Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression

The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 6; no. 6; p. e1000930
Main Authors Soucy-Faulkner, Anton, Mukawera, Espérance, Fink, Karin, Martel, Alexis, Jouan, Loubna, Nzengue, Yves, Lamarre, Daniel, Vande Velde, Christine, Grandvaux, Nathalie
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7374
1553-7366
1553-7374
DOI10.1371/journal.ppat.1000930

Cover

Loading…
Abstract The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS.
AbstractList The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS.The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS.
  The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS.
The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. The understanding of the mechanisms allowing the host to mount a rapid and efficient innate immune response to RNA viruses has been the subject of intensive research in recent years. Major groundwork allowed the identification of key sensors of virus nucleic acids, including RIG-I and Mda5, which through association with the MAVS adaptor initiate the signaling cascade required for activation of the IRF-3 transcription factor and downstream antiviral genes. Mechanisms of activation and degradation of key signaling molecules allow a tight control of the intensity and duration of the response. Our knowledge of how redox processes regulate signaling cascades is a fast moving field of research. Particularly, the identification of non-phagocytic reactive oxygen species-producing NADPH oxidase (NOX) enzymes revealed new insights into their function in innate immunity. Our endeavor in characterizing the role of NOX in the antiviral response reveals a new facet to the overall picture of antiviral response regulation. Here, we demonstrate that NOX2 is essential for MAVS expression in airway epithelial cells, thereby controlling the capacity of the cell to mount an efficient innate antiviral response following recognition of viruses.
The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS.
The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS.
The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNb and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. The understanding of the mechanisms allowing the host to mount a rapid and efficient innate immune response to RNA viruses has been the subject of intensive research in recent years. Major groundwork allowed the identification of key sensors of virus nucleic acids, including RIG-I and Mda5, which through association with the MAVS adaptor initiate the signaling cascade required for activation of the IRF-3 transcription factor and downstream antiviral genes. Mechanisms of activation and degradation of key signaling molecules allow a tight control of the intensity and duration of the response. Our knowledge of how redox processes regulate signaling cascades is a fast moving field of research. Particularly, the identification of non-phagocytic reactive oxygen species-producing NADPH oxidase (NOX) enzymes revealed new insights into their function in innate immunity. Our endeavor in characterizing the role of NOX in the antiviral response reveals a new facet to the overall picture of antiviral response regulation. Here, we demonstrate that NOX2 is essential for MAVS expression in airway epithelial cells, thereby controlling the capacity of the cell to mount an efficient innate antiviral response following recognition of viruses.
Audience Academic
Author Jouan, Loubna
Soucy-Faulkner, Anton
Fink, Karin
Vande Velde, Christine
Nzengue, Yves
Grandvaux, Nathalie
Mukawera, Espérance
Martel, Alexis
Lamarre, Daniel
AuthorAffiliation 1 CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
2 Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
North Carolina State University, United States of America
3 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
AuthorAffiliation_xml – name: North Carolina State University, United States of America
– name: 1 CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
– name: 3 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
– name: 2 Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
Author_xml – sequence: 1
  givenname: Anton
  surname: Soucy-Faulkner
  fullname: Soucy-Faulkner, Anton
– sequence: 2
  givenname: Espérance
  surname: Mukawera
  fullname: Mukawera, Espérance
– sequence: 3
  givenname: Karin
  surname: Fink
  fullname: Fink, Karin
– sequence: 4
  givenname: Alexis
  surname: Martel
  fullname: Martel, Alexis
– sequence: 5
  givenname: Loubna
  surname: Jouan
  fullname: Jouan, Loubna
– sequence: 6
  givenname: Yves
  surname: Nzengue
  fullname: Nzengue, Yves
– sequence: 7
  givenname: Daniel
  surname: Lamarre
  fullname: Lamarre, Daniel
– sequence: 8
  givenname: Christine
  surname: Vande Velde
  fullname: Vande Velde, Christine
– sequence: 9
  givenname: Nathalie
  surname: Grandvaux
  fullname: Grandvaux, Nathalie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20532218$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAUhiM0xD7gHyCIxAXiosVfsV0ukKqpjErbKrWAuLMcf6Se0jizk6n7Afxv3LVFK0IglIskJ8_7nuTNOafZUeMbk2UvIRhCzOD7G9-HRtbDtpXdEAIARhg8yU5gUeABw4wcPbo-zk5jvAGAQAzps-wYgQIjBPlJ9mNubnsXzMo0Xe5tfj37jnLZ6HxupOrcncln6_vKNPmiNcqZmFsf8om1Lt0kxXx6MZgOrox2sjM6HzdJ4oKskzy2vokm75bB99UyFaq-lp3zzabN1fjbIp-s22BiTKXn2VMr62he7M5n2ddPky_nnweXs4vp-fhyoBgG3QDiEkFWKA6VAiUgisnS8pJpBYG0CmqiZKkoR8DSAjKNLaIaK2Yk5AoThM-y11vftvZR7BKMAiI-AgzCYpSI6ZbQXt6INriVDPfCSyceCj5UQobOqdoITQwnDHCN6IgUVI8Q5iWWEFNWFEiB5PVx160vV0arFFiK5sD08EnjlqLydwJxDgqOk8HbnUHwt72JnVi5qExdy8b4PgpGKKSEMvJvEmNEMWCbCN5syUqmb3CN9am12tBijDAgHHFAEzX8A5UObVZOpUG0LtUPBO8OBInpzLqrZB-jmC7m_8FeH7KvHmf4K7z9BCfgwxZQwccYjBXKdQ9zlt7Y1QICsVmX_c8Wm3URu3VJYvKbeO__V9lPOY8ZmA
CitedBy_id crossref_primary_10_1038_embor_2011_157
crossref_primary_10_1124_mol_114_095216
crossref_primary_10_1016_j_ejcb_2011_01_011
crossref_primary_10_3390_nu7064240
crossref_primary_10_1074_jbc_M116_749028
crossref_primary_10_1165_rcmb_2014_0334OC
crossref_primary_10_3390_cells13211789
crossref_primary_10_1038_s41598_019_40941_8
crossref_primary_10_1152_physrev_00030_2019
crossref_primary_10_1080_21505594_2017_1421893
crossref_primary_10_1002_eji_201646484
crossref_primary_10_1590_0001_3765201620150685
crossref_primary_10_1128_JVI_01756_19
crossref_primary_10_1155_2021_7086512
crossref_primary_10_1089_ars_2013_5447
crossref_primary_10_1016_j_bbrc_2012_01_108
crossref_primary_10_3390_v7122966
crossref_primary_10_1007_s00005_011_0144_z
crossref_primary_10_1155_2020_6401341
crossref_primary_10_1038_s41598_019_47633_3
crossref_primary_10_3389_fmicb_2016_01233
crossref_primary_10_1074_jbc_M112_382986
crossref_primary_10_1074_mcp_M111_015909
crossref_primary_10_1371_journal_ppat_1003086
crossref_primary_10_1007_s00705_018_3804_z
crossref_primary_10_1016_j_ijbiomac_2021_11_201
crossref_primary_10_1038_srep09991
crossref_primary_10_1089_ars_2017_7243
crossref_primary_10_1128_JVI_00675_11
crossref_primary_10_3390_v5123142
crossref_primary_10_1016_j_tips_2011_09_001
crossref_primary_10_1016_j_freeradbiomed_2011_04_033
crossref_primary_10_1016_j_freeradbiomed_2012_01_027
crossref_primary_10_4049_jimmunol_1202574
crossref_primary_10_1016_j_micinf_2014_08_007
crossref_primary_10_1371_journal_ppat_1004566
crossref_primary_10_1016_j_cyto_2013_06_001
crossref_primary_10_1111_psyg_12900
crossref_primary_10_3109_08830185_2012_755176
crossref_primary_10_1128_JVI_00718_19
crossref_primary_10_1155_2019_1409582
crossref_primary_10_1159_000533602
crossref_primary_10_1189_jlb_0313153
crossref_primary_10_3147_jsfp_59_39
crossref_primary_10_3390_v14081717
crossref_primary_10_1089_ars_2013_5783
crossref_primary_10_20517_jtgg_2023_38
crossref_primary_10_3390_nu12113512
crossref_primary_10_1126_scisignal_aaw4673
crossref_primary_10_3390_v15020351
crossref_primary_10_1007_s13337_017_0365_9
crossref_primary_10_4049_jimmunol_1201015
crossref_primary_10_1111_febs_12940
crossref_primary_10_3390_v10080392
crossref_primary_10_1074_jbc_M114_587121
crossref_primary_10_2131_jts_41_403
crossref_primary_10_1371_journal_ppat_1002250
crossref_primary_10_1016_j_vetmic_2024_110127
crossref_primary_10_1128_JVI_00978_19
crossref_primary_10_1089_ars_2021_0167
crossref_primary_10_1038_nri2975
crossref_primary_10_1016_j_jprot_2022_104619
crossref_primary_10_1089_ars_2011_4307
crossref_primary_10_1111_cmi_12343
crossref_primary_10_1371_journal_pone_0100269
crossref_primary_10_1111_j_1600_065X_2011_01038_x
crossref_primary_10_1186_s12879_021_05888_0
crossref_primary_10_2174_0929867329666220203122239
crossref_primary_10_1186_s12906_017_1764_6
crossref_primary_10_3390_ijms13067365
crossref_primary_10_1016_j_fsi_2017_05_068
crossref_primary_10_1089_ars_2012_4721
crossref_primary_10_1016_j_bbagen_2011_03_004
crossref_primary_10_1016_j_antiviral_2012_06_003
crossref_primary_10_1126_scisignal_aaf1933
crossref_primary_10_1128_mBio_02094_21
crossref_primary_10_1016_j_jmb_2013_10_007
crossref_primary_10_1016_j_vaccine_2016_09_030
crossref_primary_10_1080_15548627_2019_1580089
crossref_primary_10_1042_CS20140321
crossref_primary_10_1016_j_fsi_2018_07_003
crossref_primary_10_1111_imr_12378
crossref_primary_10_1128_jvi_01990_21
crossref_primary_10_1016_j_trsl_2018_07_014
crossref_primary_10_1007_s00018_012_1013_6
crossref_primary_10_1073_pnas_2408117121
crossref_primary_10_1016_j_micpath_2022_105942
crossref_primary_10_1089_ars_2013_5353
crossref_primary_10_3389_fimmu_2021_646894
crossref_primary_10_1089_jir_2012_0010
crossref_primary_10_3390_ani11071945
crossref_primary_10_1016_j_idnow_2021_06_302
crossref_primary_10_1016_j_jmb_2016_10_028
crossref_primary_10_1016_j_bbamcr_2012_03_005
crossref_primary_10_4049_jimmunol_1102737
crossref_primary_10_7554_eLife_57837
crossref_primary_10_3390_v15020391
crossref_primary_10_3389_fimmu_2021_698042
crossref_primary_10_3390_v8050124
crossref_primary_10_3390_v3081342
crossref_primary_10_1371_journal_pone_0153462
crossref_primary_10_1186_s12974_016_0683_7
crossref_primary_10_1038_s41385_022_00576_x
crossref_primary_10_4049_jimmunol_1100949
crossref_primary_10_1038_s41540_022_00232_x
crossref_primary_10_1155_2018_6208067
Cites_doi 10.1038/nature04734
10.1126/stke.3492006re8
10.1128/JVI.01740-06
10.1111/j.1600-065X.2007.00550.x
10.1084/jem.20080091
10.1016/S0065-3527(07)70006-4
10.1016/j.canlet.2008.02.044
10.1016/j.immuni.2005.04.010
10.1196/annals.1443.020
10.1251/bpo114
10.1046/j.1365-2443.2001.00426.x
10.1152/physrev.00018.2001
10.1002/eji.200636090
10.1016/j.freeradbiomed.2007.06.001
10.1016/j.biochi.2007.04.008
10.1016/S0021-9258(18)53241-5
10.1128/JVI.78.19.10636-10649.2004
10.1016/j.immuni.2008.03.013
10.1038/ni921
10.1128/JVI.01080-07
10.1007/s00210-009-0413-0
10.1038/ni.1815
10.1073/pnas.0700544104
10.1074/jbc.M700421200
10.1128/JVI.01659-08
10.1126/science.1184004
10.1016/j.chom.2009.04.006
10.1038/sj.onc.1209936
10.1158/0008-5472.CAN-08-0432
10.1074/jbc.R700045200
10.1038/nsmb847
10.1016/S0006-2952(02)01165-6
10.1073/pnas.0611551104
10.1128/JVI.02495-05
10.1038/cr.2009.8
10.1159/000136357
10.4049/jimmunol.176.10.5720
10.1089/ars.2006.8.1473
10.1016/j.molimm.2007.10.034
10.1016/j.molimm.2007.11.018
10.1007/s00018-002-8520-9
10.1074/jbc.M209851200
10.1097/FJC.0b013e31815d781d
10.1007/s00281-008-0120-9
10.1128/JVI.02526-07
10.1016/j.bbamcr.2005.03.007
10.1089/ars.2009.2728
10.1038/emboj.2008.126
10.1073/pnas.0807694106
10.1002/eji.200635977
10.1128/MCB.20.17.6342-6353.2000
10.1074/jbc.M310616200
10.4049/jimmunol.0802217
10.1152/physrev.00044.2005
10.4049/jimmunol.180.10.6911
10.1128/JVI.76.11.5532-5539.2002
10.1161/ATVBAHA.108.164277
10.1074/jbc.M704481200
10.1126/science.1081315
10.1016/j.virol.2006.05.022
10.1016/j.freeradbiomed.2009.07.023
10.1152/ajplung.00114.2007
10.1074/jbc.M007790200
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
Soucy-Faulkner et al. 2010
2010 Soucy-Faulkner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Soucy-Faulkner A, Mukawera E, Fink K, Martel A, Jouan L, et al. (2010) Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression. PLoS Pathog 6(6): e1000930. doi:10.1371/journal.ppat.1000930
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: Soucy-Faulkner et al. 2010
– notice: 2010 Soucy-Faulkner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Soucy-Faulkner A, Mukawera E, Fink K, Martel A, Jouan L, et al. (2010) Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression. PLoS Pathog 6(6): e1000930. doi:10.1371/journal.ppat.1000930
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
7T5
7T7
7U9
8FD
C1K
FR3
H94
P64
5PM
DOA
DOI 10.1371/journal.ppat.1000930
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE - Academic


MEDLINE


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate NOX2 Regulation of the Antiviral Response
EISSN 1553-7374
ExternalDocumentID 1289071159
oai_doaj_org_article_d4e84708d269456d9238b3a1367552c0
PMC2880583
A230482806
20532218
10_1371_journal_ppat_1000930
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: MOP#89807
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
7T5
7T7
7U9
8FD
C1K
FR3
H94
P64
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c730t-13b2175c81cc0b04c7abf8b7dc10afc1d4cabc6820f6517d3f26d3c7ea18c3423
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:18 EDT 2023
Wed Aug 27 01:06:57 EDT 2025
Thu Aug 21 18:02:41 EDT 2025
Fri Jul 11 11:34:00 EDT 2025
Tue Aug 05 10:17:45 EDT 2025
Tue Jun 17 21:49:22 EDT 2025
Tue Jun 10 20:46:44 EDT 2025
Fri Jun 27 03:59:19 EDT 2025
Fri Jun 27 03:34:01 EDT 2025
Mon Jul 21 05:52:29 EDT 2025
Tue Jul 01 02:54:26 EDT 2025
Thu Apr 24 23:08:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c730t-13b2175c81cc0b04c7abf8b7dc10afc1d4cabc6820f6517d3f26d3c7ea18c3423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Conceived and designed the experiments: ASF NG. Performed the experiments: ASF EM KF AM LJ YN CVV NG. Analyzed the data: ASF KF CVV NG. Contributed reagents/materials/analysis tools: DL. Wrote the paper: ASF NG. Supervised Loubna Jouan: DL.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1000930
PMID 20532218
PQID 733263072
PQPubID 23479
ParticipantIDs plos_journals_1289071159
doaj_primary_oai_doaj_org_article_d4e84708d269456d9238b3a1367552c0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2880583
proquest_miscellaneous_746164674
proquest_miscellaneous_733263072
gale_infotracmisc_A230482806
gale_infotracacademiconefile_A230482806
gale_incontextgauss_ISR_A230482806
gale_incontextgauss_ISN_A230482806
pubmed_primary_20532218
crossref_citationtrail_10_1371_journal_ppat_1000930
crossref_primary_10_1371_journal_ppat_1000930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Ushio-Fukai (ref59) 2006; 2006
R Lin (ref26) 2006; 80
W Droge (ref7) 2002; 82
T Kawai (ref1) 2008; 1143
P Liu (ref31) 2007; 81
J Johnson (ref43) 2007; 282
DI Brown (ref58) 2009; 47
J Zhao (ref51) 2008; 68
O Chose (ref55) 2008; 51
M Gorospe (ref50) 1993; 268
TK Mukherjee (ref38) 2005; 1744
M Baril (ref61) 2009
T Iwamura (ref63) 2001; 6
R Lin (ref64) 2000; 20
C Bubici (ref48) 2006; 25
N Anilkumar (ref60) 2008; 28
K Arimoto (ref22) 2007; 104
SN Sarkar (ref44) 2004; 11
E Ogier-Denis (ref13) 2008; 30
H Indukuri (ref30) 2006; 353
H Kato (ref20) 2006; 441
K Chen (ref34) 2009
WM Nauseef (ref27) 2007; 219
A Petry (ref53) 2006; 8
A Koarai (ref32) 2009
Y Takemura (ref56)
H Kato (ref19) 2005; 23
H Kato (ref24) 2008; 205
JPY Ting (ref47) 2010; 327
B Zhang (ref46) 2009; 19
MC Tal (ref37) 2009; 106
M Ushio-Fukai (ref33) 2008; 266
PV Vignais (ref10) 2002; 59
KA Fitzgerald (ref6) 2003; 4
LA Tephly (ref39) 2007; 293
JF Clement (ref41) 2008; 82
GC Sen (ref3) 2007; 70
BR tenOever (ref42) 2004; 78
MJ Servant (ref17) 2002; 64
MJ Servant (ref62) 2003; 278
SP Lad (ref66) 2008; 45
M Mori (ref18) 2004; 279
CS Yang (ref14) 2009; 182
J-M Li (ref52) 2007; 43
M Solis (ref36) 2007; 37
MU Gack (ref25) 2009; 5
E Chiang (ref35) 2006; 176
RP Wang (ref45) 2008; 45
AA Dussault (ref65) 2006; 8
B Rada (ref12) 2008; 15
H Peshavariya (ref54) 2009; 380
S Sharma (ref5) 2003; 300
G Groeger (ref49) 2009; 11
F Diao (ref23) 2007; 104
K Fink (ref15) 2008; 180
WM Nauseef (ref8) 2008; 283
N Grandvaux (ref11) 2007; 89
D Soulat (ref40) 2008; 27
RF Wu (ref28) 2007; 282
F You (ref57) 2009
MJ Servant (ref16) 2001; 276
N Grandvaux (ref4) 2002; 76
K Bedard (ref9) 2007; 87
MC Michallet (ref2) 2008; 28
YM Loo (ref21) 2008; 82
RJ Snelgrove (ref29) 2006; 36
References_xml – volume: 441
  start-page: 101
  year: 2006
  ident: ref20
  article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.
  publication-title: Nature
  doi: 10.1038/nature04734
– volume: 2006
  start-page: re8
  year: 2006
  ident: ref59
  article-title: Localizing NADPH oxidase-derived ROS.
  publication-title: Sci STKE
  doi: 10.1126/stke.3492006re8
– volume: 81
  start-page: 1401
  year: 2007
  ident: ref31
  article-title: Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells.
  publication-title: J Virol
  doi: 10.1128/JVI.01740-06
– volume: 219
  start-page: 88
  year: 2007
  ident: ref27
  article-title: How human neutrophils kill and degrade microbes: an integrated view.
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2007.00550.x
– volume: 205
  start-page: 1601
  year: 2008
  ident: ref24
  article-title: Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5.
  publication-title: J Exp Med
  doi: 10.1084/jem.20080091
– volume: 70
  start-page: 233
  year: 2007
  ident: ref3
  article-title: Viral stress-inducible genes.
  publication-title: Adv Virus Res
  doi: 10.1016/S0065-3527(07)70006-4
– volume: 266
  start-page: 37
  year: 2008
  ident: ref33
  article-title: Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy.
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2008.02.044
– volume: 23
  start-page: 19
  year: 2005
  ident: ref19
  article-title: Cell type-specific involvement of RIG-I in antiviral response.
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.04.010
– volume: 1143
  start-page: 1
  year: 2008
  ident: ref1
  article-title: Toll-like receptor and RIG-I-like receptor signaling.
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1443.020
– volume: 8
  start-page: 1
  year: 2006
  ident: ref65
  article-title: Rapid and simple comparison of messenger RNA levels using real-time PCR.
  publication-title: Biol Proced Online
  doi: 10.1251/bpo114
– volume: 6
  start-page: 375
  year: 2001
  ident: ref63
  article-title: Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways.
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2001.00426.x
– volume: 82
  start-page: 47
  year: 2002
  ident: ref7
  article-title: Free radicals in the physiological control of cell function.
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00018.2001
– volume: 37
  start-page: 528
  year: 2007
  ident: ref36
  article-title: Involvement of TBK1 and IKKepsilon in lipopolysaccharide-induced activation of the interferon response in primary human macrophages.
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200636090
– volume: 43
  start-page: 976
  year: 2007
  ident: ref52
  article-title: Nox2 regulates endothelial cell cycle arrest and apoptosis via p21cip1 and p53.
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2007.06.001
– volume: 89
  start-page: 1113
  year: 2007
  ident: ref11
  article-title: Innate host defense: Nox and Duox on phox's tail.
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2007.04.008
– volume: 268
  start-page: 6214
  year: 1993
  ident: ref50
  article-title: Tumor necrosis factor increases stability of interleukin-1 mRNA by activating protein kinase C.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)53241-5
– volume: 78
  start-page: 10636
  year: 2004
  ident: ref42
  article-title: Activation of TBK1 and IKKe Kinases by Vesicular Stomatitis Virus Infection in Human Epithelial Cells.
  publication-title: J Virol
  doi: 10.1128/JVI.78.19.10636-10649.2004
– volume: 28
  start-page: 651
  year: 2008
  ident: ref2
  article-title: TRADD protein is an essential component of the RIG-like helicase antiviral pathway.
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.03.013
– volume: 4
  start-page: 491
  year: 2003
  ident: ref6
  article-title: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway.
  publication-title: Nat Immunol
  doi: 10.1038/ni921
– volume: 82
  start-page: 335
  year: 2008
  ident: ref21
  article-title: Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.
  publication-title: J Virol
  doi: 10.1128/JVI.01080-07
– volume: 380
  start-page: 193
  year: 2009
  ident: ref54
  article-title: NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival.
  publication-title: Naunyn Schmiedebergs Arch Pharmacol
  doi: 10.1007/s00210-009-0413-0
– start-page: 1300
  year: 2009
  ident: ref57
  article-title: PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4.
  publication-title: Nat Immunol
  doi: 10.1038/ni.1815
– volume: 104
  start-page: 11706
  year: 2007
  ident: ref23
  article-title: Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0700544104
– volume: 282
  start-page: 15022
  year: 2007
  ident: ref43
  article-title: Protein kinase Calpha is involved in interferon regulatory factor 3 activation and type I interferon-beta synthesis.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M700421200
– start-page: 1299
  year: 2009
  ident: ref61
  article-title: MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease.
  publication-title: J Virol
  doi: 10.1128/JVI.01659-08
– volume: 327
  start-page: 286
  year: 2010
  ident: ref47
  article-title: How the noninflammasome NLRs function in the innate immune system.
  publication-title: Science
  doi: 10.1126/science.1184004
– volume: 5
  start-page: 439
  year: 2009
  ident: ref25
  article-title: Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I.
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.04.006
– volume: 25
  start-page: 6731
  year: 2006
  ident: ref48
  article-title: Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance.
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209936
– volume: 68
  start-page: 4133
  year: 2008
  ident: ref51
  article-title: TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-0432
– volume: 283
  start-page: 16961
  year: 2008
  ident: ref8
  article-title: Biological roles for the NOX family NADPH oxidases.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R700045200
– volume: 11
  start-page: 1060
  year: 2004
  ident: ref44
  article-title: Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb847
– volume: 64
  start-page: 985
  year: 2002
  ident: ref17
  article-title: Multiple signaling pathways leading to the activation of interferon regulatory factor 3.
  publication-title: Biochem Pharmacol
  doi: 10.1016/S0006-2952(02)01165-6
– volume: 104
  start-page: 7500
  year: 2007
  ident: ref22
  article-title: Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0611551104
– volume: 80
  start-page: 6072
  year: 2006
  ident: ref26
  article-title: Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage.
  publication-title: J Virol
  doi: 10.1128/JVI.02495-05
– volume: 19
  start-page: 412
  year: 2009
  ident: ref46
  article-title: The TAK1-JNK cascade is required for IRF3 function in the innate immune response.
  publication-title: Cell Res
  doi: 10.1038/cr.2009.8
– volume: 15
  start-page: 164
  year: 2008
  ident: ref12
  article-title: Oxidative innate immune defenses by Nox/Duox family NADPH oxidases.
  publication-title: Contrib Microbiol
  doi: 10.1159/000136357
– volume: 176
  start-page: 5720
  year: 2006
  ident: ref35
  article-title: Cutting edge: apoptosis-regulating signal kinase 1 is required for reactive oxygen species-mediated activation of IFN regulatory factor 3 by lipopolysaccharide.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.10.5720
– volume: 8
  start-page: 1473
  year: 2006
  ident: ref53
  article-title: NOX2 and NOX4 mediate proliferative response in endothelial cells.
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2006.8.1473
– volume: 45
  start-page: 1926
  year: 2008
  ident: ref45
  article-title: Differential regulation of IKK alpha-mediated activation of IRF3/7 by NIK.
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2007.10.034
– volume: 45
  start-page: 2277
  year: 2008
  ident: ref66
  article-title: Identification of MAVS splicing variants that interfere with RIGI/MAVS pathway signaling.
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2007.11.018
– volume: 59
  start-page: 1428
  year: 2002
  ident: ref10
  article-title: The superoxide-generating NADPH oxidase: structural aspects and activation mechanism.
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-002-8520-9
– volume: 278
  start-page: 9441
  year: 2003
  ident: ref62
  article-title: Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M209851200
– volume: 51
  start-page: 131
  year: 2008
  ident: ref55
  article-title: Distinct role of nox1, nox2, and p47phox in unstimulated versus angiotensin II-induced NADPH oxidase activity in human venous smooth muscle cells.
  publication-title: J Cardiovasc Pharmacol
  doi: 10.1097/FJC.0b013e31815d781d
– volume: 30
  start-page: 291
  year: 2008
  ident: ref13
  article-title: NOX enzymes and Toll-like receptor signaling.
  publication-title: Semin Immunopathol
  doi: 10.1007/s00281-008-0120-9
– volume: 82
  start-page: 3984
  year: 2008
  ident: ref41
  article-title: Phosphorylation of IRF-3 on Ser 339 generates a hyperactive form of IRF-3 through regulation of dimerization and CBP association.
  publication-title: J Virol
  doi: 10.1128/JVI.02526-07
– year: 2009
  ident: ref34
  article-title: Downstream Targets and Intracellular Compartmentalization in Nox Signaling.
  publication-title: Antioxid Redox Signal
– volume: 1744
  start-page: 213
  year: 2005
  ident: ref38
  article-title: The role of reactive oxygen species in TNFalpha-dependent expression of the receptor for advanced glycation end products in human umbilical vein endothelial cells.
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2005.03.007
– volume: 11
  start-page: 2655
  year: 2009
  ident: ref49
  article-title: Hydrogen peroxide as a cell-survival signaling molecule.
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2009.2728
– volume: 27
  start-page: 2135
  year: 2008
  ident: ref40
  article-title: The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response.
  publication-title: Embo J
  doi: 10.1038/emboj.2008.126
– volume: 106
  start-page: 2770
  year: 2009
  ident: ref37
  article-title: Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0807694106
– volume: 36
  start-page: 1364
  year: 2006
  ident: ref29
  article-title: An absence of reactive oxygen species improves the resolution of lung influenza infection.
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200635977
– volume: 20
  start-page: 6342
  year: 2000
  ident: ref64
  article-title: Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.17.6342-6353.2000
– volume: 279
  start-page: 9698
  year: 2004
  ident: ref18
  article-title: Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M310616200
– volume: 182
  start-page: 3696
  year: 2009
  ident: ref14
  article-title: NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0802217
– ident: ref56
  article-title: Rac1-mediated NADPH Oxidase Release of O2- Regulates Epithelial Sodium Channel (ENaC) activity in the Alveolar Epithelium.
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 87
  start-page: 245
  year: 2007
  ident: ref9
  article-title: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00044.2005
– volume: 180
  start-page: 6911
  year: 2008
  ident: ref15
  article-title: Dual role of NOX2 in respiratory syncytial virus- and sendai virus-induced activation of NF-kappaB in airway epithelial cells.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.10.6911
– volume: 76
  start-page: 5532
  year: 2002
  ident: ref4
  article-title: Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes.
  publication-title: J Virol
  doi: 10.1128/JVI.76.11.5532-5539.2002
– volume: 28
  start-page: 1347
  year: 2008
  ident: ref60
  article-title: Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.108.164277
– volume: 282
  start-page: 37412
  year: 2007
  ident: ref28
  article-title: HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M704481200
– volume: 300
  start-page: 1148
  year: 2003
  ident: ref5
  article-title: Triggering the interferon antiviral response through an IKK-related pathway.
  publication-title: Science
  doi: 10.1126/science.1081315
– volume: 353
  start-page: 155
  year: 2006
  ident: ref30
  article-title: Ikkepsilon regulates viral-induced interferon regulatory factor-3 activation via a redox-sensitive pathway.
  publication-title: Virology
  doi: 10.1016/j.virol.2006.05.022
– volume: 47
  start-page: 1239
  year: 2009
  ident: ref58
  article-title: Nox proteins in signal transduction.
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2009.07.023
– volume: 293
  start-page: L1143
  year: 2007
  ident: ref39
  article-title: Constitutive NADPH oxidase and increased mitochondrial respiratory chain activity regulate chemokine gene expression.
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00114.2007
– volume: 276
  start-page: 355
  year: 2001
  ident: ref16
  article-title: Identification of Distinct Signaling Pathways Leading to the Phosphorylation of Interferon Regulatory Factor 3.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M007790200
– year: 2009
  ident: ref32
  article-title: Oxidative Stress Enhances Toll-like Receptor 3 Response to Double-stranded RNA in Airway Epithelial Cells.
  publication-title: Am J Respir Cell Mol Biol
SSID ssj0041316
Score 2.3476644
Snippet The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune...
  The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000930
SubjectTerms adaptor proteins
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Antimicrobial peptides
Apoptosis
Blotting, Western
Bronchi - cytology
Bronchi - immunology
Bronchi - metabolism
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Biology/Cell Signaling
Cells, Cultured
CYBB protein
Cytoplasm
Data processing
DEAD Box Protein 58
DEAD-box RNA Helicases - genetics
DEAD-box RNA Helicases - metabolism
DNA helicase
Enzymes
Epithelial cells
Experiments
Gene expression
Gene Expression Regulation
Gene regulation
Humans
Immune response
Immune system
Immunity
Immunity, Innate
Immunology/Innate Immunity
Infectious Diseases/Viral Infections
Interferon regulatory factor 3
Interferon Regulatory Factor-3 - genetics
Interferon Regulatory Factor-3 - metabolism
Interleukin-6 - genetics
Interleukin-6 - metabolism
Kinases
Luciferases - metabolism
Lung Neoplasms - immunology
Lung Neoplasms - metabolism
Lung Neoplasms - virology
Medical research
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Mitochondria
Molecular Biology/Translational Regulation
NAD(P)H oxidase
NADPH Oxidase 2
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
nucleic acids
Oxidases
Pathogens
Physiological aspects
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Receptors, Immunologic
Replication
Respiratory tract
Respirovirus Infections - immunology
Respirovirus Infections - metabolism
Respirovirus Infections - virology
Reverse Transcriptase Polymerase Chain Reaction
RNA viruses
RNA, Messenger - genetics
RNA-Binding Proteins
Sendai virus - physiology
Signal Transduction
Transcription
Transcription factors
Viruses
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJSReEOPXAgNZCImnsCROYu-xIMaKtCJ1DPXNsi_2hjQlFVml7Q_Y_82d41YLAvbCa3JW67vL-WzffR9jb72xUhho0hLotArXjNRK8Kn0RDApHdSKmpOP5_XRafllWS1vUX1RTdgADzwobr8pHQbQTDXUclnVDSYkygpDSGNVVUDYreOat9lMDTEYI3MgPSVSnFSKuo5Nc0Lm-9FG71crQ_DRtKXPRotSwO7fRujJ6qLr_5R-_l5FeWtZOnzEHsZ8kk-Heeywe659zO4PDJPXT9jNwlGpbzgD5J3n86_Lgpu24ZgrhkjHu6tr9CFOHZe4aeaYw3IXYCVoxGL2OZ2lobsEM1McSFwT-C9weCitdTzy_OCDs0gERj9zPP1-wt1VLLJtn7LTw0_fPh6lkXkhBfziiZ_e4lalApUDZDYrQRrrlZUN5JnxkDclGItmLDJfV7lshC_qRoB0JldAmILP2KTtWrfLOCZ8Jq-8kubAlIWV1hQ5WS-rXAkg6oSJjeo1RFhyYse40OGuTeL2ZNCkJoPpaLCEpdtRqwGW4w75D2TVrSyBaocH6Go6upq-y9US9oZ8QhNsRkt1OWdm3fd6djLXUzpbV3RL_VehxUjoXRTyHU4WTOyFQJURHNdIcm8kiR8_jF7vkn9u5tzrnC6OJab5BwnjG5_VNIqK6VrXrXstBebsGNuLf4iUNQHPyTJhzwcv36quIC4RTAwTJkf-P9Lt-E374zwAlxe4WFRKvPgfxnjJHgyFHHQgtscmlz_X7hXmh5f2dQgFvwCC72Gn
  priority: 102
  providerName: Directory of Open Access Journals
Title Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression
URI https://www.ncbi.nlm.nih.gov/pubmed/20532218
https://www.proquest.com/docview/733263072
https://www.proquest.com/docview/746164674
https://pubmed.ncbi.nlm.nih.gov/PMC2880583
https://doaj.org/article/d4e84708d269456d9238b3a1367552c0
http://dx.doi.org/10.1371/journal.ppat.1000930
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJyReEN8rjMpCSDxlahInlz0g1KGNFakFdRT1zbIdpyBVSWlWqf0D-L-5c9yKoI29Jnf5OJ_Pd_bd_Rh7WygNsTJ5IAztVuGaEWgwRQAFAUyCNWlGxcmjcXo5FZ9nyeyA7TBbvQDrG0M7wpOarhYnm1_bDzjh3zvUBgh3TCfLpaKG0BSkYxB_iGsT0FQdif25AlpsB4ZKYDkBxCB8Md1tT2ktVq6n_95yd5aLqr7JLf03u_Kv5eriEXvo_Uw-aBTjMTuw5RN2v0Ge3D5lvyeWUoDd3iCvCj7-Mou4KnOOPqSzgLzabFG3OFViYjDN0bfl1rWbII7J8FMwDFzVCXqsyEgYFPgVyO5Sbi33-D94Ye4Bwug1o8H3K243Pvm2fMamF-ffPl4GHpEhMGgJCLdeYwiTmCw0pq_7woDSRaYhN2FfFSbMhVEahzfqF2kSQh4XUZrHBqwKM0O9Bp-zTlmV9ohxdARVmBQZqFMlIg1aRaEKY4yurDAmTrss3oleGt-unFAzFtKdwQGGLY0kJQ2Y9APWZcGea9m067iD_oxGdU9LzbbdhWo1l37uylxYXMP7WU5Vv0mao0-c6Zg-FpIkMviQN6QTktpplJSvM1frupbDq7Ec0J57RqfXtxJNWkTvPFFR4c8a5WskUGTUpqtFedyiRKNgWrePSD93_1zLkA6UAd3_0y7jO52VxEVJdqWt1rWEGH15tPnRf0hESg3pQHTZi0bL96KLCGMEHcYug5b-t2TbvlP-_OEamke4iCRZ_PLuL3vFHjTpG7QNdsw616u1fY1e4bXusXswgx47PDsff5303N5Kz03-P_iMZes
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Requirement+of+NOX2+and+reactive+oxygen+species+for+efficient+RIG-I-mediated+antiviral+response+through+regulation+of+MAVS+expression&rft.jtitle=PLoS+pathogens&rft.au=Soucy-Faulkner%2C+Anton&rft.au=Mukawera%2C+Esp%C3%A9rance&rft.au=Fink%2C+Karin&rft.au=Martel%2C+Alexis&rft.date=2010-06-01&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=6&rft.issue=6&rft.spage=e1000930&rft_id=info:doi/10.1371%2Fjournal.ppat.1000930&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon