Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics
There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. H...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 206; p. 116276 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2020
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2019.116276 |
Cover
Loading…
Abstract | There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. Here, we compared the performance of three DNN architectures and a classical machine learning algorithm (kernel regression) in predicting individual phenotypes from whole-brain resting-state functional connectivity (RSFC) patterns. One of the DNNs was a generic fully-connected feedforward neural network, while the other two DNNs were recently published approaches specifically designed to exploit the structure of connectome data. By using a combined sample of almost 10,000 participants from the Human Connectome Project (HCP) and UK Biobank, we showed that the three DNNs and kernel regression achieved similar performance across a wide range of behavioral and demographic measures. Furthermore, the generic feedforward neural network exhibited similar performance to the two state-of-the-art connectome-specific DNNs. When predicting fluid intelligence in the UK Biobank, performance of all algorithms dramatically improved when sample size increased from 100 to 1000 subjects. Improvement was smaller, but still significant, when sample size increased from 1000 to 5000 subjects. Importantly, kernel regression was competitive across all sample sizes. Overall, our study suggests that kernel regression is as effective as DNNs for RSFC-based behavioral prediction, while incurring significantly lower computational costs. Therefore, kernel regression might serve as a useful baseline algorithm for future studies. |
---|---|
AbstractList | There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. Here, we compared the performance of three DNN architectures and a classical machine learning algorithm (kernel regression) in predicting individual phenotypes from whole-brain resting-state functional connectivity (RSFC) patterns. One of the DNNs was a generic fully-connected feedforward neural network, while the other two DNNs were recently published approaches specifically designed to exploit the structure of connectome data. By using a combined sample of almost 10,000 participants from the Human Connectome Project (HCP) and UK Biobank, we showed that the three DNNs and kernel regression achieved similar performance across a wide range of behavioral and demographic measures. Furthermore, the generic feedforward neural network exhibited similar performance to the two state-of-the-art connectome-specific DNNs. When predicting fluid intelligence in the UK Biobank, performance of all algorithms dramatically improved when sample size increased from 100 to 1000 subjects. Improvement was smaller, but still significant, when sample size increased from 1000 to 5000 subjects. Importantly, kernel regression was competitive across all sample sizes. Overall, our study suggests that kernel regression is as effective as DNNs for RSFC-based behavioral prediction, while incurring significantly lower computational costs. Therefore, kernel regression might serve as a useful baseline algorithm for future studies. There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. Here, we compared the performance of three DNN architectures and a classical machine learning algorithm (kernel regression) in predicting individual phenotypes from whole-brain resting-state functional connectivity (RSFC) patterns. One of the DNNs was a generic fully-connected feedforward neural network, while the other two DNNs were recently published approaches specifically designed to exploit the structure of connectome data. By using a combined sample of almost 10,000 participants from the Human Connectome Project (HCP) and UK Biobank, we showed that the three DNNs and kernel regression achieved similar performance across a wide range of behavioral and demographic measures. Furthermore, the generic feedforward neural network exhibited similar performance to the two state-of-the-art connectome-specific DNNs. When predicting fluid intelligence in the UK Biobank, performance of all algorithms dramatically improved when sample size increased from 100 to 1000 subjects. Improvement was smaller, but still significant, when sample size increased from 1000 to 5000 subjects. Importantly, kernel regression was competitive across all sample sizes. Overall, our study suggests that kernel regression is as effective as DNNs for RSFC-based behavioral prediction, while incurring significantly lower computational costs. Therefore, kernel regression might serve as a useful baseline algorithm for future studies.There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. Here, we compared the performance of three DNN architectures and a classical machine learning algorithm (kernel regression) in predicting individual phenotypes from whole-brain resting-state functional connectivity (RSFC) patterns. One of the DNNs was a generic fully-connected feedforward neural network, while the other two DNNs were recently published approaches specifically designed to exploit the structure of connectome data. By using a combined sample of almost 10,000 participants from the Human Connectome Project (HCP) and UK Biobank, we showed that the three DNNs and kernel regression achieved similar performance across a wide range of behavioral and demographic measures. Furthermore, the generic feedforward neural network exhibited similar performance to the two state-of-the-art connectome-specific DNNs. When predicting fluid intelligence in the UK Biobank, performance of all algorithms dramatically improved when sample size increased from 100 to 1000 subjects. Improvement was smaller, but still significant, when sample size increased from 1000 to 5000 subjects. Importantly, kernel regression was competitive across all sample sizes. Overall, our study suggests that kernel regression is as effective as DNNs for RSFC-based behavioral prediction, while incurring significantly lower computational costs. Therefore, kernel regression might serve as a useful baseline algorithm for future studies. |
ArticleNumber | 116276 |
Author | Bzdok, Danilo Feng, Jiashi Kong, Ru Holmes, Avram J. Sabuncu, Mert R. Eickhoff, Simon B. Yeo, B.T. Thomas Nguyen, Minh He, Tong |
AuthorAffiliation | 5 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany 10 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA 7 Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany 1 Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore 8 JARA-BRAIN, Jülich-Aachen Research Alliance, Germany 9 Parietal team, INRIA, Neurospin, bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France 2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 12 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 3 Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA 11 Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore 6 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Resear |
AuthorAffiliation_xml | – name: 1 Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore – name: 2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore – name: 11 Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore – name: 12 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore – name: 4 School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA – name: 6 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany – name: 8 JARA-BRAIN, Jülich-Aachen Research Alliance, Germany – name: 5 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany – name: 3 Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA – name: 7 Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany – name: 10 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA – name: 9 Parietal team, INRIA, Neurospin, bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France |
Author_xml | – sequence: 1 givenname: Tong surname: He fullname: He, Tong organization: Clinical Imaging Research Centre, Centre for Sleep and Cognition, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore – sequence: 2 givenname: Ru surname: Kong fullname: Kong, Ru organization: Clinical Imaging Research Centre, Centre for Sleep and Cognition, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore – sequence: 3 givenname: Avram J. surname: Holmes fullname: Holmes, Avram J. organization: Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA – sequence: 4 givenname: Minh surname: Nguyen fullname: Nguyen, Minh organization: Clinical Imaging Research Centre, Centre for Sleep and Cognition, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore – sequence: 5 givenname: Mert R. surname: Sabuncu fullname: Sabuncu, Mert R. organization: School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA – sequence: 6 givenname: Simon B. surname: Eickhoff fullname: Eickhoff, Simon B. organization: Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany – sequence: 7 givenname: Danilo surname: Bzdok fullname: Bzdok, Danilo organization: Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany – sequence: 8 givenname: Jiashi surname: Feng fullname: Feng, Jiashi organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore – sequence: 9 givenname: B.T. Thomas surname: Yeo fullname: Yeo, B.T. Thomas email: thomas.yeo@nus.edu.sg organization: Clinical Imaging Research Centre, Centre for Sleep and Cognition, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31610298$$D View this record in MEDLINE/PubMed https://hal.science/hal-02314718$$DView record in HAL |
BookMark | eNqNkktvEzEQx1eoiD7gKyBLXOCQ4Me-fEGU8milSFzgbHnt2cTJxg727qJ8Bz40s01LaU492R7_5zf2zP88O_HBQ5YRRueMsvL9eu5hiMFt9RLmnDI5Z6zkVfksO2NUFjNZVPxk2hdiVjMmT7PzlNaUUsny-kV2KljJKJf1WfbnM8COTDTd4dL_DnGTiPaWbCB66EiEZYSUXPBEm5WDEYgJ252OuukAQwYzjYNE2hBJO3jToxRZJngPeBhdvye7CNbd3pDQkgZWenQon8pY2IZl1LuVM-ll9rzVXYJXd-tF9vPrlx9X17PF9283V5eLmakE7WdA67KpLB6Ac1pUVW5zayyvmgoKVmkuGwqUGzBCMFuAlFwa3pbUsgJ4ZcRFdnPg2qDXahexj3GvgnbqNhDiUunYO9OBksaYlhVt02DrRG3rVlhd5PVU0DZNjawPB9ZuaLZgDfgeW_kI-vjGu5VahlGVss5lVSDg3QGwOkq7vlyoKUa5YHnF6pGh9u1dsRh-DZB6tXXJQNdpD2FIigtsh5R5zlH65ki6DkPEyUyqnHIuhZCoev3_6__VvzfIw_dMDClFaJVxvZ4miZ9xnWJUTY5Ua_XgSDU5Uh0ciYD6CHBf4wmpnw6pgF4YHUSV0GneoJciWguH5Z4C-XgEMZ3zzuhuA_unIf4Clm8bSQ |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2022_119485 crossref_primary_10_1142_S0129065724500539 crossref_primary_10_1016_j_intell_2022_101654 crossref_primary_10_1093_braincomms_fcab191 crossref_primary_10_1088_1741_2552_ac8b38 crossref_primary_10_1016_j_media_2025_103509 crossref_primary_10_1017_S0033291720001683 crossref_primary_10_1038_s41551_023_01117_y crossref_primary_10_1162_netn_a_00161 crossref_primary_10_1002_hbm_25709 crossref_primary_10_1109_TPAMI_2021_3125686 crossref_primary_10_1016_j_media_2022_102370 crossref_primary_10_1016_j_neuroimage_2021_118036 crossref_primary_10_1016_j_celrep_2023_113597 crossref_primary_10_1093_cercor_bhab001 crossref_primary_10_1038_s41586_023_05746_w crossref_primary_10_1109_JBHI_2024_3471186 crossref_primary_10_1016_j_neuroimage_2023_120246 crossref_primary_10_1007_s11357_023_00831_4 crossref_primary_10_1093_cercor_bhac060 crossref_primary_10_1038_s41467_020_20655_6 crossref_primary_10_1002_hbm_25420 crossref_primary_10_1016_j_intell_2022_101665 crossref_primary_10_1016_j_neuroimage_2022_119636 crossref_primary_10_1162_netn_a_00275 crossref_primary_10_1016_j_neuroimage_2020_117458 crossref_primary_10_1093_gigascience_giac082 crossref_primary_10_1162_imag_a_00251 crossref_primary_10_1016_j_neuri_2023_100118 crossref_primary_10_1016_j_tics_2024_09_007 crossref_primary_10_1002_hbm_25817 crossref_primary_10_1109_JBHI_2024_3351177 crossref_primary_10_1109_TCDS_2023_3314155 crossref_primary_10_1002_hbm_25656 crossref_primary_10_1162_imag_a_00015 crossref_primary_10_1016_j_neuroimage_2023_120115 crossref_primary_10_1016_j_jfranklin_2023_07_015 crossref_primary_10_1016_j_neuroimage_2020_117292 crossref_primary_10_1002_hbm_25813 crossref_primary_10_1038_s41598_022_27101_1 crossref_primary_10_3389_fnins_2022_933660 crossref_primary_10_1016_j_neuroimage_2024_120570 crossref_primary_10_1146_annurev_statistics_040522_100329 crossref_primary_10_1016_j_mri_2023_12_010 crossref_primary_10_1093_cercor_bhad284 crossref_primary_10_1016_j_ins_2022_07_041 crossref_primary_10_1016_j_neuroimage_2023_119947 crossref_primary_10_1162_imag_a_00064 crossref_primary_10_1162_netn_a_00383 crossref_primary_10_3390_s21061932 crossref_primary_10_1016_j_neuroimage_2020_117203 crossref_primary_10_1002_hbm_26415 crossref_primary_10_1016_j_neuroimage_2024_120600 crossref_primary_10_3389_fpsyt_2021_615754 crossref_primary_10_1093_cercor_bhae412 crossref_primary_10_1016_j_neuroimage_2023_120142 crossref_primary_10_1109_JBHI_2024_3420134 crossref_primary_10_1038_s41562_023_01670_1 crossref_primary_10_1093_psyrad_kkad011 crossref_primary_10_1016_j_neuroimage_2020_117706 crossref_primary_10_1016_j_neuroimage_2020_117713 crossref_primary_10_1016_j_media_2024_103433 crossref_primary_10_1093_texcom_tgac020 crossref_primary_10_1038_s41593_022_01059_9 crossref_primary_10_1016_j_bpsc_2019_11_007 crossref_primary_10_1016_j_eswa_2024_126170 crossref_primary_10_1016_j_neuroimage_2021_118423 crossref_primary_10_1109_TMI_2023_3309874 crossref_primary_10_1002_hbm_26768 crossref_primary_10_1016_j_neurad_2022_10_002 crossref_primary_10_3389_fnimg_2024_1455436 crossref_primary_10_1162_imag_a_00233 crossref_primary_10_1038_s44220_025_00388_5 crossref_primary_10_1016_j_neuron_2022_09_012 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_1016_j_neuroimage_2022_119569 crossref_primary_10_3389_fnins_2020_00630 crossref_primary_10_1002_mp_15545 crossref_primary_10_3389_fpsyt_2020_604478 crossref_primary_10_3389_fnhum_2022_875201 crossref_primary_10_1016_j_neuroimage_2020_117021 crossref_primary_10_1016_j_media_2023_102850 crossref_primary_10_1038_s42003_024_06438_5 crossref_primary_10_1126_sciadv_adn4202 crossref_primary_10_1001_jamapsychiatry_2023_1419 crossref_primary_10_1093_braincomms_fcae425 crossref_primary_10_1162_imag_a_00443 crossref_primary_10_1109_JBHI_2024_3434473 crossref_primary_10_3390_rs13214486 crossref_primary_10_1016_j_neuroimage_2023_120044 crossref_primary_10_1016_j_neuroimage_2022_119275 crossref_primary_10_1016_j_neuroimage_2024_120665 crossref_primary_10_1126_sciadv_adn1862 crossref_primary_10_1016_j_intell_2021_101568 crossref_primary_10_1016_j_neuroimage_2022_119279 crossref_primary_10_1038_s41380_023_02195_9 crossref_primary_10_1002_aisy_202300577 crossref_primary_10_1016_j_neuroimage_2021_118648 crossref_primary_10_1016_j_neuroimage_2021_118801 crossref_primary_10_3389_fnins_2020_00881 crossref_primary_10_1016_j_biopsych_2022_09_024 crossref_primary_10_1126_sciadv_abj1812 crossref_primary_10_1016_j_media_2020_101871 crossref_primary_10_1109_TMI_2022_3218720 crossref_primary_10_1017_S0033291720002391 crossref_primary_10_1016_j_media_2023_102913 crossref_primary_10_1038_s41598_022_22313_x crossref_primary_10_1016_j_geodrs_2021_e00424 crossref_primary_10_1016_j_neuroimage_2023_119986 crossref_primary_10_1002_hbm_26182 crossref_primary_10_1016_j_neuroimage_2021_118849 crossref_primary_10_1038_s41467_020_18037_z crossref_primary_10_1007_s12021_022_09563_w crossref_primary_10_1093_cercor_bhad524 crossref_primary_10_1016_j_biopsych_2023_03_025 crossref_primary_10_1162_imag_a_00267 crossref_primary_10_1109_JBHI_2023_3304974 crossref_primary_10_1016_j_biopsych_2019_10_011 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1088_1741_2552_ac0f4d crossref_primary_10_1016_j_neuroimage_2024_120762 crossref_primary_10_1016_j_cmpbup_2021_100018 crossref_primary_10_3390_s20216001 crossref_primary_10_1038_s41467_022_29766_8 crossref_primary_10_3390_en16135044 crossref_primary_10_1002_hbm_25883 crossref_primary_10_1016_j_biombioe_2024_107411 crossref_primary_10_1016_j_media_2023_102921 crossref_primary_10_1007_s11682_021_00585_7 crossref_primary_10_1109_TNSRE_2022_3190467 crossref_primary_10_1038_s42003_023_05073_w crossref_primary_10_1016_j_nicl_2021_102584 crossref_primary_10_1073_pnas_2016271118 crossref_primary_10_1016_j_cjche_2022_07_034 crossref_primary_10_1089_brain_2020_0878 crossref_primary_10_1016_j_bpsc_2021_02_001 crossref_primary_10_1016_j_neuroimage_2024_120911 crossref_primary_10_1186_s12880_024_01429_8 |
Cites_doi | 10.1038/nrn2201 10.1016/j.neuroimage.2019.04.016 10.1093/cercor/bhx179 10.1073/pnas.1523888113 10.1016/j.neuroimage.2016.10.001 10.1007/s00429-018-1651-z 10.1016/j.neuroimage.2013.05.081 10.1016/j.neuroimage.2019.04.060 10.1016/j.dcn.2015.01.003 10.1016/j.media.2017.10.002 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuroimage.2019.06.012 10.1002/mrm.1910340409 10.1016/j.neuroimage.2017.12.052 10.1073/pnas.1403112111 10.1016/j.neuron.2011.09.006 10.1016/j.neuroimage.2013.05.039 10.1109/MSP.2017.2693418 10.1016/j.neuroimage.2019.01.069 10.1016/j.neuroimage.2018.03.065 10.1109/TMI.2003.822821 10.3389/fnins.2014.00229 10.1038/nn.4135 10.1038/nn.4179 10.1089/brain.2016.0435 10.1109/TMI.2016.2538465 10.1007/s11263-015-0816-y 10.1038/nn.3423 10.1093/ije/dym276 10.1038/nn.4478 10.1038/nature18933 10.1023/A:1024068626366 10.1016/j.neuroimage.2013.11.046 10.1007/978-3-540-24775-3_3 10.1371/journal.pcbi.1003915 10.1038/s41467-018-03462-y 10.1016/j.nicl.2016.10.008 10.1371/journal.pmed.1001779 10.1038/nn.4497 10.1038/s41467-018-04920-3 10.1038/nature14539 10.1016/j.neuroimage.2017.07.059 10.1016/j.neuroimage.2018.07.005 10.1016/j.neuroimage.2013.05.033 10.1016/j.media.2016.05.004 10.1037/0033-2909.87.2.245 10.1080/0305215X.2012.687731 10.1093/cercor/bhw253 10.1038/s41467-017-01189-w 10.1038/nn.4125 10.1126/science.1194144 10.1016/S0896-6273(02)00569-X 10.1016/j.neuroimage.2016.11.005 10.1016/j.neuroimage.2017.09.032 10.1016/j.neuroimage.2018.03.007 10.1016/j.neuron.2014.10.015 10.1016/j.neuroimage.2017.07.008 10.1016/j.neuroimage.2014.03.034 10.1016/j.neuroimage.2012.02.018 10.1016/j.neuroimage.2017.06.072 10.1038/mp.2013.78 10.1038/nn.4393 10.1016/j.media.2016.10.004 10.1093/cercor/bhy123 10.1093/cercor/bhu239 10.1038/s41598-018-25089-1 10.1038/s41583-018-0071-7 10.1152/jn.00338.2011 10.1016/j.neuroimage.2013.04.127 10.1017/pen.2018.8 10.1038/sdata.2015.31 10.1016/j.neuroimage.2016.12.061 10.1016/j.neuroimage.2016.09.046 10.1016/j.neuroimage.2017.04.061 10.1038/mp.2017.62 10.1016/j.neubiorev.2017.01.002 10.1073/pnas.0905267106 10.1093/cercor/bhu251 10.1111/j.1541-0420.2007.00799.x 10.1007/BF02295996 10.1016/j.neuroimage.2017.10.034 10.1038/s41467-019-10317-7 10.1016/j.neuroimage.2010.05.067 10.1038/nrn2961 10.1016/j.neuroimage.2017.02.035 10.1016/j.neuroimage.2016.02.079 10.1016/j.neuron.2018.03.044 10.1093/cercor/bhy117 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.neuroimage.2019.116276 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1095-9572 |
EndPage | 116276 |
ExternalDocumentID | oai_doaj_org_article_9cccf15fbb91438d8f3da5484dcddbb8 PMC6984975 oai_HAL_hal_02314718v1 31610298 10_1016_j_neuroimage_2019_116276 S1053811919308675 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NCRR NIH HHS grantid: S10 RR023043 – fundername: NIBIB NIH HHS grantid: P41 EB015896 – fundername: NCRR NIH HHS grantid: S10 RR019307 – fundername: NCRR NIH HHS grantid: S10 RR023401 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC UMC VOOES 5PM |
ID | FETCH-LOGICAL-c730t-e086b7dc73e2205774d4dcd27b7e517a29b0e02cec331d5e9929c2f60d15e27c3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:21:23 EDT 2025 Thu Aug 21 14:08:57 EDT 2025 Fri May 09 12:25:05 EDT 2025 Fri Jul 11 11:21:58 EDT 2025 Wed Aug 13 02:20:15 EDT 2025 Thu Apr 03 06:58:21 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Tue Jul 01 03:02:10 EDT 2025 Fri Feb 23 02:49:08 EST 2024 Tue Aug 26 20:02:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Resting-state fMRI Kernel ridge regression Fingerprinting Graph convolutional neural network |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c730t-e086b7dc73e2205774d4dcd27b7e517a29b0e02cec331d5e9929c2f60d15e27c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811919308675 |
PMID | 31610298 |
PQID | 2340229339 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cccf15fbb91438d8f3da5484dcddbb8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6984975 hal_primary_oai_HAL_hal_02314718v1 proquest_miscellaneous_2305799442 proquest_journals_2340229339 pubmed_primary_31610298 crossref_citationtrail_10_1016_j_neuroimage_2019_116276 crossref_primary_10_1016_j_neuroimage_2019_116276 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_116276 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_116276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Zhang, He, Chen, Luo, Zhou, Wang (bib111) 2018 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib99) 2013; 80 Amico, Goñi (bib2) 2018; 8 Elliott, Peakman (bib32) 2008; 37 Breakspear (bib12) 2017; 20 Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms, Kelly, Laumann, Miller, Moeller, Petersen, Power, Salimi-Khorshidi, Snyder, Vu, Woolrich, Xu, Yacoub, Uǧurbil, Van Essen, Glasser (bib91) 2013; 80 Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (bib41) 2017; 35 Eickhoff, Yeo, Genon (bib31) 2018; 19 Nie, Trullo, Petitjean, Ruan, Shen (bib71) 2017 Calhoun, Miller, Pearlson, Adali (bib17) 2014; 84 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib37) 2013; 80 Reinen, Chén, Hutchison, Yeo, Anderson, Sabuncu, Öngür, Roffman, Smoller, Baker, Holmes (bib84) 2018; 9 Wang, Kong, Kong, Liégeois, Orban, Deco, Van Den Heuvel, Yeo (bib104) 2019; 21 Cole, Ritchie, Bastin, Valdés Hernández, Muñoz Maniega, Royle, Corley, Pattie, Harris, Zhang, Wray, Redmond, Marioni, Starr, Cox, Wardlaw, Sharp, Deary (bib23) 2018; 23 Kashyap, Kong, Bhattacharjee, Li, Zhou, Thomas Yeo (bib46) 2019; 189 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib27) 2014; 19 Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray, Liu, Matthews, Ong, Pell, Silman, Young, Sprosen, Peakman, Collins (bib97) 2015; 12 Nielsen, Greene, Gratton, Dosenbach, Petersen, Schlaggar (bib72) 2019; 29 Burgess, Kandala, Nolan, Laumann, Power, Adeyemo, Harms, Petersen, Barch (bib15) 2016; 6 Buckner, Krienen, Yeo (bib14) 2013; 16 Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (bib55) 2018; 169 Siegel, Mitra, Laumann, Seitzman, Raichle, Corbetta, Snyder (bib90) 2017; 27 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib40) 2014; 95 Li, Jiang, Zhang, Wang, Wang, Zheng, Menze (bib57) 2018; 183 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib33) 2015; 18 Liégeois, Li, Kong, Orban, Van De Ville, Ge, Sabuncu, Yeo (bib60) 2019; 10 Zhao, Wu, Song, Li, Zhang, Fan (bib113) 2018; 43 Khosla, Jamison, Kuceyeski, Sabuncu (bib51) 2019; 199 Alfaro-Almagro, Jenkinson, Bangerter, Andersson, Griffanti, Douaud, Sotiropoulos, Jbabdi, Hernandez-Fernandez, Vallee, Vidaurre, Webster, McCarthy, Rorden, Daducci, Alexander, Zhang, Dragonu, Matthews, Miller, Smith (bib1) 2018; 166 Greene, Gao, Scheinost, Constable (bib39) 2018; 9 Bouckaert, Frank (bib11) 2004 Kingma, Ba (bib52) 2015 Kebets, Holmes, Orban, Tang, Li, Sun, Kong, Poldrack, Yeo (bib48) 2019 Preti, Bolton, Van De Ville (bib80) 2017; 160 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib100) 2012; 62 Bzdok, Yeo (bib16) 2017; 155 Kipf, Welling (bib53) 2017 Regis, Shoemaker (bib115) 2013; 45 Bahrami, Shi, Rekik, Shen (bib5) 2016 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib86) 2015; 115 Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Van Essen (bib6) 2013; 80 Bertolero, Yeo, D’Esposito (bib8) 2017; 8 McNemar (bib65) 1947; 12 Assaf, Jagannathan, Calhoun, Miller, Stevens, Sahl, O’Boyle, Schultz, Pearlson (bib4) 2010; 53 Fox, Raichle (bib35) 2007; 8 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson, Griffanti, Douaud, Okell, Weale, Dragonu, Garratt, Hudson, Collins, Jenkinson, Matthews, Smith (bib67) 2016; 19 Nguyen, Sun, Alexander, Feng, Thomas Yeo (bib70) 2018 Wachinger, Reuter, Klein (bib103) 2018; 170 Eriksson, Bindel, Shoemaker (bib117) 2019 Murphy (bib68) 2012 Ilievski, Akhtar, Feng, Shoemaker (bib116) 2017; 2017 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (bib109) 2011; 106 Lecun, Bengio, Hinton (bib56) 2015; 521 Dalca, Balakrishnan, Guttag, Sabuncu (bib24) 2018 Weis, Patil, Hoffstaedter, Nostro, Yeo, Eickhoff (bib105) 2019 Kell, Yamins, Shook, Norman-Haignere, McDermott (bib49) 2018; 98 Marinescu, Oxtoby, Young, Bron, Toga, Weiner, Barkhof, Fox, Klein, Alexander (bib64) 2018 Arbabshirani, Plis, Sui, Calhoun (bib3) 2017; 145 Plis, Hjelm, Slakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bib78) 2014; 8 Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (bib47) 2017; 146 Paszke, Chanan, Lin, Gross, Yang, Antiga, Devito (bib76) 2017; 30 Vieira, Pinaya, Mechelli (bib102) 2017; 74 Rahim, Thirion, Bzdok, Buvat, Varoquaux (bib82) 2017; 158 Blumberg, Tanno, Kokkinos, Alexander (bib10) 2018 Steiger (bib95) 1980; 87 Mihalik, Brudfors, Robu, Ferreira, Lin, Rau, Wu, Blumberg, Kanber, Tariq, Garcia, Zor, Nikitichev, Mourao-Miranda, Oxtoby (bib66) 2019 Zhao, Liu, Oler, Meyerand, Kalin, Birn (bib112) 2018; 175 Nadeau, Bengio (bib69) 2003; 52 Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bib28) 2010; 329 Nostro, Müller, Varikuti, Pläschke, Hoffstaedter, Langner, Patil, Eickhoff (bib73) 2018; 223 Zhu, Thung, Adeli, Zhang, Shen (bib114) 2017 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bib45) 2017; 36 Li, Kong, Liégeois, Orban, Tan, Sun, Holmes, Sabuncu, Ge, Yeo (bib59) 2019; 196 Woo, Chang, Lindquist, Wager (bib106) 2017; 20 Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib93) 2015; 18 Eickenberg, Gramfort, Varoquaux, Thirion (bib30) 2017; 152 Li, Satterthwaite, Fan (bib58) 2018 Raz, Svanera, Singer, Gilam, Bleich, Lin, Admon, Gonen, Thaler, Granot, Goebel, Benini, Valente (bib83) 2017; 163 Pinto, Alves, Silva (bib77) 2016; 35 Chollet (bib21) 2015 Defferrard, Bresson, Vandergheynst (bib26) 2016 Varikuti, Genon, Sotiras, Schwender, Hoffstaedter, Patil, Jockwitz, Caspers, Moebus, Amunts, Davatzikos, Eickhoff (bib101) 2018; 173 Dubois, Galdi, Han, Paul, Adolphs (bib29) 2018; 1 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib87) 2014; 90 Shen, Tokoglu, Papademetris, Constable (bib89) 2013; 82 Khaligh-Razavi, Kriegeskorte (bib50) 2014; 10 Kong, Li, Orban, Sabuncu, Liu, Schaefer, Sun, Zuo, Holmes, Eickhoff, Yeo (bib54) 2019; 29 Liu, Lin, Ghosh (bib62) 2007 Holmes, Hollinshead, O’Keefe, Petrov, Fariello, Wald, Fischl, Rosen, Mair, Roffman, Smoller, Buckner (bib43) 2015; 2 Maas, Hannun, Ng (bib63) 2013; vol. 28 Choi, Kwon, Lee, Kim, Paik, Won (bib20) 2016 Bronstein, Bruna, Lecun, Szlam, Vandergheynst (bib13) 2017; 34 Glasser, Coalson, Robinson, Hacker, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Essen (bib36) 2017; 536 Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib85) 2016; 19 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib92) 2009; 106 Deco, Jirsa, McIntosh (bib25) 2011; 12 Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector, Montana (bib22) 2017; 163 He, Kong, Holmes, Sabuncu, Eickhoff, Bzdok, Feng, Yeo (bib42) 2018 Kamnitsas, Bai, Ferrante, McDonagh, Sinclair, Pawlowski, Rajchl, Lee, Kainz, Rueckert, Glocker (bib44) 2017 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib107) 2014; 111 Sturmfels, Rutherford, Angstadt, Peterson, Sripada, Wiens (bib96) 2018 Parisot, Ktena, Ferrante, Lee, Moreno, Glocker, Rueckert (bib75) 2017 Beckmann, Smith (bib7) 2004; 23 Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (bib79) 2011; 72 Liem, Varoquaux, Kynast, Beyer, Kharabian Masouleh, Huntenburg, Lampe, Rahim, Abraham, Craddock, Riedel-Heller, Luck, Loeffler, Schroeter, Witte, Villringer, Margulies (bib61) 2017; 148 Yoo, Rosenberg, Noble, Scheinost, Constable, Chun (bib110) 2019; 197 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib34) 2002; 33 Parisot, Ira, Ferrante, Lee, Guerrero, Glocker (bib74) 2018 van der Burgh, Schmidt, Westeneng, de Reus, van den Berg, van den Heuvel (bib98) 2017; 13 Chelba, Mikolov, Schuster, Ge, Brants, Koehn, Robinson (bib19) 2014 Pruett, Kandala, Hoertel, Snyder, Elison, Nishino, Feczko, Dosenbach, Nardos, Power, Adeyemo, Botteron, McKinstry, Evans, Hazlett, Dager, Paterson, Schultz, Collins, Fonov, Styner, Gerig, Das, Kostopoulos, Constantino, Estes, Petersen, Schlaggar, Piven (bib81) 2015; 12 Biswal, FZ, VM, JS (bib9) 1995; 34 Yang, Kwitt, Styner, Niethammer (bib108) 2017; 158 Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (bib38) 2016; 26 Chekroud, Ward, Rosenberg, Holmes (bib18) 2016; 113 Schaefer, Kong, Gordon, Laumann, Zuo, Holmes, Eickhoff, Yeo (bib88) 2018 Smyser, Snyder, Shimony, Mitra, Inder, Neil (bib94) 2016; 26 Deco (10.1016/j.neuroimage.2019.116276_bib25) 2011; 12 Burgess (10.1016/j.neuroimage.2019.116276_bib15) 2016; 6 Wachinger (10.1016/j.neuroimage.2019.116276_bib103) 2018; 170 Bouckaert (10.1016/j.neuroimage.2019.116276_bib11) 2004 Marinescu (10.1016/j.neuroimage.2019.116276_bib64) 2018 Raz (10.1016/j.neuroimage.2019.116276_bib83) 2017; 163 Zhao (10.1016/j.neuroimage.2019.116276_bib113) 2018; 43 Choi (10.1016/j.neuroimage.2019.116276_bib20) 2016 Calhoun (10.1016/j.neuroimage.2019.116276_bib17) 2014; 84 Van Essen (10.1016/j.neuroimage.2019.116276_bib100) 2012; 62 Bertolero (10.1016/j.neuroimage.2019.116276_bib8) 2017; 8 Murphy (10.1016/j.neuroimage.2019.116276_bib68) 2012 Liégeois (10.1016/j.neuroimage.2019.116276_bib60) 2019; 10 Van Essen (10.1016/j.neuroimage.2019.116276_bib99) 2013; 80 Breakspear (10.1016/j.neuroimage.2019.116276_bib12) 2017; 20 Pinto (10.1016/j.neuroimage.2019.116276_bib77) 2016; 35 Steiger (10.1016/j.neuroimage.2019.116276_bib95) 1980; 87 Biswal (10.1016/j.neuroimage.2019.116276_bib9) 1995; 34 Smith (10.1016/j.neuroimage.2019.116276_bib92) 2009; 106 Chekroud (10.1016/j.neuroimage.2019.116276_bib18) 2016; 113 Dalca (10.1016/j.neuroimage.2019.116276_bib24) 2018 Woo (10.1016/j.neuroimage.2019.116276_bib106) 2017; 20 Chollet (10.1016/j.neuroimage.2019.116276_bib21) Li (10.1016/j.neuroimage.2019.116276_bib57) 2018; 183 Zhang (10.1016/j.neuroimage.2019.116276_bib111) Khaligh-Razavi (10.1016/j.neuroimage.2019.116276_bib50) 2014; 10 Griffanti (10.1016/j.neuroimage.2019.116276_bib40) 2014; 95 McNemar (10.1016/j.neuroimage.2019.116276_bib65) 1947; 12 Smith (10.1016/j.neuroimage.2019.116276_bib93) 2015; 18 Plis (10.1016/j.neuroimage.2019.116276_bib78) 2014; 8 Eickenberg (10.1016/j.neuroimage.2019.116276_bib30) 2017; 152 van der Burgh (10.1016/j.neuroimage.2019.116276_bib98) 2017; 13 Cole (10.1016/j.neuroimage.2019.116276_bib22) 2017; 163 Greene (10.1016/j.neuroimage.2019.116276_bib39) 2018; 9 Kamnitsas (10.1016/j.neuroimage.2019.116276_bib45) 2017; 36 Yang (10.1016/j.neuroimage.2019.116276_bib108) 2017; 158 Di Martino (10.1016/j.neuroimage.2019.116276_bib27) 2014; 19 Power (10.1016/j.neuroimage.2019.116276_bib79) 2011; 72 He (10.1016/j.neuroimage.2019.116276_bib42) 2018 Zhu (10.1016/j.neuroimage.2019.116276_bib114) 2017 Kashyap (10.1016/j.neuroimage.2019.116276_bib46) 2019; 189 Nadeau (10.1016/j.neuroimage.2019.116276_bib69) 2003; 52 Liem (10.1016/j.neuroimage.2019.116276_bib61) 2017; 148 Bahrami (10.1016/j.neuroimage.2019.116276_bib5) 2016 Pruett (10.1016/j.neuroimage.2019.116276_bib81) 2015; 12 Glasser (10.1016/j.neuroimage.2019.116276_bib37) 2013; 80 Parisot (10.1016/j.neuroimage.2019.116276_bib75) 2017 Bronstein (10.1016/j.neuroimage.2019.116276_bib13) 2017; 34 Alfaro-Almagro (10.1016/j.neuroimage.2019.116276_bib1) 2018; 166 Yeo (10.1016/j.neuroimage.2019.116276_bib109) 2011; 106 Kipf (10.1016/j.neuroimage.2019.116276_bib53) 2017 Fischl (10.1016/j.neuroimage.2019.116276_bib34) 2002; 33 Ilievski (10.1016/j.neuroimage.2019.116276_bib116) 2017; 2017 Assaf (10.1016/j.neuroimage.2019.116276_bib4) 2010; 53 Eickhoff (10.1016/j.neuroimage.2019.116276_bib31) 2018; 19 Lecun (10.1016/j.neuroimage.2019.116276_bib56) 2015; 521 Havaei (10.1016/j.neuroimage.2019.116276_bib41) 2017; 35 Khosla (10.1016/j.neuroimage.2019.116276_bib51) 2019; 199 Wang (10.1016/j.neuroimage.2019.116276_bib104) 2019; 21 Weis (10.1016/j.neuroimage.2019.116276_bib105) 2019 Maas (10.1016/j.neuroimage.2019.116276_bib63) 2013; vol. 28 Eriksson (10.1016/j.neuroimage.2019.116276_bib117) Varikuti (10.1016/j.neuroimage.2019.116276_bib101) 2018; 173 Siegel (10.1016/j.neuroimage.2019.116276_bib90) 2017; 27 Kingma (10.1016/j.neuroimage.2019.116276_bib52) 2015 Li (10.1016/j.neuroimage.2019.116276_bib59) 2019; 196 Nielsen (10.1016/j.neuroimage.2019.116276_bib72) 2019; 29 Regis (10.1016/j.neuroimage.2019.116276_bib115) 2013; 45 Bzdok (10.1016/j.neuroimage.2019.116276_bib16) 2017; 155 Holmes (10.1016/j.neuroimage.2019.116276_bib43) 2015; 2 Zhao (10.1016/j.neuroimage.2019.116276_bib112) 2018; 175 Finn (10.1016/j.neuroimage.2019.116276_bib33) 2015; 18 Reinen (10.1016/j.neuroimage.2019.116276_bib84) 2018; 9 Nguyen (10.1016/j.neuroimage.2019.116276_bib70) 2018 Dubois (10.1016/j.neuroimage.2019.116276_bib29) 2018; 1 Sturmfels (10.1016/j.neuroimage.2019.116276_bib96) 2018 Schaefer (10.1016/j.neuroimage.2019.116276_bib88) 2018 Chelba (10.1016/j.neuroimage.2019.116276_bib19) 2014 Kamnitsas (10.1016/j.neuroimage.2019.116276_bib44) 2017 Cole (10.1016/j.neuroimage.2019.116276_bib23) 2018; 23 Dosenbach (10.1016/j.neuroimage.2019.116276_bib28) 2010; 329 Sudlow (10.1016/j.neuroimage.2019.116276_bib97) 2015; 12 Smith (10.1016/j.neuroimage.2019.116276_bib91) 2013; 80 Kell (10.1016/j.neuroimage.2019.116276_bib49) 2018; 98 Kebets (10.1016/j.neuroimage.2019.116276_bib48) 2019 Rahim (10.1016/j.neuroimage.2019.116276_bib82) 2017; 158 Russakovsky (10.1016/j.neuroimage.2019.116276_bib86) 2015; 115 Rosenberg (10.1016/j.neuroimage.2019.116276_bib85) 2016; 19 Miller (10.1016/j.neuroimage.2019.116276_bib67) 2016; 19 Defferrard (10.1016/j.neuroimage.2019.116276_bib26) 2016 Parisot (10.1016/j.neuroimage.2019.116276_bib74) 2018 Barch (10.1016/j.neuroimage.2019.116276_bib6) 2013; 80 Yoo (10.1016/j.neuroimage.2019.116276_bib110) 2019; 197 Fox (10.1016/j.neuroimage.2019.116276_bib35) 2007; 8 Glasser (10.1016/j.neuroimage.2019.116276_bib36) 2017; 536 Gordon (10.1016/j.neuroimage.2019.116276_bib38) 2016; 26 Shen (10.1016/j.neuroimage.2019.116276_bib89) 2013; 82 Liu (10.1016/j.neuroimage.2019.116276_bib62) 2007 Paszke (10.1016/j.neuroimage.2019.116276_bib76) 2017; 30 Buckner (10.1016/j.neuroimage.2019.116276_bib14) 2013; 16 Li (10.1016/j.neuroimage.2019.116276_bib58) 2018 Beckmann (10.1016/j.neuroimage.2019.116276_bib7) 2004; 23 Vieira (10.1016/j.neuroimage.2019.116276_bib102) 2017; 74 Elliott (10.1016/j.neuroimage.2019.116276_bib32) 2008; 37 Kawahara (10.1016/j.neuroimage.2019.116276_bib47) 2017; 146 Kong (10.1016/j.neuroimage.2019.116276_bib54) 2019; 29 Yamins (10.1016/j.neuroimage.2019.116276_bib107) 2014; 111 Amico (10.1016/j.neuroimage.2019.116276_bib2) 2018; 8 Nie (10.1016/j.neuroimage.2019.116276_bib71) 2017 Ktena (10.1016/j.neuroimage.2019.116276_bib55) 2018; 169 Preti (10.1016/j.neuroimage.2019.116276_bib80) 2017; 160 Blumberg (10.1016/j.neuroimage.2019.116276_bib10) 2018 Salimi-Khorshidi (10.1016/j.neuroimage.2019.116276_bib87) 2014; 90 Arbabshirani (10.1016/j.neuroimage.2019.116276_bib3) 2017; 145 Mihalik (10.1016/j.neuroimage.2019.116276_bib66) Smyser (10.1016/j.neuroimage.2019.116276_bib94) 2016; 26 Nostro (10.1016/j.neuroimage.2019.116276_bib73) 2018; 223 |
References_xml | – volume: 80 start-page: 169 year: 2013 end-page: 189 ident: bib6 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: Neuroimage – volume: 148 start-page: 179 year: 2017 end-page: 188 ident: bib61 article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment publication-title: Neuroimage – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib56 article-title: Deep learning publication-title: Nature – start-page: 1 year: 2018 end-page: 26 ident: bib74 article-title: Disease prediction using graph convolutional Networks : application to autism spectrum disorder and alzheimer ’ s disease publication-title: Med. Image Anal. – volume: 37 start-page: 234 year: 2008 end-page: 244 ident: bib32 article-title: The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine publication-title: Int. J. Epidemiol. – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: bib41 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. – volume: 158 start-page: 145 year: 2017 end-page: 154 ident: bib82 article-title: Joint prediction of multiple scores captures better individual traits from brain images publication-title: Neuroimage – volume: 27 start-page: 4492 year: 2017 end-page: 4502 ident: bib90 article-title: Data quality influences observed links between functional connectivity and behavior publication-title: Cerebr. Cortex – start-page: 1 year: 2018 end-page: 4 ident: bib70 article-title: Modeling Alzheimer’s disease progression using deep recurrent neural networks publication-title: 2018 Int. Work. Pattern Recognit. Neuroimaging, PRNI 2018 – year: 2019 ident: bib48 article-title: Somatosensory-Motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology publication-title: Biol. Psychiatry – volume: 8 start-page: 700 year: 2007 end-page: 711 ident: bib35 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. – volume: 196 start-page: 126 year: 2019 end-page: 141 ident: bib59 article-title: Global signal regression strengthens association between resting-state functional connectivity and behavior publication-title: Neuroimage – volume: 13 start-page: 361 year: 2017 end-page: 369 ident: bib98 article-title: Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis publication-title: NeuroImage Clin – start-page: 1 year: 2017 end-page: 14 ident: bib53 article-title: Semi-supervised classification with graph convolutional networks publication-title: Int. Conf. Learn. Represent – volume: 12 start-page: 123 year: 2015 end-page: 133 ident: bib81 article-title: Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data publication-title: Dev. Cogn. Neurosci. – volume: vol. 28 start-page: 6 year: 2013 ident: bib63 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc. 30 Th Int. Conf. Mach. Learn. – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bib87 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – year: 2018 ident: bib111 article-title: Multi-view graph convolutional network and its applications on neuroimage analysis for Parkinson’s disease – volume: 146 start-page: 1038 year: 2017 end-page: 1049 ident: bib47 article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment publication-title: Neuroimage – volume: 160 start-page: 41 year: 2017 end-page: 54 ident: bib80 article-title: The dynamic functional connectome: state-of-the-art and perspectives publication-title: Neuroimage – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib100 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage – start-page: 3 year: 2004 end-page: 12 ident: bib11 article-title: Evaluating the replicability of significance tests for comparing learning algorithms publication-title: Adv. Knowl. Discov. data Min. – start-page: 3095 year: 2018 end-page: 3114 ident: bib88 article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cerebr. Cortex – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib40 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage – volume: 20 start-page: 365 year: 2017 end-page: 377 ident: bib106 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. – start-page: 3844 year: 2016 end-page: 3852 ident: bib26 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in Neural Information Processing Systems – volume: 19 start-page: 672 year: 2018 end-page: 686 ident: bib31 article-title: Imaging-based parcellations of the human brain publication-title: Nat. Rev. Neurosci. – volume: 30 start-page: 1 year: 2017 end-page: 4 ident: bib76 article-title: Automatic differentiation in PyTorch publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: e6 year: 2018 ident: bib29 article-title: Resting-state functional brain connectivity best predicts the personality dimension of openness to experience publication-title: Personal. Neurosci. – volume: 152 start-page: 184 year: 2017 end-page: 194 ident: bib30 article-title: Seeing it all: convolutional network layers map the function of the human visual system publication-title: Neuroimage – volume: 20 start-page: 340 year: 2017 end-page: 352 ident: bib12 article-title: Dynamic models of large-scale brain activity publication-title: Nat. Neurosci. – volume: 19 start-page: 165 year: 2016 end-page: 171 ident: bib85 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. – year: 2012 ident: bib68 article-title: Machine Learning: A Probabilistic Perspective – start-page: 39 year: 2016 end-page: 47 ident: bib5 article-title: Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features publication-title: MICCAI 2016 DL Workshop – volume: 87 start-page: 245 year: 1980 ident: bib95 article-title: Tests for comparing elements of a correlation matrix publication-title: Psychol. Bull. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib99 article-title: The Wu-minn human connectome Project: an overview publication-title: Neuroimage – start-page: 1 year: 2015 end-page: 15 ident: bib52 article-title: Adam: a method for stochastic optimization publication-title: Int. Conf. Learn. Represent. 2015 – volume: 29 start-page: 2455 year: 2019 end-page: 2469 ident: bib72 article-title: Evaluating the prediction of brain maturity from functional connectivity after motion artifact denoising publication-title: Cerebr. Cortex – volume: 45 start-page: 529 year: 2013 end-page: 555 ident: bib115 article-title: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization publication-title: Eng. Optim. – start-page: 118 year: 2018 end-page: 125 ident: bib10 article-title: Deeper image quality transfer: training low-memory neural networks for 3D images publication-title: Int. Conf. Med. Image Comput. Comput. Interv. – volume: 26 start-page: 288 year: 2016 end-page: 303 ident: bib38 article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations publication-title: Cerebr. Cortex – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib33 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bib7 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2018 end-page: 4 ident: bib42 article-title: Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence? 2018 Int. Work. Pattern Recognit publication-title: Neuroimaging – volume: 199 start-page: 651 year: 2019 end-page: 662 ident: bib51 article-title: Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction publication-title: Neuroimage – volume: 12 start-page: 153 year: 1947 end-page: 157 ident: bib65 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib92 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. – volume: 52 start-page: 239 year: 2003 end-page: 281 ident: bib69 article-title: Inference for the generalization error publication-title: Mach. Learn. – start-page: 1079 year: 2007 end-page: 1088 ident: bib62 article-title: Semiparametric regression of multidimensional genetic pathway Data : least-squares kernel machines and linear mixed models publication-title: Biometrics – year: 2018 ident: bib64 article-title: TADPOLE Challenge: Prediction of Longitudinal Evolution in Alzheimer’s Disease – volume: 2 start-page: 1 year: 2015 end-page: 16 ident: bib43 article-title: Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures publication-title: Sci. Data – start-page: 450 year: 2017 end-page: 462 ident: bib44 article-title: Ensembles of multiple models and architectures for robust brain tumour segmentation publication-title: International MICCAI Brainlesion Workshop BrainLes 2017: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries – volume: 16 start-page: 832 year: 2013 end-page: 837 ident: bib14 article-title: Opportunities and limitations of intrinsic functional connectivity MRI publication-title: Nat. Neurosci. – start-page: 2635 year: 2014 end-page: 2639 ident: bib19 article-title: One billion word benchmark for measuring progress in statistical language modeling publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib37 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – volume: 175 start-page: 32 year: 2018 end-page: 44 ident: bib112 article-title: Bayesian convolutional neural network based MRI brain extraction on nonhuman primates publication-title: Neuroimage – volume: 6 start-page: 669 year: 2016 end-page: 680 ident: bib15 article-title: Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome Project publication-title: Brain Connect. – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: bib79 article-title: Functional network organization of the human brain publication-title: Neuron – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bib27 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry – volume: 9 year: 2018 ident: bib39 article-title: Task-induced brain state manipulation improves prediction of individual traits publication-title: Nat. Commun. – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bib107 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. – volume: 74 start-page: 58 year: 2017 end-page: 75 ident: bib102 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications publication-title: Neurosci. Biobehav. Rev. – volume: 197 start-page: 212 year: 2019 end-page: 223 ident: bib110 article-title: Multivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors publication-title: Neuroimage – year: 2019 ident: bib66 article-title: ABCD Neurocognitive Prediction Challenge 2019: predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression – volume: 155 start-page: 549 year: 2017 end-page: 564 ident: bib16 article-title: Inference in the age of big data: future perspectives on neuroscience publication-title: Neuroimage – start-page: 295 year: 2018 end-page: 311 ident: bib96 article-title: A domain guided CNN architecture for predicting age from structural brain images publication-title: Proceedings of the 3rd Machine Learning for Healthcare Conference, Proceedings of Machine Learning Research – volume: 8 start-page: 1 year: 2018 end-page: 14 ident: bib2 article-title: The quest for identifiability in human functional connectomes publication-title: Sci. Rep. – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib9 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: bib109 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – start-page: 729 year: 2018 end-page: 738 ident: bib24 article-title: Unsupervised learning for fast probabilistic diffeomorphic registration publication-title: Int. Conf. Med. Image Comput. Comput. Interv. – volume: 23 start-page: 1385 year: 2018 end-page: 1392 ident: bib23 article-title: Brain age predicts mortality publication-title: Mol. Psychiatry – volume: 163 start-page: 115 year: 2017 end-page: 124 ident: bib22 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: Neuroimage – volume: 223 start-page: 2699 year: 2018 end-page: 2719 ident: bib73 article-title: Predicting personality from network-based resting-state functional connectivity publication-title: Brain Struct. Funct. – volume: 8 start-page: 1 year: 2014 end-page: 11 ident: bib78 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. – volume: 169 start-page: 431 year: 2018 end-page: 442 ident: bib55 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: Neuroimage – volume: 98 start-page: 630 year: 2018 end-page: 644 ident: bib49 article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy publication-title: Neuron – volume: 173 start-page: 394 year: 2018 end-page: 410 ident: bib101 article-title: Evaluation of non-negative matrix factorization of grey matter in age prediction publication-title: Neuroimage – volume: 113 start-page: E1968 year: 2016 ident: bib18 article-title: Patterns in the human brain mosaic discriminate males from females publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 1 year: 2018 end-page: 15 ident: bib84 article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis publication-title: Nat. Commun. – volume: 166 start-page: 400 year: 2018 end-page: 424 ident: bib1 article-title: Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank publication-title: Neuroimage – volume: 170 start-page: 434 year: 2018 end-page: 445 ident: bib103 article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy publication-title: Neuroimage – year: 2015 ident: bib21 article-title: Keras [WWW document]. GitHub – volume: 84 start-page: 262 year: 2014 end-page: 274 ident: bib17 article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron – volume: 189 start-page: 804 year: 2019 end-page: 812 ident: bib46 article-title: Individual-specific fMRI-Subspaces improve functional connectivity prediction of behavior publication-title: Neuroimage – volume: 34 start-page: 18 year: 2017 end-page: 42 ident: bib13 article-title: Geometric deep learning: going beyond euclidean data publication-title: IEEE Signal Process. Mag. – volume: 80 start-page: 144 year: 2013 end-page: 168 ident: bib91 article-title: Resting-state fMRI in the human connectome Project publication-title: Neuroimage – volume: 21 year: 2019 ident: bib104 article-title: Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain publication-title: Sci. Adv. – volume: 2017 start-page: 822 year: 2017 end-page: 829 ident: bib116 article-title: Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates publication-title: 31st AAAI Conference on Artificial Intelligence – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib3 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – volume: 19 start-page: 1523 year: 2016 end-page: 1536 ident: bib67 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat. Neurosci. – volume: 12 start-page: 1 year: 2015 end-page: 10 ident: bib97 article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. – volume: 183 start-page: 650 year: 2018 end-page: 665 ident: bib57 article-title: Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images publication-title: Neuroimage – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bib34 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 26 start-page: 322 year: 2016 end-page: 333 ident: bib94 article-title: Resting-state network complexity and magnitude are reduced in prematurely born infants publication-title: Cerebr. Cortex – start-page: 231 year: 2016 end-page: 243 ident: bib20 article-title: Ensemble of deep convolutional neural networks for prognosis of ischemic stroke publication-title: International MICCAI Brainlesion Workshop BrainLes 2016: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries – volume: 35 start-page: 1240 year: 2016 end-page: 1251 ident: bib77 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imaging – volume: 10 year: 2014 ident: bib50 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. – year: 2019 ident: bib117 article-title: pysot: Surrogate Optimization Toolbox. [online] GitHub – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: bib45 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. – volume: 29 start-page: 2533 year: 2019 end-page: 2551 ident: bib54 article-title: Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion publication-title: Cerebr. Cortex – volume: 43 start-page: 98 year: 2018 end-page: 111 ident: bib113 article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation publication-title: Med. Image Anal. – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: bib28 article-title: Prediction of individual brain maturity using fMRI publication-title: Science 84 – volume: 53 start-page: 247 year: 2010 end-page: 256 ident: bib4 article-title: Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients publication-title: Neuroimage – volume: 82 start-page: 403 year: 2013 end-page: 415 ident: bib89 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage – start-page: 101 year: 2018 end-page: 104 ident: bib58 article-title: Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks publication-title: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) – volume: 10 year: 2019 ident: bib60 article-title: Resting brain dynamics at different timescales capture distinct aspects of human behavior publication-title: Nat. Commun. – volume: 536 start-page: 171 year: 2017 end-page: 178 ident: bib36 article-title: A multi-modal oarcellation of human cerebral cortex publication-title: Nature – start-page: 417 year: 2017 end-page: 425 ident: bib71 article-title: Medical image synthesis with context-aware generative adversarial networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 8 start-page: 1 year: 2017 end-page: 10 ident: bib8 article-title: The diverse club publication-title: Nat. Commun. – start-page: 177 year: 2017 end-page: 185 ident: bib75 article-title: Spectral graph convolutions for population-based disease prediction publication-title: Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017 – volume: 163 start-page: 244 year: 2017 end-page: 263 ident: bib83 article-title: Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression publication-title: Neuroimage – start-page: 1 year: 2019 end-page: 12 ident: bib105 article-title: Sex classification by resting state brain connectivity publication-title: Cerebr. Cortex – volume: 158 start-page: 378 year: 2017 end-page: 396 ident: bib108 article-title: Quicksilver: fast predictive image registration – a deep learning approach publication-title: Neuroimage – volume: 12 start-page: 43 year: 2011 end-page: 56 ident: bib25 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nat. Rev. Neurosci. – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib86 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 18 start-page: 1565 year: 2015 end-page: 1567 ident: bib93 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. – start-page: 72 year: 2017 end-page: 80 ident: bib114 article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data publication-title: Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017 – volume: 8 start-page: 700 year: 2007 ident: 10.1016/j.neuroimage.2019.116276_bib35 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2201 – volume: 196 start-page: 126 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib59 article-title: Global signal regression strengthens association between resting-state functional connectivity and behavior publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.04.016 – start-page: 3095 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib88 article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhx179 – volume: 113 start-page: E1968 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib18 article-title: Patterns in the human brain mosaic discriminate males from females publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1523888113 – volume: 152 start-page: 184 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib30 article-title: Seeing it all: convolutional network layers map the function of the human visual system publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.001 – volume: 223 start-page: 2699 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib73 article-title: Predicting personality from network-based resting-state functional connectivity publication-title: Brain Struct. Funct. doi: 10.1007/s00429-018-1651-z – start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib53 article-title: Semi-supervised classification with graph convolutional networks – volume: 82 start-page: 403 year: 2013 ident: 10.1016/j.neuroimage.2019.116276_bib89 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.081 – volume: 197 start-page: 212 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib110 article-title: Multivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.04.060 – start-page: 2635 year: 2014 ident: 10.1016/j.neuroimage.2019.116276_bib19 article-title: One billion word benchmark for measuring progress in statistical language modeling publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH – volume: 12 start-page: 123 year: 2015 ident: 10.1016/j.neuroimage.2019.116276_bib81 article-title: Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2015.01.003 – volume: 43 start-page: 98 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib113 article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.10.002 – volume: 2017 start-page: 822 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib116 article-title: Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2019.116276_bib99 article-title: The Wu-minn human connectome Project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 199 start-page: 651 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib51 article-title: Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.06.012 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2019.116276_bib9 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – start-page: 1 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib105 article-title: Sex classification by resting state brain connectivity publication-title: Cerebr. Cortex – volume: 169 start-page: 431 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib55 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.052 – start-page: 118 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib10 article-title: Deeper image quality transfer: training low-memory neural networks for 3D images publication-title: Int. Conf. Med. Image Comput. Comput. Interv. – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.neuroimage.2019.116276_bib107 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1403112111 – volume: 72 start-page: 665 year: 2011 ident: 10.1016/j.neuroimage.2019.116276_bib79 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 80 start-page: 144 year: 2013 ident: 10.1016/j.neuroimage.2019.116276_bib91 article-title: Resting-state fMRI in the human connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 34 start-page: 18 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib13 article-title: Geometric deep learning: going beyond euclidean data publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2693418 – volume: 189 start-page: 804 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib46 article-title: Individual-specific fMRI-Subspaces improve functional connectivity prediction of behavior publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.069 – volume: 30 start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib76 article-title: Automatic differentiation in PyTorch publication-title: Adv. Neural Inf. Process. Syst. – volume: 175 start-page: 32 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib112 article-title: Bayesian convolutional neural network based MRI brain extraction on nonhuman primates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.065 – ident: 10.1016/j.neuroimage.2019.116276_bib66 – start-page: 295 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib96 article-title: A domain guided CNN architecture for predicting age from structural brain images – volume: 23 start-page: 137 year: 2004 ident: 10.1016/j.neuroimage.2019.116276_bib7 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.822821 – volume: 8 start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2019.116276_bib78 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00229 – volume: 18 start-page: 1664 year: 2015 ident: 10.1016/j.neuroimage.2019.116276_bib33 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 19 start-page: 165 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib85 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4179 – volume: 6 start-page: 669 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib15 article-title: Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome Project publication-title: Brain Connect. doi: 10.1089/brain.2016.0435 – volume: 21 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib104 article-title: Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain publication-title: Sci. Adv. – start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib42 article-title: Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence? 2018 Int. Work. Pattern Recognit publication-title: Neuroimaging – volume: 35 start-page: 1240 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib77 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.neuroimage.2019.116276_bib86 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 16 start-page: 832 year: 2013 ident: 10.1016/j.neuroimage.2019.116276_bib14 article-title: Opportunities and limitations of intrinsic functional connectivity MRI publication-title: Nat. Neurosci. doi: 10.1038/nn.3423 – volume: 37 start-page: 234 year: 2008 ident: 10.1016/j.neuroimage.2019.116276_bib32 article-title: The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dym276 – start-page: 729 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib24 article-title: Unsupervised learning for fast probabilistic diffeomorphic registration publication-title: Int. Conf. Med. Image Comput. Comput. Interv. – volume: 20 start-page: 365 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib106 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4478 – volume: 536 start-page: 171 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib36 article-title: A multi-modal oarcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 52 start-page: 239 year: 2003 ident: 10.1016/j.neuroimage.2019.116276_bib69 article-title: Inference for the generalization error publication-title: Mach. Learn. doi: 10.1023/A:1024068626366 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.neuroimage.2019.116276_bib87 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – start-page: 3 year: 2004 ident: 10.1016/j.neuroimage.2019.116276_bib11 article-title: Evaluating the replicability of significance tests for comparing learning algorithms publication-title: Adv. Knowl. Discov. data Min. doi: 10.1007/978-3-540-24775-3_3 – volume: 10 year: 2014 ident: 10.1016/j.neuroimage.2019.116276_bib50 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003915 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib84 article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis publication-title: Nat. Commun. doi: 10.1038/s41467-018-03462-y – volume: 13 start-page: 361 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib98 article-title: Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2016.10.008 – volume: 12 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2019.116276_bib97 article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001779 – volume: 20 start-page: 340 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib12 article-title: Dynamic models of large-scale brain activity publication-title: Nat. Neurosci. doi: 10.1038/nn.4497 – start-page: 39 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib5 article-title: Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features – volume: 9 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib39 article-title: Task-induced brain state manipulation improves prediction of individual traits publication-title: Nat. Commun. doi: 10.1038/s41467-018-04920-3 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neuroimage.2019.116276_bib56 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 163 start-page: 115 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib22 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.059 – year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib64 – volume: 183 start-page: 650 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib57 article-title: Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.005 – volume: 80 start-page: 169 year: 2013 ident: 10.1016/j.neuroimage.2019.116276_bib6 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.033 – ident: 10.1016/j.neuroimage.2019.116276_bib21 – volume: 35 start-page: 18 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib41 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 – volume: 87 start-page: 245 issue: 2 year: 1980 ident: 10.1016/j.neuroimage.2019.116276_bib95 article-title: Tests for comparing elements of a correlation matrix publication-title: Psychol. Bull. doi: 10.1037/0033-2909.87.2.245 – volume: 45 start-page: 529 year: 2013 ident: 10.1016/j.neuroimage.2019.116276_bib115 article-title: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2012.687731 – volume: 27 start-page: 4492 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib90 article-title: Data quality influences observed links between functional connectivity and behavior publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhw253 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib8 article-title: The diverse club publication-title: Nat. Commun. doi: 10.1038/s41467-017-01189-w – volume: 18 start-page: 1565 year: 2015 ident: 10.1016/j.neuroimage.2019.116276_bib93 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.4125 – start-page: 231 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib20 article-title: Ensemble of deep convolutional neural networks for prognosis of ischemic stroke – volume: 329 start-page: 1358 year: 2010 ident: 10.1016/j.neuroimage.2019.116276_bib28 article-title: Prediction of individual brain maturity using fMRI publication-title: Science 84 doi: 10.1126/science.1194144 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.neuroimage.2019.116276_bib34 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 148 start-page: 179 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib61 article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.005 – volume: 163 start-page: 244 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib83 article-title: Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.09.032 – volume: 173 start-page: 394 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib101 article-title: Evaluation of non-negative matrix factorization of grey matter in age prediction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.007 – volume: 84 start-page: 262 year: 2014 ident: 10.1016/j.neuroimage.2019.116276_bib17 article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron doi: 10.1016/j.neuron.2014.10.015 – ident: 10.1016/j.neuroimage.2019.116276_bib117 – volume: 158 start-page: 378 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib108 article-title: Quicksilver: fast predictive image registration – a deep learning approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.008 – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.neuroimage.2019.116276_bib40 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 62 start-page: 2222 year: 2012 ident: 10.1016/j.neuroimage.2019.116276_bib100 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 158 start-page: 145 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib82 article-title: Joint prediction of multiple scores captures better individual traits from brain images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.072 – volume: 19 start-page: 659 year: 2014 ident: 10.1016/j.neuroimage.2019.116276_bib27 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – volume: 19 start-page: 1523 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib67 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 – issue: 0006–3223 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib48 article-title: Somatosensory-Motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology publication-title: Biol. Psychiatry – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib45 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 29 start-page: 2533 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib54 article-title: Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhy123 – volume: 26 start-page: 288 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib38 article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhu239 – start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib70 article-title: Modeling Alzheimer’s disease progression using deep recurrent neural networks – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib2 article-title: The quest for identifiability in human functional connectomes publication-title: Sci. Rep. doi: 10.1038/s41598-018-25089-1 – volume: 19 start-page: 672 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib31 article-title: Imaging-based parcellations of the human brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-018-0071-7 – volume: 106 start-page: 1125 year: 2011 ident: 10.1016/j.neuroimage.2019.116276_bib109 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2019.116276_bib37 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 1 start-page: e6 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib29 article-title: Resting-state functional brain connectivity best predicts the personality dimension of openness to experience publication-title: Personal. Neurosci. doi: 10.1017/pen.2018.8 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2019.116276_bib43 article-title: Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures publication-title: Sci. Data doi: 10.1038/sdata.2015.31 – volume: 160 start-page: 41 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib80 article-title: The dynamic functional connectome: state-of-the-art and perspectives publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.061 – volume: 146 start-page: 1038 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib47 article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.046 – volume: 155 start-page: 549 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib16 article-title: Inference in the age of big data: future perspectives on neuroscience publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.061 – year: 2012 ident: 10.1016/j.neuroimage.2019.116276_bib68 – start-page: 417 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib71 article-title: Medical image synthesis with context-aware generative adversarial networks – start-page: 3844 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib26 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib74 article-title: Disease prediction using graph convolutional Networks : application to autism spectrum disorder and alzheimer ’ s disease publication-title: Med. Image Anal. – volume: 23 start-page: 1385 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib23 article-title: Brain age predicts mortality publication-title: Mol. Psychiatry doi: 10.1038/mp.2017.62 – volume: 74 start-page: 58 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib102 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.01.002 – start-page: 72 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib114 article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data – volume: 106 start-page: 13040 year: 2009 ident: 10.1016/j.neuroimage.2019.116276_bib92 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 26 start-page: 322 year: 2016 ident: 10.1016/j.neuroimage.2019.116276_bib94 article-title: Resting-state network complexity and magnitude are reduced in prematurely born infants publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhu251 – start-page: 1079 year: 2007 ident: 10.1016/j.neuroimage.2019.116276_bib62 article-title: Semiparametric regression of multidimensional genetic pathway Data : least-squares kernel machines and linear mixed models publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00799.x – volume: 12 start-page: 153 year: 1947 ident: 10.1016/j.neuroimage.2019.116276_bib65 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 166 start-page: 400 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib1 article-title: Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.034 – volume: vol. 28 start-page: 6 year: 2013 ident: 10.1016/j.neuroimage.2019.116276_bib63 article-title: Rectifier nonlinearities improve neural network acoustic models – volume: 10 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib60 article-title: Resting brain dynamics at different timescales capture distinct aspects of human behavior publication-title: Nat. Commun. doi: 10.1038/s41467-019-10317-7 – volume: 53 start-page: 247 year: 2010 ident: 10.1016/j.neuroimage.2019.116276_bib4 article-title: Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.067 – volume: 12 start-page: 43 year: 2011 ident: 10.1016/j.neuroimage.2019.116276_bib25 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2961 – start-page: 177 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib75 article-title: Spectral graph convolutions for population-based disease prediction – volume: 170 start-page: 434 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib103 article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.035 – volume: 145 start-page: 137 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib3 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 98 start-page: 630 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib49 article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy publication-title: Neuron doi: 10.1016/j.neuron.2018.03.044 – volume: 29 start-page: 2455 year: 2019 ident: 10.1016/j.neuroimage.2019.116276_bib72 article-title: Evaluating the prediction of brain maturity from functional connectivity after motion artifact denoising publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhy117 – start-page: 101 year: 2018 ident: 10.1016/j.neuroimage.2019.116276_bib58 article-title: Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks – start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2019.116276_bib52 article-title: Adam: a method for stochastic optimization – start-page: 450 year: 2017 ident: 10.1016/j.neuroimage.2019.116276_bib44 article-title: Ensembles of multiple models and architectures for robust brain tumour segmentation – ident: 10.1016/j.neuroimage.2019.116276_bib111 |
SSID | ssj0009148 |
Score | 2.6500435 |
Snippet | There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116276 |
SubjectTerms | Adult Age Age Factors Aged Algorithms Artificial Intelligence Biobanks Biological Specimen Banks Brain Brain - diagnostic imaging Brain - physiology Computational neuroscience Computer Science Connectome - methods Datasets Datasets as Topic Deep Learning Demography Female Fingerprinting Graph convolutional neural network Humans Image Interpretation, Computer-Assisted - methods Intelligence Intelligence - physiology Kernel ridge regression Learning algorithms Machine Learning Magnetic Resonance Imaging - methods Male Medical imaging Middle Aged Neural networks Neural Networks, Computer Neuroimaging Neurosciences Phenotypes Psychomotor Performance - physiology Resting-state fMRI Sex Factors Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgD4gL4k1gQQZxjagdp47FaXmsKsRyYqW9WbFnwhZ206rt7q_gRzMTJ6GFAz1wrB-N4xmPPzsz3wjxOoAuDOltDhVUuQGkNUdqktuq0W7SFFHXfDVw8mU6OzWfzsqzrVRf7BOW6IHTxL1xMcZGlU0IjjN1Q9UUUBPMNhABQujCfGnPGw5TA92uMikIjjMRlnbw4UmeXR1T5PyS1iu7djmyGlPNnCNbG1PH37-zP908Z0fJv1Hon86UW7vT8V1xp4eV8ii9zj1xA9v74tZJ_-H8gfj5AXEpeUjUqk2u32tZtyB_4KrFC7nCb8kjtpXsXonXKJN7OodWUVGknmQG1pJAruTNMN0hUiMy1DGloJDLFT-Qa-SikQMDQPcYwMtEjj2P64fi9Pjj1_ezvE_EkEcyAJsc6dwTLNAP5LhcQozA069tsFgqW2sXJjjREWNRKCjREeaKuplOQJWobSweiYN20eITIY2yNjgHjSMkFrWqwSpVl2BNKEMIkAk7SMHHnqWck2Vc-MEd7bv_LT_P8vNJfplQY89lYurYo887FvTYnrm2uwLSQN9roP-XBmbCDWrih3BWMsD0R_M9BvB27NtDngRl9uz9irRyZ_Szo8-ey5jWj3HHtcrE4aC0vrdPa08LlMCbKwqXiZdjNVkW_lxUt7i44jYcqOyM0Zl4nHR8fFRBBwUm7ydx7Wj_zlh2a9r5ecdePnWVcbZ8-j-m_pm4rfn-o_OiPxQHm9UVPieQuAkvOnvwC5O_arY priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKD4gL4k2gIIO4hl0_so7FqRSqFaJcoFJvVvxIm9JmV7vbHvkF_GhmYidt4LISx_gRO57xeOx885mQd9ZzIUFvc1_6Mpc-wJwDNclVWXM9rYXjFR4NHH2bzY_ll5PiZIcc9LEwCKtMtj_a9M5ap5RJGs3Jsmkm38EzgOUG9htagF-uMNBcQrOg0-9_3cA8NJMxHK4QOZZOaJ6I8eo4I5tLmLkI8tJgP2Yc2UduLVEdk_9opbpzhpDJf_3Rv2GVt9apwwfkfnIw6X78hodkJ7SPyN2j9Av9Mfn9KYQlxS5BqTaCwNe0aj39GVZtuKCrcBqxsS1FoGW4DjQC1THICpIc1ISBWlNwdykui_E0EQqByXbxMgq6XGGDmEMXNe25ALpmfLiMNNmNWz8hx4effxzM83QlQ-7AFGzyACNtlYeHgBG64Dt66Z3nyqpQMFVxbadhyl1wQjBfBA3el-P1bOpZEbhy4inZbRdteE6oZEpZrX2twSdznFVeMVYVXklbWGt9RlQvBeMSXzlem3FhemDaubmRn0H5mSi_jLCh5jJydmxR5yMKeiiPrNtdwmJ1apLaGe2cq1lRW6vx1nhf1sJXsOXDIfDWlhnRvZqYPrAVTDG8qNmiAx-GuqMJsGXtt6CVo97P978aTEOCP_RArllG9nqlNclSrQ1MVXDjtBA6I2-GbLAx-OOoasPiCstgyLKWkmfkWdTxoSkBWwak8QdxjbR_1JdxTtucdTzmM11KrYoX__XlL8k9jkcgHZB-j-xuVlfhFfiJG_u6MwR_AOhxa3A priority: 102 providerName: Elsevier |
Title | Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919308675 https://dx.doi.org/10.1016/j.neuroimage.2019.116276 https://www.ncbi.nlm.nih.gov/pubmed/31610298 https://www.proquest.com/docview/2340229339 https://www.proquest.com/docview/2305799442 https://hal.science/hal-02314718 https://pubmed.ncbi.nlm.nih.gov/PMC6984975 https://doaj.org/article/9cccf15fbb91438d8f3da5484dcddbb8 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfoJiFeEN9kjMogXgO1k9SxeEAdbCofqxBiUt-s-CNbYUu7tNsjfwF_NHexk64goT5Vje3Yyp3P5_PPvyPklbY8SUFvY5vbPE6tgzkHahKLvORyUCaGFxgaOJ4Mxyfpp2k2DQG3ZYBVtjaxMdR2bjBG_gZeCcsNbL_lu8VljFmj8HQ1pNDokV2kLkNIl5iKNekuS_1VuCyJc6gQkDwe39XwRc4uYNYiwEuC7RhyZB65sTw1LP4bq1TvDOGS__qif0Mqb6xRR_fI3eBc0pHXhvvklqsekNvH4fj8Ifn9wbkFxSFBrcoDwJe0qCz96erKndPanXpcbEURZOmuHfUgdbxgBY8MtARjsKTg6lJcEn0kESqBuTY-EQVd1NghltB5SVsegKYb6y48RfbMLB-Rk6PD7-_HcUjHEBswA6vYwe5HCwt_HN7OBb_RptZYLrRwGRMFl3rgBtw4kyTMZk6C52V4ORxYljkuTPKY7FTzyj0lNGVCaCltKcEfM5wVVjBWZFakOtNa24iIVgrKBK5yTJlxrlpQ2g-1lp9C-Skvv4iwruXC83Vs0eYABd3VR8bt5sG8PlVhAitpjClZVmotMWO8zcvEFrDdw09gtc4jIls1Ue2lVjDD8KLZFgN427UNjo93aLZs_RK0cmP049EXhc-Q3A-9j2sWkf1WaVWwUku1nlMRedEVg33BQ6OicvMrrIPXlWWa8og88TredZXAdgEp_EFcG9q_MZbNkmp21nCYD2WeSpHt_X9Yz8gdjvGNBiW_T3ZW9ZV7Dk7gSvdJ7_Uv1m_me5_sjj5-Hk_g9-Bw8vVbvwms_AFFNGU2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2TgJeEN8EBhgEjxG149SxEEIb29SxtkJok_bmxR_ZClta2m2I_4G_hb-RuzhpV5BQX_YYfyt3vjvbv7sj5LVxPBHAt7HLXBYL52HPAZvEMiu4aheJ5TleDfQHne6B-HSYHq6Q340vDMIqG5lYCWo3snhH_haGBHUDx2_1Yfw9xqxR-LrapNAIbLHnf_6AI9v0_e4W0PcN5zvb-x-7cZ1VILbAzeexByPeSAcfHp1MwfxxwlnHpZE-ZTLnyrR9m1tvk4S51CswICwvOm3HUs-lTWDcVbImEjjKtMja5vbg85d5mF8mgvNdmsQZY6rGDgVEWRWhcngGcgIhZQqkVYdjrJMrCrHKG7CgF1dPEKD5r_X7N4jzilbcuUNu1-Ys3Qj8d5es-PIeudGvH-zvk19b3o8pLglalQFyPqV56eg3Pyn9KZ3444DELSnCOv2lpwEWjy5dUGShJ4ifKQXjmqISDneX0AgUhA2pL-h4ghNiDR0VtIk8UE3j_FkIyj200wfk4FpI9ZC0ylHpHxMqmJRGKVcosAAtZ7mTjOWpk8KkxhgXEdlQQds6Ojom6TjVDQzuq57TTyP9dKBfRNis5zhECFmizyYSetYeY3xXBaPJsa5FhlbW2oKlhTEKc9S7rEhcDgdM_AXOmCwiqmET3bjRguCHgYZLLODdrG9tagUTasner4ArF1bf3ehpLMNwgmjvXLKIrDdMq2u5ONXzXRyRl7NqkGj4TJWXfnSBbdBBWgnBI_Io8PhsqgQOKJg0AMi1wP0La1msKYcnVdT0jsqEkumT_y_rBbnZ3e_3dG93sPeU3OJ4u1Jh9NdJ63xy4Z-BCXpuntf7npKj6xY1fwBavZ4W |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlVcEO8GChgEx6hrJ1nHQggVltWWPsSBSnsz8SPtQpssm20R_4FfxK9jJk6yXZDQXnqM38qMZ8b2NzOEvNSWRzHwbWhTm4axdbDngE1CkeZc9vLI8AyvBg6P-qPj-OM4Ga-R360vDMIqW5lYC2pbGrwj34EhQd3A8Vvu5A0s4tNg-Hb6PcQMUvjS2qbT8Cyy737-gONb9WZvALR-xfnww-f3o7DJMBAa4Ox56MCg18LCh0OHUzCFbGyN5UILlzCRcal7rseNM1HEbOIkGBOG5_2eZYnjwkQw7jq5IaKE4R4TY7EI-Mti74aXRGHKmGxQRB5bVseqnJyDxEBwmQS51ecY9eSKaqwzCCxpyPVThGr-awf_Dee8oh-Ht8mtxrClu54T75A1V9wlm4fN0_098mvg3JTikqBV4cHnFc0KS7-5WeHO6MydeExuQRHg6S4d9QB5dO6CIgM9QRBVFMxsiurY32JCI1AVxifBoNMZTog1tMxpG4Ognsa6cx-ee2Kq--T4Wgj1gGwUZeG2CI2ZEFpKm0uwBQ1nmRWMZYkVsU601jYgoqWCMk2cdEzXcaZaQNxXtaCfQvopT7-AsK7n1McKWaHPOyR01x6jfdcF5exENcJDSWNMzpJca4nZ6m2aRzaDoyb-Aqt1GhDZsolqHWpBBcBAkxUW8Lrr2xhd3phasfcL4Mql1Y92DxSWYWBBtHwuWUC2W6ZVjYSs1GI_B-R5Vw2yDR-sssKVF9gGXaVlHPOAPPQ83k0VwVEF0wcAuZa4f2ktyzXF5LSOn96XaSxF8uj_y3pGNkHAqIO9o_3H5CbHa5YarL9NNuazC_cEbNG5flpvekq-XLeU-QOmQKDm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+neural+networks+and+kernel+regression+achieve+comparable+accuracies+for+functional+connectivity+prediction+of+behavior+and+demographics&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=He%2C+Tong&rft.au=Kong%2C+Ru&rft.au=Holmes%2C+Avram+J&rft.au=Nguyen%2C+Minh&rft.date=2020-02-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=206&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.116276&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |