Connectivity derived thalamic segmentation in deep brain stimulation for tremor
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network co...
Saved in:
Published in | NeuroImage clinical Vol. 18; pp. 130 - 142 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.
•The thalamic target for surgery for tremor is not readily visible on conventional MRI.•Probabilistic tractography is used to segment the thalamus based on connectivity.•The best target area is connected to the contralateral dentate cerebellar nucleus.•GPU processing is used to segment the thalamus in a clinically feasible timescale.•This technique can map out the DRT tract with clear mesencephalic crossing. |
---|---|
AbstractList | AbstractThe ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. •The thalamic target for surgery for tremor is not readily visible on conventional MRI.•Probabilistic tractography is used to segment the thalamus based on connectivity.•The best target area is connected to the contralateral dentate cerebellar nucleus.•GPU processing is used to segment the thalamus in a clinically feasible timescale.•This technique can map out the DRT tract with clear mesencephalic crossing. The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. • The thalamic target for surgery for tremor is not readily visible on conventional MRI. • Probabilistic tractography is used to segment the thalamus based on connectivity. • The best target area is connected to the contralateral dentate cerebellar nucleus. • GPU processing is used to segment the thalamus in a clinically feasible timescale. • This technique can map out the DRT tract with clear mesencephalic crossing. The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing. Keywords: Diffusion weighted imaging, DWI, Connectivity, Parkinson's disease, PD, Ventrointermedialis, VIM, Dentato-rubro-thalamic tract, DRT, Ventrolateral nucleus, VL, Dentate nucleus, Tremor, Deep brain stimulation, DBS |
Author | Mahlknecht, Philipp Georgiev, Dejan Jahanshahi, Marjan Dayal, Viswas De Vita, Enrico Foltynie, Thomas Hariz, Marwan Limousin, Patricia Zrinzo, Ludvic Hyam, Jonathan Behrens, Tim Akram, Harith Ashburner, John |
AuthorAffiliation | h Department of Neurology, Innsbruck Medical University, Innsbruck, Austria f Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK a Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK b Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK c Department of Clinical Neuroscience, Umeå University, Umeå, Sweden d Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK e Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford OX3 9DU, UK g Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK |
AuthorAffiliation_xml | – name: g Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK – name: c Department of Clinical Neuroscience, Umeå University, Umeå, Sweden – name: h Department of Neurology, Innsbruck Medical University, Innsbruck, Austria – name: e Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford OX3 9DU, UK – name: a Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – name: b Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK – name: f Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – name: d Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK |
Author_xml | – sequence: 1 givenname: Harith orcidid: 0000-0002-2899-628X surname: Akram fullname: Akram, Harith email: Harith.akram.12@ucl.ac.uk organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 2 givenname: Viswas surname: Dayal fullname: Dayal, Viswas organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 3 givenname: Philipp orcidid: 0000-0003-0671-0516 surname: Mahlknecht fullname: Mahlknecht, Philipp organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 4 givenname: Dejan surname: Georgiev fullname: Georgiev, Dejan organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 5 givenname: Jonathan surname: Hyam fullname: Hyam, Jonathan organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 6 givenname: Thomas surname: Foltynie fullname: Foltynie, Thomas organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 7 givenname: Patricia surname: Limousin fullname: Limousin, Patricia organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 8 givenname: Enrico surname: De Vita fullname: De Vita, Enrico organization: Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 9 givenname: Marjan orcidid: 0000-0001-8018-7482 surname: Jahanshahi fullname: Jahanshahi, Marjan organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 10 givenname: John surname: Ashburner fullname: Ashburner, John organization: Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 11 givenname: Tim surname: Behrens fullname: Behrens, Tim organization: Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 12 givenname: Marwan surname: Hariz fullname: Hariz, Marwan organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK – sequence: 13 givenname: Ludvic surname: Zrinzo fullname: Zrinzo, Ludvic organization: Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29387530$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-151204$$DView record from Swedish Publication Index |
BookMark | eNqFUk1r3DAQFSWlSbf5Az0UH3vZrWStbbmUQNh-BQI5NPQ6yPJ4o60tbSV7w_77juOkZANN7YOF532gN-81O3LeIWNvBV8ILvIPm4Wzpl2kXKgFFwvO1Qt2kqZCzkWm0qNH52N2GuOG06M4L_L8FTtOS6mKTPITdrXyzqHp7c72-6TGYHdYJ_2NbnVnTRJx3aHrdW-9S6wjAG6TKmg6xt52QztNGh-SPmDnwxv2stFtxNP774xdf_1yvfo-v7z6drE6v5ybQop-Tu6l1gWvqxKxElzlupFCaqWEqFEaURWFVNlyqbWiN89oILEywjSp0kbO2MUkW3u9gW2wnQ578NrC3Q8f1qBDTwEhVFiXQhXKNKRXUlx5oTOei6XSuiyqnLTmk1a8xe1QHah9tj_P79SGbgCRiZQvCX824QncYW0on6DbA9rhxNkbWPsdZEXJOW1lxt7fCwT_e8DYQ2ejwbbVDv0QQZSlpMunShL03WOvvyYPCySAmgAm-BgDNmDstC6yti0IDmNdYANjXWCsC3AB1AWipk-oD-rPkj5NJKTl7iwGiMaiM1jbQDWi-O3z9LMndNNaQun2F-4xbvwQHNUGBMQUOPwYSzx2WChJ_S3HQD7-W-B_7n8A2LYCKw |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2019_116511 crossref_primary_10_1002_ana_26326 crossref_primary_10_1016_j_neuroimage_2020_117180 crossref_primary_10_1002_hbm_25157 crossref_primary_10_1002_mds_29130 crossref_primary_10_1001_jamaneurol_2024_2294 crossref_primary_10_1177_0333102419839992 crossref_primary_10_3389_fnimg_2023_1272061 crossref_primary_10_1007_s13311_022_01321_9 crossref_primary_10_3171_2018_10_JNS18993 crossref_primary_10_1002_mds_27463 crossref_primary_10_1016_j_neuroscience_2021_02_019 crossref_primary_10_1016_j_nicl_2018_11_001 crossref_primary_10_1093_neuros_nyz395 crossref_primary_10_1097_WCO_0000000000000584 crossref_primary_10_1016_j_nicl_2018_05_010 crossref_primary_10_1089_brain_2021_0157 crossref_primary_10_1002_hbm_24730 crossref_primary_10_1016_j_neuroimage_2023_120243 crossref_primary_10_1162_imag_a_00139 crossref_primary_10_3174_ajnr_A6429 crossref_primary_10_3390_brainsci10090642 crossref_primary_10_34133_hds_0157 crossref_primary_10_1016_j_nicl_2019_102026 crossref_primary_10_3171_2021_7_JNS211140 crossref_primary_10_3171_2020_4_FOCUS20170 crossref_primary_10_1111_head_13989 crossref_primary_10_3233_JPD_202259 crossref_primary_10_1016_j_neurom_2022_01_003 crossref_primary_10_1002_hbm_24569 crossref_primary_10_1016_j_neurot_2023_e00313 crossref_primary_10_3390_app13095284 crossref_primary_10_1002_mdc3_12955 crossref_primary_10_1002_ana_26324 crossref_primary_10_3174_ng_2200035 crossref_primary_10_1007_s10143_022_01752_0 crossref_primary_10_3389_fpsyt_2021_680484 crossref_primary_10_1007_s00701_021_04890_4 crossref_primary_10_14302_issn_2470_5020_jnrt_18_2185 crossref_primary_10_3389_fneur_2024_1499652 crossref_primary_10_1016_j_nicl_2024_103587 crossref_primary_10_3389_fneur_2024_1450699 crossref_primary_10_1038_s41531_024_00774_3 crossref_primary_10_1007_s00429_019_01939_0 crossref_primary_10_1007_s00330_023_10431_7 crossref_primary_10_3389_fneur_2022_825178 crossref_primary_10_1016_j_jocn_2019_07_027 crossref_primary_10_1016_j_mric_2020_09_006 crossref_primary_10_1016_j_wneu_2022_06_132 crossref_primary_10_3171_2020_8_JNS201125 crossref_primary_10_1016_j_brs_2019_07_014 crossref_primary_10_1159_000534014 crossref_primary_10_1002_acn3_52067 crossref_primary_10_1016_j_neurom_2021_11_015 crossref_primary_10_1016_j_nicl_2024_103576 crossref_primary_10_1016_j_nicl_2019_101758 crossref_primary_10_2147_JPRLS_S306244 crossref_primary_10_3389_fneur_2022_793693 crossref_primary_10_1088_1741_2552_ad4742 crossref_primary_10_1093_ons_opab324 crossref_primary_10_1002_mds_28045 crossref_primary_10_1093_braincomms_fcac273 crossref_primary_10_1016_j_neuroimage_2018_08_012 crossref_primary_10_1097_WCO_0000000000000679 crossref_primary_10_1016_j_parkreldis_2021_09_013 crossref_primary_10_1002_hbm_24900 crossref_primary_10_1007_s11910_019_0961_8 crossref_primary_10_1159_000511716 crossref_primary_10_1111_cns_13878 crossref_primary_10_2176_nmc_ra_2021_0214 crossref_primary_10_2174_1570159X21666221121094343 crossref_primary_10_1093_brain_awab074 crossref_primary_10_1016_j_nicl_2021_102628 crossref_primary_10_1016_j_nicl_2019_101761 crossref_primary_10_1016_j_neurom_2022_09_013 crossref_primary_10_3389_fnins_2019_00985 crossref_primary_10_3171_2018_5_FOCUS18151 crossref_primary_10_1016_j_nicl_2018_10_009 crossref_primary_10_1080_14737175_2018_1445526 crossref_primary_10_1016_j_neuroimage_2020_117144 crossref_primary_10_1016_j_neuroimage_2021_118231 crossref_primary_10_1038_s41598_024_52410_y crossref_primary_10_1186_s41983_020_00200_4 crossref_primary_10_1109_TBME_2022_3222072 crossref_primary_10_1016_j_neurom_2022_04_040 crossref_primary_10_1016_j_schres_2019_05_027 crossref_primary_10_1038_s41598_020_58966_9 crossref_primary_10_1134_S1819712422010111 crossref_primary_10_3390_diagnostics12123132 crossref_primary_10_1111_epi_17430 crossref_primary_10_7759_cureus_54284 crossref_primary_10_1016_j_neuroimage_2021_118519 crossref_primary_10_1093_psyrad_kkab012 crossref_primary_10_1016_j_neuroimage_2020_117018 crossref_primary_10_1002_mdc3_13729 crossref_primary_10_1016_j_neuroimage_2021_118649 crossref_primary_10_3171_2020_6_JNS192157 crossref_primary_10_1016_j_pneurobio_2021_102211 crossref_primary_10_1007_s00701_020_04248_2 crossref_primary_10_1016_j_nicl_2022_103150 crossref_primary_10_1016_j_nicl_2024_103709 crossref_primary_10_1016_j_brs_2024_05_013 crossref_primary_10_1093_cercor_bhab184 crossref_primary_10_3389_fneur_2023_1265082 crossref_primary_10_1002_hbm_25137 crossref_primary_10_2217_nmt_2021_0002 crossref_primary_10_1016_j_neuroimage_2019_06_019 crossref_primary_10_1002_mds_30026 crossref_primary_10_1016_j_nicl_2021_102846 crossref_primary_10_1177_19714009211036689 crossref_primary_10_3390_onco3010001 crossref_primary_10_1111_ejn_15575 crossref_primary_10_3389_fneur_2019_00419 crossref_primary_10_1038_s41597_020_00644_6 crossref_primary_10_3171_2021_5_JNS21552 crossref_primary_10_3174_ajnr_A7778 crossref_primary_10_1080_02688697_2020_1849542 crossref_primary_10_1093_brain_awz236 crossref_primary_10_1093_ons_opab136 crossref_primary_10_1159_000507030 crossref_primary_10_1016_j_neuroimage_2018_08_068 crossref_primary_10_1002_acn3_589 crossref_primary_10_1093_brain_awz239 crossref_primary_10_1093_cercor_bhaa377 crossref_primary_10_1016_j_brs_2023_05_006 crossref_primary_10_3390_brainsci10121015 crossref_primary_10_1016_j_neuroimage_2022_119616 crossref_primary_10_1097_WCO_0000000000001280 crossref_primary_10_2139_ssrn_4055117 crossref_primary_10_1007_s00701_020_04495_3 crossref_primary_10_1002_mdc3_14237 crossref_primary_10_1002_ana_25975 crossref_primary_10_3174_ajnr_A6693 |
Cites_doi | 10.1016/S1361-8415(01)00036-6 10.1007/PL00007781 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O 10.1136/jnnp.55.3.181 10.1159/000100588 10.1093/cercor/bhh105 10.1093/cercor/bhm167 10.1159/000075167 10.3171/jns.2003.99.4.0708 10.1212/WNL.54.4.14A 10.1016/j.neuroimage.2013.05.057 10.1002/mds.25162 10.1016/j.neuroimage.2011.03.070 10.1016/j.jmr.2013.02.002 10.1016/j.nicl.2013.04.017 10.1007/s00701-016-2725-4 10.1136/jnnp.2010.205542 10.1089/brain.2011.0033 10.1136/jnnp.2006.112334 10.1016/j.brs.2011.10.007 10.1212/WNL.0000000000004295 10.3174/ajnr.A3140 10.1002/mds.10154 10.1016/j.nbd.2009.09.022 10.1002/cne.902560202 10.1016/j.neuroimage.2011.01.083 10.1002/cne.901830410 10.3171/2011.7.JNS11250 10.1016/0006-8993(76)90206-7 10.1093/brain/93.1.37 10.1002/mus.1063 10.1007/s00429-007-0170-0 10.3174/ajnr.A2638 10.1002/hbm.22836 10.1002/mds.21412 10.1111/j.1469-7793.1999.551ae.x 10.1152/jn.1980.43.1.69 10.1016/0006-8993(82)90802-2 10.1007/s11517-008-0411-2 10.1136/jnnp.2007.126219 10.1002/ana.22221 10.1016/j.neuroimage.2012.09.055 10.1523/JNEUROSCI.04-02-00539.1984 10.1016/j.neuroimage.2004.07.051 10.1227/NEU.0b013e3182262c9a 10.3389/fnhum.2013.00462 10.1007/s00701-014-2103-z 10.1002/(SICI)1096-9861(20000207)417:2<164::AID-CNE3>3.0.CO;2-6 10.1006/nimg.2002.1132 10.1016/0006-8993(75)90930-0 10.1227/01.NEU.0000345643.69486.BC 10.1002/mds.22059 10.1007/s004290050204 10.1002/mds.20960 10.1016/j.neuroimage.2013.05.043 10.1016/j.neuroimage.2006.01.015 10.1016/0006-8993(73)90485-X 10.1080/02688690701552278 10.1016/j.neuroimage.2015.10.019 10.1007/BF00238104 10.1002/mrm.10609 10.1227/NEU.0b013e3182296a42 10.1093/brain/aws023 10.1152/jn.00626.2002 10.1038/nn1075 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z 10.1016/0140-6736(91)91175-T 10.1212/WNL.0000000000002087 10.1227/NEU.0b013e31820a1a20 10.3109/00207458708987143 10.1002/ana.22361 10.1227/NEU.0000000000000540 10.1093/cercor/bhg087 10.1212/WNL.0b013e318249f702 10.1002/1531-8257(200101)16:1<140::AID-MDS1025>3.0.CO;2-T 10.1016/j.neuroimage.2007.06.022 10.1016/j.expneurol.2010.08.019 10.1371/journal.pone.0061892 10.1136/jnnp.2007.118653 10.1159/000092683 10.1016/S0896-6273(02)00569-X 10.1002/mrm.24204 10.1002/mds.26633 10.1002/hbm.10062 10.1002/mds.22758 10.1093/brain/awt304 10.1016/S1053-8119(03)00336-7 10.1016/0165-0173(89)90007-6 10.1016/0165-0173(83)90015-2 10.1016/j.neuroimage.2006.09.018 10.1002/mds.25648 10.1056/NEJMoa1600159 10.1159/000441393 10.1002/cne.901510302 |
ContentType | Journal Article |
Copyright | 2018 The Author(s) The Author(s) 2018 The Author(s) 2018 |
Copyright_xml | – notice: 2018 The Author(s) – notice: The Author(s) – notice: 2018 The Author(s) 2018 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADHXS ADTPV AOWAS D8T D93 ZZAVC DOA |
DOI | 10.1016/j.nicl.2018.01.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text DOAJ Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2213-1582 |
EndPage | 142 |
ExternalDocumentID | oai_doaj_org_article_bed91878cf854901867a506148aa97b6 oai_DiVA_org_umu_151204 PMC5790021 29387530 10_1016_j_nicl_2018_01_008 S2213158218300093 1_s2_0_S2213158218300093 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust |
GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADHXS ADTPV AOWAS D8T D93 ZZAVC |
ID | FETCH-LOGICAL-c731t-8759aa70db9eeb1086af313a8811de3c1b7738544aa8a8a658813ebc1cf28ac3 |
IEDL.DBID | DOA |
ISSN | 2213-1582 |
IngestDate | Wed Aug 27 01:24:24 EDT 2025 Thu Aug 21 06:33:54 EDT 2025 Thu Aug 21 14:24:09 EDT 2025 Fri Jul 11 16:39:19 EDT 2025 Thu Jan 02 22:24:33 EST 2025 Tue Jul 01 01:09:39 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 Wed May 17 01:21:54 EDT 2023 Sun Feb 23 10:19:29 EST 2025 Tue Aug 26 16:33:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | IPG DF MPRAGE Parkinson's disease M1 Dentato-rubro-thalamic tract Deep brain stimulation DRT GLM FoV PFC STN DBS HFS DWI LEDD FSL VBM AC SMA SSEPI HARDI NIfTI EV MMS Ventrolateral nucleus VL Connectivity FMRIB VP FLIRT S1 VTA SAR BEDPOSTX MNI Ventrointermedialis SD SE cZI SNR UPDRS DICOM Dentate nucleus NHNN CON Tremor CI PMC BET PC TFCE PD LC MPTP TMS VIM FNIRT Diffusion weighted imaging primary sensory cortex transcranial magnetic stimulation anterior commissure connectivity mini-mental score caudal zona incerta brain extraction tool field of view high angular resolution diffusion imaging neuroimaging informatics technology initiative standard error l-DOPA equivalent daily dose Oxford centre for functional MRI of the brain magnetization-prepared rapid gradient-echo unified Parkinson's disease rating scale single-shot echo planar imaging primary motor cortex threshold-free cluster enhancement ventral posterior 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine signal-to-noise ratio confidence interval ventral lateral high frequency stimulation diffusion weighted imaging premotor cortex digital imaging and communications in medicine explanatory variable Montreal neurological institute deep brain stimulation general linear model supplementary motor area subthalamic nucleus specific absorption rate standard deviation prefrontal cortex FMRIB's non-linear image registration tool voxel based morphometry FMRIB's software library FMRIB's linear image registration tool Levodopa challenge implantable pulse generator degrees of freedom posterior commissure National Hospital for Neurology and Neurosurgery volume of tissue activated Bayesian estimation of diffusion parameters obtained using sampling techniques X CI, confidence interval DBS, deep brain stimulation PMC, premotor cortex TMS, transcranial magnetic stimulation LEDD, l-DOPA equivalent daily dose STN, subthalamic nucleus DICOM, digital imaging and communications in medicine FLIRT, FMRIB's linear image registration tool AC, anterior commissure S1, primary sensory cortex SMA, supplementary motor area VL, ventral lateral DF, degrees of freedom SAR, specific absorption rate IPG, implantable pulse generator SNR, signal-to-noise ratio PFC, prefrontal cortex TFCE, threshold-free cluster enhancement PC, posterior commissure NIfTI, neuroimaging informatics technology initiative DWI, diffusion weighted imaging GLM, general linear model UPDRS, unified Parkinson's disease rating scale cZI, caudal zona incerta MNI, Montreal neurological institute MMS, mini-mental score BEDPOSTX, Bayesian estimation of diffusion parameters obtained using sampling techniques X FNIRT, FMRIB's non-linear image registration tool SD, standard deviation EV, explanatory variable LC, Levodopa challenge HFS, high frequency stimulation M1, primary motor cortex NHNN, National Hospital for Neurology and Neurosurgery HARDI, high angular resolution diffusion imaging MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine FSL, FMRIB's software library VTA, volume of tissue activated VBM, voxel based morphometry SE, standard error BET, brain extraction tool CON, connectivity FoV, field of view MPRAGE, magnetization-prepared rapid gradient-echo VP, ventral posterior FMRIB, Oxford centre for functional MRI of the brain SSEPI, single-shot echo planar imaging |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c731t-8759aa70db9eeb1086af313a8811de3c1b7738544aa8a8a658813ebc1cf28ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8018-7482 0000-0002-2899-628X 0000-0003-0671-0516 |
OpenAccessLink | https://doaj.org/article/bed91878cf854901867a506148aa97b6 |
PMID | 29387530 |
PQID | 1993385283 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bed91878cf854901867a506148aa97b6 swepub_primary_oai_DiVA_org_umu_151204 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5790021 proquest_miscellaneous_1993385283 pubmed_primary_29387530 crossref_citationtrail_10_1016_j_nicl_2018_01_008 crossref_primary_10_1016_j_nicl_2018_01_008 elsevier_sciencedirect_doi_10_1016_j_nicl_2018_01_008 elsevier_clinicalkeyesjournals_1_s2_0_S2213158218300093 elsevier_clinicalkey_doi_10_1016_j_nicl_2018_01_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | NeuroImage clinical |
PublicationTitleAlternate | Neuroimage Clin |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Witjas, Carron, Krack, Eusebio, Vaugoyeau, Hariz, Azulay, Régis (bb0570) 2015; 85 Lemaire, Sakka, Ouchchane, Caire, Gabrillargues, Bonny (bb0385) 2010; 66 Deistung, Schäfer, Schweser, Biedermann, Turner, Reichenbach (bb0130) 2013; 65 Åström, Diczfalusy, Martens, Wårdell (bb0040) 2015; 62 DeVito, Anderson (bb0150) 1982; 46 Foltynie, Zrinzo, Martinez-Torres, Tripoliti, Petersen, Holl, Aviles-Olmos, Jahanshahi, Hariz, Limousin (bb0195) 2011; 82 Pollak, Benabid, Gervason, Hoffmann, Seigneuret, Perret (bb0465) 1993; 60 Hirai, Jones (bb0265) 1989; 14 Ramnani, Behrens, Penny, Matthews (bb0475) 2004; 56 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bb0580) 2006; 31 Vassal, Coste, Derost, Mendes, Gabrillargues, Nuti, Durif, Lemaire (bb0565) 2012; 5 Helmich, Hallett, Deuschl, Toni, Bloem (bb0240) 2012; 135 Cury, Fraix, Castrioto, Pérez Fernández, Krack, Chabardes, Seigneuret, Alho, Benabid, Moro (bb0125) 2017; 89 Tanaka (bb0550) 1976; 110 Markowitsch, Irle, Emmans (bb0395) 1987; 37 Elias, Lipsman, Ondo, Ghanouni, Kim, Lee, Schwartz, Hynynen, Lozano, Shah, Huss, Dallapiazza, Gwinn, Witt, Ro, Eisenberg, Fishman, Gandhi, Halpern, Chuang, Butts Pauly, Tierney, Hayes, Cosgrove, Yamaguchi, Abe, Taira, Chang (bb0175) 2016; 375 Gross, Krack, Rodriguez-Oroz, Rezai, Benabid (bb0215) 2006; 21 Lambert, Chowdhury, Fitzgerald, Fleming, Lutti, Hutton, Draganski, Frackowiak, Ashburner (bb0365) 2013; 7 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bb0525) 2004; 23 Coenen, Allert, Paus, Kronenburger, Urbach, Mädler (bb0115) 2014; 75 Jakab, Blanc, Berényi, Székely (bb0285) 2012; 33 Hernandez-Fernandez, Reguly, Giles, Jbabdi, Smith, Sotiropoulos (bb0250) 2016 Jones, Wise, Coulter (bb0335) 1979; 183 Andersson, Jenkinson, Smith (bb0020) 2007 Schuurman, Bosch, Merkus, Speelman (bb0510) 2008; 23 Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bb0055) 2003; 50 Dyrby, Søgaard, Parker, Alexander, Lind, Baaré, Hay-Schmidt, Eriksen, Pakkenberg, Paulson, Jelsing (bb0160) 2007; 37 Lefranc, Carron, Régis (bb0380) 2015; 93 Behrens, Berg, Jbabdi, Rushworth, Woolrich (bb0060) 2007; 34 Traynor, Barker, Crum, Williams, Richardson (bb0560) 2011; 56 Andersson, Skare, Ashburner (bb0015) 2003; 20 Blomstedt, Sandvik, Fytagoridis, Tisch (bb0090) 2009; 64 Fischl, van der Kouwe, Destrieux, Halgren, Ségonne, Salat, Busa, Seidman, Goldstein, Kennedy, Caviness, Makris, Rosen, Dale (bb0190) 2004; 14 Pahwa, Lyons, Wilkinson, Tröster, Overman, Kieltyka, Koller (bb0435) 2001; 16 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bb0185) 2002; 33 Åström, Zrinzo, Tisch, Tripoliti, Hariz, Wårdell (bb0035) 2008; 47 Baker, Schuster, Cooperrider, Machado (bb0045) 2010; 226 Johansen-Berg (bb0315) 2004; 15 Nauta (bb0420) 1979; 4 Deuschl, Raethjen, Baron, Lindemann, Wilms, Krack (bb0140) 2000; 247 Hyam, Owen, Kringelbach, Jenkinson, Stein, Green, Aziz (bb0280) 2012; 70 Hassler (bb0230) 1950; 184 Behrens, Johansen-Berg, Woolrich, Smith, Wheeler-Kingshott, Boulby, Barker, Sillery, Sheehan, Ciccarelli, Thompson, Brady, Matthews (bb0050) 2003; 6 Pouratian, Zheng, Bari, Behnke, Elias, Desalles (bb0470) 2011; 115 Nieuwenhuys, Voogd, van Huijzen (bb0430) 2013 Hernandez, Guerrero, Cecilia, García, Inuggi, Jbabdi, Behrens, Sotiropoulos (bb0245) 2013; 8 Jbabdi, Sotiropoulos, Savio, Graña, Behrens (bb0300) 2012; 68 Coenen, Rijntjes, Prokop, Piroth, Amtage, Urbach, Reinacher (bb0120) 2016; 158 Grabner, Janke, Budge, Smith, Pruessner, Collins (bb0205) 2006; 9 Elble, Comella, Fahn, Hallett, Jankovic, Juncos, Lewitt, Lyons, Ondo, Pahwa, Sethi, Stover, Tarsy, Testa, Tintner, Watts, Zesiewicz (bb0165) 2012; 27 Benabid, Pollak, Gervason, Hoffmann, Gao, Hommel, Perret, de Rougemont (bb0070) 1991; 337 Benabid, Pollak, Seigneuret, Hoffmann, Gay, Perret (bb0075) 1993; 58 Deuschl, Elble (bb0135) 2000; 54 Stacy, Elble, Ondo, Wu, Hulihan, TRS Study Group (bb0540) 2007; 22 Maks, Butson, Walter, Vitek, McIntyre (bb0390) 2009; 80 Klein, Barbe, Seifried, Baudrexel, Runge, Maarouf, Gasser, Hattingen, Liebig, Deichmann, Timmermann, Weise, Hilker (bb0350) 2012; 78 Calabrese, Hickey, Hulette, Zhang, Parente, Lad, Johnson (bb0100) 2015; 36 Tobias (bb0555) 1975; 83 Deuschl, Raethjen, Lindemann, Krack (bb0145) 2001; 24 Lambert, Zrinzo, Nagy, Lutti, Hariz, Foltynie, Draganski, Ashburner, Frackowiak (bb0360) 2011; 1–12 Berk, Carr, Sinden, Martzke, Honey (bb0080) 2004; 75 Jbabdi, Johansen-Berg (bb0295) 2011; 1 Schaltenbrand, Wahren, Hassler (bb0500) 1977 Lambert, Simon, Colman, Barrick (bb0375) 2016 Morel, Magnin, Jeanmonod (bb0410) 1997; 387 Dum, Strick (bb0155) 2003; 89 Anthofer, Steib, Fellner, Lange, Brawanski, Schlaier (bb0025) 2014; 156 Percheron, François, Talbi, Meder, Fénelon, Yelnik (bb0445) 1993; 60 Jones (bb0325) 2012 Lambert, Lutti, Helms, Frackowiak, Ashburner (bb0370) 2013; 2 Helmich, Janssen, Oyen, Bloem, Toni (bb0235) 2011; 69 Parent, De Bellefeuille (bb0440) 1982; 245 Petersen, Lund, Sunde, Frandsen, Rosendal, Juul, Østergaard (bb0455) 2016; 1–12 Elble, Bain, Forjaz, Haubenberger, Testa, Goetz, Leentjens, Martínez-Martín, Pavy-Le Traon, Post, Sampaio, Stebbins, Weintraub, Schrag (bb0170) 2013; 28 Miller, Stagg, Douaud, Jbabdi, Smith, Behrens, Jenkinson, Chance, Esiri, Voets, Jenkinson, Aziz, Turner, Johansen-Berg, McNab (bb0405) 2011; 57 Russchen, Amaral, Price (bb0480) 1987; 256 Jenkinson, Bannister, Brady, Smith (bb0310) 2002; 17 Jörntell, Ekerot (bb0345) 1999; 514 Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach, Glasser, Hernandez, Sapiro, Jenkinson, Feinberg, Yacoub, Lenglet, Van Essen, Ugurbil, Behrens, WU-Minn HCP Consortium (bb0530) 2013; 80 Benabid, Pollak, Hommel, Gaio, de Rougemont, Perret (bb0065) 1989; 145 Hughes, Daniel, Kilford, Lees (bb0275) 1992; 55 Feinberg, Setsompop (bb0180) 2013; 229 Hirabayashi, Tengvar, Hariz (bb0260) 2002; 17 Johansen-Berg, Gutman, Behrens, Matthews, Rushworth, Katz, Lozano, Mayberg (bb0320) 2008; 18 Kuo, Carpenter (bb0355) 1973; 151 Smith (bb0520) 2002; 17 Andersson, Sotiropoulos (bb0010) 2016; 125 Petersen, Holl, Martinez-Torres, Foltynie, Limousin, Hariz, Zrinzo (bb0450) 2010; 67 Blomstedt, Sandvik, Tisch (bb0095) 2010; 25 Sammartino, Krishna, King, Lozano, Schwartz, Huang, Hodaie (bb0495) 2016; 31 Spiegelmann, Nissim, Daniels, Ocherashvilli, Mardor (bb0535) 2006; 84 Yarita, Iino, Tanabe, Kogure, Takagi (bb0575) 1980; 43 Schell, Strick (bb0505) 1984; 4 Sedrak, Gorgulho, Frew, Behnke, DeSalles, Pouratian (bb0515) 2011; 69 Anderson, Dhatt, Ferguson, Lopez-Larson, Schrock, House, Yurgelun-Todd (bb0005) 2011; 32 Jones, Powell (bb0330) 1970; 93 Jankovic, Tolosa (bb0290) 2007 Asanuma, Thach, Jones (bb0030) 1983; 286 Plaha, Khan, Gill (bb0460) 2008; 79 Coenen, Mädler, Schiffbauer, Urbach, Allert (bb0110) 2011; 68 Holl, Petersen, Foltynie, Martinez-Torres, Limousin, Hariz, Zrinzo (bb0270) 2010; 67 Jenkinson, Smith (bb0305) 2001; 5 Hess, Pullman (bb0255) 2012; 2 Jones, Simmons, Williams, Horsfield (bb0340) 1999; 42 Ni, Pinto, Lang, Chen (bb0425) 2010; 68 Hariz, Krack, Alesch, Augustinsson, Bosch, Ekberg, Johansson, Johnels, Meyerson, Nguyen, Pinter, Pollak, von Raison, Rehncrona, Speelman, Sydow, Benabid (bb0225) 2007; 79 Strick (bb0545) 1973; 55 Chowdhury, Lambert, Dolan, Düzel (bb0105) 2013; 81 Blomstedt, Hariz, Hariz, Koskinen (bb0085) 2007; 21 Sakai, Inase, Tanji (bb0485) 1999; 199 Gallay, Jeanmonod, Liu, Morel (bb0200) 2008; 212 Hariz, Krack, Melvill, Jorgensen, Hamel, Hirabayashi, Lenders, Wesslen, Tengvar, Yousry (bb0220) 2003; 80 Murata, Kitagawa, Uesugi, Saito, Iwasaki, Kikuchi, Tashiro, Sawamura (bb0415) 2003; 99 Groppa, Herzog, Falk, Riedel, Deuschl, Volkmann (bb0210) 2014; 137 Sakai, Stepniewska, Qi, Kaas (bb0490) 2000; 417 McIntyre, Hahn (bb0400) 2010; 38 Sakai (10.1016/j.nicl.2018.01.008_bb0490) 2000; 417 Morel (10.1016/j.nicl.2018.01.008_bb0410) 1997; 387 Berk (10.1016/j.nicl.2018.01.008_bb0080) 2004; 75 Jakab (10.1016/j.nicl.2018.01.008_bb0285) 2012; 33 Percheron (10.1016/j.nicl.2018.01.008_bb0445) 1993; 60 Plaha (10.1016/j.nicl.2018.01.008_bb0460) 2008; 79 Witjas (10.1016/j.nicl.2018.01.008_bb0570) 2015; 85 Sotiropoulos (10.1016/j.nicl.2018.01.008_bb0530) 2013; 80 Anthofer (10.1016/j.nicl.2018.01.008_bb0025) 2014; 156 McIntyre (10.1016/j.nicl.2018.01.008_bb0400) 2010; 38 Åström (10.1016/j.nicl.2018.01.008_bb0040) 2015; 62 Dyrby (10.1016/j.nicl.2018.01.008_bb0160) 2007; 37 Jbabdi (10.1016/j.nicl.2018.01.008_bb0300) 2012; 68 Fischl (10.1016/j.nicl.2018.01.008_bb0190) 2004; 14 Johansen-Berg (10.1016/j.nicl.2018.01.008_bb0320) 2008; 18 Baker (10.1016/j.nicl.2018.01.008_bb0045) 2010; 226 Lambert (10.1016/j.nicl.2018.01.008_bb0370) 2013; 2 Lambert (10.1016/j.nicl.2018.01.008_bb0375) 2016 Andersson (10.1016/j.nicl.2018.01.008_bb0020) Deuschl (10.1016/j.nicl.2018.01.008_bb0140) 2000; 247 Jones (10.1016/j.nicl.2018.01.008_bb0335) 1979; 183 Smith (10.1016/j.nicl.2018.01.008_bb0525) 2004; 23 Benabid (10.1016/j.nicl.2018.01.008_bb0070) 1991; 337 Hernandez-Fernandez (10.1016/j.nicl.2018.01.008_bb0250) 2016 Benabid (10.1016/j.nicl.2018.01.008_bb0065) 1989; 145 Helmich (10.1016/j.nicl.2018.01.008_bb0235) 2011; 69 Petersen (10.1016/j.nicl.2018.01.008_bb0455) 2016; 1–12 Dum (10.1016/j.nicl.2018.01.008_bb0155) 2003; 89 Johansen-Berg (10.1016/j.nicl.2018.01.008_bb0315) 2004; 15 Groppa (10.1016/j.nicl.2018.01.008_bb0210) 2014; 137 Tobias (10.1016/j.nicl.2018.01.008_bb0555) 1975; 83 Behrens (10.1016/j.nicl.2018.01.008_bb0050) 2003; 6 Strick (10.1016/j.nicl.2018.01.008_bb0545) 1973; 55 Jörntell (10.1016/j.nicl.2018.01.008_bb0345) 1999; 514 Murata (10.1016/j.nicl.2018.01.008_bb0415) 2003; 99 Calabrese (10.1016/j.nicl.2018.01.008_bb0100) 2015; 36 Smith (10.1016/j.nicl.2018.01.008_bb0520) 2002; 17 Spiegelmann (10.1016/j.nicl.2018.01.008_bb0535) 2006; 84 Lemaire (10.1016/j.nicl.2018.01.008_bb0385) 2010; 66 Blomstedt (10.1016/j.nicl.2018.01.008_bb0095) 2010; 25 Yushkevich (10.1016/j.nicl.2018.01.008_bb0580) 2006; 31 Jones (10.1016/j.nicl.2018.01.008_bb0340) 1999; 42 Lefranc (10.1016/j.nicl.2018.01.008_bb0380) 2015; 93 Parent (10.1016/j.nicl.2018.01.008_bb0440) 1982; 245 Sammartino (10.1016/j.nicl.2018.01.008_bb0495) 2016; 31 Elias (10.1016/j.nicl.2018.01.008_bb0175) 2016; 375 Blomstedt (10.1016/j.nicl.2018.01.008_bb0090) 2009; 64 Jones (10.1016/j.nicl.2018.01.008_bb0330) 1970; 93 Klein (10.1016/j.nicl.2018.01.008_bb0350) 2012; 78 DeVito (10.1016/j.nicl.2018.01.008_bb0150) 1982; 46 Hariz (10.1016/j.nicl.2018.01.008_bb0225) 2007; 79 Benabid (10.1016/j.nicl.2018.01.008_bb0075) 1993; 58 Ramnani (10.1016/j.nicl.2018.01.008_bb0475) 2004; 56 Asanuma (10.1016/j.nicl.2018.01.008_bb0030) 1983; 286 Feinberg (10.1016/j.nicl.2018.01.008_bb0180) 2013; 229 Schaltenbrand (10.1016/j.nicl.2018.01.008_bb0500) 1977 Deuschl (10.1016/j.nicl.2018.01.008_bb0145) 2001; 24 Markowitsch (10.1016/j.nicl.2018.01.008_bb0395) 1987; 37 Foltynie (10.1016/j.nicl.2018.01.008_bb0195) 2011; 82 Russchen (10.1016/j.nicl.2018.01.008_bb0480) 1987; 256 Petersen (10.1016/j.nicl.2018.01.008_bb0450) 2010; 67 Gallay (10.1016/j.nicl.2018.01.008_bb0200) 2008; 212 Schell (10.1016/j.nicl.2018.01.008_bb0505) 1984; 4 Jenkinson (10.1016/j.nicl.2018.01.008_bb0310) 2002; 17 Anderson (10.1016/j.nicl.2018.01.008_bb0005) 2011; 32 Stacy (10.1016/j.nicl.2018.01.008_bb0540) 2007; 22 Cury (10.1016/j.nicl.2018.01.008_bb0125) 2017; 89 Hirabayashi (10.1016/j.nicl.2018.01.008_bb0260) 2002; 17 Gross (10.1016/j.nicl.2018.01.008_bb0215) 2006; 21 Hess (10.1016/j.nicl.2018.01.008_bb0255) 2012; 2 Sedrak (10.1016/j.nicl.2018.01.008_bb0515) 2011; 69 Elble (10.1016/j.nicl.2018.01.008_bb0170) 2013; 28 Tanaka (10.1016/j.nicl.2018.01.008_bb0550) 1976; 110 Pouratian (10.1016/j.nicl.2018.01.008_bb0470) 2011; 115 Lambert (10.1016/j.nicl.2018.01.008_bb0365) 2013; 7 Pahwa (10.1016/j.nicl.2018.01.008_bb0435) 2001; 16 Nauta (10.1016/j.nicl.2018.01.008_bb0420) 1979; 4 Hernandez (10.1016/j.nicl.2018.01.008_bb0245) 2013; 8 Jones (10.1016/j.nicl.2018.01.008_bb0325) 2012 Jankovic (10.1016/j.nicl.2018.01.008_bb0290) 2007 Behrens (10.1016/j.nicl.2018.01.008_bb0055) 2003; 50 Maks (10.1016/j.nicl.2018.01.008_bb0390) 2009; 80 Holl (10.1016/j.nicl.2018.01.008_bb0270) 2010; 67 Miller (10.1016/j.nicl.2018.01.008_bb0405) 2011; 57 Schuurman (10.1016/j.nicl.2018.01.008_bb0510) 2008; 23 Coenen (10.1016/j.nicl.2018.01.008_bb0120) 2016; 158 Deistung (10.1016/j.nicl.2018.01.008_bb0130) 2013; 65 Hirai (10.1016/j.nicl.2018.01.008_bb0265) 1989; 14 Helmich (10.1016/j.nicl.2018.01.008_bb0240) 2012; 135 Grabner (10.1016/j.nicl.2018.01.008_bb0205) 2006; 9 Hyam (10.1016/j.nicl.2018.01.008_bb0280) 2012; 70 Andersson (10.1016/j.nicl.2018.01.008_bb0010) 2016; 125 Deuschl (10.1016/j.nicl.2018.01.008_bb0135) 2000; 54 Chowdhury (10.1016/j.nicl.2018.01.008_bb0105) 2013; 81 Elble (10.1016/j.nicl.2018.01.008_bb0165) 2012; 27 Åström (10.1016/j.nicl.2018.01.008_bb0035) 2008; 47 Sakai (10.1016/j.nicl.2018.01.008_bb0485) 1999; 199 Andersson (10.1016/j.nicl.2018.01.008_bb0015) 2003; 20 Kuo (10.1016/j.nicl.2018.01.008_bb0355) 1973; 151 Nieuwenhuys (10.1016/j.nicl.2018.01.008_bb0430) 2013 Yarita (10.1016/j.nicl.2018.01.008_bb0575) 1980; 43 Jbabdi (10.1016/j.nicl.2018.01.008_bb0295) 2011; 1 Blomstedt (10.1016/j.nicl.2018.01.008_bb0085) 2007; 21 Ni (10.1016/j.nicl.2018.01.008_bb0425) 2010; 68 Vassal (10.1016/j.nicl.2018.01.008_bb0565) 2012; 5 Fischl (10.1016/j.nicl.2018.01.008_bb0185) 2002; 33 Pollak (10.1016/j.nicl.2018.01.008_bb0465) 1993; 60 Lambert (10.1016/j.nicl.2018.01.008_bb0360) 2011; 1–12 Hariz (10.1016/j.nicl.2018.01.008_bb0220) 2003; 80 Hughes (10.1016/j.nicl.2018.01.008_bb0275) 1992; 55 Jenkinson (10.1016/j.nicl.2018.01.008_bb0305) 2001; 5 Behrens (10.1016/j.nicl.2018.01.008_bb0060) 2007; 34 Coenen (10.1016/j.nicl.2018.01.008_bb0115) 2014; 75 Hassler (10.1016/j.nicl.2018.01.008_bb0230) 1950; 184 Traynor (10.1016/j.nicl.2018.01.008_bb0560) 2011; 56 Coenen (10.1016/j.nicl.2018.01.008_bb0110) 2011; 68 |
References_xml | – volume: 55 start-page: 181 year: 1992 end-page: 184 ident: bb0275 article-title: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 70 start-page: 162 year: 2012 end-page: 169 ident: bb0280 article-title: Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography publication-title: Neurosurgery – volume: 256 start-page: 175 year: 1987 end-page: 210 ident: bb0480 article-title: The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, publication-title: J. Comp. Neurol. – volume: 2 year: 2012 ident: bb0255 article-title: Tremor: clinical phenomenology and assessment techniques publication-title: Tremor Other Hyperkinet Mov (N Y) – volume: 229 start-page: 90 year: 2013 end-page: 100 ident: bb0180 article-title: Ultra-fast MRI of the human brain with simultaneous multi-slice imaging publication-title: J. Magn. Reson. – volume: 5 start-page: 625 year: 2012 end-page: 633 ident: bb0565 article-title: Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence publication-title: Brain Stimul. – volume: 337 start-page: 403 year: 1991 end-page: 406 ident: bb0070 article-title: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus publication-title: Lancet – year: 1977 ident: bb0500 article-title: Atlas for Stereotaxy of the Human Brain – volume: 89 start-page: 1416 year: 2017 end-page: 1423 ident: bb0125 article-title: Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia publication-title: Neurology – volume: 93 start-page: 400 year: 2015 end-page: 406 ident: bb0380 article-title: Prelemniscal radiations: a new reliable landmark of the thalamic nucleus ventralis intermedius location publication-title: Stereotact. Funct. Neurosurg. – volume: 226 start-page: 259 year: 2010 end-page: 264 ident: bb0045 article-title: Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo publication-title: Exp. Neurol. – volume: 65 start-page: 299 year: 2013 end-page: 314 ident: bb0130 article-title: Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2⁎-imaging at ultra-high magnetic field strength publication-title: NeuroImage – volume: 43 start-page: 69 year: 1980 end-page: 85 ident: bb0575 article-title: A transthalamic olfactory pathway to orbitofrontal cortex in the monkey publication-title: J. Neurophysiol. – volume: 184 start-page: 249 year: 1950 end-page: 256 ident: bb0230 article-title: Anatomy of the thalamus publication-title: Arch. Psychiatr. Nervenkr. Z Gesamte. Neurol. Psychiatr. – volume: 18 start-page: 1374 year: 2008 end-page: 1383 ident: bb0320 article-title: Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression publication-title: Cereb. Cortex – volume: 80 start-page: 659 year: 2009 end-page: 666 ident: bb0390 article-title: Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 17 start-page: S130 year: 2002 end-page: S134 ident: bb0260 article-title: Stereotactic imaging of the pallidal target publication-title: Mov. Disord. – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: bb0580 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: NeuroImage – volume: 212 start-page: 443 year: 2008 end-page: 463 ident: bb0200 article-title: Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery publication-title: Brain Struct. Funct. – year: 2016 ident: bb0375 article-title: Defining thalamic nuclei and topographic connectivity gradients in vivo publication-title: NeuroImage – volume: 514 start-page: 551 year: 1999 end-page: 566 ident: bb0345 article-title: Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin publication-title: J. Physiol. – volume: 64 year: 2009 ident: bb0090 article-title: The posterior subthalamic area in the treatment of movement disorders: past, present, and future publication-title: Neurosurgery – volume: 80 start-page: 96 year: 2003 end-page: 101 ident: bb0220 article-title: A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes publication-title: Stereotact. Funct. Neurosurg. – volume: 15 start-page: 31 year: 2004 end-page: 39 ident: bb0315 article-title: Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus publication-title: Cereb. Cortex – volume: 79 start-page: 694 year: 2007 end-page: 699 ident: bb0225 article-title: Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 78 start-page: 787 year: 2012 end-page: 795 ident: bb0350 article-title: The tremor network targeted by successful VIM deep brain stimulation in humans publication-title: Neurology – volume: 38 start-page: 329 year: 2010 end-page: 337 ident: bb0400 article-title: Network perspectives on the mechanisms of deep brain stimulation publication-title: Neurobiol. Dis. – volume: 21 start-page: S259 year: 2006 end-page: S283 ident: bb0215 article-title: Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor publication-title: Mov. Disord. – volume: 387 start-page: 588 year: 1997 end-page: 630 ident: bb0410 article-title: Multiarchitectonic and stereotactic atlas of the human thalamus publication-title: J. Comp. Neurol. – year: 2016 ident: bb0250 article-title: A fast and flexible toolbox for tracking brain connections in diffusion MRI datasets using GPUs publication-title: Presented at the Organization for Human Brain Mapping (OHBM), Geneva, Switzerland – volume: 69 start-page: 269 year: 2011 end-page: 281 ident: bb0235 article-title: Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor publication-title: Ann. Neurol. – volume: 199 start-page: 9 year: 1999 end-page: 19 ident: bb0485 article-title: Pallidal and cerebellar inputs to thalamocortical neurons projecting to the supplementary motor area in publication-title: Anat. Embryol. – volume: 23 start-page: 1146 year: 2008 end-page: 1153 ident: bb0510 article-title: Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression publication-title: Mov. Disord. – volume: 23 start-page: S208 year: 2004 end-page: 19 ident: bb0525 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – volume: 84 start-page: 19 year: 2006 end-page: 23 ident: bb0535 article-title: Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI publication-title: Stereotact. Funct. Neurosurg. – volume: 1–12 year: 2011 ident: bb0360 article-title: Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging publication-title: NeuroImage – volume: 2 start-page: 684 year: 2013 end-page: 694 ident: bb0370 article-title: Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians publication-title: Neuroimage Clin. – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: bb0010 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: NeuroImage – volume: 5 start-page: 143 year: 2001 end-page: 156 ident: bb0305 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. – volume: 82 start-page: 358 year: 2011 end-page: 363 ident: bb0195 article-title: MRI-guided STN DBS in Parkinson's disease without microelectrode recording: efficacy and safety publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 68 start-page: 816 year: 2010 end-page: 824 ident: bb0425 article-title: Involvement of the cerebellothalamocortical pathway in Parkinson disease publication-title: Ann. Neurol. – volume: 135 start-page: 3206 year: 2012 end-page: 3226 ident: bb0240 article-title: Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? publication-title: Brain – volume: 115 start-page: 995 year: 2011 end-page: 1004 ident: bb0470 article-title: Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation publication-title: J. Neurosurg. – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: bb0530 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: NeuroImage – volume: 68 year: 2011 ident: bb0110 article-title: Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression publication-title: Neurosurgery – volume: 27 start-page: 1567 year: 2012 end-page: 1569 ident: bb0165 article-title: Reliability of a new scale for essential tremor publication-title: Mov. Disord. – volume: 93 start-page: 37 year: 1970 end-page: 56 ident: bb0330 article-title: Connexions of the somatic sensory cortex of the rhesus monkey. 3. Thalamic connexions publication-title: Brain – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bb0015 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: NeuroImage – volume: 247 start-page: V33 year: 2000 end-page: 48 ident: bb0140 article-title: The pathophysiology of parkinsonian tremor: a review publication-title: J. Neurol. – volume: 42 start-page: 37 year: 1999 end-page: 41 ident: bb0340 article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI publication-title: Magn. Reson. Med. – volume: 25 start-page: 1350 year: 2010 end-page: 1356 ident: bb0095 article-title: Deep brain stimulation in the posterior subthalamic area in the treatment of essential tremor publication-title: Mov. Disord. – volume: 69 year: 2011 ident: bb0515 article-title: Diffusion tensor imaging and colored fractional anisotropy mapping of the ventralis intermedius nucleus of the thalamus publication-title: Neurosurgery – volume: 31 start-page: 1217 year: 2016 end-page: 1225 ident: bb0495 article-title: Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation publication-title: Mov. Disord. – volume: 57 start-page: 167 year: 2011 end-page: 181 ident: bb0405 article-title: Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner publication-title: NeuroImage – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bb0310 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 183 start-page: 833 year: 1979 end-page: 881 ident: bb0335 article-title: Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys publication-title: J. Comp. Neurol. – volume: 145 start-page: 320 year: 1989 end-page: 323 ident: bb0065 article-title: Treatment of Parkinson tremor by chronic stimulation of the ventral intermediate nucleus of the thalamus publication-title: Rev. Neurol. (Paris) – volume: 375 start-page: 730 year: 2016 end-page: 739 ident: bb0175 article-title: A randomized trial of focused ultrasound thalamotomy for essential tremor publication-title: N. Engl. J. Med. – volume: 22 start-page: 833 year: 2007 end-page: 838 ident: bb0540 article-title: Assessment of interrater and intrarater reliability of the Fahn-Tolosa-Marin Tremor Rating Scale in essential tremor publication-title: Mov. Disord. – volume: 1 start-page: 169 year: 2011 end-page: 183 ident: bb0295 article-title: Tractography: where do we go from here? publication-title: Brain Connect. – volume: 9 start-page: 58 year: 2006 end-page: 66 ident: bb0205 article-title: Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 158 start-page: 773 year: 2016 end-page: 781 ident: bb0120 article-title: One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease publication-title: Acta Neurochir. – volume: 67 year: 2010 ident: bb0450 article-title: Minimizing brain shift in stereotactic functional neurosurgery publication-title: Neurosurgery – volume: 89 start-page: 634 year: 2003 end-page: 639 ident: bb0155 article-title: An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex publication-title: J. Neurophysiol. – volume: 37 start-page: 1267 year: 2007 end-page: 1277 ident: bb0160 article-title: Validation of in vitro probabilistic tractography publication-title: NeuroImage – volume: 33 start-page: 2110 year: 2012 end-page: 2116 ident: bb0285 article-title: Generation of individualized thalamus target maps by using statistical shape models and thalamocortical tractography publication-title: Am. J. Neuroradiol. – volume: 110 start-page: 21 year: 1976 end-page: 38 ident: bb0550 article-title: Thalamic projections of the dorsomedial prefrontal cortex in the rhesus monkey ( publication-title: Brain Res. – volume: 56 start-page: 613 year: 2004 end-page: 619 ident: bb0475 article-title: New approaches for exploring anatomical and functional connectivity in the human brain publication-title: BPS – volume: 417 start-page: 164 year: 2000 end-page: 180 ident: bb0490 article-title: Pallidal and cerebellar afferents to pre-supplementary motor area thalamocortical neurons in the owl monkey: a multiple labeling study publication-title: J. Comp. Neurol. – volume: 156 start-page: 1497 year: 2014 end-page: 1504 ident: bb0025 article-title: The variability of atlas-based targets in relation to surrounding major fibre tracts in thalamic deep brain stimulation publication-title: Acta Neurochir. – volume: 50 start-page: 1077 year: 2003 end-page: 1088 ident: bb0055 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. – volume: 36 start-page: 3167 year: 2015 end-page: 3178 ident: bb0100 article-title: Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization publication-title: Hum. Brain Mapp. – year: 2007 ident: bb0020 article-title: Non-linear Registration Aka Spatial Normalisation [WWW Document] – year: 2007 ident: bb0290 article-title: Parkinson's Disease and Movement Disorders – volume: 68 start-page: 1846 year: 2012 end-page: 1855 ident: bb0300 article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems publication-title: Magn. Reson. Med. – volume: 7 start-page: 462 year: 2013 ident: bb0365 article-title: Characterizing aging in the human brainstem using quantitative multimodal MRI analysis publication-title: Front. Hum. Neurosci. – volume: 6 start-page: 750 year: 2003 end-page: 757 ident: bb0050 article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging publication-title: Nat. Neurosci. – volume: 60 start-page: 408 year: 1993 end-page: 413 ident: bb0465 article-title: Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor publication-title: Adv. Neurol. – volume: 151 start-page: 201 year: 1973 end-page: 236 ident: bb0355 article-title: Organization of pallidothalamic projections in the rhesus monkey publication-title: J. Comp. Neurol. – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bb0185 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 16 start-page: 140 year: 2001 end-page: 143 ident: bb0435 article-title: Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor publication-title: Mov. Disord. – volume: 56 start-page: 939 year: 2011 end-page: 950 ident: bb0560 article-title: Segmentation of the thalamus in MRI based on T1 and T2 publication-title: NeuroImage – volume: 137 start-page: 109 year: 2014 end-page: 121 ident: bb0210 article-title: Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor publication-title: Brain – volume: 55 start-page: 1 year: 1973 end-page: 24 ident: bb0545 article-title: Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat publication-title: Brain Res. – volume: 99 start-page: 708 year: 2003 end-page: 715 ident: bb0415 article-title: Electrical stimulation of the posterior subthalamic area for the treatment of intractable proximal tremor publication-title: J. Neurosurg. – volume: 47 start-page: 21 year: 2008 end-page: 28 ident: bb0035 article-title: Method for patient-specific finite element modeling and simulation of deep brain stimulation publication-title: Med. Biol. Eng. Comput. – volume: 58 start-page: 39 year: 1993 end-page: 44 ident: bb0075 article-title: Chronic VIM thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal dyskinesias publication-title: Acta Neurochir. Suppl. (Wien) – volume: 62 start-page: 664 year: 2015 end-page: 672 ident: bb0040 article-title: Relationship between neural activation and electric field distribution during deep brain stimulation publication-title: I.E.E.E. Trans. Biomed. Eng. – volume: 24 start-page: 716 year: 2001 end-page: 735 ident: bb0145 article-title: The pathophysiology of tremor publication-title: Muscle Nerve – volume: 54 start-page: S14 year: 2000 end-page: 20 ident: bb0135 article-title: The pathophysiology of essential tremor publication-title: Neurology – volume: 75 year: 2004 ident: bb0080 article-title: Assessing tremor reduction and quality of life following thalamic deep brain stimulation for the treatment of tremor in multiple sclerosis publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: bb0190 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex – volume: 28 start-page: 1793 year: 2013 end-page: 1800 ident: bb0170 article-title: Task force report: scales for screening and evaluating tremor: critique and recommendations publication-title: Mov. Disord. – volume: 66 start-page: 161 year: 2010 end-page: 172 ident: bb0385 article-title: Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging publication-title: Neurosurgery – volume: 286 start-page: 237 year: 1983 end-page: 265 ident: bb0030 article-title: Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey publication-title: Brain Res. – volume: 37 start-page: 127 year: 1987 end-page: 148 ident: bb0395 article-title: Cortical and subcortical afferent connections of the squirrel monkey's (lateral) premotor cortex: evidence for visual cortical afferents publication-title: Int. J. Neurosci. – volume: 34 start-page: 144 year: 2007 end-page: 155 ident: bb0060 article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? publication-title: NeuroImage – volume: 79 start-page: 504 year: 2008 end-page: 513 ident: bb0460 article-title: Bilateral stimulation of the caudal zona incerta nucleus for tremor control publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 4 start-page: 1853 year: 1979 end-page: 1873 ident: bb0420 article-title: Projections of the pallidal complex: an autoradiographic study in the cat publication-title: NSC – volume: 83 start-page: 191 year: 1975 end-page: 212 ident: bb0555 article-title: Afferents to prefrontal cortex from the thalamic mediodorsal nucleus in the rhesus monkey publication-title: Brain Res. – volume: 14 start-page: 1 year: 1989 end-page: 34 ident: bb0265 article-title: A new parcellation of the human thalamus on the basis of histochemical staining publication-title: Brain Res. Brain Res. Rev. – year: 2012 ident: bb0325 article-title: The Thalamus – volume: 4 start-page: 539 year: 1984 end-page: 560 ident: bb0505 article-title: The origin of thalamic inputs to the arcuate premotor and supplementary motor areas publication-title: J. Neurosci. – volume: 1–12 year: 2016 ident: bb0455 article-title: Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation publication-title: J. Neurosurg. – volume: 21 start-page: 504 year: 2007 end-page: 509 ident: bb0085 article-title: Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up publication-title: Br. J. Neurosurg. – volume: 67 start-page: ons437 year: 2010 end-page: ons447 ident: bb0270 article-title: Improving targeting in image-guided frame-based deep brain stimulation publication-title: Neurosurgery – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bb0520 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – year: 2013 ident: bb0430 article-title: The Human Central Nervous System – volume: 245 start-page: 201 year: 1982 end-page: 213 ident: bb0440 article-title: Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method publication-title: Brain Res. – volume: 81 start-page: 191 year: 2013 end-page: 198 ident: bb0105 article-title: Parcellation of the human substantia nigra based on anatomical connectivity to the striatum publication-title: NeuroImage – volume: 8 year: 2013 ident: bb0245 article-title: Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs publication-title: PLoS One – volume: 46 start-page: 107 year: 1982 end-page: 117 ident: bb0150 article-title: An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta publication-title: Exp. Brain Res. – volume: 75 year: 2014 ident: bb0115 article-title: Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study publication-title: Neurosurgery – volume: 85 start-page: 1562 year: 2015 end-page: 1568 ident: bb0570 article-title: A prospective single-blind study of Gamma Knife thalamotomy for tremor publication-title: Neurology – volume: 32 start-page: 1963 year: 2011 end-page: 1968 ident: bb0005 article-title: Functional connectivity targeting for deep brain stimulation in essential tremor publication-title: Am. J. Neuroradiol. – volume: 60 start-page: 32 year: 1993 end-page: 41 ident: bb0445 article-title: The primate motor thalamus analysed with reference to subcortical afferent territories publication-title: Stereotact. Funct. Neurosurg. – volume: 5 start-page: 143 year: 2001 ident: 10.1016/j.nicl.2018.01.008_bb0305 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(01)00036-6 – volume: 247 start-page: V33 issue: Suppl. 5 year: 2000 ident: 10.1016/j.nicl.2018.01.008_bb0140 article-title: The pathophysiology of parkinsonian tremor: a review publication-title: J. Neurol. doi: 10.1007/PL00007781 – volume: 42 start-page: 37 year: 1999 ident: 10.1016/j.nicl.2018.01.008_bb0340 article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O – volume: 55 start-page: 181 year: 1992 ident: 10.1016/j.nicl.2018.01.008_bb0275 article-title: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.55.3.181 – volume: 60 start-page: 32 year: 1993 ident: 10.1016/j.nicl.2018.01.008_bb0445 article-title: The primate motor thalamus analysed with reference to subcortical afferent territories publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000100588 – volume: 15 start-page: 31 year: 2004 ident: 10.1016/j.nicl.2018.01.008_bb0315 article-title: Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh105 – volume: 18 start-page: 1374 year: 2008 ident: 10.1016/j.nicl.2018.01.008_bb0320 article-title: Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm167 – year: 2016 ident: 10.1016/j.nicl.2018.01.008_bb0375 article-title: Defining thalamic nuclei and topographic connectivity gradients in vivo publication-title: NeuroImage – ident: 10.1016/j.nicl.2018.01.008_bb0020 – volume: 80 start-page: 96 year: 2003 ident: 10.1016/j.nicl.2018.01.008_bb0220 article-title: A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000075167 – volume: 99 start-page: 708 year: 2003 ident: 10.1016/j.nicl.2018.01.008_bb0415 article-title: Electrical stimulation of the posterior subthalamic area for the treatment of intractable proximal tremor publication-title: J. Neurosurg. doi: 10.3171/jns.2003.99.4.0708 – volume: 54 start-page: S14 year: 2000 ident: 10.1016/j.nicl.2018.01.008_bb0135 article-title: The pathophysiology of essential tremor publication-title: Neurology doi: 10.1212/WNL.54.4.14A – year: 2016 ident: 10.1016/j.nicl.2018.01.008_bb0250 article-title: A fast and flexible toolbox for tracking brain connections in diffusion MRI datasets using GPUs – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.nicl.2018.01.008_bb0530 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 27 start-page: 1567 year: 2012 ident: 10.1016/j.nicl.2018.01.008_bb0165 article-title: Reliability of a new scale for essential tremor publication-title: Mov. Disord. doi: 10.1002/mds.25162 – volume: 184 start-page: 249 year: 1950 ident: 10.1016/j.nicl.2018.01.008_bb0230 article-title: Anatomy of the thalamus publication-title: Arch. Psychiatr. Nervenkr. Z Gesamte. Neurol. Psychiatr. – volume: 1–12 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0360 article-title: Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging publication-title: NeuroImage – volume: 57 start-page: 167 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0405 article-title: Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.070 – volume: 229 start-page: 90 year: 2013 ident: 10.1016/j.nicl.2018.01.008_bb0180 article-title: Ultra-fast MRI of the human brain with simultaneous multi-slice imaging publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2013.02.002 – volume: 2 start-page: 684 year: 2013 ident: 10.1016/j.nicl.2018.01.008_bb0370 article-title: Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2013.04.017 – volume: 158 start-page: 773 year: 2016 ident: 10.1016/j.nicl.2018.01.008_bb0120 article-title: One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease publication-title: Acta Neurochir. doi: 10.1007/s00701-016-2725-4 – volume: 82 start-page: 358 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0195 article-title: MRI-guided STN DBS in Parkinson's disease without microelectrode recording: efficacy and safety publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2010.205542 – volume: 1 start-page: 169 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0295 article-title: Tractography: where do we go from here? publication-title: Brain Connect. doi: 10.1089/brain.2011.0033 – volume: 79 start-page: 504 year: 2008 ident: 10.1016/j.nicl.2018.01.008_bb0460 article-title: Bilateral stimulation of the caudal zona incerta nucleus for tremor control publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2006.112334 – volume: 5 start-page: 625 year: 2012 ident: 10.1016/j.nicl.2018.01.008_bb0565 article-title: Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence publication-title: Brain Stimul. doi: 10.1016/j.brs.2011.10.007 – volume: 89 start-page: 1416 year: 2017 ident: 10.1016/j.nicl.2018.01.008_bb0125 article-title: Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia publication-title: Neurology doi: 10.1212/WNL.0000000000004295 – volume: 33 start-page: 2110 year: 2012 ident: 10.1016/j.nicl.2018.01.008_bb0285 article-title: Generation of individualized thalamus target maps by using statistical shape models and thalamocortical tractography publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3140 – volume: 17 start-page: S130 year: 2002 ident: 10.1016/j.nicl.2018.01.008_bb0260 article-title: Stereotactic imaging of the pallidal target publication-title: Mov. Disord. doi: 10.1002/mds.10154 – volume: 38 start-page: 329 year: 2010 ident: 10.1016/j.nicl.2018.01.008_bb0400 article-title: Network perspectives on the mechanisms of deep brain stimulation publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2009.09.022 – volume: 256 start-page: 175 year: 1987 ident: 10.1016/j.nicl.2018.01.008_bb0480 article-title: The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis publication-title: J. Comp. Neurol. doi: 10.1002/cne.902560202 – year: 1977 ident: 10.1016/j.nicl.2018.01.008_bb0500 – volume: 67 start-page: ons437 year: 2010 ident: 10.1016/j.nicl.2018.01.008_bb0270 article-title: Improving targeting in image-guided frame-based deep brain stimulation publication-title: Neurosurgery – volume: 56 start-page: 939 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0560 article-title: Segmentation of the thalamus in MRI based on T1 and T2 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.083 – volume: 60 start-page: 408 year: 1993 ident: 10.1016/j.nicl.2018.01.008_bb0465 article-title: Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor publication-title: Adv. Neurol. – volume: 183 start-page: 833 year: 1979 ident: 10.1016/j.nicl.2018.01.008_bb0335 article-title: Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys publication-title: J. Comp. Neurol. doi: 10.1002/cne.901830410 – volume: 2 year: 2012 ident: 10.1016/j.nicl.2018.01.008_bb0255 article-title: Tremor: clinical phenomenology and assessment techniques – volume: 115 start-page: 995 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0470 article-title: Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation publication-title: J. Neurosurg. doi: 10.3171/2011.7.JNS11250 – volume: 110 start-page: 21 year: 1976 ident: 10.1016/j.nicl.2018.01.008_bb0550 article-title: Thalamic projections of the dorsomedial prefrontal cortex in the rhesus monkey (Macaca mulatta) publication-title: Brain Res. doi: 10.1016/0006-8993(76)90206-7 – volume: 93 start-page: 37 year: 1970 ident: 10.1016/j.nicl.2018.01.008_bb0330 article-title: Connexions of the somatic sensory cortex of the rhesus monkey. 3. Thalamic connexions publication-title: Brain doi: 10.1093/brain/93.1.37 – volume: 24 start-page: 716 year: 2001 ident: 10.1016/j.nicl.2018.01.008_bb0145 article-title: The pathophysiology of tremor publication-title: Muscle Nerve doi: 10.1002/mus.1063 – volume: 212 start-page: 443 year: 2008 ident: 10.1016/j.nicl.2018.01.008_bb0200 article-title: Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery publication-title: Brain Struct. Funct. doi: 10.1007/s00429-007-0170-0 – volume: 32 start-page: 1963 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0005 article-title: Functional connectivity targeting for deep brain stimulation in essential tremor publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A2638 – volume: 36 start-page: 3167 year: 2015 ident: 10.1016/j.nicl.2018.01.008_bb0100 article-title: Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22836 – volume: 22 start-page: 833 year: 2007 ident: 10.1016/j.nicl.2018.01.008_bb0540 article-title: Assessment of interrater and intrarater reliability of the Fahn-Tolosa-Marin Tremor Rating Scale in essential tremor publication-title: Mov. Disord. doi: 10.1002/mds.21412 – volume: 514 start-page: 551 issue: Pt 2 year: 1999 ident: 10.1016/j.nicl.2018.01.008_bb0345 article-title: Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin publication-title: J. Physiol. doi: 10.1111/j.1469-7793.1999.551ae.x – volume: 43 start-page: 69 year: 1980 ident: 10.1016/j.nicl.2018.01.008_bb0575 article-title: A transthalamic olfactory pathway to orbitofrontal cortex in the monkey publication-title: J. Neurophysiol. doi: 10.1152/jn.1980.43.1.69 – volume: 245 start-page: 201 year: 1982 ident: 10.1016/j.nicl.2018.01.008_bb0440 article-title: Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method publication-title: Brain Res. doi: 10.1016/0006-8993(82)90802-2 – volume: 47 start-page: 21 year: 2008 ident: 10.1016/j.nicl.2018.01.008_bb0035 article-title: Method for patient-specific finite element modeling and simulation of deep brain stimulation publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0411-2 – volume: 80 start-page: 659 year: 2009 ident: 10.1016/j.nicl.2018.01.008_bb0390 article-title: Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.126219 – volume: 68 start-page: 816 year: 2010 ident: 10.1016/j.nicl.2018.01.008_bb0425 article-title: Involvement of the cerebellothalamocortical pathway in Parkinson disease publication-title: Ann. Neurol. doi: 10.1002/ana.22221 – volume: 65 start-page: 299 year: 2013 ident: 10.1016/j.nicl.2018.01.008_bb0130 article-title: Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2⁎-imaging at ultra-high magnetic field strength publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.055 – year: 2012 ident: 10.1016/j.nicl.2018.01.008_bb0325 – volume: 62 start-page: 664 year: 2015 ident: 10.1016/j.nicl.2018.01.008_bb0040 article-title: Relationship between neural activation and electric field distribution during deep brain stimulation publication-title: I.E.E.E. Trans. Biomed. Eng. – volume: 4 start-page: 539 year: 1984 ident: 10.1016/j.nicl.2018.01.008_bb0505 article-title: The origin of thalamic inputs to the arcuate premotor and supplementary motor areas publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.04-02-00539.1984 – volume: 23 start-page: S208 issue: Suppl. 1 year: 2004 ident: 10.1016/j.nicl.2018.01.008_bb0525 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 70 start-page: 162 year: 2012 ident: 10.1016/j.nicl.2018.01.008_bb0280 article-title: Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography publication-title: Neurosurgery doi: 10.1227/NEU.0b013e3182262c9a – volume: 7 start-page: 462 year: 2013 ident: 10.1016/j.nicl.2018.01.008_bb0365 article-title: Characterizing aging in the human brainstem using quantitative multimodal MRI analysis publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00462 – volume: 156 start-page: 1497 year: 2014 ident: 10.1016/j.nicl.2018.01.008_bb0025 article-title: The variability of atlas-based targets in relation to surrounding major fibre tracts in thalamic deep brain stimulation publication-title: Acta Neurochir. doi: 10.1007/s00701-014-2103-z – volume: 417 start-page: 164 year: 2000 ident: 10.1016/j.nicl.2018.01.008_bb0490 article-title: Pallidal and cerebellar afferents to pre-supplementary motor area thalamocortical neurons in the owl monkey: a multiple labeling study publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(20000207)417:2<164::AID-CNE3>3.0.CO;2-6 – volume: 56 start-page: 613 year: 2004 ident: 10.1016/j.nicl.2018.01.008_bb0475 article-title: New approaches for exploring anatomical and functional connectivity in the human brain publication-title: BPS – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.nicl.2018.01.008_bb0310 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 83 start-page: 191 year: 1975 ident: 10.1016/j.nicl.2018.01.008_bb0555 article-title: Afferents to prefrontal cortex from the thalamic mediodorsal nucleus in the rhesus monkey publication-title: Brain Res. doi: 10.1016/0006-8993(75)90930-0 – volume: 64 year: 2009 ident: 10.1016/j.nicl.2018.01.008_bb0090 article-title: The posterior subthalamic area in the treatment of movement disorders: past, present, and future publication-title: Neurosurgery doi: 10.1227/01.NEU.0000345643.69486.BC – volume: 23 start-page: 1146 year: 2008 ident: 10.1016/j.nicl.2018.01.008_bb0510 article-title: Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression publication-title: Mov. Disord. doi: 10.1002/mds.22059 – volume: 66 start-page: 161 year: 2010 ident: 10.1016/j.nicl.2018.01.008_bb0385 article-title: Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging publication-title: Neurosurgery – year: 2013 ident: 10.1016/j.nicl.2018.01.008_bb0430 – volume: 199 start-page: 9 year: 1999 ident: 10.1016/j.nicl.2018.01.008_bb0485 article-title: Pallidal and cerebellar inputs to thalamocortical neurons projecting to the supplementary motor area in Macaca fuscata: a triple-labeling light microscopic study publication-title: Anat. Embryol. doi: 10.1007/s004290050204 – volume: 21 start-page: S259 year: 2006 ident: 10.1016/j.nicl.2018.01.008_bb0215 article-title: Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor publication-title: Mov. Disord. doi: 10.1002/mds.20960 – volume: 81 start-page: 191 year: 2013 ident: 10.1016/j.nicl.2018.01.008_bb0105 article-title: Parcellation of the human substantia nigra based on anatomical connectivity to the striatum publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.043 – volume: 31 start-page: 1116 year: 2006 ident: 10.1016/j.nicl.2018.01.008_bb0580 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 67 year: 2010 ident: 10.1016/j.nicl.2018.01.008_bb0450 article-title: Minimizing brain shift in stereotactic functional neurosurgery publication-title: Neurosurgery – volume: 55 start-page: 1 year: 1973 ident: 10.1016/j.nicl.2018.01.008_bb0545 article-title: Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat publication-title: Brain Res. doi: 10.1016/0006-8993(73)90485-X – volume: 21 start-page: 504 year: 2007 ident: 10.1016/j.nicl.2018.01.008_bb0085 article-title: Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up publication-title: Br. J. Neurosurg. doi: 10.1080/02688690701552278 – volume: 125 start-page: 1063 year: 2016 ident: 10.1016/j.nicl.2018.01.008_bb0010 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 46 start-page: 107 year: 1982 ident: 10.1016/j.nicl.2018.01.008_bb0150 article-title: An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta publication-title: Exp. Brain Res. doi: 10.1007/BF00238104 – volume: 50 start-page: 1077 year: 2003 ident: 10.1016/j.nicl.2018.01.008_bb0055 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10609 – volume: 69 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0515 article-title: Diffusion tensor imaging and colored fractional anisotropy mapping of the ventralis intermedius nucleus of the thalamus publication-title: Neurosurgery doi: 10.1227/NEU.0b013e3182296a42 – volume: 145 start-page: 320 year: 1989 ident: 10.1016/j.nicl.2018.01.008_bb0065 article-title: Treatment of Parkinson tremor by chronic stimulation of the ventral intermediate nucleus of the thalamus publication-title: Rev. Neurol. (Paris) – volume: 4 start-page: 1853 year: 1979 ident: 10.1016/j.nicl.2018.01.008_bb0420 article-title: Projections of the pallidal complex: an autoradiographic study in the cat publication-title: NSC – volume: 135 start-page: 3206 year: 2012 ident: 10.1016/j.nicl.2018.01.008_bb0240 article-title: Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? publication-title: Brain doi: 10.1093/brain/aws023 – volume: 89 start-page: 634 year: 2003 ident: 10.1016/j.nicl.2018.01.008_bb0155 article-title: An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00626.2002 – volume: 6 start-page: 750 year: 2003 ident: 10.1016/j.nicl.2018.01.008_bb0050 article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging publication-title: Nat. Neurosci. doi: 10.1038/nn1075 – volume: 387 start-page: 588 year: 1997 ident: 10.1016/j.nicl.2018.01.008_bb0410 article-title: Multiarchitectonic and stereotactic atlas of the human thalamus publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z – volume: 75 year: 2004 ident: 10.1016/j.nicl.2018.01.008_bb0080 article-title: Assessing tremor reduction and quality of life following thalamic deep brain stimulation for the treatment of tremor in multiple sclerosis publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 337 start-page: 403 year: 1991 ident: 10.1016/j.nicl.2018.01.008_bb0070 article-title: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus publication-title: Lancet doi: 10.1016/0140-6736(91)91175-T – volume: 85 start-page: 1562 year: 2015 ident: 10.1016/j.nicl.2018.01.008_bb0570 article-title: A prospective single-blind study of Gamma Knife thalamotomy for tremor publication-title: Neurology doi: 10.1212/WNL.0000000000002087 – volume: 68 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0110 article-title: Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression publication-title: Neurosurgery doi: 10.1227/NEU.0b013e31820a1a20 – year: 2007 ident: 10.1016/j.nicl.2018.01.008_bb0290 – volume: 37 start-page: 127 year: 1987 ident: 10.1016/j.nicl.2018.01.008_bb0395 article-title: Cortical and subcortical afferent connections of the squirrel monkey's (lateral) premotor cortex: evidence for visual cortical afferents publication-title: Int. J. Neurosci. doi: 10.3109/00207458708987143 – volume: 69 start-page: 269 year: 2011 ident: 10.1016/j.nicl.2018.01.008_bb0235 article-title: Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor publication-title: Ann. Neurol. doi: 10.1002/ana.22361 – volume: 75 year: 2014 ident: 10.1016/j.nicl.2018.01.008_bb0115 article-title: Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study publication-title: Neurosurgery doi: 10.1227/NEU.0000000000000540 – volume: 14 start-page: 11 year: 2004 ident: 10.1016/j.nicl.2018.01.008_bb0190 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 78 start-page: 787 year: 2012 ident: 10.1016/j.nicl.2018.01.008_bb0350 article-title: The tremor network targeted by successful VIM deep brain stimulation in humans publication-title: Neurology doi: 10.1212/WNL.0b013e318249f702 – volume: 16 start-page: 140 year: 2001 ident: 10.1016/j.nicl.2018.01.008_bb0435 article-title: Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor publication-title: Mov. Disord. doi: 10.1002/1531-8257(200101)16:1<140::AID-MDS1025>3.0.CO;2-T – volume: 37 start-page: 1267 year: 2007 ident: 10.1016/j.nicl.2018.01.008_bb0160 article-title: Validation of in vitro probabilistic tractography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.06.022 – volume: 226 start-page: 259 year: 2010 ident: 10.1016/j.nicl.2018.01.008_bb0045 article-title: Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2010.08.019 – volume: 8 year: 2013 ident: 10.1016/j.nicl.2018.01.008_bb0245 article-title: Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs publication-title: PLoS One doi: 10.1371/journal.pone.0061892 – volume: 58 start-page: 39 year: 1993 ident: 10.1016/j.nicl.2018.01.008_bb0075 article-title: Chronic VIM thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal dyskinesias publication-title: Acta Neurochir. Suppl. (Wien) – volume: 79 start-page: 694 year: 2007 ident: 10.1016/j.nicl.2018.01.008_bb0225 article-title: Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.118653 – volume: 9 start-page: 58 year: 2006 ident: 10.1016/j.nicl.2018.01.008_bb0205 article-title: Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 84 start-page: 19 year: 2006 ident: 10.1016/j.nicl.2018.01.008_bb0535 article-title: Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000092683 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.nicl.2018.01.008_bb0185 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 68 start-page: 1846 year: 2012 ident: 10.1016/j.nicl.2018.01.008_bb0300 article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24204 – volume: 31 start-page: 1217 year: 2016 ident: 10.1016/j.nicl.2018.01.008_bb0495 article-title: Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation publication-title: Mov. Disord. doi: 10.1002/mds.26633 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.nicl.2018.01.008_bb0520 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 25 start-page: 1350 year: 2010 ident: 10.1016/j.nicl.2018.01.008_bb0095 article-title: Deep brain stimulation in the posterior subthalamic area in the treatment of essential tremor publication-title: Mov. Disord. doi: 10.1002/mds.22758 – volume: 137 start-page: 109 year: 2014 ident: 10.1016/j.nicl.2018.01.008_bb0210 article-title: Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor publication-title: Brain doi: 10.1093/brain/awt304 – volume: 20 start-page: 870 year: 2003 ident: 10.1016/j.nicl.2018.01.008_bb0015 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00336-7 – volume: 1–12 year: 2016 ident: 10.1016/j.nicl.2018.01.008_bb0455 article-title: Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation publication-title: J. Neurosurg. – volume: 14 start-page: 1 year: 1989 ident: 10.1016/j.nicl.2018.01.008_bb0265 article-title: A new parcellation of the human thalamus on the basis of histochemical staining publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/0165-0173(89)90007-6 – volume: 286 start-page: 237 year: 1983 ident: 10.1016/j.nicl.2018.01.008_bb0030 article-title: Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey publication-title: Brain Res. doi: 10.1016/0165-0173(83)90015-2 – volume: 34 start-page: 144 year: 2007 ident: 10.1016/j.nicl.2018.01.008_bb0060 article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 28 start-page: 1793 year: 2013 ident: 10.1016/j.nicl.2018.01.008_bb0170 article-title: Task force report: scales for screening and evaluating tremor: critique and recommendations publication-title: Mov. Disord. doi: 10.1002/mds.25648 – volume: 375 start-page: 730 year: 2016 ident: 10.1016/j.nicl.2018.01.008_bb0175 article-title: A randomized trial of focused ultrasound thalamotomy for essential tremor publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1600159 – volume: 93 start-page: 400 year: 2015 ident: 10.1016/j.nicl.2018.01.008_bb0380 article-title: Prelemniscal radiations: a new reliable landmark of the thalamic nucleus ventralis intermedius location publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000441393 – volume: 151 start-page: 201 year: 1973 ident: 10.1016/j.nicl.2018.01.008_bb0355 article-title: Organization of pallidothalamic projections in the rhesus monkey publication-title: J. Comp. Neurol. doi: 10.1002/cne.901510302 |
SSID | ssj0000800766 |
Score | 2.4925253 |
Snippet | The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the... AbstractThe ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130 |
SubjectTerms | Aged Connectivity DBS Deep Brain Stimulation Deep brain stimulation DBS Dentate nucleus Dentate nucleus Tremor Dentato-rubro-thalamic tract Dentato-rubro-thalamic tract DRT Diffusion Magnetic Resonance Imaging Diffusion weighted imaging Diffusion weighted imaging DWI DRT DWI Essential Tremor - diagnostic imaging Essential Tremor - physiopathology Essential Tremor - therapy Female Humans Male Middle Aged Parkinson Disease - diagnostic imaging Parkinson Disease - physiopathology Parkinson Disease - therapy Parkinson's disease Parkinson's disease PD Radiology Regular Thalamus - diagnostic imaging Thalamus - physiopathology Tremor Ventrointermedialis Ventrointermedialis VIM Ventrolateral nucleus Ventrolateral nucleus VL VIM |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXxJtAQUZCXFC0cZzEzrEtVBVS4UBBe7MmjtOm6mZX--D3d8ZxIqJFRUJ7StazXs9Mxt_E82DsQ1O4xiryTlSTxpmDKibcHOcSBV67WjifSHvxrTj_mX2d5_MDdjrkwlBYZbD9vU331jrcmQVuzlZtO_uRpkIKyvPU0jvmaIdlpn0S3_xkfM9CiEj5I0saHxNByJ3pw7yo_ixFeGlfvZO6TP6xP_ky_pNtah-G7kdTTmqO-n3q7DF7FAAmP-7X8IQduO4pe3ARjtCfse8-tMX2TSN4jQr429V8ew231Jmeb9zVIqQjdbztcIBb8Yr6SHA0BovQ7Isj1OXbNUXpPmeXZ18uT8_j0FUhtkqKLZq_vARQSV2VDg01ujTQSCFBa4HCkVZUiircZBmAxg8iFC2kq6ywTarByhfssFt27hXjZZNaAGtVVukM0roq0lRBU2ZNDiIBiJgYWGlsqDhOjS9uzRBadmOI_YbYbxJhkP0R-zTSrPp6G_eOPiEJjSOpVra_sVxfmaAspnJ1KbTStsFVIfzRhYKcHGENUKqqiJgc5GuGdFQ0oPhD7b1Tq79RuU2wARsjzCY1idnT04jlI-VE1f854_tB-QzaADrYgc4tdzgTgkwUGSLFiL3slXFkCcI5ckkT_L8TNZ3wbPpN1177OuO5KgkCRuxjr9ATks_tr2PP5t1iZwg2Jtnr_1zYG_aQrvoXW0fscLveubcI9bbVO_8s3wF_r1Iq priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqIiEuiDdpARkJcUFBcV52DgiVR1UhLRxoUW_W2HHarXazZTdbwb9nxnEWRV2VC8otseNkZjz-xp4HY6-a0jVWknUimzTOHZiYcHNcZMjw2tXC-UDaydfy6CT_clqc7rCh3FEg4GqraUf1pE6Ws7e_fv5-jxP-3V9fLUoiS25ayqfgpNjfW7gySZqokwD3LwI6kv74Mk1FFotCpSGOZvtrRmuVT-k_WrKuQ9LrnpWj_KN-zTq8x-4GsMkPeum4z3Zc-4DdnoTj9Ifsm3dzsX0BCV6jMF65mnfnMKMq9XzlzuYhNKnl0xYbuEtuqKYER8UwD4W_OMJe3i3JY_cROz78fPzxKA4VFmIrM9GhKiwqAJnUpnKotNG8gSYTGSglkFGZFUZStps8B1B4IVpRInPGCtukCmz2mO22i9Y9ZbxqUgtgrcyNyiGtTZmmEpoqbwoQCUDExEBKbUP2cSqCMdODm9mFJvJrIr9OhEbyR-zNps9ln3vjxtYfiEOblpQ3299YLM90mIbauLoSSirb4F8hFFKlhIKMYgVQSVNGLBv4q4fQVFSm-KLpjUPLbb3cahBnLfQq1Yn-TnJHYoeK1G8mRazY9AyQp4cy_xzx5SB8GvUBHfJA6xZrHAkBJ7IMUWPEnvTCuCEJQjsyTxP83pGYjmg2ftJOz33O8UJWBAcj9roX6FGXT9MfB57M6_laE4RM8r3_wY19dof-ud_xesZ2u-XaPUcM2JkXfmL_AQFIWc0 priority: 102 providerName: Scholars Portal |
Title | Connectivity derived thalamic segmentation in deep brain stimulation for tremor |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158218300093 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158218300093 https://dx.doi.org/10.1016/j.nicl.2018.01.008 https://www.ncbi.nlm.nih.gov/pubmed/29387530 https://www.proquest.com/docview/1993385283 https://pubmed.ncbi.nlm.nih.gov/PMC5790021 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-151204 https://doaj.org/article/bed91878cf854901867a506148aa97b6 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k3KQ0ZCXFBE7CRr59gCVUFaOFDQ3qyx49CtumnVzfL7mbGd1UZF7QWtlMOuvU5mxuNv4vE3jL3tZr5ziqIT1cm88mBzws15XaLCW98KHw7Szr_Njn9WXxf1YqfUF-WERXrgKLgP1reN0Eq7TmMoUxD_GtQUxmiARtlAto1r3k4wdZZwkAoblVKKMhe1lunETEzuItZZyuvSgbOTakvurEqBvH-yOF0Hn9dzKCdMo2F1OnrA7idYyQ_i4zxkd3z_iN2dp43zx-x7SGhxsVQEb9Hs_viWD6dwTvXo-dr_XqVDSD1f9tjAX3JL1SM4uoBVKvHFEeDy4Ypyc5-wk6PPJx-P81RLIXeqFAM6vboBUEVrG4_uGQMZ6EpRgtYCVVI6YRXx2lQVgMYP4hItSm-dcJ3U4MqnbK-_6P1zxptOOgDnVGV1BbK1MykVdE3V1SAKgIyJUZTGJZ5xKndxbsaEsjND4jckflMIg-LP2Pttn8vIsnFj60PS0LYlMWSHL9BuTLIbc5vdZKwc9WvGQ6joNvGPljcOrf7Vy6_TzF8bYdbSFOYH2R2ZHbrM8NooY_W2ZwI3EbTcOuKb0fgMznzazoHeX2xwJISWqDLEhxl7Fo1xKxIEcRSIFni_EzOdyGz6S788DezitWoI-GXsXTToSZdPy18HQcyb1cYQWCyq_f-hjRfsHj1zfLf1ku0NVxv_CtHeYF-HiY3XL4tDvM4r_RdwY1LU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkICXic8RPo2EeEFR4zipncdtMHWwjgcK6pvlOM4WtKZVm-7v585xIqKiIaG8Jb64vruefxffByHvy7EtjUDvRJRxmFidh4ibw5SDwAtbMOsSaacX48mP5Ms8ne-Rky4XBsMqve1vbbqz1v7OyHNztKqq0fc4ZpxhnqfkzjG_Q-4CGhDYv-Fsftx_aEFIJNyZJRKESOGTZ9o4LyxAiyFe0pXvxDaTf2xQro7_YJ_axaG74ZSDoqNuozp9SA48wqRH7SIekT1bPyb3pv4M_Qn55mJbTNs1ghaggTe2oM2VvsbW9HRjLxc-H6mmVQ0D7Irm2EiCgjVY-G5fFLAubdYYpvuUzE4_z04moW-rEBrBWQP2L820FlGRZxYsNfg0uuSMaykZSIcblgsscZMkWku4AKJIxm1umCljqQ1_RvbrZW2fE5qVsdHaGJHkMtFxkY_jWOgyS8pUs0jrgLCOlcr4kuPY-eJadbFlvxSyXyH7VcQUsD8gH3uaVVtw49bRxyihfiQWy3Y3lutL5bVF5bbImBTSlLAqwD9yLHSKnrDUOhP5OCC8k6_q8lHBgsKLqlunFn-jshtvBDaKqU2sIrWjqAFJe8qBrv9zxned8ikwAniyo2u73MJMgDJBZAAVA3LYKmPPEsBz6JNG8HsHajrg2fBJXV25QuOpyBADBuRDq9ADkk_VzyPH5u1iqxA3RsmL_1zYW3J_Mpueq_Ozi68vyQN80n7lekX2m_XWvgbc1-Rv3P_6N2vIVUk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectivity+derived+thalamic+segmentation+in+deep+brain+stimulation+for+tremor&rft.jtitle=NeuroImage+clinical&rft.au=Harith+Akram&rft.au=Viswas+Dayal&rft.au=Philipp+Mahlknecht&rft.au=Dejan+Georgiev&rft.date=2018-01-01&rft.pub=Elsevier&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=18&rft.spage=130&rft.epage=142&rft_id=info:doi/10.1016%2Fj.nicl.2018.01.008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bed91878cf854901867a506148aa97b6 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158218X00023%2Fcov150h.gif |