Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis

Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as &...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 6; no. 11; p. e1001202
Main Authors Tasset, Céline, Bernoux, Maud, Jauneau, Alain, Pouzet, Cécile, Brière, Christian, Kieffer-Jacquinod, Sylvie, Rivas, Susana, Marco, Yves, Deslandes, Laurent
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.11.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7374
1553-7366
1553-7374
DOI10.1371/journal.ppat.1001202

Cover

Loading…
Abstract Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.
AbstractList Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity. Plant and animal bacterial pathogens have evolved to produce virulence factors, called type III effectors, which are injected into host cells to suppress host defences and provide an environment beneficial for pathogen growth. Type III effectors from pathogenic bacteria display enzymatic activities, often mimicking an endogenous eukaryotic activity, to target host signalling pathways. Elucidation of strategies used by pathogens to manipulate host protein activities is a subject of fundamental interest in pathology. PopP2 is a YopJ-like effector from the soil borne root pathogen Ralstonia solanacearum. Here, in addition to demonstrating PopP2 ability to stabilize the expression of its cognate Arabidopsis RRS1-R resistance protein and physically interact with it, we investigated the enzymatic activity of PopP2. Bacterial YopJ-like effectors are predicted to act as acetyl-transferases on host components. However, only two YopJ-like proteins from animal pathogens have been shown to be active acetyl-transferases. We show that PopP2 displays autoacetyl-transferase activity targeting a lysine residue well-conserved among YopJ-like family members. This lysine is a critical residue since its mutation prevents autoacetylation of PopP2 and abolishes its recognition by the host. This study provides new clues on the multiple properties displayed by bacterial type III effectors that may be used to target defense-related host components.
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as “guards”. The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity. Plant and animal bacterial pathogens have evolved to produce virulence factors, called type III effectors, which are injected into host cells to suppress host defences and provide an environment beneficial for pathogen growth. Type III effectors from pathogenic bacteria display enzymatic activities, often mimicking an endogenous eukaryotic activity, to target host signalling pathways. Elucidation of strategies used by pathogens to manipulate host protein activities is a subject of fundamental interest in pathology. PopP2 is a YopJ-like effector from the soil borne root pathogen Ralstonia solanacearum. Here, in addition to demonstrating PopP2 ability to stabilize the expression of its cognate Arabidopsis RRS1-R resistance protein and physically interact with it, we investigated the enzymatic activity of PopP2. Bacterial YopJ-like effectors are predicted to act as acetyl-transferases on host components. However, only two YopJ-like proteins from animal pathogens have been shown to be active acetyl-transferases. We show that PopP2 displays autoacetyl-transferase activity targeting a lysine residue well-conserved among YopJ-like family members. This lysine is a critical residue since its mutation prevents autoacetylation of PopP2 and abolishes its recognition by the host. This study provides new clues on the multiple properties displayed by bacterial type III effectors that may be used to target defense-related host components.
  Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.
Audience Academic
Author Jauneau, Alain
Kieffer-Jacquinod, Sylvie
Pouzet, Cécile
Deslandes, Laurent
Bernoux, Maud
Marco, Yves
Brière, Christian
Rivas, Susana
Tasset, Céline
AuthorAffiliation 3 Surfaces Cellulaires et Signalisation chez les Végétaux, Université de Toulouse, UMR CNRS-Université Paul Sabatier 5546, Castanet-Tolosan, France
2 Institut Fédératif de Recherche 40, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
The University of North Carolina at Chapel Hill, United States of America
1 Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
4 CEA, DSV/IRTSV Laboratoire EdyP, Grenoble, France
AuthorAffiliation_xml – name: 4 CEA, DSV/IRTSV Laboratoire EdyP, Grenoble, France
– name: 1 Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
– name: 3 Surfaces Cellulaires et Signalisation chez les Végétaux, Université de Toulouse, UMR CNRS-Université Paul Sabatier 5546, Castanet-Tolosan, France
– name: The University of North Carolina at Chapel Hill, United States of America
– name: 2 Institut Fédératif de Recherche 40, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
Author_xml – sequence: 1
  givenname: Céline
  surname: Tasset
  fullname: Tasset, Céline
– sequence: 2
  givenname: Maud
  surname: Bernoux
  fullname: Bernoux, Maud
– sequence: 3
  givenname: Alain
  surname: Jauneau
  fullname: Jauneau, Alain
– sequence: 4
  givenname: Cécile
  surname: Pouzet
  fullname: Pouzet, Cécile
– sequence: 5
  givenname: Christian
  surname: Brière
  fullname: Brière, Christian
– sequence: 6
  givenname: Sylvie
  surname: Kieffer-Jacquinod
  fullname: Kieffer-Jacquinod, Sylvie
– sequence: 7
  givenname: Susana
  surname: Rivas
  fullname: Rivas, Susana
– sequence: 8
  givenname: Yves
  surname: Marco
  fullname: Marco, Yves
– sequence: 9
  givenname: Laurent
  surname: Deslandes
  fullname: Deslandes, Laurent
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21124938$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAUhiM0xD7gHyCwxAXioiV2nNjZBVI1FahUYOrGtXXij85VEhfbQfQ38Kdx125aEQKhXCRynvc9Pq99TrOj3vU6y57jfIwLht-u3OB7aMfrNcQxznNMcvIoO8FlWYxYwejRg-_j7DSEVZ5TXODqSXZMMCa0LvhJ9nMyRAdSx00L0boeOYPijUYLaEN0vQUUXAt9IsAPHZoao2V0Hl269SVB1-CXOgYEaL4Jtk8yHawaNJqGoPtooUUmwYvFFR4tRp-0shC1QrOuG3obN8j2aOKhscqtgw1Ps8cmldXP9u-z7Ov76fXFx9H8y4fZxWQ-kqzI46iqVGk06JJpqGnVEJaDagxQU9RcAmW0rKtG4QqrhlCOJRjFmFFNJauGc1WcZS93vuvWBbHPMQhMeI0xIyRPxGxHKAcrsfa2A78RDqy4XXB-KcBHK1stmCRKFUVdck5TMdak7TFSadzUJTW4Tl7v9tWGptNKplw8tAemh396eyOW7rsgNWecbA1e7w28-zboEEVng9RtOhbthiA453mdOPpvEqdkck63Db7akUtIPdjeuFRabmkxIbSoClqXW2r8Byo9SndWputobFo_ELw5ECQm6h9xCUMIYna1-A_28yH74mGG9-Hd3eME0B0gvQvBa3OP4Fxsx-XumMV2XMR-XJLs_DeZtPF2DlKjtv27-BfesR1j
CitedBy_id crossref_primary_10_1016_j_semcdb_2016_05_002
crossref_primary_10_1073_pnas_2113996118
crossref_primary_10_1016_j_pbi_2011_05_005
crossref_primary_10_1126_science_1253849
crossref_primary_10_1016_j_semcdb_2016_05_001
crossref_primary_10_1021_cr400488d
crossref_primary_10_1038_nplants_2017_115
crossref_primary_10_1038_s41598_017_03704_x
crossref_primary_10_1371_journal_pgen_1007280
crossref_primary_10_1073_pnas_1104410108
crossref_primary_10_1111_mpp_12724
crossref_primary_10_1016_j_ncrops_2024_100014
crossref_primary_10_3389_fimmu_2019_02135
crossref_primary_10_1094_PHYTO_01_21_0032_R
crossref_primary_10_1146_annurev_phyto_072910_095323
crossref_primary_10_3389_fpls_2017_01330
crossref_primary_10_3389_fpls_2022_973065
crossref_primary_10_1093_hr_uhad246
crossref_primary_10_1094_MPMI_07_12_0188_R
crossref_primary_10_1371_journal_pone_0055954
crossref_primary_10_1038_srep29897
crossref_primary_10_1073_pnas_1717519115
crossref_primary_10_1111_j_1364_3703_2011_00719_x
crossref_primary_10_1111_mpp_12977
crossref_primary_10_1093_femsre_fuw026
crossref_primary_10_7554_eLife_82628
crossref_primary_10_3390_plants12040741
crossref_primary_10_3389_fpls_2016_00421
crossref_primary_10_1186_1471_2164_14_859
crossref_primary_10_1111_tpj_13780
crossref_primary_10_1094_PHYTO_09_15_0201_R
crossref_primary_10_1371_journal_ppat_1009184
crossref_primary_10_1111_mpp_12660
crossref_primary_10_1371_journal_pone_0054654
crossref_primary_10_4161_viru_29755
crossref_primary_10_1007_s13580_016_0191_9
crossref_primary_10_1007_s00122_017_3035_9
crossref_primary_10_1111_j_1462_5822_2012_01758_x
crossref_primary_10_3724_SP_J_1006_2021_04254
crossref_primary_10_1080_15592324_2021_2017631
crossref_primary_10_1016_j_tibs_2011_07_003
crossref_primary_10_1038_nsmb_3279
crossref_primary_10_1111_nph_13528
crossref_primary_10_1094_PHYTO_10_20_0483_R
crossref_primary_10_3389_fmicb_2024_1335081
crossref_primary_10_1021_acsomega_2c03917
crossref_primary_10_1371_journal_ppat_1006984
crossref_primary_10_1146_annurev_phyto_081211_173000
crossref_primary_10_1016_j_xplc_2020_100025
crossref_primary_10_1186_s13007_022_00893_z
crossref_primary_10_1111_ppl_12093
crossref_primary_10_1371_journal_pgen_1004655
crossref_primary_10_1111_tpj_16479
crossref_primary_10_1094_MPMI_07_11_0201
crossref_primary_10_1128_MMBR_00032_16
crossref_primary_10_1111_ppa_14002
crossref_primary_10_1371_journal_ppat_1002768
crossref_primary_10_1016_j_mib_2012_05_003
crossref_primary_10_1111_mpp_12435
crossref_primary_10_1111_tpj_16639
crossref_primary_10_1111_mpp_12038
crossref_primary_10_3390_pathogens9030227
crossref_primary_10_1016_j_chom_2011_02_007
crossref_primary_10_1111_ppa_12469
crossref_primary_10_1094_PHYTO_06_15_0140_R
crossref_primary_10_1071_FP19188
crossref_primary_10_1007_s42161_020_00623_1
crossref_primary_10_1105_tpc_112_107201
crossref_primary_10_1111_1462_2920_15725
crossref_primary_10_1126_science_1247357
crossref_primary_10_1016_j_isci_2024_109224
crossref_primary_10_1111_nph_18359
crossref_primary_10_1111_nph_15125
crossref_primary_10_4161_psb_29130
crossref_primary_10_1016_j_pmpp_2016_02_007
crossref_primary_10_3390_biology11060821
crossref_primary_10_1371_journal_ppat_1002523
crossref_primary_10_1094_MPMI_34_8
crossref_primary_10_1007_s00425_016_2628_x
crossref_primary_10_1371_journal_ppat_1002640
crossref_primary_10_1104_pp_111_190686
crossref_primary_10_1016_j_bbapap_2017_10_006
crossref_primary_10_1128_mBio_02065_14
crossref_primary_10_1094_MPMI_12_11_0321
crossref_primary_10_4161_psb_18885
crossref_primary_10_1111_mpp_12530
crossref_primary_10_1016_j_pbi_2012_02_003
crossref_primary_10_1111_tpj_16331
crossref_primary_10_1016_j_pmpp_2024_102364
crossref_primary_10_1111_nph_14540
crossref_primary_10_1111_cmi_12736
crossref_primary_10_1016_j_it_2014_09_005
crossref_primary_10_1016_j_pmpp_2017_12_007
crossref_primary_10_1111_j_1469_8137_2012_04164_x
crossref_primary_10_1111_mpp_12773
crossref_primary_10_1371_journal_ppat_1003715
crossref_primary_10_3390_microorganisms9051029
crossref_primary_10_3389_fmicb_2019_00183
crossref_primary_10_1007_s10265_021_01274_8
crossref_primary_10_1073_pnas_1605483113
crossref_primary_10_1111_nph_17535
crossref_primary_10_1104_pp_111_186163
crossref_primary_10_1038_s41467_021_26183_1
crossref_primary_10_18632_oncotarget_4717
crossref_primary_10_3389_fpls_2014_00606
crossref_primary_10_1016_j_tplants_2012_06_011
crossref_primary_10_1021_acs_biochem_8b00512
crossref_primary_10_1371_journal_ppat_1010368
crossref_primary_10_1146_annurev_arplant_050213_040012
crossref_primary_10_1007_s13258_022_01270_9
crossref_primary_10_1094_MPMI_12_13_0363_R
crossref_primary_10_1016_j_jgg_2022_04_018
crossref_primary_10_1016_j_toxicon_2016_09_006
crossref_primary_10_1371_journal_ppat_1003952
crossref_primary_10_3389_fpls_2017_00263
crossref_primary_10_3389_fpls_2014_00736
crossref_primary_10_1094_MPMI_09_20_0256_R
crossref_primary_10_1007_s00425_012_1694_y
crossref_primary_10_1186_s12870_022_03964_4
crossref_primary_10_1002_iub_1398
crossref_primary_10_1111_mpp_12079
crossref_primary_10_1146_annurev_phyto_080516_035250
crossref_primary_10_1111_1751_7915_12056
crossref_primary_10_1016_j_cell_2015_04_024
crossref_primary_10_1094_PHYTO_09_23_0330_R
crossref_primary_10_1016_j_cell_2015_04_025
crossref_primary_10_1007_s11105_014_0814_1
crossref_primary_10_1371_journal_ppat_1003427
crossref_primary_10_1111_nph_17918
crossref_primary_10_1002_pro_2636
crossref_primary_10_1007_s13258_018_0667_3
crossref_primary_10_1016_j_pbi_2014_05_002
crossref_primary_10_1146_annurev_arplant_042916_041030
crossref_primary_10_1042_EBC20210072
Cites_doi 10.1126/science.1126867
10.1074/jbc.M706970200
10.1038/nature05966
10.1126/science.1129523
10.1046/j.1365-2958.2003.03588.x
10.1016/S0955-0674(03)00003-6
10.1093/emboj/19.15.4004
10.1105/tpc.108.058685
10.1073/pnas.0602577103
10.1111/j.1365-313X.2008.03596.x
10.1038/nature04946
10.1016/S0968-0004(98)01311-5
10.1146/annurev.ge.24.120190.002311
10.1126/science.1111404
10.1105/tpc.107.056325
10.1016/j.pbi.2008.06.007
10.1016/j.chom.2007.03.006
10.1094/MPMI-22-5-0538
10.1073/pnas.0608779104
10.1111/j.1462-5822.2007.00990.x
10.1105/tpc.104.024141
10.1016/S0092-8674(01)00619-5
10.1016/j.str.2005.01.020
10.1105/tpc.108.058529
10.1016/j.cell.2005.03.025
10.1073/pnas.032485099
10.1007/s11103-005-5817-8
10.1016/S1097-2765(03)00528-8
10.1016/S0092-8674(02)00661-X
10.1146/annurev.py.29.090191.000433
10.1046/j.1365-2958.2003.03666.x
10.1016/S0021-9258(18)54150-8
10.1093/nar/gkj089
10.1146/annurev.arplant.57.032905.105346
10.1038/35081161
10.1016/j.cub.2007.12.020
10.1126/science.274.5295.2063
10.1038/nature05286
10.1038/nature06109
10.1016/S0092-8674(03)00040-0
10.1126/science.1144958
10.1111/j.1365-2958.2004.04118.x
10.1038/nature03630
10.1046/j.1365-2958.2003.03730.x
10.1111/j.1365-313X.2005.02500.x
10.1038/nrm1984
10.1074/jbc.M505294200
10.1016/j.cell.2006.02.008
10.1016/S0092-8674(03)00036-9
10.1126/science.1171647
10.1126/science.1144956
10.1016/j.semcdb.2009.04.010
10.1046/j.1365-2958.2003.03616.x
10.1073/pnas.1230660100
10.1073/pnas.0500792102
10.1126/science.1085671
10.1016/j.pbi.2007.04.020
10.1016/j.pbi.2004.05.003
10.1094/MPMI.1998.11.7.659
10.1094/MPMI.2004.17.6.633
10.1073/pnas.0608995103
10.1016/j.tibs.2007.03.007
10.1038/nature05737
10.1016/S0959-437X(99)80022-7
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
Tasset et al. 2010
2010 Tasset et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, et al. (2010) Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis. PLoS Pathog 6(11): e1001202. doi:10.1371/journal.ppat.1001202
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: Tasset et al. 2010
– notice: 2010 Tasset et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, et al. (2010) Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis. PLoS Pathog 6(11): e1001202. doi:10.1371/journal.ppat.1001202
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
7QL
C1K
5PM
DOA
DOI 10.1371/journal.ppat.1001202
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
DatabaseTitleList Bacteriology Abstracts (Microbiology B)

MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Ralstonia Acetyl-Transferase PopP2
EISSN 1553-7374
ExternalDocumentID 1289117220
oai_doaj_org_article_7c2dd33958844817b66d726e1b954f19
PMC2987829
A243634950
21124938
10_1371_journal_ppat_1001202
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
3V.
CGR
CUY
CVF
ECM
EIF
M~E
NPM
PMFND
7X8
PJZUB
PPXIY
PQGLB
PUEGO
7QL
C1K
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c730t-66d5feae57ea946b270adbfa4f398ca474596bd161db2481cafd77fdb6c6b88d3
IEDL.DBID DOA
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:14 EDT 2023
Wed Aug 27 01:30:10 EDT 2025
Thu Aug 21 13:33:24 EDT 2025
Fri Jul 11 10:07:55 EDT 2025
Sun Aug 24 03:32:53 EDT 2025
Tue Jun 17 22:07:40 EDT 2025
Tue Jun 10 21:05:18 EDT 2025
Fri Jun 27 05:48:48 EDT 2025
Fri Jun 27 03:55:55 EDT 2025
Wed Feb 19 02:27:26 EST 2025
Tue Jul 01 02:54:30 EDT 2025
Thu Apr 24 23:03:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c730t-66d5feae57ea946b270adbfa4f398ca474596bd161db2481cafd77fdb6c6b88d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Conceived and designed the experiments: CT LD. Performed the experiments: CT MB AJ CP CB SKJ LD. Analyzed the data: CT SR YM LD. Contributed reagents/materials/analysis tools: CT LD. Wrote the paper: CT SR YM LD.
Current address: CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
OpenAccessLink https://doaj.org/article/7c2dd33958844817b66d726e1b954f19
PMID 21124938
PQID 815960840
PQPubID 23479
ParticipantIDs plos_journals_1289117220
doaj_primary_oai_doaj_org_article_7c2dd33958844817b66d726e1b954f19
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2987829
proquest_miscellaneous_888092934
proquest_miscellaneous_815960840
gale_infotracmisc_A243634950
gale_infotracacademiconefile_A243634950
gale_incontextgauss_ISR_A243634950
gale_incontextgauss_ISN_A243634950
pubmed_primary_21124938
crossref_primary_10_1371_journal_ppat_1001202
crossref_citationtrail_10_1371_journal_ppat_1001202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20101118
PublicationDateYYYYMMDD 2010-11-18
PublicationDate_xml – month: 11
  year: 2010
  text: 20101118
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References SR Scofield (ref7) 1996; 274
F Shao (ref20) 2003; 301
K Gu (ref27) 2005; 435
ND Rawlings (ref41) 2006; 34
S Mukherjee (ref44) 2006; 312
E Meylan (ref5) 2006; 442
M Bernoux (ref46) 2008; 20
I Lassot (ref56) 2005; 280
CR Sweet (ref55) 2007; 9
MJ Axtell (ref21) 2003; 112
L Deslandes (ref9) 2003; 100
JR Bretz (ref32) 2003; 49
M Rafiqi (ref3) 2009; 20
W Xing (ref30) 2007; 449
L Deslandes (ref38) 2002; 99
A Friedler (ref63) 2005; 13
T Eulgem (ref36) 2007; 10
MJ Axtell (ref54) 2003; 49
JG Kim (ref65) 2008; 20
D Mackey (ref14) 2003; 112
T Xiang (ref29) 2008; 18
JE Trosky (ref47) 2007; 282
Y Jia (ref8) 2000; 19
J Marion (ref66) 2008; 56
Y Noutoshi (ref57) 2005; 43
T Boller (ref2) 2009; 60
A Espinosa (ref33) 2003; 49
KV Krasileva (ref10) 2010
JD Jones (ref1) 2006; 444
J Ade (ref16) 2007; 104
NT Keen (ref50) 1990; 24
A Block (ref19) 2008; 11
S Kay (ref25) 2007; 318
P Romer (ref26) 2007; 318
ST Chisholm (ref4) 2006; 124
HC Rooney (ref15) 2005; 308
L Deslandes (ref37) 1998; 11
M Shabab (ref18) 2008; 20
EA Van der Biezen (ref11) 1998; 23
L Hong (ref60) 1993; 268
M Poueymiro (ref67) 2009; 22
AJ Wu (ref31) 2004; 16
S Cunnac (ref48) 2004; 53
D Mackey (ref13) 2002; 108
PN Dodds (ref51) 2006; 103
J Roden (ref42) 2004; 17
J Zhang (ref34) 2007; 1
A Hotson (ref39) 2003; 50
H Ueda (ref52) 2006; 61
ZQ Fu (ref28) 2007; 447
C Prives (ref62) 2001; 107
TR Rosebrock (ref23) 2007; 448
G Vidali (ref58) 1968; 243
A Hotson (ref40) 2004; 7
MG Kim (ref17) 2005; 121
CL Brooks (ref61) 2003; 15
K Nomura (ref24) 2006; 313
S Mukherjee (ref45) 2007; 32
S Mujtaba (ref64) 2004; 13
HS Kim (ref53) 2005; 102
Flor (ref49) 1971; 9
RB Abramovitch (ref22) 2006; 7
AC Hayward (ref35) 1991; 29
T Boller (ref6) 2009; 324
RD Kornberg (ref59) 1999; 9
JL Dangl (ref12) 2001; 411
R Mittal (ref43) 2006; 103
35235614 - PLoS Pathog. 2022 Mar 2;18(3):e1010368
References_xml – volume: 312
  start-page: 1211
  year: 2006
  ident: ref44
  article-title: Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation.
  publication-title: Science
  doi: 10.1126/science.1126867
– volume: 282
  start-page: 34299
  year: 2007
  ident: ref47
  article-title: VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M706970200
– volume: 448
  start-page: 370
  year: 2007
  ident: ref23
  article-title: A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity.
  publication-title: Nature
  doi: 10.1038/nature05966
– volume: 313
  start-page: 220
  year: 2006
  ident: ref24
  article-title: A bacterial virulence protein suppresses host innate immunity to cause plant disease.
  publication-title: Science
  doi: 10.1126/science.1129523
– volume: 49
  start-page: 377
  year: 2003
  ident: ref33
  article-title: The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03588.x
– volume: 15
  start-page: 164
  year: 2003
  ident: ref61
  article-title: Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation.
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/S0955-0674(03)00003-6
– volume: 19
  start-page: 4004
  year: 2000
  ident: ref8
  article-title: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance.
  publication-title: Embo J
  doi: 10.1093/emboj/19.15.4004
– volume: 20
  start-page: 2252
  year: 2008
  ident: ref46
  article-title: RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector.
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.058685
– volume: 103
  start-page: 8888
  year: 2006
  ident: ref51
  article-title: Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0602577103
– volume: 56
  start-page: 169
  year: 2008
  ident: ref66
  article-title: Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03596.x
– volume: 442
  start-page: 39
  year: 2006
  ident: ref5
  article-title: Intracellular pattern recognition receptors in the host response.
  publication-title: Nature
  doi: 10.1038/nature04946
– volume: 23
  start-page: 454
  year: 1998
  ident: ref11
  article-title: Plant disease-resistance proteins and the gene-for-gene concept.
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(98)01311-5
– volume: 24
  start-page: 447
  year: 1990
  ident: ref50
  article-title: Gene-for-gene complementarity in plant-pathogen interactions.
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.ge.24.120190.002311
– volume: 308
  start-page: 1783
  year: 2005
  ident: ref15
  article-title: Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance.
  publication-title: Science
  doi: 10.1126/science.1111404
– volume: 20
  start-page: 1169
  year: 2008
  ident: ref18
  article-title: Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato.
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.056325
– volume: 11
  start-page: 396
  year: 2008
  ident: ref19
  article-title: Phytopathogen type III effector weaponry and their plant targets.
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2008.06.007
– volume: 1
  start-page: 175
  year: 2007
  ident: ref34
  article-title: A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-Induced immunity in plants.
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2007.03.006
– volume: 22
  start-page: 538
  year: 2009
  ident: ref67
  article-title: Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco.
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-22-5-0538
– volume: 104
  start-page: 2531
  year: 2007
  ident: ref16
  article-title: Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0608779104
– volume: 9
  start-page: 2700
  year: 2007
  ident: ref55
  article-title: YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction.
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2007.00990.x
– volume: 16
  start-page: 2809
  year: 2004
  ident: ref31
  article-title: A patch of surface-exposed residues mediates negative regulation of immune signaling by tomato Pto kinase.
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.024141
– volume: 107
  start-page: 815
  year: 2001
  ident: ref62
  article-title: Why is p53 acetylated?
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00619-5
– volume: 13
  start-page: 629
  year: 2005
  ident: ref63
  article-title: Modulation of binding of DNA to the C-terminal domain of p53 by acetylation.
  publication-title: Structure
  doi: 10.1016/j.str.2005.01.020
– volume: 243
  start-page: 6361
  year: 1968
  ident: ref58
  article-title: Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones.
  publication-title: J Biol Chem
– volume: 20
  start-page: 1915
  year: 2008
  ident: ref65
  article-title: XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in xanthomonas-infected tomato leaves.
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.058529
– volume: 121
  start-page: 749
  year: 2005
  ident: ref17
  article-title: Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.03.025
– volume: 99
  start-page: 2404
  year: 2002
  ident: ref38
  article-title: Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.032485099
– volume: 61
  start-page: 31
  year: 2006
  ident: ref52
  article-title: Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants.
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-005-5817-8
– volume: 13
  start-page: 251
  year: 2004
  ident: ref64
  article-title: Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00528-8
– volume: 108
  start-page: 743
  year: 2002
  ident: ref13
  article-title: RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis.
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00661-X
– volume: 29
  start-page: 65
  year: 1991
  ident: ref35
  article-title: Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum.
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.py.29.090191.000433
– volume: 49
  start-page: 1537
  year: 2003
  ident: ref54
  article-title: Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03666.x
– volume: 268
  start-page: 305
  year: 1993
  ident: ref60
  article-title: Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)54150-8
– volume: 34
  start-page: D270
  year: 2006
  ident: ref41
  article-title: MEROPS: the peptidase database.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj089
– volume: 60
  start-page: 379
  year: 2009
  ident: ref2
  article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors.
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.57.032905.105346
– volume: 411
  start-page: 826
  year: 2001
  ident: ref12
  article-title: Plant pathogens and integrated defence responses to infection.
  publication-title: Nature
  doi: 10.1038/35081161
– volume: 18
  start-page: 74
  year: 2008
  ident: ref29
  article-title: Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.12.020
– volume: 274
  start-page: 2063
  year: 1996
  ident: ref7
  article-title: Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato.
  publication-title: Science
  doi: 10.1126/science.274.5295.2063
– volume: 444
  start-page: 323
  year: 2006
  ident: ref1
  article-title: The plant immune system.
  publication-title: Nature
  doi: 10.1038/nature05286
– volume: 449
  start-page: 243
  year: 2007
  ident: ref30
  article-title: The structural basis for activation of plant immunity by bacterial effector protein AvrPto.
  publication-title: Nature
  doi: 10.1038/nature06109
– volume: 112
  start-page: 379
  year: 2003
  ident: ref14
  article-title: Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance.
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00040-0
– volume: 318
  start-page: 645
  year: 2007
  ident: ref26
  article-title: Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene.
  publication-title: Science
  doi: 10.1126/science.1144958
– volume: 53
  start-page: 115
  year: 2004
  ident: ref48
  article-title: Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system.
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04118.x
– volume: 435
  start-page: 1122
  year: 2005
  ident: ref27
  article-title: R gene expression induced by a type-III effector triggers disease resistance in rice.
  publication-title: Nature
  doi: 10.1038/nature03630
– volume: 50
  start-page: 377
  year: 2003
  ident: ref39
  article-title: Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03730.x
– volume: 43
  start-page: 873
  year: 2005
  ident: ref57
  article-title: A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02500.x
– volume: 7
  start-page: 601
  year: 2006
  ident: ref22
  article-title: Bacterial elicitation and evasion of plant innate immunity.
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1984
– volume: 280
  start-page: 41537
  year: 2005
  ident: ref56
  article-title: p300 modulates ATF4 stability and transcriptional activity independently of its acetyltransferase domain.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M505294200
– volume: 124
  start-page: 803
  year: 2006
  ident: ref4
  article-title: Host-microbe interactions: shaping the evolution of the plant immune response.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.008
– volume: 112
  start-page: 369
  year: 2003
  ident: ref21
  article-title: Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the avrRpt2-directed elimination of RIN4.
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00036-9
– volume: 324
  start-page: 742
  year: 2009
  ident: ref6
  article-title: Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens.
  publication-title: Science
  doi: 10.1126/science.1171647
– volume: 318
  start-page: 648
  year: 2007
  ident: ref25
  article-title: A bacterial effector acts as a plant transcription factor and induces a cell size regulator.
  publication-title: Science
  doi: 10.1126/science.1144956
– volume: 20
  start-page: 1017
  year: 2009
  ident: ref3
  article-title: In the trenches of plant pathogen recognition: Role of NB-LRR proteins.
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2009.04.010
– volume: 49
  start-page: 389
  year: 2003
  ident: ref32
  article-title: A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03616.x
– volume: 100
  start-page: 8024
  year: 2003
  ident: ref9
  article-title: Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1230660100
– volume: 9
  start-page: 275
  year: 1971
  ident: ref49
  article-title: Annu Rev Phytopathol
– volume: 102
  start-page: 6496
  year: 2005
  ident: ref53
  article-title: The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0500792102
– volume: 301
  start-page: 1230
  year: 2003
  ident: ref20
  article-title: Cleavage of Arabidopsis PBS1 by a bacterial type III effector.
  publication-title: Science
  doi: 10.1126/science.1085671
– volume: 10
  start-page: 366
  year: 2007
  ident: ref36
  article-title: Networks of WRKY transcription factors in defense signaling.
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2007.04.020
– volume: 7
  start-page: 384
  year: 2004
  ident: ref40
  article-title: Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity.
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2004.05.003
– volume: 11
  start-page: 659
  year: 1998
  ident: ref37
  article-title: Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum.
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.1998.11.7.659
– volume: 17
  start-page: 633
  year: 2004
  ident: ref42
  article-title: Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells.
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.2004.17.6.633
– volume: 103
  start-page: 18574
  year: 2006
  ident: ref43
  article-title: Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0608995103
– year: 2010
  ident: ref10
  article-title: Activation of an Arabidopsis Resistance Protein Is Specified by the in Planta Association of Its Leucine-Rich Repeat Domain with the Cognate Oomycete Effector.
  publication-title: Plant Cell
– volume: 32
  start-page: 210
  year: 2007
  ident: ref45
  article-title: A newly discovered post-translational modification—the acetylation of serine and threonine residues.
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2007.03.007
– volume: 447
  start-page: 284
  year: 2007
  ident: ref28
  article-title: A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
  publication-title: Nature
  doi: 10.1038/nature05737
– volume: 9
  start-page: 148
  year: 1999
  ident: ref59
  article-title: Chromatin-modifying and -remodeling complexes.
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/S0959-437X(99)80022-7
– reference: 35235614 - PLoS Pathog. 2022 Mar 2;18(3):e1010368
SSID ssj0041316
Score 2.3969657
Snippet Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In...
  Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1001202
SubjectTerms Acetylation
Amino Acid Sequence
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - immunology
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Bacterial Proteins - genetics
Bacterial Proteins - immunology
Bacterial Proteins - metabolism
Binding sites
Blotting, Western
Cell Nucleus - immunology
Cell Nucleus - metabolism
Cysteine
Cysteine Endopeptidases - genetics
Cysteine Endopeptidases - immunology
Cysteine Endopeptidases - metabolism
Enzymes
Fluorescence
Gene Expression Regulation, Plant
Immune response
Immunity, Innate - immunology
Lysine - genetics
Lysine - immunology
Lysine - metabolism
Microbiology/Plant-Biotic Interactions
Molecular Sequence Data
Molecular weight
Mutation - genetics
Physiological aspects
Plant Biology/Plant-Biotic Interactions
Plant Diseases - genetics
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Immunity
Plant resistance
Proteins
Ralstonia solanacearum
Ralstonia solanacearum - genetics
Ralstonia solanacearum - metabolism
Ralstonia solanacearum - pathogenicity
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Sequence Homology, Amino Acid
Software
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBYlY7CXsd_N2g0xBntyiSVZkh_GyMZKN2gp6QJ9E5IltYbM9mIbmr9h__ROthPm0W4ve41OJro7nT6hu-8QeusAY3jJXOQYMxFj4ZHQzdLIMMoSD16TklA7fHrGT5bs62VyuYe2PVsHBda3Xu1CP6nlenV082PzATb8-65rg4i3k46qSjcdpxAJ7JL34GwSoZnDKdu9K0DE7pqhhmY5kaCcD8V0d31ldFh1nP67yD2pVmV9Gyz9M7vyt-Pq-BF6OOBMPO8d4zHac8UTdL_vPLl5in7O26bUmWs2fS4cLj0GKIgXoBVAg7nG4JO6AAm9br_jPuujXOPzsjonuE8fr7HGgdCkcBju7LltHQ5E5AXEjBUGLIwXi4s4WkRdcQoAW5x3tSjNBucF_DFtcltWdV4_Q8vjz98-nURDX4Yog3jQRJzbxDvtEuF0yrghYqat8Zp5mspMM8GSlBsLWNIawmScaW-F8NbwjBspLX2OJkVZuH2EM6Od9trFUmTMsTiV1uvEzpyW1ABUnCK6NYDKBtLy0DtjpbqXOAGXl16fKphNDWabomg3q-pJO_4h_zHYdicbKLe7H8r1lRp2sBIZsZbSNFT2wqKEATUIwl1s0oT5OJ2iN8EzVCDVKELWzpVu61p9uThTc8Iop3AVnd0ptBgJvRuEfAmLzfRQKQEqC2RdI8nDkSSEhmw0vB-8dLvmWgEYgcNNEAJDeOu5KswKqXaFK9taSQC4fAb3_r-IQNAHWE3ZFL3ofX2nOhKHbuZUTpEY7YKRbscjRX7d0ZqTVAJcTV_-D2McoAddmkfI15SHaNKsW_cK0GNjXncB4Rf56HDH
  priority: 102
  providerName: Scholars Portal
Title Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis
URI https://www.ncbi.nlm.nih.gov/pubmed/21124938
https://www.proquest.com/docview/815960840
https://www.proquest.com/docview/888092934
https://pubmed.ncbi.nlm.nih.gov/PMC2987829
https://doaj.org/article/7c2dd33958844817b66d726e1b954f19
http://dx.doi.org/10.1371/journal.ppat.1001202
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWgCIkL4nsLy8pCSJzCNrZjO8cu2tWCtFXVZaXeLDu2IVJJoiY59DfwpxknabVBwF645FBPpHhmMn7TzLxB6L0DjOElc5FjzESMhY-EbpZGhlGWePCalITe4asFv7xhX9bJ-taor1AT1tMD94o7FRmxltI0NFQyGQvDuRWEu9ikCfMd4SeBM2-fTPUxGCJzN_Q0DMWJBOV8aJqjIj4dbPSxqnTTMRCR4S-V_aHUcfcfIvSk2pT1n-Dn71WUt46liyfo8YAn8bzfx1N0zxXP0MN-wuTuOfo5b5tSZ67Z9TVvuPQYIB9egdcB6ss1Bt_TBUjobfsD99Ud5RYvy2pJcF8mXmONA3FJ4TDk5rltHQ6E4wXEhg0GzItXq-s4WkVdEwoAWJx3PSfNDucFPJg2uS2rOq9foJuL86-fLqNh_kKUwXvfRKDpxDvtEuF0yrghYqat8Zp5mspMM8GSlBsLmNEaArbJtLdCeGt4xo2Ulr5Ek6Is3BHCmdFOe-1iKTLmWJxK63ViZ05LagASThHdG0BlAzl5mJGxUd0XNwFJSq9PFcymBrNNUXS4q-rJOe6QPwu2PcgGau3uB3A4NTicusvhpuhd8AwVyDOKUJ3zTbd1rT5fL9ScMMoppJyzvwqtRkIfBiFfwmYzPXREgMoCKddI8ngkCSEgGy0fBS_d77lWADrgEBOEwBLee64Kd4WSusKVba0kAFk-g_z-HyIQ3AE-UzZFr3pfP6iOxGFqOZVTJEZvwUi345Ui_97Rl5NUAixNX_8PY7xBj7pyjlCXKY_RpNm27i2gxMacoPtiLU7Qg7PzxXJ10oUHuF4x-Qv7YmlD
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoacetylation+of+the+Ralstonia+solanacearum+effector+PopP2+targets+a+lysine+residue+essential+for+RRS1-R-mediated+immunity+in+Arabidopsis&rft.jtitle=PLoS+pathogens&rft.au=C%C3%A9line+Tasset&rft.au=Maud+Bernoux&rft.au=Alain+Jauneau&rft.au=C%C3%A9cile+Pouzet&rft.date=2010-11-18&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=6&rft.issue=11&rft.spage=e1001202&rft_id=info:doi/10.1371%2Fjournal.ppat.1001202&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7c2dd33958844817b66d726e1b954f19
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon