation for tremor
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158218300093
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158218300093
https://dx.doi.org/10.1016/j.nicl.2018.01.008
https://www.ncbi.nlm.nih.gov/pubmed/29387530
https://www.proquest.com/docview/1993385283
https://pubmed.ncbi.nlm.nih.gov/PMC5790021
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-151204
https://doaj.org/article/bed91878cf854901867a506148aa97b6
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k3KQ0ZCXFBE7CRr59gCVUFaOFDQ3qyx49CtumnVzfL7mbGd1UZF7QWtlMOuvU5mxuNv4vE3jL3tZr5ziqIT1cm88mBzws15XaLCW98KHw7Szr_Njn9WXxf1YqfUF-WERXrgKLgP1reN0Eq7TmMoUxD_GtQUxmiARtlAto1r3k4wdZZwkAoblVKKMhe1lunETEzuItZZyuvSgbOTakvurEqBvH-yOF0Hn9dzKCdMo2F1OnrA7idYyQ_i4zxkd3z_iN2dp43zx-x7SGhxsVQEb9Hs_viWD6dwTvXo-dr_XqVDSD1f9tjAX3JL1SM4uoBVKvHFEeDy4Ypyc5-wk6PPJx-P81RLIXeqFAM6vboBUEVrG4_uGQMZ6EpRgtYCVVI6YRXx2lQVgMYP4hItSm-dcJ3U4MqnbK-_6P1zxptOOgDnVGV1BbK1MykVdE3V1SAKgIyJUZTGJZ5xKndxbsaEsjND4jckflMIg-LP2Pttn8vIsnFj60PS0LYlMWSHL9BuTLIbc5vdZKwc9WvGQ6joNvGPljcOrf7Vy6_TzF8bYdbSFOYH2R2ZHbrM8NooY_W2ZwI3EbTcOuKb0fgMznzazoHeX2xwJISWqDLEhxl7Fo1xKxIEcRSIFni_EzOdyGz6S788DezitWoI-GXsXTToSZdPy18HQcyb1cYQWCyq_f-hjRfsHj1zfLf1ku0NVxv_CtHeYF-HiY3XL4tDvM4r_RdwY1LU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkICXic8RPo2EeEFR4zipncdtMHWwjgcK6pvlOM4WtKZVm-7v585xIqKiIaG8Jb64vruefxffByHvy7EtjUDvRJRxmFidh4ibw5SDwAtbMOsSaacX48mP5Ms8ne-Rky4XBsMqve1vbbqz1v7OyHNztKqq0fc4ZpxhnqfkzjG_Q-4CGhDYv-Fsftx_aEFIJNyZJRKESOGTZ9o4LyxAiyFe0pXvxDaTf2xQro7_YJ_axaG74ZSDoqNuozp9SA48wqRH7SIekT1bPyb3pv4M_Qn55mJbTNs1ghaggTe2oM2VvsbW9HRjLxc-H6mmVQ0D7Irm2EiCgjVY-G5fFLAubdYYpvuUzE4_z04moW-rEBrBWQP2L820FlGRZxYsNfg0uuSMaykZSIcblgsscZMkWku4AKJIxm1umCljqQ1_RvbrZW2fE5qVsdHaGJHkMtFxkY_jWOgyS8pUs0jrgLCOlcr4kuPY-eJadbFlvxSyXyH7VcQUsD8gH3uaVVtw49bRxyihfiQWy3Y3lutL5bVF5bbImBTSlLAqwD9yLHSKnrDUOhP5OCC8k6_q8lHBgsKLqlunFn-jshtvBDaKqU2sIrWjqAFJe8qBrv9zxned8ikwAniyo2u73MJMgDJBZAAVA3LYKmPPEsBz6JNG8HsHajrg2fBJXV25QuOpyBADBuRDq9ADkk_VzyPH5u1iqxA3RsmL_1zYW3J_Mpueq_Ozi68vyQN80n7lekX2m_XWvgbc1-Rv3P_6N2vIVUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectivity+derived+thalamic+segmentation+in+deep+brain+stimulation+for+tremor&rft.jtitle=NeuroImage+clinical&rft.au=Harith+Akram&rft.au=Viswas+Dayal&rft.au=Philipp+Mahlknecht&rft.au=Dejan+Georgiev&rft.date=2018-01-01&rft.pub=Elsevier&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=18&rft.spage=130&rft.epage=142&rft_id=info:doi/10.1016%2Fj.nicl.2018.01.008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bed91878cf854901867a506148aa97b6
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158218X00023%2Fcov150h.gif