Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have ev...
Saved in:
Published in | PLoS genetics Vol. 7; no. 2; p. e1001296 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.02.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7404 1553-7390 1553-7404 |
DOI | 10.1371/journal.pgen.1001296 |
Cover
Loading…
Abstract | Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. |
---|---|
AbstractList | Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the a-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. Adaptive radiation is the rapid origination of an array of species by the divergent colonization of disparate ecological niches. In the case of pathogenic bacteria, radiations can lead to the emergence of novel human pathogens. Being divergently adapted to a range of different mammalian hosts, including humans as reservoir or incidental hosts, the genus Bartonella represents a suitable model to study genomic mechanisms underpinning divergent adaptation of pathogens. Here we show that two distinct lineages of Bartonella have radiated in parallel, resulting in two arrays of evolutionary distinct species adapted to overlapping sets of mammalian hosts. Such parallelisms display excellent models to reveal insights into the genetic mechanisms underlying these independent evolutionary processes. Our genome-wide analysis identifies a striking evolutionary parallelism in a horizontally-acquired protein secretion system in the two lineages. The parallel evolutionary trajectory of this system in the two lineages is characterized by the convergent origination of a wide array of adaptive functions dedicated to the cellular interaction within the mammalian hosts. The parallel evolution of the two radiating lineages on the ecological as well as on the molecular level suggests that the horizontal acquisition and the functional diversification of the secretion system display an evolutionary key innovation underlying adaptive evolution. Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. |
Audience | Academic |
Author | Lajus, Aurélie Schuster, Stephan C. Engel, Philipp Liesch, Marius Dehio, Christoph Calteau, Alexandra Chang, Chao-Chin Maruyama, Soichi Lanz, Christa Salzburger, Walter Médigue, Claudine |
AuthorAffiliation | 2 Zoological Institute, University of Basel, Basel, Switzerland 4 Nihon University, Fujisawa, Kanagawa, Japan 5 Max Planck Institute for Developmental Biology, Tübingen, Germany 6 Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope and CNRS-UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France 7 Center for Comparative Genomics and Bioinformatics, Penn State University, University Park, Pennsylvania, United States of America University of Toronto, Canada 1 Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland 3 College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan |
AuthorAffiliation_xml | – name: 3 College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan – name: University of Toronto, Canada – name: 2 Zoological Institute, University of Basel, Basel, Switzerland – name: 5 Max Planck Institute for Developmental Biology, Tübingen, Germany – name: 7 Center for Comparative Genomics and Bioinformatics, Penn State University, University Park, Pennsylvania, United States of America – name: 1 Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland – name: 4 Nihon University, Fujisawa, Kanagawa, Japan – name: 6 Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope and CNRS-UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France |
Author_xml | – sequence: 1 givenname: Philipp surname: Engel fullname: Engel, Philipp – sequence: 2 givenname: Walter surname: Salzburger fullname: Salzburger, Walter – sequence: 3 givenname: Marius surname: Liesch fullname: Liesch, Marius – sequence: 4 givenname: Chao-Chin surname: Chang fullname: Chang, Chao-Chin – sequence: 5 givenname: Soichi surname: Maruyama fullname: Maruyama, Soichi – sequence: 6 givenname: Christa surname: Lanz fullname: Lanz, Christa – sequence: 7 givenname: Alexandra surname: Calteau fullname: Calteau, Alexandra – sequence: 8 givenname: Aurélie surname: Lajus fullname: Lajus, Aurélie – sequence: 9 givenname: Claudine surname: Médigue fullname: Médigue, Claudine – sequence: 10 givenname: Stephan C. surname: Schuster fullname: Schuster, Stephan C. – sequence: 11 givenname: Christoph surname: Dehio fullname: Dehio, Christoph |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21347280$$D View this record in MEDLINE/PubMed https://hal.science/hal-04580576$$DView record in HAL |
BookMark | eNqVk19v0zAUxSM0xP7AN0AQCQm0hxY7duKEB6QyDVqpYlM39mq5zk3qyY1L7ExMfHlu1ha1E0KgKHJ08zvH9rHvcXTQuAai6CUlQ8oEfX_rurZRdriqoRlSQmhSZE-iI5qmbCA44Qc734fRsfe3hLA0L8Sz6DChjIskJ0fRz0vVKmvBxud3znbBuCZ2Vazi6_sVxJOb-Ap0Cw_lq3sfYBmbJp6p0qhgmjqemgZUDb7XhAXEY-fDYAY-tEYHKONPCofWKBtfqrBwuFQstQF3Yq16Hj2tlPXwYjOeRN8-n1-fjQfTiy-Ts9F0oAWjYcA51XSulRYlSYWutCq5UKqktIC5LgqmK5Gleo4ZFMAFh6IAILxKMk05TefsJHq99l1Z5-UmNy8powwDEjlHYrImSqdu5ao1S9XeS6eMfCi4tpa4aqMtyCKHKi3LPGGC8YJXKsk10zlP5lmpoaLo9XEzWzdfAtaagAnvme7_acxC1u5OMsIEp73B6dpg8Ug2Hk1lXyM8zTGJ7K5n320ma933DnOXS-N1H24DrvMyTxkGlJGefLMma4W7ME3lcHLd03KUpCRLE3yRGv6BwqeEpdF4bJXB-p7gdE-ATIAfoVad93JyNfsP9uu_sxc3--zbHXYByoaF31xmvw--2j2a3-Fu2wGBD2tAt877FiqpTVC9D8ZgrKRE9r23vUOy7z256T0U80firf9fZb8A_b0yMw |
CitedBy_id | crossref_primary_10_1073_pnas_2310348121 crossref_primary_10_1038_nature10729 crossref_primary_10_1093_bioinformatics_btt554 crossref_primary_10_1146_annurev_micro_102215_095245 crossref_primary_10_1186_s13071_023_05918_7 crossref_primary_10_1371_journal_pgen_1002222 crossref_primary_10_1371_journal_pntd_0002919 crossref_primary_10_3390_microorganisms9081645 crossref_primary_10_1371_journal_ppat_1008548 crossref_primary_10_1371_journal_pone_0053705 crossref_primary_10_1186_s13071_023_05810_4 crossref_primary_10_2139_ssrn_4109528 crossref_primary_10_3389_fmicb_2019_00921 crossref_primary_10_1021_acs_chemrev_7b00145 crossref_primary_10_2217_fmb_13_77 crossref_primary_10_1371_journal_pgen_1003393 crossref_primary_10_1371_journal_pone_0068956 crossref_primary_10_1093_gbe_evu169 crossref_primary_10_12980_APJTB_4_2014C742 crossref_primary_10_1128_CMR_05009_11 crossref_primary_10_1186_s13071_017_2372_5 crossref_primary_10_1371_journal_ppat_1004187 crossref_primary_10_1016_j_str_2016_10_010 crossref_primary_10_1038_ismej_2016_201 crossref_primary_10_1128_AEM_03159_14 crossref_primary_10_1016_j_meegid_2012_06_009 crossref_primary_10_1128_CMR_00013_17 crossref_primary_10_1371_journal_ppat_1012591 crossref_primary_10_1111_j_1574_6976_2012_00324_x crossref_primary_10_1093_femsre_fuac012 crossref_primary_10_9778_cmajo_20210180 crossref_primary_10_1371_journal_pgen_1007077 crossref_primary_10_1016_j_clinmicnews_2014_02_001 crossref_primary_10_1111_cmi_13068 crossref_primary_10_3390_pathogens10060686 crossref_primary_10_3389_fmicb_2021_762582 crossref_primary_10_1016_j_actatropica_2020_105672 crossref_primary_10_1016_j_cimid_2019_05_010 crossref_primary_10_1093_molbev_mss221 crossref_primary_10_3389_fmicb_2018_03100 crossref_primary_10_1016_j_resmic_2013_03_012 crossref_primary_10_1002_pmic_201300470 crossref_primary_10_1128_MRA_00769_20 crossref_primary_10_1186_1471_2148_12_65 crossref_primary_10_1111_mec_12261 crossref_primary_10_3201_eid2303_161476 crossref_primary_10_3389_fmicb_2022_838267 crossref_primary_10_1038_srep39197 crossref_primary_10_1016_j_mib_2014_11_007 crossref_primary_10_3390_pathogens10101331 crossref_primary_10_1099_mgen_0_001045 crossref_primary_10_3390_pathogens10091209 crossref_primary_10_3390_pathogens14010006 crossref_primary_10_7589_2015_05_131 crossref_primary_10_1007_s00436_017_5620_x crossref_primary_10_1371_journal_ppat_1003556 crossref_primary_10_1016_j_cimid_2024_102245 crossref_primary_10_1016_j_chom_2020_01_015 crossref_primary_10_1371_journal_pntd_0006865 crossref_primary_10_1111_j_1462_5822_2012_01806_x crossref_primary_10_1089_vbz_2014_1606 crossref_primary_10_1016_j_tim_2023_05_011 crossref_primary_10_1016_j_meegid_2021_104719 crossref_primary_10_1093_gbe_evx042 crossref_primary_10_1111_tbed_13290 crossref_primary_10_1101_gr_151035_112 crossref_primary_10_1016_j_tcb_2017_03_004 crossref_primary_10_1111_cmi_13004 crossref_primary_10_1111_tbed_13762 crossref_primary_10_1371_journal_pntd_0001248 crossref_primary_10_1186_s13071_018_3240_7 crossref_primary_10_1016_j_meegid_2020_104496 crossref_primary_10_1186_1297_9716_43_15 crossref_primary_10_1093_femsec_fiad154 crossref_primary_10_3389_fmicb_2023_1289671 crossref_primary_10_1371_journal_pntd_0004712 crossref_primary_10_1093_molbev_msx299 crossref_primary_10_1093_molbev_msz155 crossref_primary_10_1128_AEM_01409_14 |
Cites_doi | 10.1128/JCM.35.6.1327-1331.1997 10.1093/molbev/msi124 10.1038/nrmicro2174 10.1128/JCM.41.2.645-650.2003 10.1086/509049 10.1038/ng.2007.38 10.1099/00207713-52-1-165 10.1128/IAI.68.12.6750-6757.2000 10.1128/AEM.00071-08 10.1128/JCM.35.7.1813-1818.1997 10.1016/S0378-1135(01)00304-2 10.1093/nar/gki471 10.1093/molbev/msm092 10.1099/ijs.0.02770-0 10.1073/pnas.0305659101 10.3201/eid1310.070570 10.1093/nar/gkj406 10.1099/00207713-52-2-383 10.1073/pnas.0507944102 10.1128/JCM.01207-07 10.1111/j.1574-6968.1996.tb08501.x 10.1099/00207713-50-6-1973 10.1073/pnas.0802343105 10.3201/eid1504.081223 10.1093/bioinformatics/btl474 10.1056/NEJMoa065987 10.1038/nature03959 10.1093/bioinformatics/17.8.754 10.1093/molbev/msm252 10.1016/S0147-9571(99)00075-2 10.4269/ajtmh.1997.57.578 10.1099/00207713-51-4-1557 10.1038/nrmicro1209 10.1086/514201 10.1371/journal.pgen.1000546 10.1371/journal.ppat.0020115 10.1038/nature07893 10.1371/journal.ppat.1000946 10.3201/eid1005.030430 10.1073/pnas.0405284101 10.1111/j.1462-5822.2009.01313.x 10.1086/314824 10.1089/vbz.2009.0135 10.1128/JCM.01351-08 10.1111/j.1365-294X.2010.04646.x 10.1111/j.1462-5822.2009.01302.x 10.1093/nar/gkg584 10.1086/344054 10.1128/CDLI.6.1.41-44.1999 10.1126/science.1118052 10.1093/bioinformatics/bti079 10.1371/journal.pone.0005818 10.1371/journal.pgen.0020209 10.1073/pnas.0406796102 10.1002/0471250953.bi0604s00 10.1111/j.1469-8137.2007.02293.x 10.1038/nchembio0609-378 10.3201/eid1512.081692 10.1093/nar/gkg590 10.1093/oxfordjournals.molbev.a004148 10.1099/00207713-46-4-891 10.1099/00207713-45-1-1 10.4269/ajtmh.2002.66.622 10.1073/pnas.0903585106 10.1007/s00248-009-9488-x 10.1093/nar/22.22.4673 10.1128/IAI.71.2.814-821.2003 10.4269/ajtmh.2009.09-0294 10.1051/vetres/2009010 10.1006/jmbi.1999.3310 10.1159/000235769 10.1534/genetics.106.059527 10.1111/j.1365-294X.2008.03981.x 10.1128/JCM.42.8.3816-3818.2004 10.4269/ajtmh.2009.81.55 10.1084/jem.193.9.1077 10.1128/JCM.40.12.4691-4699.2002 10.1099/jmm.0.2008/004671-0 10.1093/molbev/msm088 10.1146/annurev.micro.58.030603.123700 10.1371/journal.pone.0009765 10.1128/JCM.41.8.4001-4002.2003 10.1126/science.1166382 10.1016/S0076-6879(05)95038-6 10.3201/eid0603.000313 10.1089/vbz.2005.5.402 10.1002/0471250953.bi0605s00 10.1016/j.chom.2009.03.004 10.1016/j.cimid.2008.07.011 10.1292/jvms.09-0466 10.1046/j.1365-2958.2003.03650.x 10.1017/S0950268802008075 10.1186/1471-2164-11-152 10.1017/S095026880100526X 10.1099/00207713-48-4-1333 10.1051/vetres/2009011 10.1111/j.1574-6941.2007.00364.x 10.1128/JCM.33.8.2107-2113.1995 10.1038/27900 10.1099/ijs.0.03033-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 Public Library of Science Attribution Engel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2011 2011 Engel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Engel P, Salzburger W, Liesch M, Chang C-C, Maruyama S, et al. (2011) Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella. PLoS Genet 7(2): e1001296. doi:10.1371/journal.pgen.1001296 |
Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: Attribution – notice: Engel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2011 – notice: 2011 Engel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Engel P, Salzburger W, Liesch M, Chang C-C, Maruyama S, et al. (2011) Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella. PLoS Genet 7(2): e1001296. doi:10.1371/journal.pgen.1001296 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 1XC VOOES 5PM DOA |
DOI | 10.1371/journal.pgen.1001296 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Parallel Adaptive Radiations of Pathogens |
EISSN | 1553-7404 |
ExternalDocumentID | 1313553784 oai_doaj_org_article_98ef5dd82373494fa28c3c842b6dcef1 PMC3037411 oai_HAL_hal_04580576v1 A250652065 21347280 10_1371_journal_pgen_1001296 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute grantid: 55005501 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 7X8 1XC VOOES 5PM PUEGO 3V. AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c731t-441c1bcac7d057cfcad47aad119ebc993cf765cb1009e474e99ee04f26c1415b3 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Oct 01 00:20:34 EDT 2023 Wed Aug 27 01:23:35 EDT 2025 Thu Aug 21 14:09:13 EDT 2025 Fri May 09 12:27:10 EDT 2025 Fri Jul 11 01:02:33 EDT 2025 Tue Jun 17 21:27:03 EDT 2025 Tue Jun 10 20:33:53 EDT 2025 Fri Jun 27 04:41:22 EDT 2025 Fri Jun 27 04:40:36 EDT 2025 Fri Jun 27 05:11:27 EDT 2025 Thu May 22 21:24:21 EDT 2025 Mon Jul 21 05:47:18 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Tue Jul 01 02:38:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c731t-441c1bcac7d057cfcad47aad119ebc993cf765cb1009e474e99ee04f26c1415b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: PE WS CM CD. Performed the experiments: PE ML CL SCS. Analyzed the data: PE WS ML AC AL CM SCS CD. Contributed reagents/materials/analysis tools: CCC SM. Wrote the paper: PE WS CD. |
ORCID | 0000-0002-5871-9347 0000-0002-3905-1054 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1001296 |
PMID | 21347280 |
PQID | 853993601 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1313553784 doaj_primary_oai_doaj_org_article_98ef5dd82373494fa28c3c842b6dcef1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3037411 hal_primary_oai_HAL_hal_04580576v1 proquest_miscellaneous_853993601 gale_infotracmisc_A250652065 gale_infotracacademiconefile_A250652065 gale_incontextgauss_ISR_A250652065 gale_incontextgauss_ISN_A250652065 gale_incontextgauss_IOV_A250652065 gale_healthsolutions_A250652065 pubmed_primary_21347280 crossref_citationtrail_10_1371_journal_pgen_1001296 crossref_primary_10_1371_journal_pgen_1001296 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | TA Rhomberg (ref19) 2009; 11 JC Obenauer (ref54) 2003; 31 JB Henn (ref88) 2009; 15 CM Alsmark (ref27) 2004; 101 MF Minnick (ref45) 2003; 71 L Sandegren (ref50) 2009; 7 BB Chomel (ref38) 2009; 40 F Scheidegger (ref20) 2009; 11 R Schulein (ref17) 2005; 102 ME Eremeeva (ref29) 2007; 356 PM Brakefield (ref7) 2006; 168 JD Thompson (ref59) 1994; 22 BA Ellis (ref83) 1999; 180 DL Kordick (ref33) 1997; 35 MY Kosoy (ref95) 1997; 57 JB Losos (ref10) 2009; 457 DA Bemis (ref71) 2007; 13 R Heller (ref34) 1997; 35 DM Li (ref96) 2006; 27 ML Yarbrough (ref26) 2009; 5 M Vayssier-Taussat (ref22) 2010; 6 K Inoue (ref92) 2008; 74 J Sikorski (ref6) 2005; 102 D Schluter (ref1) 2000 B Celebi (ref78) 2010; 72 G Marignac (ref13) 2010; 33 P Engel (ref67) 2009; 6 B Ying (ref104) 2002; 66 A Tea (ref103) 2004; 10 JA Carroll (ref43) 2000; 68 JAA Nylander (ref64) 2004 D Vallenet (ref58) 2006; 34 D Posada (ref63) 2003; 6 R Heller (ref87) 1998; 48 Pt 4 D Bermond (ref74) 2000; 50 ZI Johnson (ref4) 2006; 311 PMD Harvey P.H. (ref11) 1991 C Dehio (ref55) 2001; 51 Y Bai (ref70) 2009; 81 MR Kronforst (ref9) 2006; 174 C Dehio (ref44) 2004; 58 K Tamura (ref60) 2007; 24 K Inoue (ref91) 2009; 57 JB Henn (ref32) 2009; 47 M Margulies (ref56) 2005; 437 BB Chomel (ref39) 2009; 40 B Nystedt (ref24) 2008; 25 HD Huang (ref53) 2005; 33 C Jardine (ref93) 2005; 5 JE Clarridge 3rd (ref81) 1995; 33 GM Ihler (ref37) 1996; 144 R Maillard (ref98) 2004; 54 EC Berglund (ref41) 2010; 19 CC Chang (ref80) 2000; 6 M Kosoy (ref94) 2003; 41 M Arvand (ref68) 2010; 5 F Duponchelle (ref8) 2008; 105 Z Zeaiter (ref105) 2002; 52 N Blom (ref52) 1999; 294 JW Lin (ref31) 2008; 57 EC Berglund (ref28) 2009; 5 W Ma (ref47) 2006; 2 A Seubert (ref23) 2003; 49 RJ Birtles (ref75) 1995; 45 HL Saenz (ref16) 2007; 39 FJ Marquez (ref99) 2010; 10 S Bocs (ref57) 2003; 31 VA Gundi (ref84) 2004; 42 AM Pretorius (ref101) 2004; 54 JC Wilgenbusch (ref61) 2003; 6 J Chamberlin (ref79) 2002; 186 AC Frank (ref48) 2005; 22 R Schulein (ref14) 2001; 193 S Harrus (ref86) 2009; 81 P Zhang (ref15) 2004; 101 RJ Birtles (ref76) 2001; 126 EC Berglund (ref72) 2010; 11 C Dehio (ref12) 2005; 3 SL Pond (ref66) 2005; 21 B Dillon (ref82) 2002; 40 JM Rolain (ref102) 2003; 41 MC Schmid (ref18) 2006; 2 SL Lydy (ref97) 2008; 46 M Selbach (ref21) 2009; 5 MY Kosoy (ref40) 2000; 23 M Holmberg (ref90) 2003; 130 SL Kosakovsky Pond (ref35) 2006; 22 Y Ogura (ref49) 2009; 106 EK Hofmeister (ref89) 1998; 177 PB Rainey (ref5) 1998; 394 LN Kinch (ref51) 2009; 4 AN Gurfield (ref85) 2001; 80 ML Yarbrough (ref25) 2009; 323 PR Grant (ref2) 2008 OR Bininda-Emonds (ref36) 2005; 395 Z Yang (ref65) 2007; 24 Y Bai (ref69) 2007; 61 W Salzburger (ref3) 2009; 18 K Inoue (ref30) 2009; 15 HC McCann (ref46) 2008; 177 D Bermond (ref73) 2002; 52 RJ Birtles (ref77) 1996; 46 Z Yang (ref42) 2002; 19 JP Huelsenbeck (ref62) 2001; 17 EL Marston (ref100) 1999; 6 12232839 - J Infect Dis. 2002 Oct 1;186(7):983-90 20333257 - PLoS One. 2010;5(3):e9765 19380118 - Cell Host Microbe. 2009 Apr 23;5(4):397-403 11295338 - Vet Microbiol. 2001 May 21;80(2):185-98 15487942 - Annu Rev Microbiol. 2004;58:365-90 15347808 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13630-5 20059317 - Vector Borne Zoonotic Dis. 2010 Oct;10(8):731-4 14742483 - Int J Syst Evol Microbiol. 2004 Jan;54(Pt 1):215-20 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 20234114 - J Vet Med Sci. 2010 Aug;72(8):969-73 9392599 - Am J Trop Med Hyg. 1997 Nov;57(5):578-88 9828434 - Int J Syst Bacteriol. 1998 Oct;48 Pt 4:1333-9 17110367 - Bioinformatics. 2006 Dec 15;22(24):3096-8 18428705 - Curr Protoc Bioinformatics. 2003 Feb;Chapter 6:Unit 6.5 18428704 - Curr Protoc Bioinformatics. 2003 Feb;Chapter 6:Unit 6.4 15545418 - Int J Syst Evol Microbiol. 2004 Nov;54(Pt 6):1959-67 20097421 - Comp Immunol Microbiol Infect Dis. 2010 Mar;33(2):95-107 12454174 - J Clin Microbiol. 2002 Dec;40(12):4691-9 19503829 - PLoS One. 2009;4(6):e5818 12201602 - Am J Trop Med Hyg. 2002 May;66(5):622-7 20202191 - BMC Genomics. 2010;11:152 11837299 - Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):165-71 8870245 - FEMS Microbiol Lett. 1996 Oct 15;144(1):1-11 17121462 - PLoS Pathog. 2006 Nov;2(11):e115 19018019 - J Med Microbiol. 2008 Dec;57(Pt 12):1496-501 11342592 - J Exp Med. 2001 May 7;193(9):1077-86 18606803 - Appl Environ Microbiol. 2008 Aug;74(16):5086-92 18258009 - Emerg Infect Dis. 2007 Oct;13(10):1565-7 19556567 - Am J Trop Med Hyg. 2009 Jul;81(1):55-8 20465583 - Mol Ecol. 2010 Jun;19(11):2241-55 18094131 - J Clin Microbiol. 2008 Feb;46(2):627-37 19302579 - Cell Microbiol. 2009 Jun;11(6):927-45 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 19578403 - PLoS Genet. 2009 Jul;5(7):e1000546 19039103 - Science. 2009 Jan 9;323(5911):269-72 16064054 - Nat Rev Microbiol. 2005 Aug;3(8):621-31 9466529 - J Infect Dis. 1998 Feb;177(2):409-16 10353885 - J Infect Dis. 1999 Jul;180(1):220-4 7857789 - Int J Syst Bacteriol. 1995 Jan;45(1):1-8 19609259 - Nat Rev Microbiol. 2009 Aug;7(8):578-88 12940985 - Mol Microbiol. 2003 Sep;49(5):1253-66 16417436 - Vector Borne Zoonotic Dis. 2005 Winter;5(4):402-9 15509596 - Bioinformatics. 2005 Mar 1;21(5):676-9 20548954 - PLoS Pathog. 2010;6(6):e1000946 15297537 - J Clin Microbiol. 2004 Aug;42(8):3816-8 9665128 - Nature. 1998 Jul 2;394(6688):69-72 19331727 - Emerg Infect Dis. 2009 Apr;15(4):526-32 19448605 - Nat Chem Biol. 2009 Jun;5(6):378-9 19109472 - J Clin Microbiol. 2009 Mar;47(3):787-90 19961681 - Emerg Infect Dis. 2009 Dec;15(12):1984-7 15746011 - Mol Biol Evol. 2005 May;22(5):1325-36 10827123 - Emerg Infect Dis. 2000 May-Jun;6(3):306-11 8863415 - Int J Syst Bacteriol. 1996 Oct;46(4):891-7 18037886 - Nat Genet. 2007 Dec;39(12):1469-76 19696500 - Genome Dyn. 2009;6:158-69 16875539 - Zhonghua Liu Xing Bing Xue Za Zhi. 2006 Apr;27(4):333-8 10600390 - J Mol Biol. 1999 Dec 17;294(5):1351-62 11349984 - Epidemiol Infect. 2001 Apr;126(2):323-9 19212401 - Nature. 2009 Feb 12;457(7231):830-6 12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41 11038125 - Comp Immunol Microbiol Infect Dis. 2000 Oct;23(4):221-38 12613756 - Epidemiol Infect. 2003 Feb;130(1):149-57 19272295 - Vet Res. 2009 Jul-Aug;40(4):27 17194219 - PLoS Genet. 2006 Dec;2(12):e209 16407324 - Nucleic Acids Res. 2006;34(1):53-65 15642951 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):856-61 12032247 - Mol Biol Evol. 2002 Jun;19(6):908-17 17554119 - N Engl J Med. 2007 Jun 7;356(23):2381-7 18992003 - Mol Ecol. 2009 Jan;18(2):169-85 15865993 - Methods Enzymol. 2005;395:745-57 11083791 - Infect Immun. 2000 Dec;68(12):6750-7 12540561 - Infect Immun. 2003 Feb;71(2):814-21 16783007 - Genetics. 2006 Sep;174(1):535-9 19219487 - Microb Ecol. 2009 Apr;57(3):534-41 19284965 - Vet Res. 2009 Mar-Apr;40(2):29 19416269 - Cell Microbiol. 2009 Jul;11(7):1088-101 9874661 - Clin Diagn Lab Immunol. 1999 Jan;6(1):41-4 15210978 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9716-21 18824688 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15475-80 19861616 - Am J Trop Med Hyg. 2009 Nov;81(5):811-6 16056220 - Nature. 2005 Sep 15;437(7057):376-80 17672850 - FEMS Microbiol Ecol. 2007 Sep;61(3):438-48 19815525 - Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17939-44 18078471 - New Phytol. 2008;177(1):33-47 12904442 - J Clin Microbiol. 2003 Aug;41(8):4001-2 17109328 - Am Nat. 2006 Dec;168 Suppl 6:S4-13 9163438 - J Clin Microbiol. 1997 Jun;35(6):1327-31 11155970 - Int J Syst Evol Microbiol. 2000 Nov;50 Pt 6:1973-9 11524383 - Bioinformatics. 2001 Aug;17(8):754-5 12574261 - J Clin Microbiol. 2003 Feb;41(2):645-50 12824403 - Nucleic Acids Res. 2003 Jul 1;31(13):3723-6 16556835 - Science. 2006 Mar 24;311(5768):1737-40 16249328 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15924-9 7559957 - J Clin Microbiol. 1995 Aug;33(8):2107-13 15216849 - Emerg Infect Dis. 2004 May;10(5):963-4 18065487 - Mol Biol Evol. 2008 Feb;25(2):287-300 11491358 - Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1557-65 15980458 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W226-9 9196200 - J Clin Microbiol. 1997 Jul;35(7):1813-8 11931146 - Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):383-90 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 |
References_xml | – volume: 35 start-page: 1327 year: 1997 ident: ref34 article-title: Prevalence of Bartonella henselae and Bartonella clarridgeiae in stray cats. publication-title: J Clin Microbiol doi: 10.1128/JCM.35.6.1327-1331.1997 – volume: 22 start-page: 1325 year: 2005 ident: ref48 article-title: Functional divergence and horizontal transfer of type IV secretion systems. publication-title: Mol Biol Evol doi: 10.1093/molbev/msi124 – volume: 7 start-page: 578 year: 2009 ident: ref50 article-title: Bacterial gene amplification: implications for the evolution of antibiotic resistance. publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2174 – volume: 41 start-page: 645 year: 2003 ident: ref94 article-title: Bartonella strains from ground squirrels are identical to Bartonella washoensis isolated from a human patient. publication-title: J Clin Microbiol doi: 10.1128/JCM.41.2.645-650.2003 – volume: 168 start-page: S4 year: 2006 ident: ref7 article-title: Exploring evolutionary constraints is a task for an integrative evolutionary biology. publication-title: Am Nat doi: 10.1086/509049 – volume: 39 start-page: 1469 year: 2007 ident: ref16 article-title: Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors. publication-title: Nat Genet doi: 10.1038/ng.2007.38 – volume: 52 start-page: 165 year: 2002 ident: ref105 article-title: Phylogenetic classification of Bartonella species by comparing groEL sequences. publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-52-1-165 – volume: 68 start-page: 6750 year: 2000 ident: ref43 article-title: Hemin-binding surface protein from Bartonella quintana. publication-title: Infect Immun doi: 10.1128/IAI.68.12.6750-6757.2000 – volume: 74 start-page: 5086 year: 2008 ident: ref92 article-title: Prevalence and genetic diversity of Bartonella species isolated from wild rodents in Japan. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00071-08 – volume: 35 start-page: 1813 year: 1997 ident: ref33 article-title: Bartonella clarridgeiae, a newly recognized zoonotic pathogen causing inoculation papules, fever, and lymphadenopathy (cat scratch disease). publication-title: J Clin Microbiol doi: 10.1128/JCM.35.7.1813-1818.1997 – volume: 80 start-page: 185 year: 2001 ident: ref85 article-title: Epidemiology of Bartonella infection in domestic cats in France. publication-title: Vet Microbiol doi: 10.1016/S0378-1135(01)00304-2 – volume: 33 start-page: W226 year: 2005 ident: ref53 article-title: KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. publication-title: Nucleic Acids Res doi: 10.1093/nar/gki471 – volume: 24 start-page: 1596 year: 2007 ident: ref60 article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. publication-title: Mol Biol Evol doi: 10.1093/molbev/msm092 – volume: 54 start-page: 215 year: 2004 ident: ref98 article-title: Bartonella chomelii sp. nov., isolated from French domestic cattle (Bos taurus). publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.02770-0 – volume: 101 start-page: 9716 year: 2004 ident: ref27 article-title: The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0305659101 – volume: 13 start-page: 1565 year: 2007 ident: ref71 article-title: Isolation of Bartonella sp. from sheep blood. publication-title: Emerg Infect Dis doi: 10.3201/eid1310.070570 – year: 1991 ident: ref11 article-title: The comparative method in evolutionary biology – volume: 34 start-page: 53 year: 2006 ident: ref58 article-title: MaGe: a microbial genome annotation system supported by synteny results. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj406 – volume: 52 start-page: 383 year: 2002 ident: ref73 article-title: Bartonella bovis Bermond et al. sp. nov. and Bartonella capreoli sp. nov., isolated from European ruminants. publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-52-2-383 – volume: 102 start-page: 15924 year: 2005 ident: ref6 article-title: Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at “Evolution Canyons” I and II, Israel. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0507944102 – volume: 46 start-page: 627 year: 2008 ident: ref97 article-title: Isolation and characterization of Bartonella bacilliformis from an expatriate Ecuadorian. publication-title: J Clin Microbiol doi: 10.1128/JCM.01207-07 – volume: 144 start-page: 1 year: 1996 ident: ref37 article-title: Bartonella bacilliformis: dangerous pathogen slowly emerging from deep background. publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1996.tb08501.x – volume: 50 start-page: 1973 year: 2000 ident: ref74 article-title: Bartonella birtlesii sp. nov., isolated from small mammals (Apodemus spp.). publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-50-6-1973 – volume: 105 start-page: 15475 year: 2008 ident: ref8 article-title: Parallel life history evolution in mouthbrooding cichlids from the African Great Lakes. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0802343105 – volume: 15 start-page: 526 year: 2009 ident: ref30 article-title: Exotic small mammals as potential reservoirs of zoonotic Bartonella spp. publication-title: Emerg Infect Dis doi: 10.3201/eid1504.081223 – volume: 22 start-page: 3096 year: 2006 ident: ref35 article-title: GARD: a genetic algorithm for recombination detection. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl474 – volume: 356 start-page: 2381 year: 2007 ident: ref29 article-title: Bacteremia, fever, and splenomegaly caused by a newly recognized Bartonella species. publication-title: N Engl J Med doi: 10.1056/NEJMoa065987 – volume: 437 start-page: 376 year: 2005 ident: ref56 article-title: Genome sequencing in microfabricated high-density picolitre reactors. publication-title: Nature doi: 10.1038/nature03959 – volume: 17 start-page: 754 year: 2001 ident: ref62 article-title: MRBAYES: Bayesian inference of phylogenetic trees. publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.8.754 – volume: 25 start-page: 287 year: 2008 ident: ref24 article-title: Diversifying selection and concerted evolution of a type IV secretion system in Bartonella. publication-title: Mol Biol Evol doi: 10.1093/molbev/msm252 – volume: 23 start-page: 221 year: 2000 ident: ref40 article-title: Experimental evidence of host specificity of Bartonella infection in rodents. publication-title: Comp Immunol Microbiol Infect Dis doi: 10.1016/S0147-9571(99)00075-2 – volume: 57 start-page: 578 year: 1997 ident: ref95 article-title: Distribution, diversity, and host specificity of Bartonella in rodents from the Southeastern United States. publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1997.57.578 – volume: 51 start-page: 1557 year: 2001 ident: ref55 article-title: Bartonella schoenbuchii sp. nov., isolated from the blood of wild roe deer. publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-51-4-1557 – volume: 3 start-page: 621 year: 2005 ident: ref12 article-title: Bartonella-host-cell interactions and vascular tumour formation. publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1209 – volume: 177 start-page: 409 year: 1998 ident: ref89 article-title: Cosegregation of a novel Bartonella species with Borrelia burgdorferi and Babesia microti in Peromyscus leucopus. publication-title: J Infect Dis doi: 10.1086/514201 – volume: 5 start-page: e1000546 year: 2009 ident: ref28 article-title: Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000546 – volume: 2 start-page: e115 year: 2006 ident: ref18 article-title: A translocated bacterial protein protects vascular endothelial cells from apoptosis. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0020115 – start-page: viii, 288 year: 2000 ident: ref1 article-title: The ecology of adaptive radiation – volume: 457 start-page: 830 year: 2009 ident: ref10 article-title: Adaptation and diversification on islands. publication-title: Nature doi: 10.1038/nature07893 – volume: 6 start-page: e1000946 year: 2010 ident: ref22 article-title: The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000946 – volume: 10 start-page: 963 year: 2004 ident: ref103 article-title: Bartonella species isolated from rodents, Greece. publication-title: Emerg Infect Dis doi: 10.3201/eid1005.030430 – volume: 101 start-page: 13630 year: 2004 ident: ref15 article-title: A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0405284101 – volume: 11 start-page: 1088 year: 2009 ident: ref20 article-title: Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation. publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2009.01313.x – volume: 180 start-page: 220 year: 1999 ident: ref83 article-title: Rats of the genus Rattus are reservoir hosts for pathogenic Bartonella species: an Old World origin for a New World disease? publication-title: J Infect Dis doi: 10.1086/314824 – volume: 10 start-page: 731 year: 2010 ident: ref99 article-title: Molecular Detection of Bartonella alsatica in European Wild Rabbits (Oryctolagus cuniculus) in Andalusia (Spain). publication-title: Vector Borne Zoonotic Dis doi: 10.1089/vbz.2009.0135 – volume: 47 start-page: 787 year: 2009 ident: ref32 article-title: Infective endocarditis in a dog and the phylogenetic relationship of the associated “Bartonella rochalimae” strain with isolates from dogs, gray foxes, and a human. publication-title: J Clin Microbiol doi: 10.1128/JCM.01351-08 – volume: 19 start-page: 2241 year: 2010 ident: ref41 article-title: Rapid diversification by recombination in Bartonella grahamii from wild rodents in Asia contrasts with low levels of genomic divergence in Northern Europe and America. publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2010.04646.x – volume: 11 start-page: 927 year: 2009 ident: ref19 article-title: A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2009.01302.x – volume: 31 start-page: 3635 year: 2003 ident: ref54 article-title: Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg584 – volume: 186 start-page: 983 year: 2002 ident: ref79 article-title: Epidemiology of endemic Bartonella bacilliformis: a prospective cohort study in a Peruvian mountain valley community. publication-title: J Infect Dis doi: 10.1086/344054 – volume: 6 start-page: 41 year: 1999 ident: ref100 article-title: Prevalence of Bartonella henselae and Bartonella clarridgeiae in an urban Indonesian cat population. publication-title: Clin Diagn Lab Immunol doi: 10.1128/CDLI.6.1.41-44.1999 – volume: 311 start-page: 1737 year: 2006 ident: ref4 article-title: Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. publication-title: Science doi: 10.1126/science.1118052 – volume: 21 start-page: 676 year: 2005 ident: ref66 article-title: HyPhy: hypothesis testing using phylogenies. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti079 – volume: 4 start-page: e5818 year: 2009 ident: ref51 article-title: Fido, a novel AMPylation domain common to fic, doc, and AvrB. publication-title: PLoS ONE doi: 10.1371/journal.pone.0005818 – volume: 2 start-page: e209 year: 2006 ident: ref47 article-title: Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020209 – volume: 102 start-page: 856 year: 2005 ident: ref17 article-title: A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0406796102 – volume: 6 start-page: Unit 6.4.1 year: 2003 ident: ref61 article-title: Inferring evolutionary trees with PAUP*. publication-title: Curr Protoc Bioinformatics Chapter doi: 10.1002/0471250953.bi0604s00 – volume: 177 start-page: 33 year: 2008 ident: ref46 article-title: Evolution of the type III secretion system and its effectors in plant-microbe interactions. publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02293.x – volume: 5 start-page: 378 year: 2009 ident: ref26 article-title: AMPylation is a new post-translational modiFICation. publication-title: Nat Chem Biol doi: 10.1038/nchembio0609-378 – volume: 15 start-page: 1984 year: 2009 ident: ref88 article-title: Bartonella rochalimae in raccoons, coyotes, and red foxes. publication-title: Emerg Infect Dis doi: 10.3201/eid1512.081692 – volume: 31 start-page: 3723 year: 2003 ident: ref57 article-title: AMIGene: Annotation of MIcrobial Genes. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg590 – volume: 19 start-page: 908 year: 2002 ident: ref42 article-title: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004148 – volume: 46 start-page: 891 year: 1996 ident: ref77 article-title: Comparison of partial citrate synthase gene (gltA) sequences for phylogenetic analysis of Bartonella species. publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-46-4-891 – volume: 45 start-page: 1 year: 1995 ident: ref75 article-title: Proposals to unify the genera Grahamella and Bartonella, with descriptions of Bartonella talpae comb. nov., Bartonella peromysci comb. nov., and three new species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-45-1-1 – volume: 66 start-page: 622 year: 2002 ident: ref104 article-title: Genetic and ecologic characteristics of Bartonella communities in rodents in southern China. publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2002.66.622 – volume: 106 start-page: 17939 year: 2009 ident: ref49 article-title: Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0903585106 – year: 2004 ident: ref64 article-title: MrModeltest v2 – volume: 57 start-page: 534 year: 2009 ident: ref91 article-title: Evolutional and geographical relationships of Bartonella grahamii isolates from wild rodents by multi-locus sequencing analysis. publication-title: Microb Ecol doi: 10.1007/s00248-009-9488-x – volume: 22 start-page: 4673 year: 1994 ident: ref59 article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. publication-title: Nucleic Acids Res doi: 10.1093/nar/22.22.4673 – volume: 71 start-page: 814 year: 2003 ident: ref45 article-title: Five-member gene family of Bartonella quintana. publication-title: Infect Immun doi: 10.1128/IAI.71.2.814-821.2003 – volume: 81 start-page: 811 year: 2009 ident: ref70 article-title: Prevalence and genetic heterogeneity of Bartonella strains cultured from rodents from 17 provinces in Thailand. publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2009.09-0294 – volume: 40 start-page: 27 year: 2009 ident: ref39 article-title: Dogs are more permissive than cats or guinea pigs to experimental infection with a human isolate of Bartonella rochalimae. publication-title: Vet Res doi: 10.1051/vetres/2009010 – volume: 294 start-page: 1351 year: 1999 ident: ref52 article-title: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3310 – volume: 6 start-page: 158 year: 2009 ident: ref67 article-title: Genomics of Host-Restricted Pathogens of the Genus Bartonella. publication-title: Genome Dyn doi: 10.1159/000235769 – volume: 174 start-page: 535 year: 2006 ident: ref9 article-title: Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies. publication-title: Genetics doi: 10.1534/genetics.106.059527 – volume: 18 start-page: 169 year: 2009 ident: ref3 article-title: The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2008.03981.x – volume: 27 start-page: 333 year: 2006 ident: ref96 article-title: [Study on Bartonella vinsonii berkhoffii isolated from blood of native dogs in China]. publication-title: Zhonghua Liu Xing Bing Xue Za Zhi – volume: 42 start-page: 3816 year: 2004 ident: ref84 article-title: Isolation of Bartonella rattimassiliensis sp. nov. and Bartonella phoceensis sp. nov. from European Rattus norvegicus. publication-title: J Clin Microbiol doi: 10.1128/JCM.42.8.3816-3818.2004 – volume: 81 start-page: 55 year: 2009 ident: ref86 article-title: Isolation and genetic characterization of a Bartonella strain closely related to Bartonella tribocorum and Bartonella elizabethae in Israeli commensal rats. publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2009.81.55 – volume: 193 start-page: 1077 year: 2001 ident: ref14 article-title: Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. publication-title: J Exp Med doi: 10.1084/jem.193.9.1077 – volume: 40 start-page: 4691 year: 2002 ident: ref82 article-title: Limited diversity among human isolates of Bartonella henselae. publication-title: J Clin Microbiol doi: 10.1128/JCM.40.12.4691-4699.2002 – volume: 57 start-page: 1496 year: 2008 ident: ref31 article-title: Isolation of Bartonella species from rodents in Taiwan including a strain closely related to ‘Bartonella rochalimae’ from Rattus norvegicus. publication-title: J Med Microbiol doi: 10.1099/jmm.0.2008/004671-0 – volume: 24 start-page: 1586 year: 2007 ident: ref65 article-title: PAML 4: phylogenetic analysis by maximum likelihood. publication-title: Mol Biol Evol doi: 10.1093/molbev/msm088 – volume: 58 start-page: 365 year: 2004 ident: ref44 article-title: Molecular and cellular basis of Bartonella pathogenesis. publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.58.030603.123700 – volume: 5 start-page: e9765 year: 2010 ident: ref68 article-title: Multi-locus sequence typing of a geographically and temporally diverse sample of the highly clonal human pathogen Bartonella quintana. publication-title: PLoS ONE doi: 10.1371/journal.pone.0009765 – start-page: xix, 218 year: 2008 ident: ref2 article-title: How and why species multiply : the radiation of Darwin's finches – volume: 41 start-page: 4001 year: 2003 ident: ref102 article-title: First isolation and detection by immunofluorescence assay of Bartonella koehlerae in erythrocytes from a French cat. publication-title: J Clin Microbiol doi: 10.1128/JCM.41.8.4001-4002.2003 – volume: 323 start-page: 269 year: 2009 ident: ref25 article-title: AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. publication-title: Science doi: 10.1126/science.1166382 – volume: 395 start-page: 745 year: 2005 ident: ref36 article-title: Supertree construction in the genomic age. publication-title: Methods Enzymol doi: 10.1016/S0076-6879(05)95038-6 – volume: 6 start-page: 306 year: 2000 ident: ref80 article-title: Bartonella spp. isolated from wild and domestic ruminants in North America. publication-title: Emerg Infect Dis doi: 10.3201/eid0603.000313 – volume: 5 start-page: 402 year: 2005 ident: ref93 article-title: Rodent-associated Bartonella in Saskatchewan, Canada. publication-title: Vector Borne Zoonotic Dis doi: 10.1089/vbz.2005.5.402 – volume: 6 start-page: Unit 6.5.1 year: 2003 ident: ref63 article-title: Using MODELTEST and PAUP* to select a model of nucleotide substitution. publication-title: Curr Protoc Bioinformatics Chapter doi: 10.1002/0471250953.bi0605s00 – volume: 5 start-page: 397 year: 2009 ident: ref21 article-title: Host cell interactome of tyrosine-phosphorylated bacterial proteins. publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.03.004 – volume: 33 start-page: 95 year: 2010 ident: ref13 article-title: Murine model for Bartonella birtlesii infection: New aspects. publication-title: Comp Immunol Microbiol Infect Dis doi: 10.1016/j.cimid.2008.07.011 – volume: 72 start-page: 969 year: 2010 ident: ref78 article-title: Detection and Genetic Diversity of Bartonella vinsonii Subsp. berkhoffii Strains Isolated from Dogs in Ankara, Turkey. publication-title: J Vet Med Sci doi: 10.1292/jvms.09-0466 – volume: 49 start-page: 1253 year: 2003 ident: ref23 article-title: A bacterial conjugation machinery recruited for pathogenesis. publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03650.x – volume: 130 start-page: 149 year: 2003 ident: ref90 article-title: Bartonella infection in sylvatic small mammals of central Sweden. publication-title: Epidemiol Infect doi: 10.1017/S0950268802008075 – volume: 11 start-page: 152 year: 2010 ident: ref72 article-title: Genome dynamics of Bartonella grahamii in micro-populations of woodland rodents. publication-title: BMC Genomics doi: 10.1186/1471-2164-11-152 – volume: 126 start-page: 323 year: 2001 ident: ref76 article-title: Longitudinal monitoring of the dynamics of infections due to Bartonella species in UK woodland rodents. publication-title: Epidemiol Infect doi: 10.1017/S095026880100526X – volume: 48 Pt 4 start-page: 1333 year: 1998 ident: ref87 article-title: Bartonella tribocorum sp. nov., a new Bartonella species isolated from the blood of wild rats. publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-48-4-1333 – volume: 40 start-page: 29 year: 2009 ident: ref38 article-title: Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. publication-title: Vet Res doi: 10.1051/vetres/2009011 – volume: 61 start-page: 438 year: 2007 ident: ref69 article-title: Acquisition of nonspecific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster). publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00364.x – volume: 33 start-page: 2107 year: 1995 ident: ref81 article-title: Strategy to detect and identify Bartonella species in routine clinical laboratory yields Bartonella henselae from human immunodeficiency virus-positive patient and unique Bartonella strain from his cat. publication-title: J Clin Microbiol doi: 10.1128/JCM.33.8.2107-2113.1995 – volume: 394 start-page: 69 year: 1998 ident: ref5 article-title: Adaptive radiation in a heterogeneous environment. publication-title: Nature doi: 10.1038/27900 – volume: 54 start-page: 1959 year: 2004 ident: ref101 article-title: Diversity of bartonellae associated with small mammals inhabiting Free State province, South Africa. publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.03033-0 – reference: 17194219 - PLoS Genet. 2006 Dec;2(12):e209 – reference: 15216849 - Emerg Infect Dis. 2004 May;10(5):963-4 – reference: 19609259 - Nat Rev Microbiol. 2009 Aug;7(8):578-88 – reference: 19861616 - Am J Trop Med Hyg. 2009 Nov;81(5):811-6 – reference: 14742483 - Int J Syst Evol Microbiol. 2004 Jan;54(Pt 1):215-20 – reference: 11349984 - Epidemiol Infect. 2001 Apr;126(2):323-9 – reference: 7559957 - J Clin Microbiol. 1995 Aug;33(8):2107-13 – reference: 19696500 - Genome Dyn. 2009;6:158-69 – reference: 19578403 - PLoS Genet. 2009 Jul;5(7):e1000546 – reference: 15509596 - Bioinformatics. 2005 Mar 1;21(5):676-9 – reference: 15297537 - J Clin Microbiol. 2004 Aug;42(8):3816-8 – reference: 9665128 - Nature. 1998 Jul 2;394(6688):69-72 – reference: 19331727 - Emerg Infect Dis. 2009 Apr;15(4):526-32 – reference: 19109472 - J Clin Microbiol. 2009 Mar;47(3):787-90 – reference: 16407324 - Nucleic Acids Res. 2006;34(1):53-65 – reference: 18094131 - J Clin Microbiol. 2008 Feb;46(2):627-37 – reference: 19018019 - J Med Microbiol. 2008 Dec;57(Pt 12):1496-501 – reference: 16417436 - Vector Borne Zoonotic Dis. 2005 Winter;5(4):402-9 – reference: 9392599 - Am J Trop Med Hyg. 1997 Nov;57(5):578-88 – reference: 18065487 - Mol Biol Evol. 2008 Feb;25(2):287-300 – reference: 20333257 - PLoS One. 2010;5(3):e9765 – reference: 12940985 - Mol Microbiol. 2003 Sep;49(5):1253-66 – reference: 18428705 - Curr Protoc Bioinformatics. 2003 Feb;Chapter 6:Unit 6.5 – reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 – reference: 11083791 - Infect Immun. 2000 Dec;68(12):6750-7 – reference: 19961681 - Emerg Infect Dis. 2009 Dec;15(12):1984-7 – reference: 17672850 - FEMS Microbiol Ecol. 2007 Sep;61(3):438-48 – reference: 12232839 - J Infect Dis. 2002 Oct 1;186(7):983-90 – reference: 10353885 - J Infect Dis. 1999 Jul;180(1):220-4 – reference: 16064054 - Nat Rev Microbiol. 2005 Aug;3(8):621-31 – reference: 20465583 - Mol Ecol. 2010 Jun;19(11):2241-55 – reference: 17121462 - PLoS Pathog. 2006 Nov;2(11):e115 – reference: 12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41 – reference: 18258009 - Emerg Infect Dis. 2007 Oct;13(10):1565-7 – reference: 12824403 - Nucleic Acids Res. 2003 Jul 1;31(13):3723-6 – reference: 12201602 - Am J Trop Med Hyg. 2002 May;66(5):622-7 – reference: 18037886 - Nat Genet. 2007 Dec;39(12):1469-76 – reference: 15642951 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):856-61 – reference: 11038125 - Comp Immunol Microbiol Infect Dis. 2000 Oct;23(4):221-38 – reference: 19284965 - Vet Res. 2009 Mar-Apr;40(2):29 – reference: 20202191 - BMC Genomics. 2010;11:152 – reference: 9874661 - Clin Diagn Lab Immunol. 1999 Jan;6(1):41-4 – reference: 15980458 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W226-9 – reference: 17109328 - Am Nat. 2006 Dec;168 Suppl 6:S4-13 – reference: 19039103 - Science. 2009 Jan 9;323(5911):269-72 – reference: 9163438 - J Clin Microbiol. 1997 Jun;35(6):1327-31 – reference: 11491358 - Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1557-65 – reference: 19448605 - Nat Chem Biol. 2009 Jun;5(6):378-9 – reference: 20234114 - J Vet Med Sci. 2010 Aug;72(8):969-73 – reference: 15865993 - Methods Enzymol. 2005;395:745-57 – reference: 12613756 - Epidemiol Infect. 2003 Feb;130(1):149-57 – reference: 19380118 - Cell Host Microbe. 2009 Apr 23;5(4):397-403 – reference: 15746011 - Mol Biol Evol. 2005 May;22(5):1325-36 – reference: 15210978 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9716-21 – reference: 11295338 - Vet Microbiol. 2001 May 21;80(2):185-98 – reference: 19302579 - Cell Microbiol. 2009 Jun;11(6):927-45 – reference: 18824688 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15475-80 – reference: 20548954 - PLoS Pathog. 2010;6(6):e1000946 – reference: 18992003 - Mol Ecol. 2009 Jan;18(2):169-85 – reference: 17110367 - Bioinformatics. 2006 Dec 15;22(24):3096-8 – reference: 16249328 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15924-9 – reference: 12574261 - J Clin Microbiol. 2003 Feb;41(2):645-50 – reference: 19212401 - Nature. 2009 Feb 12;457(7231):830-6 – reference: 19272295 - Vet Res. 2009 Jul-Aug;40(4):27 – reference: 16556835 - Science. 2006 Mar 24;311(5768):1737-40 – reference: 12540561 - Infect Immun. 2003 Feb;71(2):814-21 – reference: 15545418 - Int J Syst Evol Microbiol. 2004 Nov;54(Pt 6):1959-67 – reference: 11524383 - Bioinformatics. 2001 Aug;17(8):754-5 – reference: 8863415 - Int J Syst Bacteriol. 1996 Oct;46(4):891-7 – reference: 16056220 - Nature. 2005 Sep 15;437(7057):376-80 – reference: 16875539 - Zhonghua Liu Xing Bing Xue Za Zhi. 2006 Apr;27(4):333-8 – reference: 19503829 - PLoS One. 2009;4(6):e5818 – reference: 7857789 - Int J Syst Bacteriol. 1995 Jan;45(1):1-8 – reference: 19416269 - Cell Microbiol. 2009 Jul;11(7):1088-101 – reference: 19815525 - Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17939-44 – reference: 19556567 - Am J Trop Med Hyg. 2009 Jul;81(1):55-8 – reference: 11155970 - Int J Syst Evol Microbiol. 2000 Nov;50 Pt 6:1973-9 – reference: 9196200 - J Clin Microbiol. 1997 Jul;35(7):1813-8 – reference: 9828434 - Int J Syst Bacteriol. 1998 Oct;48 Pt 4:1333-9 – reference: 9466529 - J Infect Dis. 1998 Feb;177(2):409-16 – reference: 16783007 - Genetics. 2006 Sep;174(1):535-9 – reference: 11342592 - J Exp Med. 2001 May 7;193(9):1077-86 – reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 – reference: 12904442 - J Clin Microbiol. 2003 Aug;41(8):4001-2 – reference: 12032247 - Mol Biol Evol. 2002 Jun;19(6):908-17 – reference: 19219487 - Microb Ecol. 2009 Apr;57(3):534-41 – reference: 18606803 - Appl Environ Microbiol. 2008 Aug;74(16):5086-92 – reference: 10827123 - Emerg Infect Dis. 2000 May-Jun;6(3):306-11 – reference: 11931146 - Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):383-90 – reference: 11837299 - Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):165-71 – reference: 18078471 - New Phytol. 2008;177(1):33-47 – reference: 17554119 - N Engl J Med. 2007 Jun 7;356(23):2381-7 – reference: 20097421 - Comp Immunol Microbiol Infect Dis. 2010 Mar;33(2):95-107 – reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 – reference: 8870245 - FEMS Microbiol Lett. 1996 Oct 15;144(1):1-11 – reference: 15347808 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13630-5 – reference: 20059317 - Vector Borne Zoonotic Dis. 2010 Oct;10(8):731-4 – reference: 18428704 - Curr Protoc Bioinformatics. 2003 Feb;Chapter 6:Unit 6.4 – reference: 10600390 - J Mol Biol. 1999 Dec 17;294(5):1351-62 – reference: 15487942 - Annu Rev Microbiol. 2004;58:365-90 – reference: 12454174 - J Clin Microbiol. 2002 Dec;40(12):4691-9 |
SSID | ssj0035897 |
Score | 2.3211634 |
Snippet | Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This... Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This... |
SourceID | plos doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1001296 |
SubjectTerms | Acquisitions & mergers Adaptation, Biological - genetics Animals Bacteria Bacterial Proteins - genetics Bacterial Secretion Systems - genetics Bartonella Bartonella - classification Bartonella - genetics Bartonella - metabolism Biological Evolution Computational Biology Evolution Evolution & development Evolutionary Biology/Evolutionary and Comparative Genetics Evolutionary Biology/Genomics Evolutionary Biology/Microbial Evolution and Genomics Experiments Genetic aspects Genetic Speciation Genetics Genetics and Genomics Genetics and Genomics/Comparative Genomics Genetics and Genomics/Genome Projects Genetics and Genomics/Genomics Genetics and Genomics/Microbial Evolution and Genomics Genomes HEK293 Cells Host-Pathogen Interactions Humans Infectious Diseases Infectious Diseases/Bacterial Infections Intraspecific genetic variation Life Sciences Microbiology Microbiology/Microbial Evolution and Genomics Molecular Biology/Molecular Evolution Molecular Sequence Annotation Natural history Origin of species Phosphorylation Phylogeny Proteins Rats Selection, Genetic Sequence Analysis, DNA |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegEhIviO8FBlgIiaewOXbs5LFDTB2CgYBNe7P8FTqpSqqmnYT457mL06hBSNsDD31Jz01ydz7_rj7_jpA3XBamNIdVynNhU9yYSQsPWQpAcS-Eya33mCh-PpWzM_HxIr_YafWFNWGRHjgq7qAsQpV7j5wqyKRSmaxw3BUis9K7UHWJD6x522QqxmCeF7GtSp7zVEFa3x-a44od9DZ6twQDdQxEGRL27yxKHXf_EKFvz7FAcrJcNO2_QOjftZQ7i9PxfXKvR5V0Gt_mAbkV6ofkTuwz-esR-f3VrLBnyoKGq97VaFNRQ_EPWHpyTlsEj93lyOxML2u6QtYCLIqmiEQh7LQ4BvAixYMhKfb0gBgKgJXayPgMD4D9jRt4Y3oEim2wgsY8JmfHH368n6V914XUKc7WKeAjx6wzTnnAcq5yxgtljGesDNYBnHGVkrmzoLoyCCVCWYZwKKpMOgZowPInZFLDHfYIFay0OXdZGSTubmbGSFlWMD5T4MDOJ4Rv1a5dT0mOnTEWuttnU5CaRP1pNJbujZWQdBi1jJQc18gfoUUHWSTU7i6Am-nezfR1bpaQV-gPOp5OHcKCngKElHkGn4S87iSQVKPGqp2fZtO2-uTL-Q2Evp_eROjbSOhtL1Q1oDOwVzxOAZpHRq-R5P5IEuKHG99tjhrb0c5s-knjNdxEBx-QV_D6ezgDtvptQdsMkCpXhUgI3c4KjT-NrlWHZtPqAlmPOWT8CXkaJ8lwF-QRxMZoCVGj6TN6jPE39eW8Yz_nyJjE2LP_YdXn5G7cI8DypH0yWa824QWAzLV92cWTP37teiQ priority: 102 providerName: Directory of Open Access Journals |
Title | Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21347280 https://www.proquest.com/docview/853993601 https://hal.science/hal-04580576 https://pubmed.ncbi.nlm.nih.gov/PMC3037411 https://doaj.org/article/98ef5dd82373494fa28c3c842b6dcef1 http://dx.doi.org/10.1371/journal.pgen.1001296 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tki8IL4XGMVCSDxlamLHTh4QalGnDrFSdXTqm-U4zjqpSkrTTkz889wlabSgIcZDX9xzPs539u9y9u8Iec9EqCPdS10W8NjFxIwbJhClABRPONdBnCQYKJ6NxWjGv8yD-R7Z1WytFVjcGdphPanZenn888fNJ3D4j2XVBuntOh2vQOUlp5AfiX1yAGuTxGIOZ7zJK7AgrMqtBAFzJe_x-jDd367SWqxKTv9m5t5f4MbJzmqZF3eB0z_3WN5atE4ek0c12qT9yjyekD2bPSUPqvqTN8_Ir4leYy2VJR1e1yZI85RqitEpPb2g5wgqy-aK2ZxeZXSKbAa4WZpCHGthOiqwD-BIOsqLjTu1WAnEAJClg4oJGh5gAjgzhzeGpjWyf4PtPSezk-H3zyO3rsbgGsm8jQu4yXix0UYmgPFManTCpdaJ50U2NgBzTCpFYGJQXWS55DaKrO3x1BfGA5QQsxekk8EdDgnlXhQHzPiRFZj19LUWIkqhvy_BsE3iELZTuzI1VTlWzFiqMv8mIWSp9KdwsFQ9WA5xm16riqrjH_IDHNFGFom2y4Z8falqv1VRaNMgSZDSB4l8Uu2HhpmQ-7GAoU09h7xFe1DVqdVmulB9gJYi8OHnkHelBJJtZLib51Jvi0Kdfru4h9D5-D5C05bQh1oozUFnMF7VMQvQPDJ9tSSPWpIwr5j23RaosVvaGfW_KmzD5DrYgLiG1z9ED9jptwBte4BgmQy5Q-jOKxReGk0rs_m2UCGyITPRg94vKydp7oL8glgwzSGy5T6tx2j_k10tSlZ0hkxKnvfqP63gNXlYpQlwh9IR6WzWW_sGcOYm7pJ9OZddcjAYjifTbvm1pltOJ78B2bh_MA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Evolution+of+a+Type+IV+Secretion+System+in+Radiating+Lineages+of+the+Host-Restricted+Bacterial+Pathogen+Bartonella&rft.jtitle=PLoS+genetics&rft.au=Engel%2C+Philipp&rft.au=Salzburger%2C+Walter&rft.au=Liesch%2C+Marius&rft.au=Chang%2C+Chao-Chin&rft.date=2011-02-01&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=7&rft.issue=2&rft.spage=e1001296&rft_id=info:doi/10.1371%2Fjournal.pgen.1001296&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1001296 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |