Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics

There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. H...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 206; p. 116276
Main Authors He, Tong, Kong, Ru, Holmes, Avram J., Nguyen, Minh, Sabuncu, Mert R., Eickhoff, Simon B., Bzdok, Danilo, Feng, Jiashi, Yeo, B.T. Thomas
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2020
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2019.116276

Cover

Loading…
Abstract There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. Here, we compared the performance of three DNN architectures and a classical machine learning algorithm (kernel regression) in predicting individual phenotypes from whole-brain resting-state functional connectivity (RSFC) patterns. One of the DNNs was a generic fully-connected feedforward neural network, while the other two DNNs were recently published approaches specifically designed to exploit the structure of connectome data. By using a combined sample of almost 10,000 participants from the Human Connectome Project (HCP) and UK Biobank, we showed that the three DNNs and kernel regression achieved similar performance across a wide range of behavioral and demographic measures. Furthermore, the generic feedforward neural network exhibited similar performance to the two state-of-the-art connectome-specific DNNs. When predicting fluid intelligence in the UK Biobank, performance of all algorithms dramatically improved when sample size increased from 100 to 1000 subjects. Improvement was smaller, but still significant, when sample size increased from 1000 to 5000 subjects. Importantly, kernel regression was competitive across all sample sizes. Overall, our study suggests that kernel regression is as effective as DNNs for RSFC-based behavioral prediction, while incurring significantly lower computational costs. Therefore, kernel regression might serve as a useful baseline algorithm for future studies.
AbstractList There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. Here, we compared the performance of three DNN architectures and a classical machine learning algorithm (kernel regression) in predicting individual phenotypes from whole-brain resting-state functional connectivity (RSFC) patterns. One of the DNNs was a generic fully-connected feedforward neural network, while the other two DNNs were recently published approaches specifically designed to exploit the structure of connectome data. By using a combined sample of almost 10,000 participants from the Human Connectome Project (HCP) and UK Biobank, we showed that the three DNNs and kernel regression achieved similar performance across a wide range of behavioral and demographic measures. Furthermore, the generic feedforward neural network exhibited similar performance to the two state-of-the-art connectome-specific DNNs. When predicting fluid intelligence in the UK Biobank, performance of all algorithms dramatically improved when sample size increased from 100 to 1000 subjects. Improvement was smaller, but still significant, when sample size increased from 1000 to 5000 subjects. Importantly, kernel regression was competitive across all sample sizes. Overall, our study suggests that kernel regression is as effective as DNNs for RSFC-based behavioral prediction, while incurring significantly lower computational costs. Therefore, kernel regression might serve as a useful baseline algorithm for future studies.
There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. Here, we compared the performance of three DNN architectures and a classical machine learning algorithm (kernel regression) in predicting individual phenotypes from whole-brain resting-state functional connectivity (RSFC) patterns. One of the DNNs was a generic fully-connected feedforward neural network, while the other two DNNs were recently published approaches specifically designed to exploit the structure of connectome data. By using a combined sample of almost 10,000 participants from the Human Connectome Project (HCP) and UK Biobank, we showed that the three DNNs and kernel regression achieved similar performance across a wide range of behavioral and demographic measures. Furthermore, the generic feedforward neural network exhibited similar performance to the two state-of-the-art connectome-specific DNNs. When predicting fluid intelligence in the UK Biobank, performance of all algorithms dramatically improved when sample size increased from 100 to 1000 subjects. Improvement was smaller, but still significant, when sample size increased from 1000 to 5000 subjects. Importantly, kernel regression was competitive across all sample sizes. Overall, our study suggests that kernel regression is as effective as DNNs for RSFC-based behavioral prediction, while incurring significantly lower computational costs. Therefore, kernel regression might serve as a useful baseline algorithm for future studies.There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging applications, yet there are few direct comparisons of relative utility. Here, we compared the performance of three DNN architectures and a classical machine learning algorithm (kernel regression) in predicting individual phenotypes from whole-brain resting-state functional connectivity (RSFC) patterns. One of the DNNs was a generic fully-connected feedforward neural network, while the other two DNNs were recently published approaches specifically designed to exploit the structure of connectome data. By using a combined sample of almost 10,000 participants from the Human Connectome Project (HCP) and UK Biobank, we showed that the three DNNs and kernel regression achieved similar performance across a wide range of behavioral and demographic measures. Furthermore, the generic feedforward neural network exhibited similar performance to the two state-of-the-art connectome-specific DNNs. When predicting fluid intelligence in the UK Biobank, performance of all algorithms dramatically improved when sample size increased from 100 to 1000 subjects. Improvement was smaller, but still significant, when sample size increased from 1000 to 5000 subjects. Importantly, kernel regression was competitive across all sample sizes. Overall, our study suggests that kernel regression is as effective as DNNs for RSFC-based behavioral prediction, while incurring significantly lower computational costs. Therefore, kernel regression might serve as a useful baseline algorithm for future studies.
ArticleNumber 116276
Author Bzdok, Danilo
Feng, Jiashi
Kong, Ru
Holmes, Avram J.
Sabuncu, Mert R.
Eickhoff, Simon B.
Yeo, B.T. Thomas
Nguyen, Minh
He, Tong
AuthorAffiliation 5 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
10 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
7 Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany
1 Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore
8 JARA-BRAIN, Jülich-Aachen Research Alliance, Germany
9 Parietal team, INRIA, Neurospin, bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore
12 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
3 Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA
11 Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
6 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Resear
AuthorAffiliation_xml – name: 1 Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore
– name: 2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– name: 11 Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
– name: 12 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
– name: 4 School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
– name: 6 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
– name: 8 JARA-BRAIN, Jülich-Aachen Research Alliance, Germany
– name: 5 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
– name: 3 Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA
– name: 7 Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany
– name: 10 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
– name: 9 Parietal team, INRIA, Neurospin, bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France
Author_xml – sequence: 1
  givenname: Tong
  surname: He
  fullname: He, Tong
  organization: Clinical Imaging Research Centre, Centre for Sleep and Cognition, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore
– sequence: 2
  givenname: Ru
  surname: Kong
  fullname: Kong, Ru
  organization: Clinical Imaging Research Centre, Centre for Sleep and Cognition, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore
– sequence: 3
  givenname: Avram J.
  surname: Holmes
  fullname: Holmes, Avram J.
  organization: Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA
– sequence: 4
  givenname: Minh
  surname: Nguyen
  fullname: Nguyen, Minh
  organization: Clinical Imaging Research Centre, Centre for Sleep and Cognition, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore
– sequence: 5
  givenname: Mert R.
  surname: Sabuncu
  fullname: Sabuncu, Mert R.
  organization: School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
– sequence: 6
  givenname: Simon B.
  surname: Eickhoff
  fullname: Eickhoff, Simon B.
  organization: Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
– sequence: 7
  givenname: Danilo
  surname: Bzdok
  fullname: Bzdok, Danilo
  organization: Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany
– sequence: 8
  givenname: Jiashi
  surname: Feng
  fullname: Feng, Jiashi
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 9
  givenname: B.T. Thomas
  surname: Yeo
  fullname: Yeo, B.T. Thomas
  email: thomas.yeo@nus.edu.sg
  organization: Clinical Imaging Research Centre, Centre for Sleep and Cognition, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31610298$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02314718$$DView record in HAL
BookMark eNqNkktvEzEQx1eoiD7gKyBLXOCQ4Me-fEGU8milSFzgbHnt2cTJxg727qJ8Bz40s01LaU492R7_5zf2zP88O_HBQ5YRRueMsvL9eu5hiMFt9RLmnDI5Z6zkVfksO2NUFjNZVPxk2hdiVjMmT7PzlNaUUsny-kV2KljJKJf1WfbnM8COTDTd4dL_DnGTiPaWbCB66EiEZYSUXPBEm5WDEYgJ252OuukAQwYzjYNE2hBJO3jToxRZJngPeBhdvye7CNbd3pDQkgZWenQon8pY2IZl1LuVM-ll9rzVXYJXd-tF9vPrlx9X17PF9283V5eLmakE7WdA67KpLB6Ac1pUVW5zayyvmgoKVmkuGwqUGzBCMFuAlFwa3pbUsgJ4ZcRFdnPg2qDXahexj3GvgnbqNhDiUunYO9OBksaYlhVt02DrRG3rVlhd5PVU0DZNjawPB9ZuaLZgDfgeW_kI-vjGu5VahlGVss5lVSDg3QGwOkq7vlyoKUa5YHnF6pGh9u1dsRh-DZB6tXXJQNdpD2FIigtsh5R5zlH65ki6DkPEyUyqnHIuhZCoev3_6__VvzfIw_dMDClFaJVxvZ4miZ9xnWJUTY5Ua_XgSDU5Uh0ciYD6CHBf4wmpnw6pgF4YHUSV0GneoJciWguH5Z4C-XgEMZ3zzuhuA_unIf4Clm8bSQ
CitedBy_id crossref_primary_10_1016_j_neuroimage_2022_119485
crossref_primary_10_1142_S0129065724500539
crossref_primary_10_1016_j_intell_2022_101654
crossref_primary_10_1093_braincomms_fcab191
crossref_primary_10_1088_1741_2552_ac8b38
crossref_primary_10_1016_j_media_2025_103509
crossref_primary_10_1017_S0033291720001683
crossref_primary_10_1038_s41551_023_01117_y
crossref_primary_10_1162_netn_a_00161
crossref_primary_10_1002_hbm_25709
crossref_primary_10_1109_TPAMI_2021_3125686
crossref_primary_10_1016_j_media_2022_102370
crossref_primary_10_1016_j_neuroimage_2021_118036
crossref_primary_10_1016_j_celrep_2023_113597
crossref_primary_10_1093_cercor_bhab001
crossref_primary_10_1038_s41586_023_05746_w
crossref_primary_10_1109_JBHI_2024_3471186
crossref_primary_10_1016_j_neuroimage_2023_120246
crossref_primary_10_1007_s11357_023_00831_4
crossref_primary_10_1093_cercor_bhac060
crossref_primary_10_1038_s41467_020_20655_6
crossref_primary_10_1002_hbm_25420
crossref_primary_10_1016_j_intell_2022_101665
crossref_primary_10_1016_j_neuroimage_2022_119636
crossref_primary_10_1162_netn_a_00275
crossref_primary_10_1016_j_neuroimage_2020_117458
crossref_primary_10_1093_gigascience_giac082
crossref_primary_10_1162_imag_a_00251
crossref_primary_10_1016_j_neuri_2023_100118
crossref_primary_10_1016_j_tics_2024_09_007
crossref_primary_10_1002_hbm_25817
crossref_primary_10_1109_JBHI_2024_3351177
crossref_primary_10_1109_TCDS_2023_3314155
crossref_primary_10_1002_hbm_25656
crossref_primary_10_1162_imag_a_00015
crossref_primary_10_1016_j_neuroimage_2023_120115
crossref_primary_10_1016_j_jfranklin_2023_07_015
crossref_primary_10_1016_j_neuroimage_2020_117292
crossref_primary_10_1002_hbm_25813
crossref_primary_10_1038_s41598_022_27101_1
crossref_primary_10_3389_fnins_2022_933660
crossref_primary_10_1016_j_neuroimage_2024_120570
crossref_primary_10_1146_annurev_statistics_040522_100329
crossref_primary_10_1016_j_mri_2023_12_010
crossref_primary_10_1093_cercor_bhad284
crossref_primary_10_1016_j_ins_2022_07_041
crossref_primary_10_1016_j_neuroimage_2023_119947
crossref_primary_10_1162_imag_a_00064
crossref_primary_10_1162_netn_a_00383
crossref_primary_10_3390_s21061932
crossref_primary_10_1016_j_neuroimage_2020_117203
crossref_primary_10_1002_hbm_26415
crossref_primary_10_1016_j_neuroimage_2024_120600
crossref_primary_10_3389_fpsyt_2021_615754
crossref_primary_10_1093_cercor_bhae412
crossref_primary_10_1016_j_neuroimage_2023_120142
crossref_primary_10_1109_JBHI_2024_3420134
crossref_primary_10_1038_s41562_023_01670_1
crossref_primary_10_1093_psyrad_kkad011
crossref_primary_10_1016_j_neuroimage_2020_117706
crossref_primary_10_1016_j_neuroimage_2020_117713
crossref_primary_10_1016_j_media_2024_103433
crossref_primary_10_1093_texcom_tgac020
crossref_primary_10_1038_s41593_022_01059_9
crossref_primary_10_1016_j_bpsc_2019_11_007
crossref_primary_10_1016_j_eswa_2024_126170
crossref_primary_10_1016_j_neuroimage_2021_118423
crossref_primary_10_1109_TMI_2023_3309874
crossref_primary_10_1002_hbm_26768
crossref_primary_10_1016_j_neurad_2022_10_002
crossref_primary_10_3389_fnimg_2024_1455436
crossref_primary_10_1162_imag_a_00233
crossref_primary_10_1038_s44220_025_00388_5
crossref_primary_10_1016_j_neuron_2022_09_012
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_1016_j_neuroimage_2022_119569
crossref_primary_10_3389_fnins_2020_00630
crossref_primary_10_1002_mp_15545
crossref_primary_10_3389_fpsyt_2020_604478
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1016_j_neuroimage_2020_117021
crossref_primary_10_1016_j_media_2023_102850
crossref_primary_10_1038_s42003_024_06438_5
crossref_primary_10_1126_sciadv_adn4202
crossref_primary_10_1001_jamapsychiatry_2023_1419
crossref_primary_10_1093_braincomms_fcae425
crossref_primary_10_1162_imag_a_00443
crossref_primary_10_1109_JBHI_2024_3434473
crossref_primary_10_3390_rs13214486
crossref_primary_10_1016_j_neuroimage_2023_120044
crossref_primary_10_1016_j_neuroimage_2022_119275
crossref_primary_10_1016_j_neuroimage_2024_120665
crossref_primary_10_1126_sciadv_adn1862
crossref_primary_10_1016_j_intell_2021_101568
crossref_primary_10_1016_j_neuroimage_2022_119279
crossref_primary_10_1038_s41380_023_02195_9
crossref_primary_10_1002_aisy_202300577
crossref_primary_10_1016_j_neuroimage_2021_118648
crossref_primary_10_1016_j_neuroimage_2021_118801
crossref_primary_10_3389_fnins_2020_00881
crossref_primary_10_1016_j_biopsych_2022_09_024
crossref_primary_10_1126_sciadv_abj1812
crossref_primary_10_1016_j_media_2020_101871
crossref_primary_10_1109_TMI_2022_3218720
crossref_primary_10_1017_S0033291720002391
crossref_primary_10_1016_j_media_2023_102913
crossref_primary_10_1038_s41598_022_22313_x
crossref_primary_10_1016_j_geodrs_2021_e00424
crossref_primary_10_1016_j_neuroimage_2023_119986
crossref_primary_10_1002_hbm_26182
crossref_primary_10_1016_j_neuroimage_2021_118849
crossref_primary_10_1038_s41467_020_18037_z
crossref_primary_10_1007_s12021_022_09563_w
crossref_primary_10_1093_cercor_bhad524
crossref_primary_10_1016_j_biopsych_2023_03_025
crossref_primary_10_1162_imag_a_00267
crossref_primary_10_1109_JBHI_2023_3304974
crossref_primary_10_1016_j_biopsych_2019_10_011
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_1088_1741_2552_ac0f4d
crossref_primary_10_1016_j_neuroimage_2024_120762
crossref_primary_10_1016_j_cmpbup_2021_100018
crossref_primary_10_3390_s20216001
crossref_primary_10_1038_s41467_022_29766_8
crossref_primary_10_3390_en16135044
crossref_primary_10_1002_hbm_25883
crossref_primary_10_1016_j_biombioe_2024_107411
crossref_primary_10_1016_j_media_2023_102921
crossref_primary_10_1007_s11682_021_00585_7
crossref_primary_10_1109_TNSRE_2022_3190467
crossref_primary_10_1038_s42003_023_05073_w
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_1073_pnas_2016271118
crossref_primary_10_1016_j_cjche_2022_07_034
crossref_primary_10_1089_brain_2020_0878
crossref_primary_10_1016_j_bpsc_2021_02_001
crossref_primary_10_1016_j_neuroimage_2024_120911
crossref_primary_10_1186_s12880_024_01429_8
Cites_doi 10.1038/nrn2201
10.1016/j.neuroimage.2019.04.016
10.1093/cercor/bhx179
10.1073/pnas.1523888113
10.1016/j.neuroimage.2016.10.001
10.1007/s00429-018-1651-z
10.1016/j.neuroimage.2013.05.081
10.1016/j.neuroimage.2019.04.060
10.1016/j.dcn.2015.01.003
10.1016/j.media.2017.10.002
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2019.06.012
10.1002/mrm.1910340409
10.1016/j.neuroimage.2017.12.052
10.1073/pnas.1403112111
10.1016/j.neuron.2011.09.006
10.1016/j.neuroimage.2013.05.039
10.1109/MSP.2017.2693418
10.1016/j.neuroimage.2019.01.069
10.1016/j.neuroimage.2018.03.065
10.1109/TMI.2003.822821
10.3389/fnins.2014.00229
10.1038/nn.4135
10.1038/nn.4179
10.1089/brain.2016.0435
10.1109/TMI.2016.2538465
10.1007/s11263-015-0816-y
10.1038/nn.3423
10.1093/ije/dym276
10.1038/nn.4478
10.1038/nature18933
10.1023/A:1024068626366
10.1016/j.neuroimage.2013.11.046
10.1007/978-3-540-24775-3_3
10.1371/journal.pcbi.1003915
10.1038/s41467-018-03462-y
10.1016/j.nicl.2016.10.008
10.1371/journal.pmed.1001779
10.1038/nn.4497
10.1038/s41467-018-04920-3
10.1038/nature14539
10.1016/j.neuroimage.2017.07.059
10.1016/j.neuroimage.2018.07.005
10.1016/j.neuroimage.2013.05.033
10.1016/j.media.2016.05.004
10.1037/0033-2909.87.2.245
10.1080/0305215X.2012.687731
10.1093/cercor/bhw253
10.1038/s41467-017-01189-w
10.1038/nn.4125
10.1126/science.1194144
10.1016/S0896-6273(02)00569-X
10.1016/j.neuroimage.2016.11.005
10.1016/j.neuroimage.2017.09.032
10.1016/j.neuroimage.2018.03.007
10.1016/j.neuron.2014.10.015
10.1016/j.neuroimage.2017.07.008
10.1016/j.neuroimage.2014.03.034
10.1016/j.neuroimage.2012.02.018
10.1016/j.neuroimage.2017.06.072
10.1038/mp.2013.78
10.1038/nn.4393
10.1016/j.media.2016.10.004
10.1093/cercor/bhy123
10.1093/cercor/bhu239
10.1038/s41598-018-25089-1
10.1038/s41583-018-0071-7
10.1152/jn.00338.2011
10.1016/j.neuroimage.2013.04.127
10.1017/pen.2018.8
10.1038/sdata.2015.31
10.1016/j.neuroimage.2016.12.061
10.1016/j.neuroimage.2016.09.046
10.1016/j.neuroimage.2017.04.061
10.1038/mp.2017.62
10.1016/j.neubiorev.2017.01.002
10.1073/pnas.0905267106
10.1093/cercor/bhu251
10.1111/j.1541-0420.2007.00799.x
10.1007/BF02295996
10.1016/j.neuroimage.2017.10.034
10.1038/s41467-019-10317-7
10.1016/j.neuroimage.2010.05.067
10.1038/nrn2961
10.1016/j.neuroimage.2017.02.035
10.1016/j.neuroimage.2016.02.079
10.1016/j.neuron.2018.03.044
10.1093/cercor/bhy117
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.neuroimage.2019.116276
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology


MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1095-9572
EndPage 116276
ExternalDocumentID oai_doaj_org_article_9cccf15fbb91438d8f3da5484dcddbb8
PMC6984975
oai_HAL_hal_02314718v1
31610298
10_1016_j_neuroimage_2019_116276
S1053811919308675
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NCRR NIH HHS
  grantid: S10 RR023043
– fundername: NIBIB NIH HHS
  grantid: P41 EB015896
– fundername: NCRR NIH HHS
  grantid: S10 RR019307
– fundername: NCRR NIH HHS
  grantid: S10 RR023401
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
UMC
VOOES
5PM
ID FETCH-LOGICAL-c730t-e086b7dc73e2205774d4dcd27b7e517a29b0e02cec331d5e9929c2f60d15e27c3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:21:23 EDT 2025
Thu Aug 21 14:08:57 EDT 2025
Fri May 09 12:25:05 EDT 2025
Fri Jul 11 11:21:58 EDT 2025
Wed Aug 13 02:20:15 EDT 2025
Thu Apr 03 06:58:21 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Tue Jul 01 03:02:10 EDT 2025
Fri Feb 23 02:49:08 EST 2024
Tue Aug 26 20:02:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Resting-state fMRI
Kernel ridge regression
Fingerprinting
Graph convolutional neural network
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c730t-e086b7dc73e2205774d4dcd27b7e517a29b0e02cec331d5e9929c2f60d15e27c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811919308675
PMID 31610298
PQID 2340229339
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9cccf15fbb91438d8f3da5484dcddbb8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6984975
hal_primary_oai_HAL_hal_02314718v1
proquest_miscellaneous_2305799442
proquest_journals_2340229339
pubmed_primary_31610298
crossref_citationtrail_10_1016_j_neuroimage_2019_116276
crossref_primary_10_1016_j_neuroimage_2019_116276
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_116276
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_116276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Zhang, He, Chen, Luo, Zhou, Wang (bib111) 2018
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib99) 2013; 80
Amico, Goñi (bib2) 2018; 8
Elliott, Peakman (bib32) 2008; 37
Breakspear (bib12) 2017; 20
Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms, Kelly, Laumann, Miller, Moeller, Petersen, Power, Salimi-Khorshidi, Snyder, Vu, Woolrich, Xu, Yacoub, Uǧurbil, Van Essen, Glasser (bib91) 2013; 80
Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (bib41) 2017; 35
Eickhoff, Yeo, Genon (bib31) 2018; 19
Nie, Trullo, Petitjean, Ruan, Shen (bib71) 2017
Calhoun, Miller, Pearlson, Adali (bib17) 2014; 84
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib37) 2013; 80
Reinen, Chén, Hutchison, Yeo, Anderson, Sabuncu, Öngür, Roffman, Smoller, Baker, Holmes (bib84) 2018; 9
Wang, Kong, Kong, Liégeois, Orban, Deco, Van Den Heuvel, Yeo (bib104) 2019; 21
Cole, Ritchie, Bastin, Valdés Hernández, Muñoz Maniega, Royle, Corley, Pattie, Harris, Zhang, Wray, Redmond, Marioni, Starr, Cox, Wardlaw, Sharp, Deary (bib23) 2018; 23
Kashyap, Kong, Bhattacharjee, Li, Zhou, Thomas Yeo (bib46) 2019; 189
Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib27) 2014; 19
Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray, Liu, Matthews, Ong, Pell, Silman, Young, Sprosen, Peakman, Collins (bib97) 2015; 12
Nielsen, Greene, Gratton, Dosenbach, Petersen, Schlaggar (bib72) 2019; 29
Burgess, Kandala, Nolan, Laumann, Power, Adeyemo, Harms, Petersen, Barch (bib15) 2016; 6
Buckner, Krienen, Yeo (bib14) 2013; 16
Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (bib55) 2018; 169
Siegel, Mitra, Laumann, Seitzman, Raichle, Corbetta, Snyder (bib90) 2017; 27
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib40) 2014; 95
Li, Jiang, Zhang, Wang, Wang, Zheng, Menze (bib57) 2018; 183
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib33) 2015; 18
Liégeois, Li, Kong, Orban, Van De Ville, Ge, Sabuncu, Yeo (bib60) 2019; 10
Zhao, Wu, Song, Li, Zhang, Fan (bib113) 2018; 43
Khosla, Jamison, Kuceyeski, Sabuncu (bib51) 2019; 199
Alfaro-Almagro, Jenkinson, Bangerter, Andersson, Griffanti, Douaud, Sotiropoulos, Jbabdi, Hernandez-Fernandez, Vallee, Vidaurre, Webster, McCarthy, Rorden, Daducci, Alexander, Zhang, Dragonu, Matthews, Miller, Smith (bib1) 2018; 166
Greene, Gao, Scheinost, Constable (bib39) 2018; 9
Bouckaert, Frank (bib11) 2004
Kingma, Ba (bib52) 2015
Kebets, Holmes, Orban, Tang, Li, Sun, Kong, Poldrack, Yeo (bib48) 2019
Preti, Bolton, Van De Ville (bib80) 2017; 160
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib100) 2012; 62
Bzdok, Yeo (bib16) 2017; 155
Kipf, Welling (bib53) 2017
Regis, Shoemaker (bib115) 2013; 45
Bahrami, Shi, Rekik, Shen (bib5) 2016
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib86) 2015; 115
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Van Essen (bib6) 2013; 80
Bertolero, Yeo, D’Esposito (bib8) 2017; 8
McNemar (bib65) 1947; 12
Assaf, Jagannathan, Calhoun, Miller, Stevens, Sahl, O’Boyle, Schultz, Pearlson (bib4) 2010; 53
Fox, Raichle (bib35) 2007; 8
Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson, Griffanti, Douaud, Okell, Weale, Dragonu, Garratt, Hudson, Collins, Jenkinson, Matthews, Smith (bib67) 2016; 19
Nguyen, Sun, Alexander, Feng, Thomas Yeo (bib70) 2018
Wachinger, Reuter, Klein (bib103) 2018; 170
Eriksson, Bindel, Shoemaker (bib117) 2019
Murphy (bib68) 2012
Ilievski, Akhtar, Feng, Shoemaker (bib116) 2017; 2017
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (bib109) 2011; 106
Lecun, Bengio, Hinton (bib56) 2015; 521
Dalca, Balakrishnan, Guttag, Sabuncu (bib24) 2018
Weis, Patil, Hoffstaedter, Nostro, Yeo, Eickhoff (bib105) 2019
Kell, Yamins, Shook, Norman-Haignere, McDermott (bib49) 2018; 98
Marinescu, Oxtoby, Young, Bron, Toga, Weiner, Barkhof, Fox, Klein, Alexander (bib64) 2018
Arbabshirani, Plis, Sui, Calhoun (bib3) 2017; 145
Plis, Hjelm, Slakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bib78) 2014; 8
Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (bib47) 2017; 146
Paszke, Chanan, Lin, Gross, Yang, Antiga, Devito (bib76) 2017; 30
Vieira, Pinaya, Mechelli (bib102) 2017; 74
Rahim, Thirion, Bzdok, Buvat, Varoquaux (bib82) 2017; 158
Blumberg, Tanno, Kokkinos, Alexander (bib10) 2018
Steiger (bib95) 1980; 87
Mihalik, Brudfors, Robu, Ferreira, Lin, Rau, Wu, Blumberg, Kanber, Tariq, Garcia, Zor, Nikitichev, Mourao-Miranda, Oxtoby (bib66) 2019
Zhao, Liu, Oler, Meyerand, Kalin, Birn (bib112) 2018; 175
Nadeau, Bengio (bib69) 2003; 52
Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bib28) 2010; 329
Nostro, Müller, Varikuti, Pläschke, Hoffstaedter, Langner, Patil, Eickhoff (bib73) 2018; 223
Zhu, Thung, Adeli, Zhang, Shen (bib114) 2017
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bib45) 2017; 36
Li, Kong, Liégeois, Orban, Tan, Sun, Holmes, Sabuncu, Ge, Yeo (bib59) 2019; 196
Woo, Chang, Lindquist, Wager (bib106) 2017; 20
Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib93) 2015; 18
Eickenberg, Gramfort, Varoquaux, Thirion (bib30) 2017; 152
Li, Satterthwaite, Fan (bib58) 2018
Raz, Svanera, Singer, Gilam, Bleich, Lin, Admon, Gonen, Thaler, Granot, Goebel, Benini, Valente (bib83) 2017; 163
Pinto, Alves, Silva (bib77) 2016; 35
Chollet (bib21) 2015
Defferrard, Bresson, Vandergheynst (bib26) 2016
Varikuti, Genon, Sotiras, Schwender, Hoffstaedter, Patil, Jockwitz, Caspers, Moebus, Amunts, Davatzikos, Eickhoff (bib101) 2018; 173
Dubois, Galdi, Han, Paul, Adolphs (bib29) 2018; 1
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib87) 2014; 90
Shen, Tokoglu, Papademetris, Constable (bib89) 2013; 82
Khaligh-Razavi, Kriegeskorte (bib50) 2014; 10
Kong, Li, Orban, Sabuncu, Liu, Schaefer, Sun, Zuo, Holmes, Eickhoff, Yeo (bib54) 2019; 29
Liu, Lin, Ghosh (bib62) 2007
Holmes, Hollinshead, O’Keefe, Petrov, Fariello, Wald, Fischl, Rosen, Mair, Roffman, Smoller, Buckner (bib43) 2015; 2
Maas, Hannun, Ng (bib63) 2013; vol. 28
Choi, Kwon, Lee, Kim, Paik, Won (bib20) 2016
Bronstein, Bruna, Lecun, Szlam, Vandergheynst (bib13) 2017; 34
Glasser, Coalson, Robinson, Hacker, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Essen (bib36) 2017; 536
Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib85) 2016; 19
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib92) 2009; 106
Deco, Jirsa, McIntosh (bib25) 2011; 12
Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector, Montana (bib22) 2017; 163
He, Kong, Holmes, Sabuncu, Eickhoff, Bzdok, Feng, Yeo (bib42) 2018
Kamnitsas, Bai, Ferrante, McDonagh, Sinclair, Pawlowski, Rajchl, Lee, Kainz, Rueckert, Glocker (bib44) 2017
Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib107) 2014; 111
Sturmfels, Rutherford, Angstadt, Peterson, Sripada, Wiens (bib96) 2018
Parisot, Ktena, Ferrante, Lee, Moreno, Glocker, Rueckert (bib75) 2017
Beckmann, Smith (bib7) 2004; 23
Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (bib79) 2011; 72
Liem, Varoquaux, Kynast, Beyer, Kharabian Masouleh, Huntenburg, Lampe, Rahim, Abraham, Craddock, Riedel-Heller, Luck, Loeffler, Schroeter, Witte, Villringer, Margulies (bib61) 2017; 148
Yoo, Rosenberg, Noble, Scheinost, Constable, Chun (bib110) 2019; 197
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib34) 2002; 33
Parisot, Ira, Ferrante, Lee, Guerrero, Glocker (bib74) 2018
van der Burgh, Schmidt, Westeneng, de Reus, van den Berg, van den Heuvel (bib98) 2017; 13
Chelba, Mikolov, Schuster, Ge, Brants, Koehn, Robinson (bib19) 2014
Pruett, Kandala, Hoertel, Snyder, Elison, Nishino, Feczko, Dosenbach, Nardos, Power, Adeyemo, Botteron, McKinstry, Evans, Hazlett, Dager, Paterson, Schultz, Collins, Fonov, Styner, Gerig, Das, Kostopoulos, Constantino, Estes, Petersen, Schlaggar, Piven (bib81) 2015; 12
Biswal, FZ, VM, JS (bib9) 1995; 34
Yang, Kwitt, Styner, Niethammer (bib108) 2017; 158
Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (bib38) 2016; 26
Chekroud, Ward, Rosenberg, Holmes (bib18) 2016; 113
Schaefer, Kong, Gordon, Laumann, Zuo, Holmes, Eickhoff, Yeo (bib88) 2018
Smyser, Snyder, Shimony, Mitra, Inder, Neil (bib94) 2016; 26
Deco (10.1016/j.neuroimage.2019.116276_bib25) 2011; 12
Burgess (10.1016/j.neuroimage.2019.116276_bib15) 2016; 6
Wachinger (10.1016/j.neuroimage.2019.116276_bib103) 2018; 170
Bouckaert (10.1016/j.neuroimage.2019.116276_bib11) 2004
Marinescu (10.1016/j.neuroimage.2019.116276_bib64) 2018
Raz (10.1016/j.neuroimage.2019.116276_bib83) 2017; 163
Zhao (10.1016/j.neuroimage.2019.116276_bib113) 2018; 43
Choi (10.1016/j.neuroimage.2019.116276_bib20) 2016
Calhoun (10.1016/j.neuroimage.2019.116276_bib17) 2014; 84
Van Essen (10.1016/j.neuroimage.2019.116276_bib100) 2012; 62
Bertolero (10.1016/j.neuroimage.2019.116276_bib8) 2017; 8
Murphy (10.1016/j.neuroimage.2019.116276_bib68) 2012
Liégeois (10.1016/j.neuroimage.2019.116276_bib60) 2019; 10
Van Essen (10.1016/j.neuroimage.2019.116276_bib99) 2013; 80
Breakspear (10.1016/j.neuroimage.2019.116276_bib12) 2017; 20
Pinto (10.1016/j.neuroimage.2019.116276_bib77) 2016; 35
Steiger (10.1016/j.neuroimage.2019.116276_bib95) 1980; 87
Biswal (10.1016/j.neuroimage.2019.116276_bib9) 1995; 34
Smith (10.1016/j.neuroimage.2019.116276_bib92) 2009; 106
Chekroud (10.1016/j.neuroimage.2019.116276_bib18) 2016; 113
Dalca (10.1016/j.neuroimage.2019.116276_bib24) 2018
Woo (10.1016/j.neuroimage.2019.116276_bib106) 2017; 20
Chollet (10.1016/j.neuroimage.2019.116276_bib21)
Li (10.1016/j.neuroimage.2019.116276_bib57) 2018; 183
Zhang (10.1016/j.neuroimage.2019.116276_bib111)
Khaligh-Razavi (10.1016/j.neuroimage.2019.116276_bib50) 2014; 10
Griffanti (10.1016/j.neuroimage.2019.116276_bib40) 2014; 95
McNemar (10.1016/j.neuroimage.2019.116276_bib65) 1947; 12
Smith (10.1016/j.neuroimage.2019.116276_bib93) 2015; 18
Plis (10.1016/j.neuroimage.2019.116276_bib78) 2014; 8
Eickenberg (10.1016/j.neuroimage.2019.116276_bib30) 2017; 152
van der Burgh (10.1016/j.neuroimage.2019.116276_bib98) 2017; 13
Cole (10.1016/j.neuroimage.2019.116276_bib22) 2017; 163
Greene (10.1016/j.neuroimage.2019.116276_bib39) 2018; 9
Kamnitsas (10.1016/j.neuroimage.2019.116276_bib45) 2017; 36
Yang (10.1016/j.neuroimage.2019.116276_bib108) 2017; 158
Di Martino (10.1016/j.neuroimage.2019.116276_bib27) 2014; 19
Power (10.1016/j.neuroimage.2019.116276_bib79) 2011; 72
He (10.1016/j.neuroimage.2019.116276_bib42) 2018
Zhu (10.1016/j.neuroimage.2019.116276_bib114) 2017
Kashyap (10.1016/j.neuroimage.2019.116276_bib46) 2019; 189
Nadeau (10.1016/j.neuroimage.2019.116276_bib69) 2003; 52
Liem (10.1016/j.neuroimage.2019.116276_bib61) 2017; 148
Bahrami (10.1016/j.neuroimage.2019.116276_bib5) 2016
Pruett (10.1016/j.neuroimage.2019.116276_bib81) 2015; 12
Glasser (10.1016/j.neuroimage.2019.116276_bib37) 2013; 80
Parisot (10.1016/j.neuroimage.2019.116276_bib75) 2017
Bronstein (10.1016/j.neuroimage.2019.116276_bib13) 2017; 34
Alfaro-Almagro (10.1016/j.neuroimage.2019.116276_bib1) 2018; 166
Yeo (10.1016/j.neuroimage.2019.116276_bib109) 2011; 106
Kipf (10.1016/j.neuroimage.2019.116276_bib53) 2017
Fischl (10.1016/j.neuroimage.2019.116276_bib34) 2002; 33
Ilievski (10.1016/j.neuroimage.2019.116276_bib116) 2017; 2017
Assaf (10.1016/j.neuroimage.2019.116276_bib4) 2010; 53
Eickhoff (10.1016/j.neuroimage.2019.116276_bib31) 2018; 19
Lecun (10.1016/j.neuroimage.2019.116276_bib56) 2015; 521
Havaei (10.1016/j.neuroimage.2019.116276_bib41) 2017; 35
Khosla (10.1016/j.neuroimage.2019.116276_bib51) 2019; 199
Wang (10.1016/j.neuroimage.2019.116276_bib104) 2019; 21
Weis (10.1016/j.neuroimage.2019.116276_bib105) 2019
Maas (10.1016/j.neuroimage.2019.116276_bib63) 2013; vol. 28
Eriksson (10.1016/j.neuroimage.2019.116276_bib117)
Varikuti (10.1016/j.neuroimage.2019.116276_bib101) 2018; 173
Siegel (10.1016/j.neuroimage.2019.116276_bib90) 2017; 27
Kingma (10.1016/j.neuroimage.2019.116276_bib52) 2015
Li (10.1016/j.neuroimage.2019.116276_bib59) 2019; 196
Nielsen (10.1016/j.neuroimage.2019.116276_bib72) 2019; 29
Regis (10.1016/j.neuroimage.2019.116276_bib115) 2013; 45
Bzdok (10.1016/j.neuroimage.2019.116276_bib16) 2017; 155
Holmes (10.1016/j.neuroimage.2019.116276_bib43) 2015; 2
Zhao (10.1016/j.neuroimage.2019.116276_bib112) 2018; 175
Finn (10.1016/j.neuroimage.2019.116276_bib33) 2015; 18
Reinen (10.1016/j.neuroimage.2019.116276_bib84) 2018; 9
Nguyen (10.1016/j.neuroimage.2019.116276_bib70) 2018
Dubois (10.1016/j.neuroimage.2019.116276_bib29) 2018; 1
Sturmfels (10.1016/j.neuroimage.2019.116276_bib96) 2018
Schaefer (10.1016/j.neuroimage.2019.116276_bib88) 2018
Chelba (10.1016/j.neuroimage.2019.116276_bib19) 2014
Kamnitsas (10.1016/j.neuroimage.2019.116276_bib44) 2017
Cole (10.1016/j.neuroimage.2019.116276_bib23) 2018; 23
Dosenbach (10.1016/j.neuroimage.2019.116276_bib28) 2010; 329
Sudlow (10.1016/j.neuroimage.2019.116276_bib97) 2015; 12
Smith (10.1016/j.neuroimage.2019.116276_bib91) 2013; 80
Kell (10.1016/j.neuroimage.2019.116276_bib49) 2018; 98
Kebets (10.1016/j.neuroimage.2019.116276_bib48) 2019
Rahim (10.1016/j.neuroimage.2019.116276_bib82) 2017; 158
Russakovsky (10.1016/j.neuroimage.2019.116276_bib86) 2015; 115
Rosenberg (10.1016/j.neuroimage.2019.116276_bib85) 2016; 19
Miller (10.1016/j.neuroimage.2019.116276_bib67) 2016; 19
Defferrard (10.1016/j.neuroimage.2019.116276_bib26) 2016
Parisot (10.1016/j.neuroimage.2019.116276_bib74) 2018
Barch (10.1016/j.neuroimage.2019.116276_bib6) 2013; 80
Yoo (10.1016/j.neuroimage.2019.116276_bib110) 2019; 197
Fox (10.1016/j.neuroimage.2019.116276_bib35) 2007; 8
Glasser (10.1016/j.neuroimage.2019.116276_bib36) 2017; 536
Gordon (10.1016/j.neuroimage.2019.116276_bib38) 2016; 26
Shen (10.1016/j.neuroimage.2019.116276_bib89) 2013; 82
Liu (10.1016/j.neuroimage.2019.116276_bib62) 2007
Paszke (10.1016/j.neuroimage.2019.116276_bib76) 2017; 30
Buckner (10.1016/j.neuroimage.2019.116276_bib14) 2013; 16
Li (10.1016/j.neuroimage.2019.116276_bib58) 2018
Beckmann (10.1016/j.neuroimage.2019.116276_bib7) 2004; 23
Vieira (10.1016/j.neuroimage.2019.116276_bib102) 2017; 74
Elliott (10.1016/j.neuroimage.2019.116276_bib32) 2008; 37
Kawahara (10.1016/j.neuroimage.2019.116276_bib47) 2017; 146
Kong (10.1016/j.neuroimage.2019.116276_bib54) 2019; 29
Yamins (10.1016/j.neuroimage.2019.116276_bib107) 2014; 111
Amico (10.1016/j.neuroimage.2019.116276_bib2) 2018; 8
Nie (10.1016/j.neuroimage.2019.116276_bib71) 2017
Ktena (10.1016/j.neuroimage.2019.116276_bib55) 2018; 169
Preti (10.1016/j.neuroimage.2019.116276_bib80) 2017; 160
Blumberg (10.1016/j.neuroimage.2019.116276_bib10) 2018
Salimi-Khorshidi (10.1016/j.neuroimage.2019.116276_bib87) 2014; 90
Arbabshirani (10.1016/j.neuroimage.2019.116276_bib3) 2017; 145
Mihalik (10.1016/j.neuroimage.2019.116276_bib66)
Smyser (10.1016/j.neuroimage.2019.116276_bib94) 2016; 26
Nostro (10.1016/j.neuroimage.2019.116276_bib73) 2018; 223
References_xml – volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: bib6
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
– volume: 148
  start-page: 179
  year: 2017
  end-page: 188
  ident: bib61
  article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment
  publication-title: Neuroimage
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib56
  article-title: Deep learning
  publication-title: Nature
– start-page: 1
  year: 2018
  end-page: 26
  ident: bib74
  article-title: Disease prediction using graph convolutional Networks : application to autism spectrum disorder and alzheimer ’ s disease
  publication-title: Med. Image Anal.
– volume: 37
  start-page: 234
  year: 2008
  end-page: 244
  ident: bib32
  article-title: The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine
  publication-title: Int. J. Epidemiol.
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: bib41
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med. Image Anal.
– volume: 158
  start-page: 145
  year: 2017
  end-page: 154
  ident: bib82
  article-title: Joint prediction of multiple scores captures better individual traits from brain images
  publication-title: Neuroimage
– volume: 27
  start-page: 4492
  year: 2017
  end-page: 4502
  ident: bib90
  article-title: Data quality influences observed links between functional connectivity and behavior
  publication-title: Cerebr. Cortex
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib70
  article-title: Modeling Alzheimer’s disease progression using deep recurrent neural networks
  publication-title: 2018 Int. Work. Pattern Recognit. Neuroimaging, PRNI 2018
– year: 2019
  ident: bib48
  article-title: Somatosensory-Motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology
  publication-title: Biol. Psychiatry
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  ident: bib35
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
– volume: 196
  start-page: 126
  year: 2019
  end-page: 141
  ident: bib59
  article-title: Global signal regression strengthens association between resting-state functional connectivity and behavior
  publication-title: Neuroimage
– volume: 13
  start-page: 361
  year: 2017
  end-page: 369
  ident: bib98
  article-title: Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis
  publication-title: NeuroImage Clin
– start-page: 1
  year: 2017
  end-page: 14
  ident: bib53
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Int. Conf. Learn. Represent
– volume: 12
  start-page: 123
  year: 2015
  end-page: 133
  ident: bib81
  article-title: Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data
  publication-title: Dev. Cogn. Neurosci.
– volume: vol. 28
  start-page: 6
  year: 2013
  ident: bib63
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc. 30 Th Int. Conf. Mach. Learn.
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib87
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– year: 2018
  ident: bib111
  article-title: Multi-view graph convolutional network and its applications on neuroimage analysis for Parkinson’s disease
– volume: 146
  start-page: 1038
  year: 2017
  end-page: 1049
  ident: bib47
  article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: Neuroimage
– volume: 160
  start-page: 41
  year: 2017
  end-page: 54
  ident: bib80
  article-title: The dynamic functional connectome: state-of-the-art and perspectives
  publication-title: Neuroimage
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib100
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
– start-page: 3
  year: 2004
  end-page: 12
  ident: bib11
  article-title: Evaluating the replicability of significance tests for comparing learning algorithms
  publication-title: Adv. Knowl. Discov. data Min.
– start-page: 3095
  year: 2018
  end-page: 3114
  ident: bib88
  article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cerebr. Cortex
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib40
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
– volume: 20
  start-page: 365
  year: 2017
  end-page: 377
  ident: bib106
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
– start-page: 3844
  year: 2016
  end-page: 3852
  ident: bib26
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in Neural Information Processing Systems
– volume: 19
  start-page: 672
  year: 2018
  end-page: 686
  ident: bib31
  article-title: Imaging-based parcellations of the human brain
  publication-title: Nat. Rev. Neurosci.
– volume: 30
  start-page: 1
  year: 2017
  end-page: 4
  ident: bib76
  article-title: Automatic differentiation in PyTorch
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: e6
  year: 2018
  ident: bib29
  article-title: Resting-state functional brain connectivity best predicts the personality dimension of openness to experience
  publication-title: Personal. Neurosci.
– volume: 152
  start-page: 184
  year: 2017
  end-page: 194
  ident: bib30
  article-title: Seeing it all: convolutional network layers map the function of the human visual system
  publication-title: Neuroimage
– volume: 20
  start-page: 340
  year: 2017
  end-page: 352
  ident: bib12
  article-title: Dynamic models of large-scale brain activity
  publication-title: Nat. Neurosci.
– volume: 19
  start-page: 165
  year: 2016
  end-page: 171
  ident: bib85
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
– year: 2012
  ident: bib68
  article-title: Machine Learning: A Probabilistic Perspective
– start-page: 39
  year: 2016
  end-page: 47
  ident: bib5
  article-title: Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features
  publication-title: MICCAI 2016 DL Workshop
– volume: 87
  start-page: 245
  year: 1980
  ident: bib95
  article-title: Tests for comparing elements of a correlation matrix
  publication-title: Psychol. Bull.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib99
  article-title: The Wu-minn human connectome Project: an overview
  publication-title: Neuroimage
– start-page: 1
  year: 2015
  end-page: 15
  ident: bib52
  article-title: Adam: a method for stochastic optimization
  publication-title: Int. Conf. Learn. Represent. 2015
– volume: 29
  start-page: 2455
  year: 2019
  end-page: 2469
  ident: bib72
  article-title: Evaluating the prediction of brain maturity from functional connectivity after motion artifact denoising
  publication-title: Cerebr. Cortex
– volume: 45
  start-page: 529
  year: 2013
  end-page: 555
  ident: bib115
  article-title: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization
  publication-title: Eng. Optim.
– start-page: 118
  year: 2018
  end-page: 125
  ident: bib10
  article-title: Deeper image quality transfer: training low-memory neural networks for 3D images
  publication-title: Int. Conf. Med. Image Comput. Comput. Interv.
– volume: 26
  start-page: 288
  year: 2016
  end-page: 303
  ident: bib38
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cerebr. Cortex
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: bib33
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  ident: bib7
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib42
  article-title: Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence? 2018 Int. Work. Pattern Recognit
  publication-title: Neuroimaging
– volume: 199
  start-page: 651
  year: 2019
  end-page: 662
  ident: bib51
  article-title: Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction
  publication-title: Neuroimage
– volume: 12
  start-page: 153
  year: 1947
  end-page: 157
  ident: bib65
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib92
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
– volume: 52
  start-page: 239
  year: 2003
  end-page: 281
  ident: bib69
  article-title: Inference for the generalization error
  publication-title: Mach. Learn.
– start-page: 1079
  year: 2007
  end-page: 1088
  ident: bib62
  article-title: Semiparametric regression of multidimensional genetic pathway Data : least-squares kernel machines and linear mixed models
  publication-title: Biometrics
– year: 2018
  ident: bib64
  article-title: TADPOLE Challenge: Prediction of Longitudinal Evolution in Alzheimer’s Disease
– volume: 2
  start-page: 1
  year: 2015
  end-page: 16
  ident: bib43
  article-title: Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures
  publication-title: Sci. Data
– start-page: 450
  year: 2017
  end-page: 462
  ident: bib44
  article-title: Ensembles of multiple models and architectures for robust brain tumour segmentation
  publication-title: International MICCAI Brainlesion Workshop BrainLes 2017: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
– volume: 16
  start-page: 832
  year: 2013
  end-page: 837
  ident: bib14
  article-title: Opportunities and limitations of intrinsic functional connectivity MRI
  publication-title: Nat. Neurosci.
– start-page: 2635
  year: 2014
  end-page: 2639
  ident: bib19
  article-title: One billion word benchmark for measuring progress in statistical language modeling
  publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib37
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– volume: 175
  start-page: 32
  year: 2018
  end-page: 44
  ident: bib112
  article-title: Bayesian convolutional neural network based MRI brain extraction on nonhuman primates
  publication-title: Neuroimage
– volume: 6
  start-page: 669
  year: 2016
  end-page: 680
  ident: bib15
  article-title: Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome Project
  publication-title: Brain Connect.
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: bib79
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bib27
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
– volume: 9
  year: 2018
  ident: bib39
  article-title: Task-induced brain state manipulation improves prediction of individual traits
  publication-title: Nat. Commun.
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: bib107
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci.
– volume: 74
  start-page: 58
  year: 2017
  end-page: 75
  ident: bib102
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications
  publication-title: Neurosci. Biobehav. Rev.
– volume: 197
  start-page: 212
  year: 2019
  end-page: 223
  ident: bib110
  article-title: Multivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors
  publication-title: Neuroimage
– year: 2019
  ident: bib66
  article-title: ABCD Neurocognitive Prediction Challenge 2019: predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression
– volume: 155
  start-page: 549
  year: 2017
  end-page: 564
  ident: bib16
  article-title: Inference in the age of big data: future perspectives on neuroscience
  publication-title: Neuroimage
– start-page: 295
  year: 2018
  end-page: 311
  ident: bib96
  article-title: A domain guided CNN architecture for predicting age from structural brain images
  publication-title: Proceedings of the 3rd Machine Learning for Healthcare Conference, Proceedings of Machine Learning Research
– volume: 8
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib2
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci. Rep.
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib9
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: bib109
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
– start-page: 729
  year: 2018
  end-page: 738
  ident: bib24
  article-title: Unsupervised learning for fast probabilistic diffeomorphic registration
  publication-title: Int. Conf. Med. Image Comput. Comput. Interv.
– volume: 23
  start-page: 1385
  year: 2018
  end-page: 1392
  ident: bib23
  article-title: Brain age predicts mortality
  publication-title: Mol. Psychiatry
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  ident: bib22
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: Neuroimage
– volume: 223
  start-page: 2699
  year: 2018
  end-page: 2719
  ident: bib73
  article-title: Predicting personality from network-based resting-state functional connectivity
  publication-title: Brain Struct. Funct.
– volume: 8
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib78
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
– volume: 169
  start-page: 431
  year: 2018
  end-page: 442
  ident: bib55
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: Neuroimage
– volume: 98
  start-page: 630
  year: 2018
  end-page: 644
  ident: bib49
  article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy
  publication-title: Neuron
– volume: 173
  start-page: 394
  year: 2018
  end-page: 410
  ident: bib101
  article-title: Evaluation of non-negative matrix factorization of grey matter in age prediction
  publication-title: Neuroimage
– volume: 113
  start-page: E1968
  year: 2016
  ident: bib18
  article-title: Patterns in the human brain mosaic discriminate males from females
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib84
  article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis
  publication-title: Nat. Commun.
– volume: 166
  start-page: 400
  year: 2018
  end-page: 424
  ident: bib1
  article-title: Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank
  publication-title: Neuroimage
– volume: 170
  start-page: 434
  year: 2018
  end-page: 445
  ident: bib103
  article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy
  publication-title: Neuroimage
– year: 2015
  ident: bib21
  article-title: Keras [WWW document]. GitHub
– volume: 84
  start-page: 262
  year: 2014
  end-page: 274
  ident: bib17
  article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
– volume: 189
  start-page: 804
  year: 2019
  end-page: 812
  ident: bib46
  article-title: Individual-specific fMRI-Subspaces improve functional connectivity prediction of behavior
  publication-title: Neuroimage
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: bib13
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: bib91
  article-title: Resting-state fMRI in the human connectome Project
  publication-title: Neuroimage
– volume: 21
  year: 2019
  ident: bib104
  article-title: Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain
  publication-title: Sci. Adv.
– volume: 2017
  start-page: 822
  year: 2017
  end-page: 829
  ident: bib116
  article-title: Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates
  publication-title: 31st AAAI Conference on Artificial Intelligence
– volume: 145
  start-page: 137
  year: 2017
  end-page: 165
  ident: bib3
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– volume: 19
  start-page: 1523
  year: 2016
  end-page: 1536
  ident: bib67
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
– volume: 12
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib97
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
– volume: 183
  start-page: 650
  year: 2018
  end-page: 665
  ident: bib57
  article-title: Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images
  publication-title: Neuroimage
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bib34
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 26
  start-page: 322
  year: 2016
  end-page: 333
  ident: bib94
  article-title: Resting-state network complexity and magnitude are reduced in prematurely born infants
  publication-title: Cerebr. Cortex
– start-page: 231
  year: 2016
  end-page: 243
  ident: bib20
  article-title: Ensemble of deep convolutional neural networks for prognosis of ischemic stroke
  publication-title: International MICCAI Brainlesion Workshop BrainLes 2016: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
– volume: 35
  start-page: 1240
  year: 2016
  end-page: 1251
  ident: bib77
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
– volume: 10
  year: 2014
  ident: bib50
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
– year: 2019
  ident: bib117
  article-title: pysot: Surrogate Optimization Toolbox. [online] GitHub
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: bib45
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– volume: 29
  start-page: 2533
  year: 2019
  end-page: 2551
  ident: bib54
  article-title: Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion
  publication-title: Cerebr. Cortex
– volume: 43
  start-page: 98
  year: 2018
  end-page: 111
  ident: bib113
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med. Image Anal.
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: bib28
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science 84
– volume: 53
  start-page: 247
  year: 2010
  end-page: 256
  ident: bib4
  article-title: Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients
  publication-title: Neuroimage
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  ident: bib89
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
– start-page: 101
  year: 2018
  end-page: 104
  ident: bib58
  article-title: Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks
  publication-title: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– volume: 10
  year: 2019
  ident: bib60
  article-title: Resting brain dynamics at different timescales capture distinct aspects of human behavior
  publication-title: Nat. Commun.
– volume: 536
  start-page: 171
  year: 2017
  end-page: 178
  ident: bib36
  article-title: A multi-modal oarcellation of human cerebral cortex
  publication-title: Nature
– start-page: 417
  year: 2017
  end-page: 425
  ident: bib71
  article-title: Medical image synthesis with context-aware generative adversarial networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 8
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib8
  article-title: The diverse club
  publication-title: Nat. Commun.
– start-page: 177
  year: 2017
  end-page: 185
  ident: bib75
  article-title: Spectral graph convolutions for population-based disease prediction
  publication-title: Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017
– volume: 163
  start-page: 244
  year: 2017
  end-page: 263
  ident: bib83
  article-title: Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression
  publication-title: Neuroimage
– start-page: 1
  year: 2019
  end-page: 12
  ident: bib105
  article-title: Sex classification by resting state brain connectivity
  publication-title: Cerebr. Cortex
– volume: 158
  start-page: 378
  year: 2017
  end-page: 396
  ident: bib108
  article-title: Quicksilver: fast predictive image registration – a deep learning approach
  publication-title: Neuroimage
– volume: 12
  start-page: 43
  year: 2011
  end-page: 56
  ident: bib25
  article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain
  publication-title: Nat. Rev. Neurosci.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib86
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 18
  start-page: 1565
  year: 2015
  end-page: 1567
  ident: bib93
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
– start-page: 72
  year: 2017
  end-page: 80
  ident: bib114
  article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data
  publication-title: Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017
– volume: 8
  start-page: 700
  year: 2007
  ident: 10.1016/j.neuroimage.2019.116276_bib35
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2201
– volume: 196
  start-page: 126
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib59
  article-title: Global signal regression strengthens association between resting-state functional connectivity and behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.04.016
– start-page: 3095
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib88
  article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhx179
– volume: 113
  start-page: E1968
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib18
  article-title: Patterns in the human brain mosaic discriminate males from females
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1523888113
– volume: 152
  start-page: 184
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib30
  article-title: Seeing it all: convolutional network layers map the function of the human visual system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.001
– volume: 223
  start-page: 2699
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib73
  article-title: Predicting personality from network-based resting-state functional connectivity
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-018-1651-z
– start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib53
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 82
  start-page: 403
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116276_bib89
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.081
– volume: 197
  start-page: 212
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib110
  article-title: Multivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.04.060
– start-page: 2635
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116276_bib19
  article-title: One billion word benchmark for measuring progress in statistical language modeling
  publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH
– volume: 12
  start-page: 123
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116276_bib81
  article-title: Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2015.01.003
– volume: 43
  start-page: 98
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib113
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.002
– volume: 2017
  start-page: 822
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib116
  article-title: Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116276_bib99
  article-title: The Wu-minn human connectome Project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 199
  start-page: 651
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib51
  article-title: Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.012
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2019.116276_bib9
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– start-page: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib105
  article-title: Sex classification by resting state brain connectivity
  publication-title: Cerebr. Cortex
– volume: 169
  start-page: 431
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib55
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.052
– start-page: 118
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib10
  article-title: Deeper image quality transfer: training low-memory neural networks for 3D images
  publication-title: Int. Conf. Med. Image Comput. Comput. Interv.
– volume: 111
  start-page: 8619
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116276_bib107
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1403112111
– volume: 72
  start-page: 665
  year: 2011
  ident: 10.1016/j.neuroimage.2019.116276_bib79
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 80
  start-page: 144
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116276_bib91
  article-title: Resting-state fMRI in the human connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 34
  start-page: 18
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib13
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– volume: 189
  start-page: 804
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib46
  article-title: Individual-specific fMRI-Subspaces improve functional connectivity prediction of behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.069
– volume: 30
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib76
  article-title: Automatic differentiation in PyTorch
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 175
  start-page: 32
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib112
  article-title: Bayesian convolutional neural network based MRI brain extraction on nonhuman primates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.065
– ident: 10.1016/j.neuroimage.2019.116276_bib66
– start-page: 295
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib96
  article-title: A domain guided CNN architecture for predicting age from structural brain images
– volume: 23
  start-page: 137
  year: 2004
  ident: 10.1016/j.neuroimage.2019.116276_bib7
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 8
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116276_bib78
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00229
– volume: 18
  start-page: 1664
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116276_bib33
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 19
  start-page: 165
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib85
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4179
– volume: 6
  start-page: 669
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib15
  article-title: Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome Project
  publication-title: Brain Connect.
  doi: 10.1089/brain.2016.0435
– volume: 21
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib104
  article-title: Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain
  publication-title: Sci. Adv.
– start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib42
  article-title: Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence? 2018 Int. Work. Pattern Recognit
  publication-title: Neuroimaging
– volume: 35
  start-page: 1240
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib77
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116276_bib86
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 16
  start-page: 832
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116276_bib14
  article-title: Opportunities and limitations of intrinsic functional connectivity MRI
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3423
– volume: 37
  start-page: 234
  year: 2008
  ident: 10.1016/j.neuroimage.2019.116276_bib32
  article-title: The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dym276
– start-page: 729
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib24
  article-title: Unsupervised learning for fast probabilistic diffeomorphic registration
  publication-title: Int. Conf. Med. Image Comput. Comput. Interv.
– volume: 20
  start-page: 365
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib106
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4478
– volume: 536
  start-page: 171
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib36
  article-title: A multi-modal oarcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 52
  start-page: 239
  year: 2003
  ident: 10.1016/j.neuroimage.2019.116276_bib69
  article-title: Inference for the generalization error
  publication-title: Mach. Learn.
  doi: 10.1023/A:1024068626366
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116276_bib87
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– start-page: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2019.116276_bib11
  article-title: Evaluating the replicability of significance tests for comparing learning algorithms
  publication-title: Adv. Knowl. Discov. data Min.
  doi: 10.1007/978-3-540-24775-3_3
– volume: 10
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116276_bib50
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003915
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib84
  article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03462-y
– volume: 13
  start-page: 361
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib98
  article-title: Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2016.10.008
– volume: 12
  start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116276_bib97
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001779
– volume: 20
  start-page: 340
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib12
  article-title: Dynamic models of large-scale brain activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4497
– start-page: 39
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib5
  article-title: Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features
– volume: 9
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib39
  article-title: Task-induced brain state manipulation improves prediction of individual traits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04920-3
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116276_bib56
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 163
  start-page: 115
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib22
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.059
– year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib64
– volume: 183
  start-page: 650
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib57
  article-title: Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.005
– volume: 80
  start-page: 169
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116276_bib6
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: 10.1016/j.neuroimage.2019.116276_bib21
– volume: 35
  start-page: 18
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib41
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
– volume: 87
  start-page: 245
  issue: 2
  year: 1980
  ident: 10.1016/j.neuroimage.2019.116276_bib95
  article-title: Tests for comparing elements of a correlation matrix
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.87.2.245
– volume: 45
  start-page: 529
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116276_bib115
  article-title: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2012.687731
– volume: 27
  start-page: 4492
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib90
  article-title: Data quality influences observed links between functional connectivity and behavior
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhw253
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib8
  article-title: The diverse club
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01189-w
– volume: 18
  start-page: 1565
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116276_bib93
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4125
– start-page: 231
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib20
  article-title: Ensemble of deep convolutional neural networks for prognosis of ischemic stroke
– volume: 329
  start-page: 1358
  year: 2010
  ident: 10.1016/j.neuroimage.2019.116276_bib28
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science 84
  doi: 10.1126/science.1194144
– volume: 33
  start-page: 341
  year: 2002
  ident: 10.1016/j.neuroimage.2019.116276_bib34
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 148
  start-page: 179
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib61
  article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.005
– volume: 163
  start-page: 244
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib83
  article-title: Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.09.032
– volume: 173
  start-page: 394
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib101
  article-title: Evaluation of non-negative matrix factorization of grey matter in age prediction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.007
– volume: 84
  start-page: 262
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116276_bib17
  article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.015
– ident: 10.1016/j.neuroimage.2019.116276_bib117
– volume: 158
  start-page: 378
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib108
  article-title: Quicksilver: fast predictive image registration – a deep learning approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.008
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116276_bib40
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 62
  start-page: 2222
  year: 2012
  ident: 10.1016/j.neuroimage.2019.116276_bib100
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 158
  start-page: 145
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib82
  article-title: Joint prediction of multiple scores captures better individual traits from brain images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.072
– volume: 19
  start-page: 659
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116276_bib27
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 19
  start-page: 1523
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib67
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
– issue: 0006–3223
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib48
  article-title: Somatosensory-Motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology
  publication-title: Biol. Psychiatry
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib45
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 29
  start-page: 2533
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib54
  article-title: Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhy123
– volume: 26
  start-page: 288
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib38
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhu239
– start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib70
  article-title: Modeling Alzheimer’s disease progression using deep recurrent neural networks
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib2
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25089-1
– volume: 19
  start-page: 672
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib31
  article-title: Imaging-based parcellations of the human brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-018-0071-7
– volume: 106
  start-page: 1125
  year: 2011
  ident: 10.1016/j.neuroimage.2019.116276_bib109
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116276_bib37
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 1
  start-page: e6
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib29
  article-title: Resting-state functional brain connectivity best predicts the personality dimension of openness to experience
  publication-title: Personal. Neurosci.
  doi: 10.1017/pen.2018.8
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116276_bib43
  article-title: Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.31
– volume: 160
  start-page: 41
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib80
  article-title: The dynamic functional connectome: state-of-the-art and perspectives
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.061
– volume: 146
  start-page: 1038
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib47
  article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.046
– volume: 155
  start-page: 549
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib16
  article-title: Inference in the age of big data: future perspectives on neuroscience
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.061
– year: 2012
  ident: 10.1016/j.neuroimage.2019.116276_bib68
– start-page: 417
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib71
  article-title: Medical image synthesis with context-aware generative adversarial networks
– start-page: 3844
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib26
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib74
  article-title: Disease prediction using graph convolutional Networks : application to autism spectrum disorder and alzheimer ’ s disease
  publication-title: Med. Image Anal.
– volume: 23
  start-page: 1385
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib23
  article-title: Brain age predicts mortality
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2017.62
– volume: 74
  start-page: 58
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib102
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.01.002
– start-page: 72
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib114
  article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.neuroimage.2019.116276_bib92
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 26
  start-page: 322
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116276_bib94
  article-title: Resting-state network complexity and magnitude are reduced in prematurely born infants
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhu251
– start-page: 1079
  year: 2007
  ident: 10.1016/j.neuroimage.2019.116276_bib62
  article-title: Semiparametric regression of multidimensional genetic pathway Data : least-squares kernel machines and linear mixed models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00799.x
– volume: 12
  start-page: 153
  year: 1947
  ident: 10.1016/j.neuroimage.2019.116276_bib65
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 166
  start-page: 400
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib1
  article-title: Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.034
– volume: vol. 28
  start-page: 6
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116276_bib63
  article-title: Rectifier nonlinearities improve neural network acoustic models
– volume: 10
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib60
  article-title: Resting brain dynamics at different timescales capture distinct aspects of human behavior
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10317-7
– volume: 53
  start-page: 247
  year: 2010
  ident: 10.1016/j.neuroimage.2019.116276_bib4
  article-title: Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.067
– volume: 12
  start-page: 43
  year: 2011
  ident: 10.1016/j.neuroimage.2019.116276_bib25
  article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2961
– start-page: 177
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib75
  article-title: Spectral graph convolutions for population-based disease prediction
– volume: 170
  start-page: 434
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib103
  article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.035
– volume: 145
  start-page: 137
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib3
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 98
  start-page: 630
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib49
  article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.03.044
– volume: 29
  start-page: 2455
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116276_bib72
  article-title: Evaluating the prediction of brain maturity from functional connectivity after motion artifact denoising
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhy117
– start-page: 101
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116276_bib58
  article-title: Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks
– start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116276_bib52
  article-title: Adam: a method for stochastic optimization
– start-page: 450
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116276_bib44
  article-title: Ensembles of multiple models and architectures for robust brain tumour segmentation
– ident: 10.1016/j.neuroimage.2019.116276_bib111
SSID ssj0009148
Score 2.6500435
Snippet There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging data. A growing literature suggests that DNNs...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116276
SubjectTerms Adult
Age
Age Factors
Aged
Algorithms
Artificial Intelligence
Biobanks
Biological Specimen Banks
Brain
Brain - diagnostic imaging
Brain - physiology
Computational neuroscience
Computer Science
Connectome - methods
Datasets
Datasets as Topic
Deep Learning
Demography
Female
Fingerprinting
Graph convolutional neural network
Humans
Image Interpretation, Computer-Assisted - methods
Intelligence
Intelligence - physiology
Kernel ridge regression
Learning algorithms
Machine Learning
Magnetic Resonance Imaging - methods
Male
Medical imaging
Middle Aged
Neural networks
Neural Networks, Computer
Neuroimaging
Neurosciences
Phenotypes
Psychomotor Performance - physiology
Resting-state fMRI
Sex Factors
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgD4gL4k1gQQZxjagdp47FaXmsKsRyYqW9WbFnwhZ206rt7q_gRzMTJ6GFAz1wrB-N4xmPPzsz3wjxOoAuDOltDhVUuQGkNUdqktuq0W7SFFHXfDVw8mU6OzWfzsqzrVRf7BOW6IHTxL1xMcZGlU0IjjN1Q9UUUBPMNhABQujCfGnPGw5TA92uMikIjjMRlnbw4UmeXR1T5PyS1iu7djmyGlPNnCNbG1PH37-zP908Z0fJv1Hon86UW7vT8V1xp4eV8ii9zj1xA9v74tZJ_-H8gfj5AXEpeUjUqk2u32tZtyB_4KrFC7nCb8kjtpXsXonXKJN7OodWUVGknmQG1pJAruTNMN0hUiMy1DGloJDLFT-Qa-SikQMDQPcYwMtEjj2P64fi9Pjj1_ezvE_EkEcyAJsc6dwTLNAP5LhcQozA069tsFgqW2sXJjjREWNRKCjREeaKuplOQJWobSweiYN20eITIY2yNjgHjSMkFrWqwSpVl2BNKEMIkAk7SMHHnqWck2Vc-MEd7bv_LT_P8vNJfplQY89lYurYo887FvTYnrm2uwLSQN9roP-XBmbCDWrih3BWMsD0R_M9BvB27NtDngRl9uz9irRyZ_Szo8-ey5jWj3HHtcrE4aC0vrdPa08LlMCbKwqXiZdjNVkW_lxUt7i44jYcqOyM0Zl4nHR8fFRBBwUm7ydx7Wj_zlh2a9r5ecdePnWVcbZ8-j-m_pm4rfn-o_OiPxQHm9UVPieQuAkvOnvwC5O_arY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKD4gL4k2gIIO4hl0_so7FqRSqFaJcoFJvVvxIm9JmV7vbHvkF_GhmYidt4LISx_gRO57xeOx885mQd9ZzIUFvc1_6Mpc-wJwDNclVWXM9rYXjFR4NHH2bzY_ll5PiZIcc9LEwCKtMtj_a9M5ap5RJGs3Jsmkm38EzgOUG9htagF-uMNBcQrOg0-9_3cA8NJMxHK4QOZZOaJ6I8eo4I5tLmLkI8tJgP2Yc2UduLVEdk_9opbpzhpDJf_3Rv2GVt9apwwfkfnIw6X78hodkJ7SPyN2j9Av9Mfn9KYQlxS5BqTaCwNe0aj39GVZtuKCrcBqxsS1FoGW4DjQC1THICpIc1ISBWlNwdykui_E0EQqByXbxMgq6XGGDmEMXNe25ALpmfLiMNNmNWz8hx4effxzM83QlQ-7AFGzyACNtlYeHgBG64Dt66Z3nyqpQMFVxbadhyl1wQjBfBA3el-P1bOpZEbhy4inZbRdteE6oZEpZrX2twSdznFVeMVYVXklbWGt9RlQvBeMSXzlem3FhemDaubmRn0H5mSi_jLCh5jJydmxR5yMKeiiPrNtdwmJ1apLaGe2cq1lRW6vx1nhf1sJXsOXDIfDWlhnRvZqYPrAVTDG8qNmiAx-GuqMJsGXtt6CVo97P978aTEOCP_RArllG9nqlNclSrQ1MVXDjtBA6I2-GbLAx-OOoasPiCstgyLKWkmfkWdTxoSkBWwak8QdxjbR_1JdxTtucdTzmM11KrYoX__XlL8k9jkcgHZB-j-xuVlfhFfiJG_u6MwR_AOhxa3A
  priority: 102
  providerName: Elsevier
Title Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919308675
https://dx.doi.org/10.1016/j.neuroimage.2019.116276
https://www.ncbi.nlm.nih.gov/pubmed/31610298
https://www.proquest.com/docview/2340229339
https://www.proquest.com/docview/2305799442
https://hal.science/hal-02314718
https://pubmed.ncbi.nlm.nih.gov/PMC6984975
https://doaj.org/article/9cccf15fbb91438d8f3da5484dcddbb8
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfoJiFeEN9kjMogXgO1k9SxeEAdbCofqxBiUt-s-CNbYUu7tNsjfwF_NHexk64goT5Vje3Yyp3P5_PPvyPklbY8SUFvY5vbPE6tgzkHahKLvORyUCaGFxgaOJ4Mxyfpp2k2DQG3ZYBVtjaxMdR2bjBG_gZeCcsNbL_lu8VljFmj8HQ1pNDokV2kLkNIl5iKNekuS_1VuCyJc6gQkDwe39XwRc4uYNYiwEuC7RhyZB65sTw1LP4bq1TvDOGS__qif0Mqb6xRR_fI3eBc0pHXhvvklqsekNvH4fj8Ifn9wbkFxSFBrcoDwJe0qCz96erKndPanXpcbEURZOmuHfUgdbxgBY8MtARjsKTg6lJcEn0kESqBuTY-EQVd1NghltB5SVsegKYb6y48RfbMLB-Rk6PD7-_HcUjHEBswA6vYwe5HCwt_HN7OBb_RptZYLrRwGRMFl3rgBtw4kyTMZk6C52V4ORxYljkuTPKY7FTzyj0lNGVCaCltKcEfM5wVVjBWZFakOtNa24iIVgrKBK5yTJlxrlpQ2g-1lp9C-Skvv4iwruXC83Vs0eYABd3VR8bt5sG8PlVhAitpjClZVmotMWO8zcvEFrDdw09gtc4jIls1Ue2lVjDD8KLZFgN427UNjo93aLZs_RK0cmP049EXhc-Q3A-9j2sWkf1WaVWwUku1nlMRedEVg33BQ6OicvMrrIPXlWWa8og88TredZXAdgEp_EFcG9q_MZbNkmp21nCYD2WeSpHt_X9Yz8gdjvGNBiW_T3ZW9ZV7Dk7gSvdJ7_Uv1m_me5_sjj5-Hk_g9-Bw8vVbvwms_AFFNGU2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2TgJeEN8EBhgEjxG149SxEEIb29SxtkJok_bmxR_ZClta2m2I_4G_hb-RuzhpV5BQX_YYfyt3vjvbv7sj5LVxPBHAt7HLXBYL52HPAZvEMiu4aheJ5TleDfQHne6B-HSYHq6Q340vDMIqG5lYCWo3snhH_haGBHUDx2_1Yfw9xqxR-LrapNAIbLHnf_6AI9v0_e4W0PcN5zvb-x-7cZ1VILbAzeexByPeSAcfHp1MwfxxwlnHpZE-ZTLnyrR9m1tvk4S51CswICwvOm3HUs-lTWDcVbImEjjKtMja5vbg85d5mF8mgvNdmsQZY6rGDgVEWRWhcngGcgIhZQqkVYdjrJMrCrHKG7CgF1dPEKD5r_X7N4jzilbcuUNu1-Ys3Qj8d5es-PIeudGvH-zvk19b3o8pLglalQFyPqV56eg3Pyn9KZ3444DELSnCOv2lpwEWjy5dUGShJ4ifKQXjmqISDneX0AgUhA2pL-h4ghNiDR0VtIk8UE3j_FkIyj200wfk4FpI9ZC0ylHpHxMqmJRGKVcosAAtZ7mTjOWpk8KkxhgXEdlQQds6Ojom6TjVDQzuq57TTyP9dKBfRNis5zhECFmizyYSetYeY3xXBaPJsa5FhlbW2oKlhTEKc9S7rEhcDgdM_AXOmCwiqmET3bjRguCHgYZLLODdrG9tagUTasner4ArF1bf3ehpLMNwgmjvXLKIrDdMq2u5ONXzXRyRl7NqkGj4TJWXfnSBbdBBWgnBI_Io8PhsqgQOKJg0AMi1wP0La1msKYcnVdT0jsqEkumT_y_rBbnZ3e_3dG93sPeU3OJ4u1Jh9NdJ63xy4Z-BCXpuntf7npKj6xY1fwBavZ4W
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlVcEO8GChgEx6hrJ1nHQggVltWWPsSBSnsz8SPtQpssm20R_4FfxK9jJk6yXZDQXnqM38qMZ8b2NzOEvNSWRzHwbWhTm4axdbDngE1CkeZc9vLI8AyvBg6P-qPj-OM4Ga-R360vDMIqW5lYC2pbGrwj34EhQd3A8Vvu5A0s4tNg-Hb6PcQMUvjS2qbT8Cyy737-gONb9WZvALR-xfnww-f3o7DJMBAa4Ox56MCg18LCh0OHUzCFbGyN5UILlzCRcal7rseNM1HEbOIkGBOG5_2eZYnjwkQw7jq5IaKE4R4TY7EI-Mti74aXRGHKmGxQRB5bVseqnJyDxEBwmQS51ecY9eSKaqwzCCxpyPVThGr-awf_Dee8oh-Ht8mtxrClu54T75A1V9wlm4fN0_098mvg3JTikqBV4cHnFc0KS7-5WeHO6MydeExuQRHg6S4d9QB5dO6CIgM9QRBVFMxsiurY32JCI1AVxifBoNMZTog1tMxpG4Ognsa6cx-ee2Kq--T4Wgj1gGwUZeG2CI2ZEFpKm0uwBQ1nmRWMZYkVsU601jYgoqWCMk2cdEzXcaZaQNxXtaCfQvopT7-AsK7n1McKWaHPOyR01x6jfdcF5exENcJDSWNMzpJca4nZ6m2aRzaDoyb-Aqt1GhDZsolqHWpBBcBAkxUW8Lrr2xhd3phasfcL4Mql1Y92DxSWYWBBtHwuWUC2W6ZVjYSs1GI_B-R5Vw2yDR-sssKVF9gGXaVlHPOAPPQ83k0VwVEF0wcAuZa4f2ktyzXF5LSOn96XaSxF8uj_y3pGNkHAqIO9o_3H5CbHa5YarL9NNuazC_cEbNG5flpvekq-XLeU-QOmQKDm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+neural+networks+and+kernel+regression+achieve+comparable+accuracies+for+functional+connectivity+prediction+of+behavior+and+demographics&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=He%2C+Tong&rft.au=Kong%2C+Ru&rft.au=Holmes%2C+Avram+J&rft.au=Nguyen%2C+Minh&rft.date=2020-02-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=206&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.116276&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon