Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have ev...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 7; no. 2; p. e1001296
Main Authors Engel, Philipp, Salzburger, Walter, Liesch, Marius, Chang, Chao-Chin, Maruyama, Soichi, Lanz, Christa, Calteau, Alexandra, Lajus, Aurélie, Médigue, Claudine, Schuster, Stephan C., Dehio, Christoph
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7404
1553-7390
1553-7404
DOI10.1371/journal.pgen.1001296

Cover

Loading…
Abstract Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.
AbstractList Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the a-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. Adaptive radiation is the rapid origination of an array of species by the divergent colonization of disparate ecological niches. In the case of pathogenic bacteria, radiations can lead to the emergence of novel human pathogens. Being divergently adapted to a range of different mammalian hosts, including humans as reservoir or incidental hosts, the genus Bartonella represents a suitable model to study genomic mechanisms underpinning divergent adaptation of pathogens. Here we show that two distinct lineages of Bartonella have radiated in parallel, resulting in two arrays of evolutionary distinct species adapted to overlapping sets of mammalian hosts. Such parallelisms display excellent models to reveal insights into the genetic mechanisms underlying these independent evolutionary processes. Our genome-wide analysis identifies a striking evolutionary parallelism in a horizontally-acquired protein secretion system in the two lineages. The parallel evolutionary trajectory of this system in the two lineages is characterized by the convergent origination of a wide array of adaptive functions dedicated to the cellular interaction within the mammalian hosts. The parallel evolution of the two radiating lineages on the ecological as well as on the molecular level suggests that the horizontal acquisition and the functional diversification of the secretion system display an evolutionary key innovation underlying adaptive evolution.
  Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.
Audience Academic
Author Lajus, Aurélie
Schuster, Stephan C.
Engel, Philipp
Liesch, Marius
Dehio, Christoph
Calteau, Alexandra
Chang, Chao-Chin
Maruyama, Soichi
Lanz, Christa
Salzburger, Walter
Médigue, Claudine
AuthorAffiliation 2 Zoological Institute, University of Basel, Basel, Switzerland
4 Nihon University, Fujisawa, Kanagawa, Japan
5 Max Planck Institute for Developmental Biology, Tübingen, Germany
6 Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope and CNRS-UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
7 Center for Comparative Genomics and Bioinformatics, Penn State University, University Park, Pennsylvania, United States of America
University of Toronto, Canada
1 Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
3 College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
AuthorAffiliation_xml – name: 3 College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
– name: University of Toronto, Canada
– name: 2 Zoological Institute, University of Basel, Basel, Switzerland
– name: 5 Max Planck Institute for Developmental Biology, Tübingen, Germany
– name: 7 Center for Comparative Genomics and Bioinformatics, Penn State University, University Park, Pennsylvania, United States of America
– name: 1 Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
– name: 4 Nihon University, Fujisawa, Kanagawa, Japan
– name: 6 Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope and CNRS-UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
Author_xml – sequence: 1
  givenname: Philipp
  surname: Engel
  fullname: Engel, Philipp
– sequence: 2
  givenname: Walter
  surname: Salzburger
  fullname: Salzburger, Walter
– sequence: 3
  givenname: Marius
  surname: Liesch
  fullname: Liesch, Marius
– sequence: 4
  givenname: Chao-Chin
  surname: Chang
  fullname: Chang, Chao-Chin
– sequence: 5
  givenname: Soichi
  surname: Maruyama
  fullname: Maruyama, Soichi
– sequence: 6
  givenname: Christa
  surname: Lanz
  fullname: Lanz, Christa
– sequence: 7
  givenname: Alexandra
  surname: Calteau
  fullname: Calteau, Alexandra
– sequence: 8
  givenname: Aurélie
  surname: Lajus
  fullname: Lajus, Aurélie
– sequence: 9
  givenname: Claudine
  surname: Médigue
  fullname: Médigue, Claudine
– sequence: 10
  givenname: Stephan C.
  surname: Schuster
  fullname: Schuster, Stephan C.
– sequence: 11
  givenname: Christoph
  surname: Dehio
  fullname: Dehio, Christoph
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21347280$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04580576$$DView record in HAL
BookMark eNqVk19v0zAUxSM0xP7AN0AQCQm0hxY7duKEB6QyDVqpYlM39mq5zk3qyY1L7ExMfHlu1ha1E0KgKHJ08zvH9rHvcXTQuAai6CUlQ8oEfX_rurZRdriqoRlSQmhSZE-iI5qmbCA44Qc734fRsfe3hLA0L8Sz6DChjIskJ0fRz0vVKmvBxud3znbBuCZ2Vazi6_sVxJOb-Ap0Cw_lq3sfYBmbJp6p0qhgmjqemgZUDb7XhAXEY-fDYAY-tEYHKONPCofWKBtfqrBwuFQstQF3Yq16Hj2tlPXwYjOeRN8-n1-fjQfTiy-Ts9F0oAWjYcA51XSulRYlSYWutCq5UKqktIC5LgqmK5Gleo4ZFMAFh6IAILxKMk05TefsJHq99l1Z5-UmNy8powwDEjlHYrImSqdu5ao1S9XeS6eMfCi4tpa4aqMtyCKHKi3LPGGC8YJXKsk10zlP5lmpoaLo9XEzWzdfAtaagAnvme7_acxC1u5OMsIEp73B6dpg8Ug2Hk1lXyM8zTGJ7K5n320ma933DnOXS-N1H24DrvMyTxkGlJGefLMma4W7ME3lcHLd03KUpCRLE3yRGv6BwqeEpdF4bJXB-p7gdE-ATIAfoVad93JyNfsP9uu_sxc3--zbHXYByoaF31xmvw--2j2a3-Fu2wGBD2tAt877FiqpTVC9D8ZgrKRE9r23vUOy7z256T0U80firf9fZb8A_b0yMw
CitedBy_id crossref_primary_10_1073_pnas_2310348121
crossref_primary_10_1038_nature10729
crossref_primary_10_1093_bioinformatics_btt554
crossref_primary_10_1146_annurev_micro_102215_095245
crossref_primary_10_1186_s13071_023_05918_7
crossref_primary_10_1371_journal_pgen_1002222
crossref_primary_10_1371_journal_pntd_0002919
crossref_primary_10_3390_microorganisms9081645
crossref_primary_10_1371_journal_ppat_1008548
crossref_primary_10_1371_journal_pone_0053705
crossref_primary_10_1186_s13071_023_05810_4
crossref_primary_10_2139_ssrn_4109528
crossref_primary_10_3389_fmicb_2019_00921
crossref_primary_10_1021_acs_chemrev_7b00145
crossref_primary_10_2217_fmb_13_77
crossref_primary_10_1371_journal_pgen_1003393
crossref_primary_10_1371_journal_pone_0068956
crossref_primary_10_1093_gbe_evu169
crossref_primary_10_12980_APJTB_4_2014C742
crossref_primary_10_1128_CMR_05009_11
crossref_primary_10_1186_s13071_017_2372_5
crossref_primary_10_1371_journal_ppat_1004187
crossref_primary_10_1016_j_str_2016_10_010
crossref_primary_10_1038_ismej_2016_201
crossref_primary_10_1128_AEM_03159_14
crossref_primary_10_1016_j_meegid_2012_06_009
crossref_primary_10_1128_CMR_00013_17
crossref_primary_10_1371_journal_ppat_1012591
crossref_primary_10_1111_j_1574_6976_2012_00324_x
crossref_primary_10_1093_femsre_fuac012
crossref_primary_10_9778_cmajo_20210180
crossref_primary_10_1371_journal_pgen_1007077
crossref_primary_10_1016_j_clinmicnews_2014_02_001
crossref_primary_10_1111_cmi_13068
crossref_primary_10_3390_pathogens10060686
crossref_primary_10_3389_fmicb_2021_762582
crossref_primary_10_1016_j_actatropica_2020_105672
crossref_primary_10_1016_j_cimid_2019_05_010
crossref_primary_10_1093_molbev_mss221
crossref_primary_10_3389_fmicb_2018_03100
crossref_primary_10_1016_j_resmic_2013_03_012
crossref_primary_10_1002_pmic_201300470
crossref_primary_10_1128_MRA_00769_20
crossref_primary_10_1186_1471_2148_12_65
crossref_primary_10_1111_mec_12261
crossref_primary_10_3201_eid2303_161476
crossref_primary_10_3389_fmicb_2022_838267
crossref_primary_10_1038_srep39197
crossref_primary_10_1016_j_mib_2014_11_007
crossref_primary_10_3390_pathogens10101331
crossref_primary_10_1099_mgen_0_001045
crossref_primary_10_3390_pathogens10091209
crossref_primary_10_3390_pathogens14010006
crossref_primary_10_7589_2015_05_131
crossref_primary_10_1007_s00436_017_5620_x
crossref_primary_10_1371_journal_ppat_1003556
crossref_primary_10_1016_j_cimid_2024_102245
crossref_primary_10_1016_j_chom_2020_01_015
crossref_primary_10_1371_journal_pntd_0006865
crossref_primary_10_1111_j_1462_5822_2012_01806_x
crossref_primary_10_1089_vbz_2014_1606
crossref_primary_10_1016_j_tim_2023_05_011
crossref_primary_10_1016_j_meegid_2021_104719
crossref_primary_10_1093_gbe_evx042
crossref_primary_10_1111_tbed_13290
crossref_primary_10_1101_gr_151035_112
crossref_primary_10_1016_j_tcb_2017_03_004
crossref_primary_10_1111_cmi_13004
crossref_primary_10_1111_tbed_13762
crossref_primary_10_1371_journal_pntd_0001248
crossref_primary_10_1186_s13071_018_3240_7
crossref_primary_10_1016_j_meegid_2020_104496
crossref_primary_10_1186_1297_9716_43_15
crossref_primary_10_1093_femsec_fiad154
crossref_primary_10_3389_fmicb_2023_1289671
crossref_primary_10_1371_journal_pntd_0004712
crossref_primary_10_1093_molbev_msx299
crossref_primary_10_1093_molbev_msz155
crossref_primary_10_1128_AEM_01409_14
Cites_doi 10.1128/JCM.35.6.1327-1331.1997
10.1093/molbev/msi124
10.1038/nrmicro2174
10.1128/JCM.41.2.645-650.2003
10.1086/509049
10.1038/ng.2007.38
10.1099/00207713-52-1-165
10.1128/IAI.68.12.6750-6757.2000
10.1128/AEM.00071-08
10.1128/JCM.35.7.1813-1818.1997
10.1016/S0378-1135(01)00304-2
10.1093/nar/gki471
10.1093/molbev/msm092
10.1099/ijs.0.02770-0
10.1073/pnas.0305659101
10.3201/eid1310.070570
10.1093/nar/gkj406
10.1099/00207713-52-2-383
10.1073/pnas.0507944102
10.1128/JCM.01207-07
10.1111/j.1574-6968.1996.tb08501.x
10.1099/00207713-50-6-1973
10.1073/pnas.0802343105
10.3201/eid1504.081223
10.1093/bioinformatics/btl474
10.1056/NEJMoa065987
10.1038/nature03959
10.1093/bioinformatics/17.8.754
10.1093/molbev/msm252
10.1016/S0147-9571(99)00075-2
10.4269/ajtmh.1997.57.578
10.1099/00207713-51-4-1557
10.1038/nrmicro1209
10.1086/514201
10.1371/journal.pgen.1000546
10.1371/journal.ppat.0020115
10.1038/nature07893
10.1371/journal.ppat.1000946
10.3201/eid1005.030430
10.1073/pnas.0405284101
10.1111/j.1462-5822.2009.01313.x
10.1086/314824
10.1089/vbz.2009.0135
10.1128/JCM.01351-08
10.1111/j.1365-294X.2010.04646.x
10.1111/j.1462-5822.2009.01302.x
10.1093/nar/gkg584
10.1086/344054
10.1128/CDLI.6.1.41-44.1999
10.1126/science.1118052
10.1093/bioinformatics/bti079
10.1371/journal.pone.0005818
10.1371/journal.pgen.0020209
10.1073/pnas.0406796102
10.1002/0471250953.bi0604s00
10.1111/j.1469-8137.2007.02293.x
10.1038/nchembio0609-378
10.3201/eid1512.081692
10.1093/nar/gkg590
10.1093/oxfordjournals.molbev.a004148
10.1099/00207713-46-4-891
10.1099/00207713-45-1-1
10.4269/ajtmh.2002.66.622
10.1073/pnas.0903585106
10.1007/s00248-009-9488-x
10.1093/nar/22.22.4673
10.1128/IAI.71.2.814-821.2003
10.4269/ajtmh.2009.09-0294
10.1051/vetres/2009010
10.1006/jmbi.1999.3310
10.1159/000235769
10.1534/genetics.106.059527
10.1111/j.1365-294X.2008.03981.x
10.1128/JCM.42.8.3816-3818.2004
10.4269/ajtmh.2009.81.55
10.1084/jem.193.9.1077
10.1128/JCM.40.12.4691-4699.2002
10.1099/jmm.0.2008/004671-0
10.1093/molbev/msm088
10.1146/annurev.micro.58.030603.123700
10.1371/journal.pone.0009765
10.1128/JCM.41.8.4001-4002.2003
10.1126/science.1166382
10.1016/S0076-6879(05)95038-6
10.3201/eid0603.000313
10.1089/vbz.2005.5.402
10.1002/0471250953.bi0605s00
10.1016/j.chom.2009.03.004
10.1016/j.cimid.2008.07.011
10.1292/jvms.09-0466
10.1046/j.1365-2958.2003.03650.x
10.1017/S0950268802008075
10.1186/1471-2164-11-152
10.1017/S095026880100526X
10.1099/00207713-48-4-1333
10.1051/vetres/2009011
10.1111/j.1574-6941.2007.00364.x
10.1128/JCM.33.8.2107-2113.1995
10.1038/27900
10.1099/ijs.0.03033-0
ContentType Journal Article
Copyright COPYRIGHT 2011 Public Library of Science
Attribution
Engel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2011
2011 Engel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Engel P, Salzburger W, Liesch M, Chang C-C, Maruyama S, et al. (2011) Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella. PLoS Genet 7(2): e1001296. doi:10.1371/journal.pgen.1001296
Copyright_xml – notice: COPYRIGHT 2011 Public Library of Science
– notice: Attribution
– notice: Engel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2011
– notice: 2011 Engel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Engel P, Salzburger W, Liesch M, Chang C-C, Maruyama S, et al. (2011) Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella. PLoS Genet 7(2): e1001296. doi:10.1371/journal.pgen.1001296
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pgen.1001296
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Parallel Adaptive Radiations of Pathogens
EISSN 1553-7404
ExternalDocumentID 1313553784
oai_doaj_org_article_98ef5dd82373494fa28c3c842b6dcef1
PMC3037411
oai_HAL_hal_04580576v1
A250652065
21347280
10_1371_journal_pgen_1001296
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Howard Hughes Medical Institute
  grantid: 55005501
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
1XC
VOOES
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c731t-441c1bcac7d057cfcad47aad119ebc993cf765cb1009e474e99ee04f26c1415b3
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:34 EDT 2023
Wed Aug 27 01:23:35 EDT 2025
Thu Aug 21 14:09:13 EDT 2025
Fri May 09 12:27:10 EDT 2025
Fri Jul 11 01:02:33 EDT 2025
Tue Jun 17 21:27:03 EDT 2025
Tue Jun 10 20:33:53 EDT 2025
Fri Jun 27 04:41:22 EDT 2025
Fri Jun 27 04:40:36 EDT 2025
Fri Jun 27 05:11:27 EDT 2025
Thu May 22 21:24:21 EDT 2025
Mon Jul 21 05:47:18 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
Tue Jul 01 02:38:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution: http://creativecommons.org/licenses/by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c731t-441c1bcac7d057cfcad47aad119ebc993cf765cb1009e474e99ee04f26c1415b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: PE WS CM CD. Performed the experiments: PE ML CL SCS. Analyzed the data: PE WS ML AC AL CM SCS CD. Contributed reagents/materials/analysis tools: CCC SM. Wrote the paper: PE WS CD.
ORCID 0000-0002-5871-9347
0000-0002-3905-1054
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1001296
PMID 21347280
PQID 853993601
PQPubID 23479
ParticipantIDs plos_journals_1313553784
doaj_primary_oai_doaj_org_article_98ef5dd82373494fa28c3c842b6dcef1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3037411
hal_primary_oai_HAL_hal_04580576v1
proquest_miscellaneous_853993601
gale_infotracmisc_A250652065
gale_infotracacademiconefile_A250652065
gale_incontextgauss_ISR_A250652065
gale_incontextgauss_ISN_A250652065
gale_incontextgauss_IOV_A250652065
gale_healthsolutions_A250652065
pubmed_primary_21347280
crossref_citationtrail_10_1371_journal_pgen_1001296
crossref_primary_10_1371_journal_pgen_1001296
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References TA Rhomberg (ref19) 2009; 11
JC Obenauer (ref54) 2003; 31
JB Henn (ref88) 2009; 15
CM Alsmark (ref27) 2004; 101
MF Minnick (ref45) 2003; 71
L Sandegren (ref50) 2009; 7
BB Chomel (ref38) 2009; 40
F Scheidegger (ref20) 2009; 11
R Schulein (ref17) 2005; 102
ME Eremeeva (ref29) 2007; 356
PM Brakefield (ref7) 2006; 168
JD Thompson (ref59) 1994; 22
BA Ellis (ref83) 1999; 180
DL Kordick (ref33) 1997; 35
MY Kosoy (ref95) 1997; 57
JB Losos (ref10) 2009; 457
DA Bemis (ref71) 2007; 13
R Heller (ref34) 1997; 35
DM Li (ref96) 2006; 27
ML Yarbrough (ref26) 2009; 5
M Vayssier-Taussat (ref22) 2010; 6
K Inoue (ref92) 2008; 74
J Sikorski (ref6) 2005; 102
D Schluter (ref1) 2000
B Celebi (ref78) 2010; 72
G Marignac (ref13) 2010; 33
P Engel (ref67) 2009; 6
B Ying (ref104) 2002; 66
A Tea (ref103) 2004; 10
JA Carroll (ref43) 2000; 68
JAA Nylander (ref64) 2004
D Vallenet (ref58) 2006; 34
D Posada (ref63) 2003; 6
R Heller (ref87) 1998; 48 Pt 4
D Bermond (ref74) 2000; 50
ZI Johnson (ref4) 2006; 311
PMD Harvey P.H. (ref11) 1991
C Dehio (ref55) 2001; 51
Y Bai (ref70) 2009; 81
MR Kronforst (ref9) 2006; 174
C Dehio (ref44) 2004; 58
K Tamura (ref60) 2007; 24
K Inoue (ref91) 2009; 57
JB Henn (ref32) 2009; 47
M Margulies (ref56) 2005; 437
BB Chomel (ref39) 2009; 40
B Nystedt (ref24) 2008; 25
HD Huang (ref53) 2005; 33
C Jardine (ref93) 2005; 5
JE Clarridge 3rd (ref81) 1995; 33
GM Ihler (ref37) 1996; 144
R Maillard (ref98) 2004; 54
EC Berglund (ref41) 2010; 19
CC Chang (ref80) 2000; 6
M Kosoy (ref94) 2003; 41
M Arvand (ref68) 2010; 5
F Duponchelle (ref8) 2008; 105
Z Zeaiter (ref105) 2002; 52
N Blom (ref52) 1999; 294
JW Lin (ref31) 2008; 57
EC Berglund (ref28) 2009; 5
W Ma (ref47) 2006; 2
A Seubert (ref23) 2003; 49
RJ Birtles (ref75) 1995; 45
HL Saenz (ref16) 2007; 39
FJ Marquez (ref99) 2010; 10
S Bocs (ref57) 2003; 31
VA Gundi (ref84) 2004; 42
AM Pretorius (ref101) 2004; 54
JC Wilgenbusch (ref61) 2003; 6
J Chamberlin (ref79) 2002; 186
AC Frank (ref48) 2005; 22
R Schulein (ref14) 2001; 193
S Harrus (ref86) 2009; 81
P Zhang (ref15) 2004; 101
RJ Birtles (ref76) 2001; 126
EC Berglund (ref72) 2010; 11
C Dehio (ref12) 2005; 3
SL Pond (ref66) 2005; 21
B Dillon (ref82) 2002; 40
JM Rolain (ref102) 2003; 41
MC Schmid (ref18) 2006; 2
SL Lydy (ref97) 2008; 46
M Selbach (ref21) 2009; 5
MY Kosoy (ref40) 2000; 23
M Holmberg (ref90) 2003; 130
SL Kosakovsky Pond (ref35) 2006; 22
Y Ogura (ref49) 2009; 106
EK Hofmeister (ref89) 1998; 177
PB Rainey (ref5) 1998; 394
LN Kinch (ref51) 2009; 4
AN Gurfield (ref85) 2001; 80
ML Yarbrough (ref25) 2009; 323
PR Grant (ref2) 2008
OR Bininda-Emonds (ref36) 2005; 395
Z Yang (ref65) 2007; 24
Y Bai (ref69) 2007; 61
W Salzburger (ref3) 2009; 18
K Inoue (ref30) 2009; 15
HC McCann (ref46) 2008; 177
D Bermond (ref73) 2002; 52
RJ Birtles (ref77) 1996; 46
Z Yang (ref42) 2002; 19
JP Huelsenbeck (ref62) 2001; 17
EL Marston (ref100) 1999; 6
12232839 - J Infect Dis. 2002 Oct 1;186(7):983-90
20333257 - PLoS One. 2010;5(3):e9765
19380118 - Cell Host Microbe. 2009 Apr 23;5(4):397-403
11295338 - Vet Microbiol. 2001 May 21;80(2):185-98
15487942 - Annu Rev Microbiol. 2004;58:365-90
15347808 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13630-5
20059317 - Vector Borne Zoonotic Dis. 2010 Oct;10(8):731-4
14742483 - Int J Syst Evol Microbiol. 2004 Jan;54(Pt 1):215-20
17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
20234114 - J Vet Med Sci. 2010 Aug;72(8):969-73
9392599 - Am J Trop Med Hyg. 1997 Nov;57(5):578-88
9828434 - Int J Syst Bacteriol. 1998 Oct;48 Pt 4:1333-9
17110367 - Bioinformatics. 2006 Dec 15;22(24):3096-8
18428705 - Curr Protoc Bioinformatics. 2003 Feb;Chapter 6:Unit 6.5
18428704 - Curr Protoc Bioinformatics. 2003 Feb;Chapter 6:Unit 6.4
15545418 - Int J Syst Evol Microbiol. 2004 Nov;54(Pt 6):1959-67
20097421 - Comp Immunol Microbiol Infect Dis. 2010 Mar;33(2):95-107
12454174 - J Clin Microbiol. 2002 Dec;40(12):4691-9
19503829 - PLoS One. 2009;4(6):e5818
12201602 - Am J Trop Med Hyg. 2002 May;66(5):622-7
20202191 - BMC Genomics. 2010;11:152
11837299 - Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):165-71
8870245 - FEMS Microbiol Lett. 1996 Oct 15;144(1):1-11
17121462 - PLoS Pathog. 2006 Nov;2(11):e115
19018019 - J Med Microbiol. 2008 Dec;57(Pt 12):1496-501
11342592 - J Exp Med. 2001 May 7;193(9):1077-86
18606803 - Appl Environ Microbiol. 2008 Aug;74(16):5086-92
18258009 - Emerg Infect Dis. 2007 Oct;13(10):1565-7
19556567 - Am J Trop Med Hyg. 2009 Jul;81(1):55-8
20465583 - Mol Ecol. 2010 Jun;19(11):2241-55
18094131 - J Clin Microbiol. 2008 Feb;46(2):627-37
19302579 - Cell Microbiol. 2009 Jun;11(6):927-45
17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
19578403 - PLoS Genet. 2009 Jul;5(7):e1000546
19039103 - Science. 2009 Jan 9;323(5911):269-72
16064054 - Nat Rev Microbiol. 2005 Aug;3(8):621-31
9466529 - J Infect Dis. 1998 Feb;177(2):409-16
10353885 - J Infect Dis. 1999 Jul;180(1):220-4
7857789 - Int J Syst Bacteriol. 1995 Jan;45(1):1-8
19609259 - Nat Rev Microbiol. 2009 Aug;7(8):578-88
12940985 - Mol Microbiol. 2003 Sep;49(5):1253-66
16417436 - Vector Borne Zoonotic Dis. 2005 Winter;5(4):402-9
15509596 - Bioinformatics. 2005 Mar 1;21(5):676-9
20548954 - PLoS Pathog. 2010;6(6):e1000946
15297537 - J Clin Microbiol. 2004 Aug;42(8):3816-8
9665128 - Nature. 1998 Jul 2;394(6688):69-72
19331727 - Emerg Infect Dis. 2009 Apr;15(4):526-32
19448605 - Nat Chem Biol. 2009 Jun;5(6):378-9
19109472 - J Clin Microbiol. 2009 Mar;47(3):787-90
19961681 - Emerg Infect Dis. 2009 Dec;15(12):1984-7
15746011 - Mol Biol Evol. 2005 May;22(5):1325-36
10827123 - Emerg Infect Dis. 2000 May-Jun;6(3):306-11
8863415 - Int J Syst Bacteriol. 1996 Oct;46(4):891-7
18037886 - Nat Genet. 2007 Dec;39(12):1469-76
19696500 - Genome Dyn. 2009;6:158-69
16875539 - Zhonghua Liu Xing Bing Xue Za Zhi. 2006 Apr;27(4):333-8
10600390 - J Mol Biol. 1999 Dec 17;294(5):1351-62
11349984 - Epidemiol Infect. 2001 Apr;126(2):323-9
19212401 - Nature. 2009 Feb 12;457(7231):830-6
12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41
11038125 - Comp Immunol Microbiol Infect Dis. 2000 Oct;23(4):221-38
12613756 - Epidemiol Infect. 2003 Feb;130(1):149-57
19272295 - Vet Res. 2009 Jul-Aug;40(4):27
17194219 - PLoS Genet. 2006 Dec;2(12):e209
16407324 - Nucleic Acids Res. 2006;34(1):53-65
15642951 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):856-61
12032247 - Mol Biol Evol. 2002 Jun;19(6):908-17
17554119 - N Engl J Med. 2007 Jun 7;356(23):2381-7
18992003 - Mol Ecol. 2009 Jan;18(2):169-85
15865993 - Methods Enzymol. 2005;395:745-57
11083791 - Infect Immun. 2000 Dec;68(12):6750-7
12540561 - Infect Immun. 2003 Feb;71(2):814-21
16783007 - Genetics. 2006 Sep;174(1):535-9
19219487 - Microb Ecol. 2009 Apr;57(3):534-41
19284965 - Vet Res. 2009 Mar-Apr;40(2):29
19416269 - Cell Microbiol. 2009 Jul;11(7):1088-101
9874661 - Clin Diagn Lab Immunol. 1999 Jan;6(1):41-4
15210978 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9716-21
18824688 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15475-80
19861616 - Am J Trop Med Hyg. 2009 Nov;81(5):811-6
16056220 - Nature. 2005 Sep 15;437(7057):376-80
17672850 - FEMS Microbiol Ecol. 2007 Sep;61(3):438-48
19815525 - Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17939-44
18078471 - New Phytol. 2008;177(1):33-47
12904442 - J Clin Microbiol. 2003 Aug;41(8):4001-2
17109328 - Am Nat. 2006 Dec;168 Suppl 6:S4-13
9163438 - J Clin Microbiol. 1997 Jun;35(6):1327-31
11155970 - Int J Syst Evol Microbiol. 2000 Nov;50 Pt 6:1973-9
11524383 - Bioinformatics. 2001 Aug;17(8):754-5
12574261 - J Clin Microbiol. 2003 Feb;41(2):645-50
12824403 - Nucleic Acids Res. 2003 Jul 1;31(13):3723-6
16556835 - Science. 2006 Mar 24;311(5768):1737-40
16249328 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15924-9
7559957 - J Clin Microbiol. 1995 Aug;33(8):2107-13
15216849 - Emerg Infect Dis. 2004 May;10(5):963-4
18065487 - Mol Biol Evol. 2008 Feb;25(2):287-300
11491358 - Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1557-65
15980458 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W226-9
9196200 - J Clin Microbiol. 1997 Jul;35(7):1813-8
11931146 - Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):383-90
7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
References_xml – volume: 35
  start-page: 1327
  year: 1997
  ident: ref34
  article-title: Prevalence of Bartonella henselae and Bartonella clarridgeiae in stray cats.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.35.6.1327-1331.1997
– volume: 22
  start-page: 1325
  year: 2005
  ident: ref48
  article-title: Functional divergence and horizontal transfer of type IV secretion systems.
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msi124
– volume: 7
  start-page: 578
  year: 2009
  ident: ref50
  article-title: Bacterial gene amplification: implications for the evolution of antibiotic resistance.
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2174
– volume: 41
  start-page: 645
  year: 2003
  ident: ref94
  article-title: Bartonella strains from ground squirrels are identical to Bartonella washoensis isolated from a human patient.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.41.2.645-650.2003
– volume: 168
  start-page: S4
  year: 2006
  ident: ref7
  article-title: Exploring evolutionary constraints is a task for an integrative evolutionary biology.
  publication-title: Am Nat
  doi: 10.1086/509049
– volume: 39
  start-page: 1469
  year: 2007
  ident: ref16
  article-title: Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors.
  publication-title: Nat Genet
  doi: 10.1038/ng.2007.38
– volume: 52
  start-page: 165
  year: 2002
  ident: ref105
  article-title: Phylogenetic classification of Bartonella species by comparing groEL sequences.
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-52-1-165
– volume: 68
  start-page: 6750
  year: 2000
  ident: ref43
  article-title: Hemin-binding surface protein from Bartonella quintana.
  publication-title: Infect Immun
  doi: 10.1128/IAI.68.12.6750-6757.2000
– volume: 74
  start-page: 5086
  year: 2008
  ident: ref92
  article-title: Prevalence and genetic diversity of Bartonella species isolated from wild rodents in Japan.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00071-08
– volume: 35
  start-page: 1813
  year: 1997
  ident: ref33
  article-title: Bartonella clarridgeiae, a newly recognized zoonotic pathogen causing inoculation papules, fever, and lymphadenopathy (cat scratch disease).
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.35.7.1813-1818.1997
– volume: 80
  start-page: 185
  year: 2001
  ident: ref85
  article-title: Epidemiology of Bartonella infection in domestic cats in France.
  publication-title: Vet Microbiol
  doi: 10.1016/S0378-1135(01)00304-2
– volume: 33
  start-page: W226
  year: 2005
  ident: ref53
  article-title: KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki471
– volume: 24
  start-page: 1596
  year: 2007
  ident: ref60
  article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm092
– volume: 54
  start-page: 215
  year: 2004
  ident: ref98
  article-title: Bartonella chomelii sp. nov., isolated from French domestic cattle (Bos taurus).
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.02770-0
– volume: 101
  start-page: 9716
  year: 2004
  ident: ref27
  article-title: The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0305659101
– volume: 13
  start-page: 1565
  year: 2007
  ident: ref71
  article-title: Isolation of Bartonella sp. from sheep blood.
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1310.070570
– year: 1991
  ident: ref11
  article-title: The comparative method in evolutionary biology
– volume: 34
  start-page: 53
  year: 2006
  ident: ref58
  article-title: MaGe: a microbial genome annotation system supported by synteny results.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj406
– volume: 52
  start-page: 383
  year: 2002
  ident: ref73
  article-title: Bartonella bovis Bermond et al. sp. nov. and Bartonella capreoli sp. nov., isolated from European ruminants.
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-52-2-383
– volume: 102
  start-page: 15924
  year: 2005
  ident: ref6
  article-title: Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at “Evolution Canyons” I and II, Israel.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0507944102
– volume: 46
  start-page: 627
  year: 2008
  ident: ref97
  article-title: Isolation and characterization of Bartonella bacilliformis from an expatriate Ecuadorian.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01207-07
– volume: 144
  start-page: 1
  year: 1996
  ident: ref37
  article-title: Bartonella bacilliformis: dangerous pathogen slowly emerging from deep background.
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.1996.tb08501.x
– volume: 50
  start-page: 1973
  year: 2000
  ident: ref74
  article-title: Bartonella birtlesii sp. nov., isolated from small mammals (Apodemus spp.).
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-50-6-1973
– volume: 105
  start-page: 15475
  year: 2008
  ident: ref8
  article-title: Parallel life history evolution in mouthbrooding cichlids from the African Great Lakes.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0802343105
– volume: 15
  start-page: 526
  year: 2009
  ident: ref30
  article-title: Exotic small mammals as potential reservoirs of zoonotic Bartonella spp.
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1504.081223
– volume: 22
  start-page: 3096
  year: 2006
  ident: ref35
  article-title: GARD: a genetic algorithm for recombination detection.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl474
– volume: 356
  start-page: 2381
  year: 2007
  ident: ref29
  article-title: Bacteremia, fever, and splenomegaly caused by a newly recognized Bartonella species.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa065987
– volume: 437
  start-page: 376
  year: 2005
  ident: ref56
  article-title: Genome sequencing in microfabricated high-density picolitre reactors.
  publication-title: Nature
  doi: 10.1038/nature03959
– volume: 17
  start-page: 754
  year: 2001
  ident: ref62
  article-title: MRBAYES: Bayesian inference of phylogenetic trees.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.8.754
– volume: 25
  start-page: 287
  year: 2008
  ident: ref24
  article-title: Diversifying selection and concerted evolution of a type IV secretion system in Bartonella.
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm252
– volume: 23
  start-page: 221
  year: 2000
  ident: ref40
  article-title: Experimental evidence of host specificity of Bartonella infection in rodents.
  publication-title: Comp Immunol Microbiol Infect Dis
  doi: 10.1016/S0147-9571(99)00075-2
– volume: 57
  start-page: 578
  year: 1997
  ident: ref95
  article-title: Distribution, diversity, and host specificity of Bartonella in rodents from the Southeastern United States.
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1997.57.578
– volume: 51
  start-page: 1557
  year: 2001
  ident: ref55
  article-title: Bartonella schoenbuchii sp. nov., isolated from the blood of wild roe deer.
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-51-4-1557
– volume: 3
  start-page: 621
  year: 2005
  ident: ref12
  article-title: Bartonella-host-cell interactions and vascular tumour formation.
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1209
– volume: 177
  start-page: 409
  year: 1998
  ident: ref89
  article-title: Cosegregation of a novel Bartonella species with Borrelia burgdorferi and Babesia microti in Peromyscus leucopus.
  publication-title: J Infect Dis
  doi: 10.1086/514201
– volume: 5
  start-page: e1000546
  year: 2009
  ident: ref28
  article-title: Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000546
– volume: 2
  start-page: e115
  year: 2006
  ident: ref18
  article-title: A translocated bacterial protein protects vascular endothelial cells from apoptosis.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0020115
– start-page: viii, 288
  year: 2000
  ident: ref1
  article-title: The ecology of adaptive radiation
– volume: 457
  start-page: 830
  year: 2009
  ident: ref10
  article-title: Adaptation and diversification on islands.
  publication-title: Nature
  doi: 10.1038/nature07893
– volume: 6
  start-page: e1000946
  year: 2010
  ident: ref22
  article-title: The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000946
– volume: 10
  start-page: 963
  year: 2004
  ident: ref103
  article-title: Bartonella species isolated from rodents, Greece.
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1005.030430
– volume: 101
  start-page: 13630
  year: 2004
  ident: ref15
  article-title: A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0405284101
– volume: 11
  start-page: 1088
  year: 2009
  ident: ref20
  article-title: Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation.
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2009.01313.x
– volume: 180
  start-page: 220
  year: 1999
  ident: ref83
  article-title: Rats of the genus Rattus are reservoir hosts for pathogenic Bartonella species: an Old World origin for a New World disease?
  publication-title: J Infect Dis
  doi: 10.1086/314824
– volume: 10
  start-page: 731
  year: 2010
  ident: ref99
  article-title: Molecular Detection of Bartonella alsatica in European Wild Rabbits (Oryctolagus cuniculus) in Andalusia (Spain).
  publication-title: Vector Borne Zoonotic Dis
  doi: 10.1089/vbz.2009.0135
– volume: 47
  start-page: 787
  year: 2009
  ident: ref32
  article-title: Infective endocarditis in a dog and the phylogenetic relationship of the associated “Bartonella rochalimae” strain with isolates from dogs, gray foxes, and a human.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01351-08
– volume: 19
  start-page: 2241
  year: 2010
  ident: ref41
  article-title: Rapid diversification by recombination in Bartonella grahamii from wild rodents in Asia contrasts with low levels of genomic divergence in Northern Europe and America.
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2010.04646.x
– volume: 11
  start-page: 927
  year: 2009
  ident: ref19
  article-title: A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome.
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2009.01302.x
– volume: 31
  start-page: 3635
  year: 2003
  ident: ref54
  article-title: Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg584
– volume: 186
  start-page: 983
  year: 2002
  ident: ref79
  article-title: Epidemiology of endemic Bartonella bacilliformis: a prospective cohort study in a Peruvian mountain valley community.
  publication-title: J Infect Dis
  doi: 10.1086/344054
– volume: 6
  start-page: 41
  year: 1999
  ident: ref100
  article-title: Prevalence of Bartonella henselae and Bartonella clarridgeiae in an urban Indonesian cat population.
  publication-title: Clin Diagn Lab Immunol
  doi: 10.1128/CDLI.6.1.41-44.1999
– volume: 311
  start-page: 1737
  year: 2006
  ident: ref4
  article-title: Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients.
  publication-title: Science
  doi: 10.1126/science.1118052
– volume: 21
  start-page: 676
  year: 2005
  ident: ref66
  article-title: HyPhy: hypothesis testing using phylogenies.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti079
– volume: 4
  start-page: e5818
  year: 2009
  ident: ref51
  article-title: Fido, a novel AMPylation domain common to fic, doc, and AvrB.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005818
– volume: 2
  start-page: e209
  year: 2006
  ident: ref47
  article-title: Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020209
– volume: 102
  start-page: 856
  year: 2005
  ident: ref17
  article-title: A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0406796102
– volume: 6
  start-page: Unit 6.4.1
  year: 2003
  ident: ref61
  article-title: Inferring evolutionary trees with PAUP*.
  publication-title: Curr Protoc Bioinformatics Chapter
  doi: 10.1002/0471250953.bi0604s00
– volume: 177
  start-page: 33
  year: 2008
  ident: ref46
  article-title: Evolution of the type III secretion system and its effectors in plant-microbe interactions.
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02293.x
– volume: 5
  start-page: 378
  year: 2009
  ident: ref26
  article-title: AMPylation is a new post-translational modiFICation.
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio0609-378
– volume: 15
  start-page: 1984
  year: 2009
  ident: ref88
  article-title: Bartonella rochalimae in raccoons, coyotes, and red foxes.
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1512.081692
– volume: 31
  start-page: 3723
  year: 2003
  ident: ref57
  article-title: AMIGene: Annotation of MIcrobial Genes.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg590
– volume: 19
  start-page: 908
  year: 2002
  ident: ref42
  article-title: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages.
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004148
– volume: 46
  start-page: 891
  year: 1996
  ident: ref77
  article-title: Comparison of partial citrate synthase gene (gltA) sequences for phylogenetic analysis of Bartonella species.
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-46-4-891
– volume: 45
  start-page: 1
  year: 1995
  ident: ref75
  article-title: Proposals to unify the genera Grahamella and Bartonella, with descriptions of Bartonella talpae comb. nov., Bartonella peromysci comb. nov., and three new species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov.
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-45-1-1
– volume: 66
  start-page: 622
  year: 2002
  ident: ref104
  article-title: Genetic and ecologic characteristics of Bartonella communities in rodents in southern China.
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2002.66.622
– volume: 106
  start-page: 17939
  year: 2009
  ident: ref49
  article-title: Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0903585106
– year: 2004
  ident: ref64
  article-title: MrModeltest v2
– volume: 57
  start-page: 534
  year: 2009
  ident: ref91
  article-title: Evolutional and geographical relationships of Bartonella grahamii isolates from wild rodents by multi-locus sequencing analysis.
  publication-title: Microb Ecol
  doi: 10.1007/s00248-009-9488-x
– volume: 22
  start-page: 4673
  year: 1994
  ident: ref59
  article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/22.22.4673
– volume: 71
  start-page: 814
  year: 2003
  ident: ref45
  article-title: Five-member gene family of Bartonella quintana.
  publication-title: Infect Immun
  doi: 10.1128/IAI.71.2.814-821.2003
– volume: 81
  start-page: 811
  year: 2009
  ident: ref70
  article-title: Prevalence and genetic heterogeneity of Bartonella strains cultured from rodents from 17 provinces in Thailand.
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2009.09-0294
– volume: 40
  start-page: 27
  year: 2009
  ident: ref39
  article-title: Dogs are more permissive than cats or guinea pigs to experimental infection with a human isolate of Bartonella rochalimae.
  publication-title: Vet Res
  doi: 10.1051/vetres/2009010
– volume: 294
  start-page: 1351
  year: 1999
  ident: ref52
  article-title: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3310
– volume: 6
  start-page: 158
  year: 2009
  ident: ref67
  article-title: Genomics of Host-Restricted Pathogens of the Genus Bartonella.
  publication-title: Genome Dyn
  doi: 10.1159/000235769
– volume: 174
  start-page: 535
  year: 2006
  ident: ref9
  article-title: Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies.
  publication-title: Genetics
  doi: 10.1534/genetics.106.059527
– volume: 18
  start-page: 169
  year: 2009
  ident: ref3
  article-title: The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes.
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2008.03981.x
– volume: 27
  start-page: 333
  year: 2006
  ident: ref96
  article-title: [Study on Bartonella vinsonii berkhoffii isolated from blood of native dogs in China].
  publication-title: Zhonghua Liu Xing Bing Xue Za Zhi
– volume: 42
  start-page: 3816
  year: 2004
  ident: ref84
  article-title: Isolation of Bartonella rattimassiliensis sp. nov. and Bartonella phoceensis sp. nov. from European Rattus norvegicus.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.42.8.3816-3818.2004
– volume: 81
  start-page: 55
  year: 2009
  ident: ref86
  article-title: Isolation and genetic characterization of a Bartonella strain closely related to Bartonella tribocorum and Bartonella elizabethae in Israeli commensal rats.
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2009.81.55
– volume: 193
  start-page: 1077
  year: 2001
  ident: ref14
  article-title: Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella.
  publication-title: J Exp Med
  doi: 10.1084/jem.193.9.1077
– volume: 40
  start-page: 4691
  year: 2002
  ident: ref82
  article-title: Limited diversity among human isolates of Bartonella henselae.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.40.12.4691-4699.2002
– volume: 57
  start-page: 1496
  year: 2008
  ident: ref31
  article-title: Isolation of Bartonella species from rodents in Taiwan including a strain closely related to ‘Bartonella rochalimae’ from Rattus norvegicus.
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.2008/004671-0
– volume: 24
  start-page: 1586
  year: 2007
  ident: ref65
  article-title: PAML 4: phylogenetic analysis by maximum likelihood.
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm088
– volume: 58
  start-page: 365
  year: 2004
  ident: ref44
  article-title: Molecular and cellular basis of Bartonella pathogenesis.
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.58.030603.123700
– volume: 5
  start-page: e9765
  year: 2010
  ident: ref68
  article-title: Multi-locus sequence typing of a geographically and temporally diverse sample of the highly clonal human pathogen Bartonella quintana.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009765
– start-page: xix, 218
  year: 2008
  ident: ref2
  article-title: How and why species multiply : the radiation of Darwin's finches
– volume: 41
  start-page: 4001
  year: 2003
  ident: ref102
  article-title: First isolation and detection by immunofluorescence assay of Bartonella koehlerae in erythrocytes from a French cat.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.41.8.4001-4002.2003
– volume: 323
  start-page: 269
  year: 2009
  ident: ref25
  article-title: AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling.
  publication-title: Science
  doi: 10.1126/science.1166382
– volume: 395
  start-page: 745
  year: 2005
  ident: ref36
  article-title: Supertree construction in the genomic age.
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(05)95038-6
– volume: 6
  start-page: 306
  year: 2000
  ident: ref80
  article-title: Bartonella spp. isolated from wild and domestic ruminants in North America.
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid0603.000313
– volume: 5
  start-page: 402
  year: 2005
  ident: ref93
  article-title: Rodent-associated Bartonella in Saskatchewan, Canada.
  publication-title: Vector Borne Zoonotic Dis
  doi: 10.1089/vbz.2005.5.402
– volume: 6
  start-page: Unit 6.5.1
  year: 2003
  ident: ref63
  article-title: Using MODELTEST and PAUP* to select a model of nucleotide substitution.
  publication-title: Curr Protoc Bioinformatics Chapter
  doi: 10.1002/0471250953.bi0605s00
– volume: 5
  start-page: 397
  year: 2009
  ident: ref21
  article-title: Host cell interactome of tyrosine-phosphorylated bacterial proteins.
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.03.004
– volume: 33
  start-page: 95
  year: 2010
  ident: ref13
  article-title: Murine model for Bartonella birtlesii infection: New aspects.
  publication-title: Comp Immunol Microbiol Infect Dis
  doi: 10.1016/j.cimid.2008.07.011
– volume: 72
  start-page: 969
  year: 2010
  ident: ref78
  article-title: Detection and Genetic Diversity of Bartonella vinsonii Subsp. berkhoffii Strains Isolated from Dogs in Ankara, Turkey.
  publication-title: J Vet Med Sci
  doi: 10.1292/jvms.09-0466
– volume: 49
  start-page: 1253
  year: 2003
  ident: ref23
  article-title: A bacterial conjugation machinery recruited for pathogenesis.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03650.x
– volume: 130
  start-page: 149
  year: 2003
  ident: ref90
  article-title: Bartonella infection in sylvatic small mammals of central Sweden.
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268802008075
– volume: 11
  start-page: 152
  year: 2010
  ident: ref72
  article-title: Genome dynamics of Bartonella grahamii in micro-populations of woodland rodents.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-152
– volume: 126
  start-page: 323
  year: 2001
  ident: ref76
  article-title: Longitudinal monitoring of the dynamics of infections due to Bartonella species in UK woodland rodents.
  publication-title: Epidemiol Infect
  doi: 10.1017/S095026880100526X
– volume: 48 Pt 4
  start-page: 1333
  year: 1998
  ident: ref87
  article-title: Bartonella tribocorum sp. nov., a new Bartonella species isolated from the blood of wild rats.
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-48-4-1333
– volume: 40
  start-page: 29
  year: 2009
  ident: ref38
  article-title: Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors.
  publication-title: Vet Res
  doi: 10.1051/vetres/2009011
– volume: 61
  start-page: 438
  year: 2007
  ident: ref69
  article-title: Acquisition of nonspecific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster).
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00364.x
– volume: 33
  start-page: 2107
  year: 1995
  ident: ref81
  article-title: Strategy to detect and identify Bartonella species in routine clinical laboratory yields Bartonella henselae from human immunodeficiency virus-positive patient and unique Bartonella strain from his cat.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.33.8.2107-2113.1995
– volume: 394
  start-page: 69
  year: 1998
  ident: ref5
  article-title: Adaptive radiation in a heterogeneous environment.
  publication-title: Nature
  doi: 10.1038/27900
– volume: 54
  start-page: 1959
  year: 2004
  ident: ref101
  article-title: Diversity of bartonellae associated with small mammals inhabiting Free State province, South Africa.
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.03033-0
– reference: 17194219 - PLoS Genet. 2006 Dec;2(12):e209
– reference: 15216849 - Emerg Infect Dis. 2004 May;10(5):963-4
– reference: 19609259 - Nat Rev Microbiol. 2009 Aug;7(8):578-88
– reference: 19861616 - Am J Trop Med Hyg. 2009 Nov;81(5):811-6
– reference: 14742483 - Int J Syst Evol Microbiol. 2004 Jan;54(Pt 1):215-20
– reference: 11349984 - Epidemiol Infect. 2001 Apr;126(2):323-9
– reference: 7559957 - J Clin Microbiol. 1995 Aug;33(8):2107-13
– reference: 19696500 - Genome Dyn. 2009;6:158-69
– reference: 19578403 - PLoS Genet. 2009 Jul;5(7):e1000546
– reference: 15509596 - Bioinformatics. 2005 Mar 1;21(5):676-9
– reference: 15297537 - J Clin Microbiol. 2004 Aug;42(8):3816-8
– reference: 9665128 - Nature. 1998 Jul 2;394(6688):69-72
– reference: 19331727 - Emerg Infect Dis. 2009 Apr;15(4):526-32
– reference: 19109472 - J Clin Microbiol. 2009 Mar;47(3):787-90
– reference: 16407324 - Nucleic Acids Res. 2006;34(1):53-65
– reference: 18094131 - J Clin Microbiol. 2008 Feb;46(2):627-37
– reference: 19018019 - J Med Microbiol. 2008 Dec;57(Pt 12):1496-501
– reference: 16417436 - Vector Borne Zoonotic Dis. 2005 Winter;5(4):402-9
– reference: 9392599 - Am J Trop Med Hyg. 1997 Nov;57(5):578-88
– reference: 18065487 - Mol Biol Evol. 2008 Feb;25(2):287-300
– reference: 20333257 - PLoS One. 2010;5(3):e9765
– reference: 12940985 - Mol Microbiol. 2003 Sep;49(5):1253-66
– reference: 18428705 - Curr Protoc Bioinformatics. 2003 Feb;Chapter 6:Unit 6.5
– reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
– reference: 11083791 - Infect Immun. 2000 Dec;68(12):6750-7
– reference: 19961681 - Emerg Infect Dis. 2009 Dec;15(12):1984-7
– reference: 17672850 - FEMS Microbiol Ecol. 2007 Sep;61(3):438-48
– reference: 12232839 - J Infect Dis. 2002 Oct 1;186(7):983-90
– reference: 10353885 - J Infect Dis. 1999 Jul;180(1):220-4
– reference: 16064054 - Nat Rev Microbiol. 2005 Aug;3(8):621-31
– reference: 20465583 - Mol Ecol. 2010 Jun;19(11):2241-55
– reference: 17121462 - PLoS Pathog. 2006 Nov;2(11):e115
– reference: 12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41
– reference: 18258009 - Emerg Infect Dis. 2007 Oct;13(10):1565-7
– reference: 12824403 - Nucleic Acids Res. 2003 Jul 1;31(13):3723-6
– reference: 12201602 - Am J Trop Med Hyg. 2002 May;66(5):622-7
– reference: 18037886 - Nat Genet. 2007 Dec;39(12):1469-76
– reference: 15642951 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):856-61
– reference: 11038125 - Comp Immunol Microbiol Infect Dis. 2000 Oct;23(4):221-38
– reference: 19284965 - Vet Res. 2009 Mar-Apr;40(2):29
– reference: 20202191 - BMC Genomics. 2010;11:152
– reference: 9874661 - Clin Diagn Lab Immunol. 1999 Jan;6(1):41-4
– reference: 15980458 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W226-9
– reference: 17109328 - Am Nat. 2006 Dec;168 Suppl 6:S4-13
– reference: 19039103 - Science. 2009 Jan 9;323(5911):269-72
– reference: 9163438 - J Clin Microbiol. 1997 Jun;35(6):1327-31
– reference: 11491358 - Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1557-65
– reference: 19448605 - Nat Chem Biol. 2009 Jun;5(6):378-9
– reference: 20234114 - J Vet Med Sci. 2010 Aug;72(8):969-73
– reference: 15865993 - Methods Enzymol. 2005;395:745-57
– reference: 12613756 - Epidemiol Infect. 2003 Feb;130(1):149-57
– reference: 19380118 - Cell Host Microbe. 2009 Apr 23;5(4):397-403
– reference: 15746011 - Mol Biol Evol. 2005 May;22(5):1325-36
– reference: 15210978 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9716-21
– reference: 11295338 - Vet Microbiol. 2001 May 21;80(2):185-98
– reference: 19302579 - Cell Microbiol. 2009 Jun;11(6):927-45
– reference: 18824688 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15475-80
– reference: 20548954 - PLoS Pathog. 2010;6(6):e1000946
– reference: 18992003 - Mol Ecol. 2009 Jan;18(2):169-85
– reference: 17110367 - Bioinformatics. 2006 Dec 15;22(24):3096-8
– reference: 16249328 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15924-9
– reference: 12574261 - J Clin Microbiol. 2003 Feb;41(2):645-50
– reference: 19212401 - Nature. 2009 Feb 12;457(7231):830-6
– reference: 19272295 - Vet Res. 2009 Jul-Aug;40(4):27
– reference: 16556835 - Science. 2006 Mar 24;311(5768):1737-40
– reference: 12540561 - Infect Immun. 2003 Feb;71(2):814-21
– reference: 15545418 - Int J Syst Evol Microbiol. 2004 Nov;54(Pt 6):1959-67
– reference: 11524383 - Bioinformatics. 2001 Aug;17(8):754-5
– reference: 8863415 - Int J Syst Bacteriol. 1996 Oct;46(4):891-7
– reference: 16056220 - Nature. 2005 Sep 15;437(7057):376-80
– reference: 16875539 - Zhonghua Liu Xing Bing Xue Za Zhi. 2006 Apr;27(4):333-8
– reference: 19503829 - PLoS One. 2009;4(6):e5818
– reference: 7857789 - Int J Syst Bacteriol. 1995 Jan;45(1):1-8
– reference: 19416269 - Cell Microbiol. 2009 Jul;11(7):1088-101
– reference: 19815525 - Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17939-44
– reference: 19556567 - Am J Trop Med Hyg. 2009 Jul;81(1):55-8
– reference: 11155970 - Int J Syst Evol Microbiol. 2000 Nov;50 Pt 6:1973-9
– reference: 9196200 - J Clin Microbiol. 1997 Jul;35(7):1813-8
– reference: 9828434 - Int J Syst Bacteriol. 1998 Oct;48 Pt 4:1333-9
– reference: 9466529 - J Infect Dis. 1998 Feb;177(2):409-16
– reference: 16783007 - Genetics. 2006 Sep;174(1):535-9
– reference: 11342592 - J Exp Med. 2001 May 7;193(9):1077-86
– reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
– reference: 12904442 - J Clin Microbiol. 2003 Aug;41(8):4001-2
– reference: 12032247 - Mol Biol Evol. 2002 Jun;19(6):908-17
– reference: 19219487 - Microb Ecol. 2009 Apr;57(3):534-41
– reference: 18606803 - Appl Environ Microbiol. 2008 Aug;74(16):5086-92
– reference: 10827123 - Emerg Infect Dis. 2000 May-Jun;6(3):306-11
– reference: 11931146 - Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):383-90
– reference: 11837299 - Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):165-71
– reference: 18078471 - New Phytol. 2008;177(1):33-47
– reference: 17554119 - N Engl J Med. 2007 Jun 7;356(23):2381-7
– reference: 20097421 - Comp Immunol Microbiol Infect Dis. 2010 Mar;33(2):95-107
– reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
– reference: 8870245 - FEMS Microbiol Lett. 1996 Oct 15;144(1):1-11
– reference: 15347808 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13630-5
– reference: 20059317 - Vector Borne Zoonotic Dis. 2010 Oct;10(8):731-4
– reference: 18428704 - Curr Protoc Bioinformatics. 2003 Feb;Chapter 6:Unit 6.4
– reference: 10600390 - J Mol Biol. 1999 Dec 17;294(5):1351-62
– reference: 15487942 - Annu Rev Microbiol. 2004;58:365-90
– reference: 12454174 - J Clin Microbiol. 2002 Dec;40(12):4691-9
SSID ssj0035897
Score 2.3211634
Snippet Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This...
  Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1001296
SubjectTerms Acquisitions & mergers
Adaptation, Biological - genetics
Animals
Bacteria
Bacterial Proteins - genetics
Bacterial Secretion Systems - genetics
Bartonella
Bartonella - classification
Bartonella - genetics
Bartonella - metabolism
Biological Evolution
Computational Biology
Evolution
Evolution & development
Evolutionary Biology/Evolutionary and Comparative Genetics
Evolutionary Biology/Genomics
Evolutionary Biology/Microbial Evolution and Genomics
Experiments
Genetic aspects
Genetic Speciation
Genetics
Genetics and Genomics
Genetics and Genomics/Comparative Genomics
Genetics and Genomics/Genome Projects
Genetics and Genomics/Genomics
Genetics and Genomics/Microbial Evolution and Genomics
Genomes
HEK293 Cells
Host-Pathogen Interactions
Humans
Infectious Diseases
Infectious Diseases/Bacterial Infections
Intraspecific genetic variation
Life Sciences
Microbiology
Microbiology/Microbial Evolution and Genomics
Molecular Biology/Molecular Evolution
Molecular Sequence Annotation
Natural history
Origin of species
Phosphorylation
Phylogeny
Proteins
Rats
Selection, Genetic
Sequence Analysis, DNA
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegEhIviO8FBlgIiaewOXbs5LFDTB2CgYBNe7P8FTqpSqqmnYT457mL06hBSNsDD31Jz01ydz7_rj7_jpA3XBamNIdVynNhU9yYSQsPWQpAcS-Eya33mCh-PpWzM_HxIr_YafWFNWGRHjgq7qAsQpV7j5wqyKRSmaxw3BUis9K7UHWJD6x522QqxmCeF7GtSp7zVEFa3x-a44od9DZ6twQDdQxEGRL27yxKHXf_EKFvz7FAcrJcNO2_QOjftZQ7i9PxfXKvR5V0Gt_mAbkV6ofkTuwz-esR-f3VrLBnyoKGq97VaFNRQ_EPWHpyTlsEj93lyOxML2u6QtYCLIqmiEQh7LQ4BvAixYMhKfb0gBgKgJXayPgMD4D9jRt4Y3oEim2wgsY8JmfHH368n6V914XUKc7WKeAjx6wzTnnAcq5yxgtljGesDNYBnHGVkrmzoLoyCCVCWYZwKKpMOgZowPInZFLDHfYIFay0OXdZGSTubmbGSFlWMD5T4MDOJ4Rv1a5dT0mOnTEWuttnU5CaRP1pNJbujZWQdBi1jJQc18gfoUUHWSTU7i6Am-nezfR1bpaQV-gPOp5OHcKCngKElHkGn4S87iSQVKPGqp2fZtO2-uTL-Q2Evp_eROjbSOhtL1Q1oDOwVzxOAZpHRq-R5P5IEuKHG99tjhrb0c5s-knjNdxEBx-QV_D6ezgDtvptQdsMkCpXhUgI3c4KjT-NrlWHZtPqAlmPOWT8CXkaJ8lwF-QRxMZoCVGj6TN6jPE39eW8Yz_nyJjE2LP_YdXn5G7cI8DypH0yWa824QWAzLV92cWTP37teiQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella
URI https://www.ncbi.nlm.nih.gov/pubmed/21347280
https://www.proquest.com/docview/853993601
https://hal.science/hal-04580576
https://pubmed.ncbi.nlm.nih.gov/PMC3037411
https://doaj.org/article/98ef5dd82373494fa28c3c842b6dcef1
http://dx.doi.org/10.1371/journal.pgen.1001296
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tki8IL4XGMVCSDxlamLHTh4QalGnDrFSdXTqm-U4zjqpSkrTTkz889wlabSgIcZDX9xzPs539u9y9u8Iec9EqCPdS10W8NjFxIwbJhClABRPONdBnCQYKJ6NxWjGv8yD-R7Z1WytFVjcGdphPanZenn888fNJ3D4j2XVBuntOh2vQOUlp5AfiX1yAGuTxGIOZ7zJK7AgrMqtBAFzJe_x-jDd367SWqxKTv9m5t5f4MbJzmqZF3eB0z_3WN5atE4ek0c12qT9yjyekD2bPSUPqvqTN8_Ir4leYy2VJR1e1yZI85RqitEpPb2g5wgqy-aK2ZxeZXSKbAa4WZpCHGthOiqwD-BIOsqLjTu1WAnEAJClg4oJGh5gAjgzhzeGpjWyf4PtPSezk-H3zyO3rsbgGsm8jQu4yXix0UYmgPFManTCpdaJ50U2NgBzTCpFYGJQXWS55DaKrO3x1BfGA5QQsxekk8EdDgnlXhQHzPiRFZj19LUWIkqhvy_BsE3iELZTuzI1VTlWzFiqMv8mIWSp9KdwsFQ9WA5xm16riqrjH_IDHNFGFom2y4Z8falqv1VRaNMgSZDSB4l8Uu2HhpmQ-7GAoU09h7xFe1DVqdVmulB9gJYi8OHnkHelBJJtZLib51Jvi0Kdfru4h9D5-D5C05bQh1oozUFnMF7VMQvQPDJ9tSSPWpIwr5j23RaosVvaGfW_KmzD5DrYgLiG1z9ED9jptwBte4BgmQy5Q-jOKxReGk0rs_m2UCGyITPRg94vKydp7oL8glgwzSGy5T6tx2j_k10tSlZ0hkxKnvfqP63gNXlYpQlwh9IR6WzWW_sGcOYm7pJ9OZddcjAYjifTbvm1pltOJ78B2bh_MA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Evolution+of+a+Type+IV+Secretion+System+in+Radiating+Lineages+of+the+Host-Restricted+Bacterial+Pathogen+Bartonella&rft.jtitle=PLoS+genetics&rft.au=Engel%2C+Philipp&rft.au=Salzburger%2C+Walter&rft.au=Liesch%2C+Marius&rft.au=Chang%2C+Chao-Chin&rft.date=2011-02-01&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=7&rft.issue=2&rft.spage=e1001296&rft_id=info:doi/10.1371%2Fjournal.pgen.1001296&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1001296
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon