Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression
The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the...
Saved in:
Published in | PLoS pathogens Vol. 6; no. 6; p. e1000930 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7374 1553-7366 1553-7374 |
DOI | 10.1371/journal.ppat.1000930 |
Cover
Loading…
Abstract | The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. |
---|---|
AbstractList | The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS.The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. The understanding of the mechanisms allowing the host to mount a rapid and efficient innate immune response to RNA viruses has been the subject of intensive research in recent years. Major groundwork allowed the identification of key sensors of virus nucleic acids, including RIG-I and Mda5, which through association with the MAVS adaptor initiate the signaling cascade required for activation of the IRF-3 transcription factor and downstream antiviral genes. Mechanisms of activation and degradation of key signaling molecules allow a tight control of the intensity and duration of the response. Our knowledge of how redox processes regulate signaling cascades is a fast moving field of research. Particularly, the identification of non-phagocytic reactive oxygen species-producing NADPH oxidase (NOX) enzymes revealed new insights into their function in innate immunity. Our endeavor in characterizing the role of NOX in the antiviral response reveals a new facet to the overall picture of antiviral response regulation. Here, we demonstrate that NOX2 is essential for MAVS expression in airway epithelial cells, thereby controlling the capacity of the cell to mount an efficient innate antiviral response following recognition of viruses. The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNb and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. The understanding of the mechanisms allowing the host to mount a rapid and efficient innate immune response to RNA viruses has been the subject of intensive research in recent years. Major groundwork allowed the identification of key sensors of virus nucleic acids, including RIG-I and Mda5, which through association with the MAVS adaptor initiate the signaling cascade required for activation of the IRF-3 transcription factor and downstream antiviral genes. Mechanisms of activation and degradation of key signaling molecules allow a tight control of the intensity and duration of the response. Our knowledge of how redox processes regulate signaling cascades is a fast moving field of research. Particularly, the identification of non-phagocytic reactive oxygen species-producing NADPH oxidase (NOX) enzymes revealed new insights into their function in innate immunity. Our endeavor in characterizing the role of NOX in the antiviral response reveals a new facet to the overall picture of antiviral response regulation. Here, we demonstrate that NOX2 is essential for MAVS expression in airway epithelial cells, thereby controlling the capacity of the cell to mount an efficient innate antiviral response following recognition of viruses. |
Audience | Academic |
Author | Jouan, Loubna Soucy-Faulkner, Anton Fink, Karin Vande Velde, Christine Nzengue, Yves Grandvaux, Nathalie Mukawera, Espérance Martel, Alexis Lamarre, Daniel |
AuthorAffiliation | 1 CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada 2 Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada North Carolina State University, United States of America 3 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada |
AuthorAffiliation_xml | – name: North Carolina State University, United States of America – name: 1 CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada – name: 3 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada – name: 2 Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada |
Author_xml | – sequence: 1 givenname: Anton surname: Soucy-Faulkner fullname: Soucy-Faulkner, Anton – sequence: 2 givenname: Espérance surname: Mukawera fullname: Mukawera, Espérance – sequence: 3 givenname: Karin surname: Fink fullname: Fink, Karin – sequence: 4 givenname: Alexis surname: Martel fullname: Martel, Alexis – sequence: 5 givenname: Loubna surname: Jouan fullname: Jouan, Loubna – sequence: 6 givenname: Yves surname: Nzengue fullname: Nzengue, Yves – sequence: 7 givenname: Daniel surname: Lamarre fullname: Lamarre, Daniel – sequence: 8 givenname: Christine surname: Vande Velde fullname: Vande Velde, Christine – sequence: 9 givenname: Nathalie surname: Grandvaux fullname: Grandvaux, Nathalie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20532218$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAUhiM0xD7gHyCIxAXiosVfsV0ukKqpjErbKrWAuLMcf6Se0jizk6n7Afxv3LVFK0IglIskJ8_7nuTNOafZUeMbk2UvIRhCzOD7G9-HRtbDtpXdEAIARhg8yU5gUeABw4wcPbo-zk5jvAGAQAzps-wYgQIjBPlJ9mNubnsXzMo0Xe5tfj37jnLZ6HxupOrcncln6_vKNPmiNcqZmFsf8om1Lt0kxXx6MZgOrox2sjM6HzdJ4oKskzy2vokm75bB99UyFaq-lp3zzabN1fjbIp-s22BiTKXn2VMr62he7M5n2ddPky_nnweXs4vp-fhyoBgG3QDiEkFWKA6VAiUgisnS8pJpBYG0CmqiZKkoR8DSAjKNLaIaK2Yk5AoThM-y11vftvZR7BKMAiI-AgzCYpSI6ZbQXt6INriVDPfCSyceCj5UQobOqdoITQwnDHCN6IgUVI8Q5iWWEFNWFEiB5PVx160vV0arFFiK5sD08EnjlqLydwJxDgqOk8HbnUHwt72JnVi5qExdy8b4PgpGKKSEMvJvEmNEMWCbCN5syUqmb3CN9am12tBijDAgHHFAEzX8A5UObVZOpUG0LtUPBO8OBInpzLqrZB-jmC7m_8FeH7KvHmf4K7z9BCfgwxZQwccYjBXKdQ9zlt7Y1QICsVmX_c8Wm3URu3VJYvKbeO__V9lPOY8ZmA |
CitedBy_id | crossref_primary_10_1038_embor_2011_157 crossref_primary_10_1124_mol_114_095216 crossref_primary_10_1016_j_ejcb_2011_01_011 crossref_primary_10_3390_nu7064240 crossref_primary_10_1074_jbc_M116_749028 crossref_primary_10_1165_rcmb_2014_0334OC crossref_primary_10_3390_cells13211789 crossref_primary_10_1038_s41598_019_40941_8 crossref_primary_10_1152_physrev_00030_2019 crossref_primary_10_1080_21505594_2017_1421893 crossref_primary_10_1002_eji_201646484 crossref_primary_10_1590_0001_3765201620150685 crossref_primary_10_1128_JVI_01756_19 crossref_primary_10_1155_2021_7086512 crossref_primary_10_1089_ars_2013_5447 crossref_primary_10_1016_j_bbrc_2012_01_108 crossref_primary_10_3390_v7122966 crossref_primary_10_1007_s00005_011_0144_z crossref_primary_10_1155_2020_6401341 crossref_primary_10_1038_s41598_019_47633_3 crossref_primary_10_3389_fmicb_2016_01233 crossref_primary_10_1074_jbc_M112_382986 crossref_primary_10_1074_mcp_M111_015909 crossref_primary_10_1371_journal_ppat_1003086 crossref_primary_10_1007_s00705_018_3804_z crossref_primary_10_1016_j_ijbiomac_2021_11_201 crossref_primary_10_1038_srep09991 crossref_primary_10_1089_ars_2017_7243 crossref_primary_10_1128_JVI_00675_11 crossref_primary_10_3390_v5123142 crossref_primary_10_1016_j_tips_2011_09_001 crossref_primary_10_1016_j_freeradbiomed_2011_04_033 crossref_primary_10_1016_j_freeradbiomed_2012_01_027 crossref_primary_10_4049_jimmunol_1202574 crossref_primary_10_1016_j_micinf_2014_08_007 crossref_primary_10_1371_journal_ppat_1004566 crossref_primary_10_1016_j_cyto_2013_06_001 crossref_primary_10_1111_psyg_12900 crossref_primary_10_3109_08830185_2012_755176 crossref_primary_10_1128_JVI_00718_19 crossref_primary_10_1155_2019_1409582 crossref_primary_10_1159_000533602 crossref_primary_10_1189_jlb_0313153 crossref_primary_10_3147_jsfp_59_39 crossref_primary_10_3390_v14081717 crossref_primary_10_1089_ars_2013_5783 crossref_primary_10_20517_jtgg_2023_38 crossref_primary_10_3390_nu12113512 crossref_primary_10_1126_scisignal_aaw4673 crossref_primary_10_3390_v15020351 crossref_primary_10_1007_s13337_017_0365_9 crossref_primary_10_4049_jimmunol_1201015 crossref_primary_10_1111_febs_12940 crossref_primary_10_3390_v10080392 crossref_primary_10_1074_jbc_M114_587121 crossref_primary_10_2131_jts_41_403 crossref_primary_10_1371_journal_ppat_1002250 crossref_primary_10_1016_j_vetmic_2024_110127 crossref_primary_10_1128_JVI_00978_19 crossref_primary_10_1089_ars_2021_0167 crossref_primary_10_1038_nri2975 crossref_primary_10_1016_j_jprot_2022_104619 crossref_primary_10_1089_ars_2011_4307 crossref_primary_10_1111_cmi_12343 crossref_primary_10_1371_journal_pone_0100269 crossref_primary_10_1111_j_1600_065X_2011_01038_x crossref_primary_10_1186_s12879_021_05888_0 crossref_primary_10_2174_0929867329666220203122239 crossref_primary_10_1186_s12906_017_1764_6 crossref_primary_10_3390_ijms13067365 crossref_primary_10_1016_j_fsi_2017_05_068 crossref_primary_10_1089_ars_2012_4721 crossref_primary_10_1016_j_bbagen_2011_03_004 crossref_primary_10_1016_j_antiviral_2012_06_003 crossref_primary_10_1126_scisignal_aaf1933 crossref_primary_10_1128_mBio_02094_21 crossref_primary_10_1016_j_jmb_2013_10_007 crossref_primary_10_1016_j_vaccine_2016_09_030 crossref_primary_10_1080_15548627_2019_1580089 crossref_primary_10_1042_CS20140321 crossref_primary_10_1016_j_fsi_2018_07_003 crossref_primary_10_1111_imr_12378 crossref_primary_10_1128_jvi_01990_21 crossref_primary_10_1016_j_trsl_2018_07_014 crossref_primary_10_1007_s00018_012_1013_6 crossref_primary_10_1073_pnas_2408117121 crossref_primary_10_1016_j_micpath_2022_105942 crossref_primary_10_1089_ars_2013_5353 crossref_primary_10_3389_fimmu_2021_646894 crossref_primary_10_1089_jir_2012_0010 crossref_primary_10_3390_ani11071945 crossref_primary_10_1016_j_idnow_2021_06_302 crossref_primary_10_1016_j_jmb_2016_10_028 crossref_primary_10_1016_j_bbamcr_2012_03_005 crossref_primary_10_4049_jimmunol_1102737 crossref_primary_10_7554_eLife_57837 crossref_primary_10_3390_v15020391 crossref_primary_10_3389_fimmu_2021_698042 crossref_primary_10_3390_v8050124 crossref_primary_10_3390_v3081342 crossref_primary_10_1371_journal_pone_0153462 crossref_primary_10_1186_s12974_016_0683_7 crossref_primary_10_1038_s41385_022_00576_x crossref_primary_10_4049_jimmunol_1100949 crossref_primary_10_1038_s41540_022_00232_x crossref_primary_10_1155_2018_6208067 |
Cites_doi | 10.1038/nature04734 10.1126/stke.3492006re8 10.1128/JVI.01740-06 10.1111/j.1600-065X.2007.00550.x 10.1084/jem.20080091 10.1016/S0065-3527(07)70006-4 10.1016/j.canlet.2008.02.044 10.1016/j.immuni.2005.04.010 10.1196/annals.1443.020 10.1251/bpo114 10.1046/j.1365-2443.2001.00426.x 10.1152/physrev.00018.2001 10.1002/eji.200636090 10.1016/j.freeradbiomed.2007.06.001 10.1016/j.biochi.2007.04.008 10.1016/S0021-9258(18)53241-5 10.1128/JVI.78.19.10636-10649.2004 10.1016/j.immuni.2008.03.013 10.1038/ni921 10.1128/JVI.01080-07 10.1007/s00210-009-0413-0 10.1038/ni.1815 10.1073/pnas.0700544104 10.1074/jbc.M700421200 10.1128/JVI.01659-08 10.1126/science.1184004 10.1016/j.chom.2009.04.006 10.1038/sj.onc.1209936 10.1158/0008-5472.CAN-08-0432 10.1074/jbc.R700045200 10.1038/nsmb847 10.1016/S0006-2952(02)01165-6 10.1073/pnas.0611551104 10.1128/JVI.02495-05 10.1038/cr.2009.8 10.1159/000136357 10.4049/jimmunol.176.10.5720 10.1089/ars.2006.8.1473 10.1016/j.molimm.2007.10.034 10.1016/j.molimm.2007.11.018 10.1007/s00018-002-8520-9 10.1074/jbc.M209851200 10.1097/FJC.0b013e31815d781d 10.1007/s00281-008-0120-9 10.1128/JVI.02526-07 10.1016/j.bbamcr.2005.03.007 10.1089/ars.2009.2728 10.1038/emboj.2008.126 10.1073/pnas.0807694106 10.1002/eji.200635977 10.1128/MCB.20.17.6342-6353.2000 10.1074/jbc.M310616200 10.4049/jimmunol.0802217 10.1152/physrev.00044.2005 10.4049/jimmunol.180.10.6911 10.1128/JVI.76.11.5532-5539.2002 10.1161/ATVBAHA.108.164277 10.1074/jbc.M704481200 10.1126/science.1081315 10.1016/j.virol.2006.05.022 10.1016/j.freeradbiomed.2009.07.023 10.1152/ajplung.00114.2007 10.1074/jbc.M007790200 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science Soucy-Faulkner et al. 2010 2010 Soucy-Faulkner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Soucy-Faulkner A, Mukawera E, Fink K, Martel A, Jouan L, et al. (2010) Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression. PLoS Pathog 6(6): e1000930. doi:10.1371/journal.ppat.1000930 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: Soucy-Faulkner et al. 2010 – notice: 2010 Soucy-Faulkner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Soucy-Faulkner A, Mukawera E, Fink K, Martel A, Jouan L, et al. (2010) Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression. PLoS Pathog 6(6): e1000930. doi:10.1371/journal.ppat.1000930 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 7T5 7T7 7U9 8FD C1K FR3 H94 P64 5PM DOA |
DOI | 10.1371/journal.ppat.1000930 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | NOX2 Regulation of the Antiviral Response |
EISSN | 1553-7374 |
ExternalDocumentID | 1289071159 oai_doaj_org_article_d4e84708d269456d9238b3a1367552c0 PMC2880583 A230482806 20532218 10_1371_journal_ppat_1000930 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: MOP#89807 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QN7 RIG RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 7X8 7T5 7T7 7U9 8FD C1K FR3 H94 P64 5PM PUEGO 3V. AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c730t-13b2175c81cc0b04c7abf8b7dc10afc1d4cabc6820f6517d3f26d3c7ea18c3423 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:18 EDT 2023 Wed Aug 27 01:06:57 EDT 2025 Thu Aug 21 18:02:41 EDT 2025 Fri Jul 11 11:34:00 EDT 2025 Tue Aug 05 10:17:45 EDT 2025 Tue Jun 17 21:49:22 EDT 2025 Tue Jun 10 20:46:44 EDT 2025 Fri Jun 27 03:59:19 EDT 2025 Fri Jun 27 03:34:01 EDT 2025 Mon Jul 21 05:52:29 EDT 2025 Tue Jul 01 02:54:26 EDT 2025 Thu Apr 24 23:08:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c730t-13b2175c81cc0b04c7abf8b7dc10afc1d4cabc6820f6517d3f26d3c7ea18c3423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Conceived and designed the experiments: ASF NG. Performed the experiments: ASF EM KF AM LJ YN CVV NG. Analyzed the data: ASF KF CVV NG. Contributed reagents/materials/analysis tools: DL. Wrote the paper: ASF NG. Supervised Loubna Jouan: DL. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1000930 |
PMID | 20532218 |
PQID | 733263072 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1289071159 doaj_primary_oai_doaj_org_article_d4e84708d269456d9238b3a1367552c0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2880583 proquest_miscellaneous_746164674 proquest_miscellaneous_733263072 gale_infotracmisc_A230482806 gale_infotracacademiconefile_A230482806 gale_incontextgauss_ISR_A230482806 gale_incontextgauss_ISN_A230482806 pubmed_primary_20532218 crossref_citationtrail_10_1371_journal_ppat_1000930 crossref_primary_10_1371_journal_ppat_1000930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-06-01 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M Ushio-Fukai (ref59) 2006; 2006 R Lin (ref26) 2006; 80 W Droge (ref7) 2002; 82 T Kawai (ref1) 2008; 1143 P Liu (ref31) 2007; 81 J Johnson (ref43) 2007; 282 DI Brown (ref58) 2009; 47 J Zhao (ref51) 2008; 68 O Chose (ref55) 2008; 51 M Gorospe (ref50) 1993; 268 TK Mukherjee (ref38) 2005; 1744 M Baril (ref61) 2009 T Iwamura (ref63) 2001; 6 R Lin (ref64) 2000; 20 C Bubici (ref48) 2006; 25 N Anilkumar (ref60) 2008; 28 K Arimoto (ref22) 2007; 104 SN Sarkar (ref44) 2004; 11 E Ogier-Denis (ref13) 2008; 30 H Indukuri (ref30) 2006; 353 H Kato (ref20) 2006; 441 K Chen (ref34) 2009 WM Nauseef (ref27) 2007; 219 A Petry (ref53) 2006; 8 A Koarai (ref32) 2009 Y Takemura (ref56) H Kato (ref19) 2005; 23 H Kato (ref24) 2008; 205 JPY Ting (ref47) 2010; 327 B Zhang (ref46) 2009; 19 MC Tal (ref37) 2009; 106 M Ushio-Fukai (ref33) 2008; 266 PV Vignais (ref10) 2002; 59 KA Fitzgerald (ref6) 2003; 4 LA Tephly (ref39) 2007; 293 JF Clement (ref41) 2008; 82 GC Sen (ref3) 2007; 70 BR tenOever (ref42) 2004; 78 MJ Servant (ref17) 2002; 64 MJ Servant (ref62) 2003; 278 SP Lad (ref66) 2008; 45 M Mori (ref18) 2004; 279 CS Yang (ref14) 2009; 182 J-M Li (ref52) 2007; 43 M Solis (ref36) 2007; 37 MU Gack (ref25) 2009; 5 E Chiang (ref35) 2006; 176 RP Wang (ref45) 2008; 45 AA Dussault (ref65) 2006; 8 B Rada (ref12) 2008; 15 H Peshavariya (ref54) 2009; 380 S Sharma (ref5) 2003; 300 G Groeger (ref49) 2009; 11 F Diao (ref23) 2007; 104 K Fink (ref15) 2008; 180 WM Nauseef (ref8) 2008; 283 N Grandvaux (ref11) 2007; 89 D Soulat (ref40) 2008; 27 RF Wu (ref28) 2007; 282 F You (ref57) 2009 MJ Servant (ref16) 2001; 276 N Grandvaux (ref4) 2002; 76 K Bedard (ref9) 2007; 87 MC Michallet (ref2) 2008; 28 YM Loo (ref21) 2008; 82 RJ Snelgrove (ref29) 2006; 36 |
References_xml | – volume: 441 start-page: 101 year: 2006 ident: ref20 article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. publication-title: Nature doi: 10.1038/nature04734 – volume: 2006 start-page: re8 year: 2006 ident: ref59 article-title: Localizing NADPH oxidase-derived ROS. publication-title: Sci STKE doi: 10.1126/stke.3492006re8 – volume: 81 start-page: 1401 year: 2007 ident: ref31 article-title: Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. publication-title: J Virol doi: 10.1128/JVI.01740-06 – volume: 219 start-page: 88 year: 2007 ident: ref27 article-title: How human neutrophils kill and degrade microbes: an integrated view. publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2007.00550.x – volume: 205 start-page: 1601 year: 2008 ident: ref24 article-title: Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. publication-title: J Exp Med doi: 10.1084/jem.20080091 – volume: 70 start-page: 233 year: 2007 ident: ref3 article-title: Viral stress-inducible genes. publication-title: Adv Virus Res doi: 10.1016/S0065-3527(07)70006-4 – volume: 266 start-page: 37 year: 2008 ident: ref33 article-title: Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. publication-title: Cancer Lett doi: 10.1016/j.canlet.2008.02.044 – volume: 23 start-page: 19 year: 2005 ident: ref19 article-title: Cell type-specific involvement of RIG-I in antiviral response. publication-title: Immunity doi: 10.1016/j.immuni.2005.04.010 – volume: 1143 start-page: 1 year: 2008 ident: ref1 article-title: Toll-like receptor and RIG-I-like receptor signaling. publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1443.020 – volume: 8 start-page: 1 year: 2006 ident: ref65 article-title: Rapid and simple comparison of messenger RNA levels using real-time PCR. publication-title: Biol Proced Online doi: 10.1251/bpo114 – volume: 6 start-page: 375 year: 2001 ident: ref63 article-title: Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. publication-title: Genes Cells doi: 10.1046/j.1365-2443.2001.00426.x – volume: 82 start-page: 47 year: 2002 ident: ref7 article-title: Free radicals in the physiological control of cell function. publication-title: Physiol Rev doi: 10.1152/physrev.00018.2001 – volume: 37 start-page: 528 year: 2007 ident: ref36 article-title: Involvement of TBK1 and IKKepsilon in lipopolysaccharide-induced activation of the interferon response in primary human macrophages. publication-title: Eur J Immunol doi: 10.1002/eji.200636090 – volume: 43 start-page: 976 year: 2007 ident: ref52 article-title: Nox2 regulates endothelial cell cycle arrest and apoptosis via p21cip1 and p53. publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2007.06.001 – volume: 89 start-page: 1113 year: 2007 ident: ref11 article-title: Innate host defense: Nox and Duox on phox's tail. publication-title: Biochimie doi: 10.1016/j.biochi.2007.04.008 – volume: 268 start-page: 6214 year: 1993 ident: ref50 article-title: Tumor necrosis factor increases stability of interleukin-1 mRNA by activating protein kinase C. publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)53241-5 – volume: 78 start-page: 10636 year: 2004 ident: ref42 article-title: Activation of TBK1 and IKKe Kinases by Vesicular Stomatitis Virus Infection in Human Epithelial Cells. publication-title: J Virol doi: 10.1128/JVI.78.19.10636-10649.2004 – volume: 28 start-page: 651 year: 2008 ident: ref2 article-title: TRADD protein is an essential component of the RIG-like helicase antiviral pathway. publication-title: Immunity doi: 10.1016/j.immuni.2008.03.013 – volume: 4 start-page: 491 year: 2003 ident: ref6 article-title: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. publication-title: Nat Immunol doi: 10.1038/ni921 – volume: 82 start-page: 335 year: 2008 ident: ref21 article-title: Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. publication-title: J Virol doi: 10.1128/JVI.01080-07 – volume: 380 start-page: 193 year: 2009 ident: ref54 article-title: NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. publication-title: Naunyn Schmiedebergs Arch Pharmacol doi: 10.1007/s00210-009-0413-0 – start-page: 1300 year: 2009 ident: ref57 article-title: PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. publication-title: Nat Immunol doi: 10.1038/ni.1815 – volume: 104 start-page: 11706 year: 2007 ident: ref23 article-title: Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0700544104 – volume: 282 start-page: 15022 year: 2007 ident: ref43 article-title: Protein kinase Calpha is involved in interferon regulatory factor 3 activation and type I interferon-beta synthesis. publication-title: J Biol Chem doi: 10.1074/jbc.M700421200 – start-page: 1299 year: 2009 ident: ref61 article-title: MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease. publication-title: J Virol doi: 10.1128/JVI.01659-08 – volume: 327 start-page: 286 year: 2010 ident: ref47 article-title: How the noninflammasome NLRs function in the innate immune system. publication-title: Science doi: 10.1126/science.1184004 – volume: 5 start-page: 439 year: 2009 ident: ref25 article-title: Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.04.006 – volume: 25 start-page: 6731 year: 2006 ident: ref48 article-title: Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. publication-title: Oncogene doi: 10.1038/sj.onc.1209936 – volume: 68 start-page: 4133 year: 2008 ident: ref51 article-title: TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-0432 – volume: 283 start-page: 16961 year: 2008 ident: ref8 article-title: Biological roles for the NOX family NADPH oxidases. publication-title: J Biol Chem doi: 10.1074/jbc.R700045200 – volume: 11 start-page: 1060 year: 2004 ident: ref44 article-title: Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb847 – volume: 64 start-page: 985 year: 2002 ident: ref17 article-title: Multiple signaling pathways leading to the activation of interferon regulatory factor 3. publication-title: Biochem Pharmacol doi: 10.1016/S0006-2952(02)01165-6 – volume: 104 start-page: 7500 year: 2007 ident: ref22 article-title: Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0611551104 – volume: 80 start-page: 6072 year: 2006 ident: ref26 article-title: Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. publication-title: J Virol doi: 10.1128/JVI.02495-05 – volume: 19 start-page: 412 year: 2009 ident: ref46 article-title: The TAK1-JNK cascade is required for IRF3 function in the innate immune response. publication-title: Cell Res doi: 10.1038/cr.2009.8 – volume: 15 start-page: 164 year: 2008 ident: ref12 article-title: Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. publication-title: Contrib Microbiol doi: 10.1159/000136357 – volume: 176 start-page: 5720 year: 2006 ident: ref35 article-title: Cutting edge: apoptosis-regulating signal kinase 1 is required for reactive oxygen species-mediated activation of IFN regulatory factor 3 by lipopolysaccharide. publication-title: J Immunol doi: 10.4049/jimmunol.176.10.5720 – volume: 8 start-page: 1473 year: 2006 ident: ref53 article-title: NOX2 and NOX4 mediate proliferative response in endothelial cells. publication-title: Antioxid Redox Signal doi: 10.1089/ars.2006.8.1473 – volume: 45 start-page: 1926 year: 2008 ident: ref45 article-title: Differential regulation of IKK alpha-mediated activation of IRF3/7 by NIK. publication-title: Mol Immunol doi: 10.1016/j.molimm.2007.10.034 – volume: 45 start-page: 2277 year: 2008 ident: ref66 article-title: Identification of MAVS splicing variants that interfere with RIGI/MAVS pathway signaling. publication-title: Mol Immunol doi: 10.1016/j.molimm.2007.11.018 – volume: 59 start-page: 1428 year: 2002 ident: ref10 article-title: The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. publication-title: Cell Mol Life Sci doi: 10.1007/s00018-002-8520-9 – volume: 278 start-page: 9441 year: 2003 ident: ref62 article-title: Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. publication-title: J Biol Chem doi: 10.1074/jbc.M209851200 – volume: 51 start-page: 131 year: 2008 ident: ref55 article-title: Distinct role of nox1, nox2, and p47phox in unstimulated versus angiotensin II-induced NADPH oxidase activity in human venous smooth muscle cells. publication-title: J Cardiovasc Pharmacol doi: 10.1097/FJC.0b013e31815d781d – volume: 30 start-page: 291 year: 2008 ident: ref13 article-title: NOX enzymes and Toll-like receptor signaling. publication-title: Semin Immunopathol doi: 10.1007/s00281-008-0120-9 – volume: 82 start-page: 3984 year: 2008 ident: ref41 article-title: Phosphorylation of IRF-3 on Ser 339 generates a hyperactive form of IRF-3 through regulation of dimerization and CBP association. publication-title: J Virol doi: 10.1128/JVI.02526-07 – year: 2009 ident: ref34 article-title: Downstream Targets and Intracellular Compartmentalization in Nox Signaling. publication-title: Antioxid Redox Signal – volume: 1744 start-page: 213 year: 2005 ident: ref38 article-title: The role of reactive oxygen species in TNFalpha-dependent expression of the receptor for advanced glycation end products in human umbilical vein endothelial cells. publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2005.03.007 – volume: 11 start-page: 2655 year: 2009 ident: ref49 article-title: Hydrogen peroxide as a cell-survival signaling molecule. publication-title: Antioxid Redox Signal doi: 10.1089/ars.2009.2728 – volume: 27 start-page: 2135 year: 2008 ident: ref40 article-title: The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. publication-title: Embo J doi: 10.1038/emboj.2008.126 – volume: 106 start-page: 2770 year: 2009 ident: ref37 article-title: Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0807694106 – volume: 36 start-page: 1364 year: 2006 ident: ref29 article-title: An absence of reactive oxygen species improves the resolution of lung influenza infection. publication-title: Eur J Immunol doi: 10.1002/eji.200635977 – volume: 20 start-page: 6342 year: 2000 ident: ref64 article-title: Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. publication-title: Mol Cell Biol doi: 10.1128/MCB.20.17.6342-6353.2000 – volume: 279 start-page: 9698 year: 2004 ident: ref18 article-title: Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. publication-title: J Biol Chem doi: 10.1074/jbc.M310616200 – volume: 182 start-page: 3696 year: 2009 ident: ref14 article-title: NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. publication-title: J Immunol doi: 10.4049/jimmunol.0802217 – ident: ref56 article-title: Rac1-mediated NADPH Oxidase Release of O2- Regulates Epithelial Sodium Channel (ENaC) activity in the Alveolar Epithelium. publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 87 start-page: 245 year: 2007 ident: ref9 article-title: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. publication-title: Physiol Rev doi: 10.1152/physrev.00044.2005 – volume: 180 start-page: 6911 year: 2008 ident: ref15 article-title: Dual role of NOX2 in respiratory syncytial virus- and sendai virus-induced activation of NF-kappaB in airway epithelial cells. publication-title: J Immunol doi: 10.4049/jimmunol.180.10.6911 – volume: 76 start-page: 5532 year: 2002 ident: ref4 article-title: Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. publication-title: J Virol doi: 10.1128/JVI.76.11.5532-5539.2002 – volume: 28 start-page: 1347 year: 2008 ident: ref60 article-title: Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.108.164277 – volume: 282 start-page: 37412 year: 2007 ident: ref28 article-title: HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases. publication-title: J Biol Chem doi: 10.1074/jbc.M704481200 – volume: 300 start-page: 1148 year: 2003 ident: ref5 article-title: Triggering the interferon antiviral response through an IKK-related pathway. publication-title: Science doi: 10.1126/science.1081315 – volume: 353 start-page: 155 year: 2006 ident: ref30 article-title: Ikkepsilon regulates viral-induced interferon regulatory factor-3 activation via a redox-sensitive pathway. publication-title: Virology doi: 10.1016/j.virol.2006.05.022 – volume: 47 start-page: 1239 year: 2009 ident: ref58 article-title: Nox proteins in signal transduction. publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2009.07.023 – volume: 293 start-page: L1143 year: 2007 ident: ref39 article-title: Constitutive NADPH oxidase and increased mitochondrial respiratory chain activity regulate chemokine gene expression. publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.00114.2007 – volume: 276 start-page: 355 year: 2001 ident: ref16 article-title: Identification of Distinct Signaling Pathways Leading to the Phosphorylation of Interferon Regulatory Factor 3. publication-title: J Biol Chem doi: 10.1074/jbc.M007790200 – year: 2009 ident: ref32 article-title: Oxidative Stress Enhances Toll-like Receptor 3 Response to Double-stranded RNA in Airway Epithelial Cells. publication-title: Am J Respir Cell Mol Biol |
SSID | ssj0041316 |
Score | 2.3476644 |
Snippet | The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune... The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1000930 |
SubjectTerms | adaptor proteins Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Antimicrobial peptides Apoptosis Blotting, Western Bronchi - cytology Bronchi - immunology Bronchi - metabolism Carrier Proteins - genetics Carrier Proteins - metabolism Cell Biology/Cell Signaling Cells, Cultured CYBB protein Cytoplasm Data processing DEAD Box Protein 58 DEAD-box RNA Helicases - genetics DEAD-box RNA Helicases - metabolism DNA helicase Enzymes Epithelial cells Experiments Gene expression Gene Expression Regulation Gene regulation Humans Immune response Immune system Immunity Immunity, Innate Immunology/Innate Immunity Infectious Diseases/Viral Infections Interferon regulatory factor 3 Interferon Regulatory Factor-3 - genetics Interferon Regulatory Factor-3 - metabolism Interleukin-6 - genetics Interleukin-6 - metabolism Kinases Luciferases - metabolism Lung Neoplasms - immunology Lung Neoplasms - metabolism Lung Neoplasms - virology Medical research Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Mitochondria Molecular Biology/Translational Regulation NAD(P)H oxidase NADPH Oxidase 2 NADPH Oxidases - genetics NADPH Oxidases - metabolism nucleic acids Oxidases Pathogens Physiological aspects Proteins Reactive oxygen species Reactive Oxygen Species - metabolism Receptors, Immunologic Replication Respiratory tract Respirovirus Infections - immunology Respirovirus Infections - metabolism Respirovirus Infections - virology Reverse Transcriptase Polymerase Chain Reaction RNA viruses RNA, Messenger - genetics RNA-Binding Proteins Sendai virus - physiology Signal Transduction Transcription Transcription factors Viruses |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJSReEOPXAgNZCImnsCROYu-xIMaKtCJ1DPXNsi_2hjQlFVml7Q_Y_82d41YLAvbCa3JW67vL-WzffR9jb72xUhho0hLotArXjNRK8Kn0RDApHdSKmpOP5_XRafllWS1vUX1RTdgADzwobr8pHQbQTDXUclnVDSYkygpDSGNVVUDYreOat9lMDTEYI3MgPSVSnFSKuo5Nc0Lm-9FG71crQ_DRtKXPRotSwO7fRujJ6qLr_5R-_l5FeWtZOnzEHsZ8kk-Heeywe659zO4PDJPXT9jNwlGpbzgD5J3n86_Lgpu24ZgrhkjHu6tr9CFOHZe4aeaYw3IXYCVoxGL2OZ2lobsEM1McSFwT-C9weCitdTzy_OCDs0gERj9zPP1-wt1VLLJtn7LTw0_fPh6lkXkhBfziiZ_e4lalApUDZDYrQRrrlZUN5JnxkDclGItmLDJfV7lshC_qRoB0JldAmILP2KTtWrfLOCZ8Jq-8kubAlIWV1hQ5WS-rXAkg6oSJjeo1RFhyYse40OGuTeL2ZNCkJoPpaLCEpdtRqwGW4w75D2TVrSyBaocH6Go6upq-y9US9oZ8QhNsRkt1OWdm3fd6djLXUzpbV3RL_VehxUjoXRTyHU4WTOyFQJURHNdIcm8kiR8_jF7vkn9u5tzrnC6OJab5BwnjG5_VNIqK6VrXrXstBebsGNuLf4iUNQHPyTJhzwcv36quIC4RTAwTJkf-P9Lt-E374zwAlxe4WFRKvPgfxnjJHgyFHHQgtscmlz_X7hXmh5f2dQgFvwCC72Gn priority: 102 providerName: Directory of Open Access Journals |
Title | Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20532218 https://www.proquest.com/docview/733263072 https://www.proquest.com/docview/746164674 https://pubmed.ncbi.nlm.nih.gov/PMC2880583 https://doaj.org/article/d4e84708d269456d9238b3a1367552c0 http://dx.doi.org/10.1371/journal.ppat.1000930 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJyReEN8rjMpCSDxlahInlz0g1KGNFakFdRT1zbIdpyBVSWlWqf0D-L-5c9yKoI29Jnf5OJ_Pd_bd_Rh7WygNsTJ5IAztVuGaEWgwRQAFAUyCNWlGxcmjcXo5FZ9nyeyA7TBbvQDrG0M7wpOarhYnm1_bDzjh3zvUBgh3TCfLpaKG0BSkYxB_iGsT0FQdif25AlpsB4ZKYDkBxCB8Md1tT2ktVq6n_95yd5aLqr7JLf03u_Kv5eriEXvo_Uw-aBTjMTuw5RN2v0Ge3D5lvyeWUoDd3iCvCj7-Mou4KnOOPqSzgLzabFG3OFViYjDN0bfl1rWbII7J8FMwDFzVCXqsyEgYFPgVyO5Sbi33-D94Ye4Bwug1o8H3K243Pvm2fMamF-ffPl4GHpEhMGgJCLdeYwiTmCw0pq_7woDSRaYhN2FfFSbMhVEahzfqF2kSQh4XUZrHBqwKM0O9Bp-zTlmV9ohxdARVmBQZqFMlIg1aRaEKY4yurDAmTrss3oleGt-unFAzFtKdwQGGLY0kJQ2Y9APWZcGea9m067iD_oxGdU9LzbbdhWo1l37uylxYXMP7WU5Vv0mao0-c6Zg-FpIkMviQN6QTktpplJSvM1frupbDq7Ec0J57RqfXtxJNWkTvPFFR4c8a5WskUGTUpqtFedyiRKNgWrePSD93_1zLkA6UAd3_0y7jO52VxEVJdqWt1rWEGH15tPnRf0hESg3pQHTZi0bL96KLCGMEHcYug5b-t2TbvlP-_OEamke4iCRZ_PLuL3vFHjTpG7QNdsw616u1fY1e4bXusXswgx47PDsff5303N5Kz03-P_iMZes |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Requirement+of+NOX2+and+reactive+oxygen+species+for+efficient+RIG-I-mediated+antiviral+response+through+regulation+of+MAVS+expression&rft.jtitle=PLoS+pathogens&rft.au=Soucy-Faulkner%2C+Anton&rft.au=Mukawera%2C+Esp%C3%A9rance&rft.au=Fink%2C+Karin&rft.au=Martel%2C+Alexis&rft.date=2010-06-01&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=6&rft.issue=6&rft.spage=e1000930&rft_id=info:doi/10.1371%2Fjournal.ppat.1000930&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |