Daytime Naps, Motor Memory Consolidation and Regionally Specific Sleep Spindles

Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationsh...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 2; no. 4; p. e341
Main Authors Nishida, Masaki, Walker, Matthew P.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.04.2007
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0000341

Cover

Loading…
Abstract Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. Two groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone. These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain.
AbstractList Background Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. Methodology/Principal Findings Two groups of subjects trained on a motor-skill task using their left hand – a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60–90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged–correlations that were not evident for either hemisphere alone. Conclusions/Significance These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain.
Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation.Two groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone.These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain.
Background Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. Methodology/Principal Findings Two groups of subjects trained on a motor-skill task using their left hand – a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60–90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged–correlations that were not evident for either hemisphere alone. Conclusions/Significance These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain.
Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation.BACKGROUNDIncreasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation.Two groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone.METHODOLOGY/PRINCIPAL FINDINGSTwo groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone.These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain.CONCLUSIONS/SIGNIFICANCEThese results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain.
Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. Two groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone. These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain.
Audience Academic
Author Walker, Matthew P.
Nishida, Masaki
AuthorAffiliation University of Birmingham, United Kingdom
Sleep and Neuroimaging Laboratory, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
AuthorAffiliation_xml – name: University of Birmingham, United Kingdom
– name: Sleep and Neuroimaging Laboratory, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
Author_xml – sequence: 1
  givenname: Masaki
  surname: Nishida
  fullname: Nishida, Masaki
– sequence: 2
  givenname: Matthew P.
  surname: Walker
  fullname: Walker, Matthew P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17406665$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAYhSM0xD7gHyCIhDQJiRZ_x-ECaSpflTYqrcCt9Sa2W09OHOIU0X-Pu3bQTggRX8R-87zH9sk5zY7a0Jose4rRGNMCv74Jq74FP-5SeYzSQxl-kJ3gkpKRIIge7c2Ps9MYbxDiVArxKDvGBUNCCH6Szd7BenCNyT9DF1_lV2EIfX5lmtCv80loY_BOw-BCm0Or82uzSFPwfp3PO1M76-p87o3p0tK12pv4OHtowUfzZPc-y75-eP9l8ml0Ofs4nVxcjuqCyGHEClpCRTESBLPSag6cEmmtsIhbqCpUCVxzQTSDCgvEteWWaMoJ0RhYYehZ9nyr2_kQ1c6LqDCRJSYl5iIR0y2hA9yorncN9GsVwKnbQugXCvrB1d4owLjClFVGMsJkWZRcFwJKhiQvsaxk0nq7221VNUbXph168Aeih19at1SL8ENhSaQgNAmc7wT68H1l4qAaF2vjPbQmrKIq0t8TlOIEvrgH_v1u4y21gHR819qQdq3T0KZxdQqEdal-wQpCJEd8I_vyoCExg_k5LGAVo5rOr_-fnX07ZM_32KUBPyxTZlabxMRD8Nm-g7-tu0tiAtgWqPsQY2_sHwSpTeDvjFCbwKtd4FPbm3tttRtuA5sccf7fzb8Ahl0FSA
CitedBy_id crossref_primary_10_1016_j_neuron_2011_02_043
crossref_primary_10_1038_npp_2009_6
crossref_primary_10_1016_j_nlm_2017_08_006
crossref_primary_10_1111_j_1749_6632_2009_04416_x
crossref_primary_10_1152_physiol_00004_2019
crossref_primary_10_1155_2016_1796715
crossref_primary_10_1111_jsr_13695
crossref_primary_10_5665_sleep_1992
crossref_primary_10_1152_jn_00315_2009
crossref_primary_10_1016_j_neures_2017_09_006
crossref_primary_10_3758_s13414_015_0912_7
crossref_primary_10_1111_j_1365_2869_2008_00634_x
crossref_primary_10_5665_sleep_2968
crossref_primary_10_1016_j_neuroimage_2014_08_044
crossref_primary_10_1101_lm_051151_119
crossref_primary_10_1310_tsr1501_1
crossref_primary_10_2522_ptj_20120502
crossref_primary_10_1016_j_nlm_2016_03_017
crossref_primary_10_1016_j_pneurobio_2020_101940
crossref_primary_10_1016_j_nlm_2018_03_019
crossref_primary_10_3389_fpsyg_2019_03014
crossref_primary_10_1109_TBME_2011_2175225
crossref_primary_10_7554_eLife_24987
crossref_primary_10_1038_nrn2762
crossref_primary_10_1177_0956797612457391
crossref_primary_10_1371_journal_pone_0174755
crossref_primary_10_1016_j_biopsych_2015_10_003
crossref_primary_10_1016_j_conb_2013_04_002
crossref_primary_10_1016_j_cub_2016_06_044
crossref_primary_10_3389_fneur_2018_01002
crossref_primary_10_3389_fneur_2022_979333
crossref_primary_10_1016_j_bbr_2010_10_019
crossref_primary_10_1111_j_1479_8425_2012_00576_x
crossref_primary_10_1016_j_visres_2013_12_014
crossref_primary_10_1016_j_nlm_2018_06_002
crossref_primary_10_1371_journal_pone_0111635
crossref_primary_10_1371_journal_pone_0085918
crossref_primary_10_1111_j_1746_1561_2012_00732_x
crossref_primary_10_1523_JNEUROSCI_0807_22_2022
crossref_primary_10_1093_sleep_zsaa277
crossref_primary_10_1371_journal_pbio_1002429
crossref_primary_10_2522_ptj_20080310
crossref_primary_10_5665_sleep_2380
crossref_primary_10_1016_j_smrv_2012_04_001
crossref_primary_10_3389_fnhum_2015_00507
crossref_primary_10_1007_s13311_019_00769_6
crossref_primary_10_1016_j_jsmc_2012_06_008
crossref_primary_10_3389_fnhum_2015_00624
crossref_primary_10_1026_1612_5010_a000063
crossref_primary_10_1146_annurev_clinpsy_050718_095754
crossref_primary_10_1016_j_neuron_2023_03_005
crossref_primary_10_1111_jnc_14107
crossref_primary_10_1016_j_sleep_2021_05_019
crossref_primary_10_1080_02640414_2020_1793651
crossref_primary_10_1080_87565640903133475
crossref_primary_10_1152_physrev_00042_2018
crossref_primary_10_1523_JNEUROSCI_2009_20_2020
crossref_primary_10_3390_brainsci11020261
crossref_primary_10_1073_pnas_1207532109
crossref_primary_10_1016_j_tins_2013_10_001
crossref_primary_10_1016_j_jpsychires_2010_08_015
crossref_primary_10_1016_j_tins_2013_10_002
crossref_primary_10_1152_physrev_00032_2012
crossref_primary_10_3389_fnhum_2014_00762
crossref_primary_10_1152_jn_00471_2019
crossref_primary_10_1016_j_neuropsychologia_2012_06_008
crossref_primary_10_1016_j_sleep_2010_02_009
crossref_primary_10_1007_s11910_013_0433_5
crossref_primary_10_1111_j_1460_9568_2008_06178_x
crossref_primary_10_1016_j_nlm_2021_107384
crossref_primary_10_1093_sleep_zsz241
crossref_primary_10_1111_j_1479_8301_2012_00411_x
crossref_primary_10_1093_sleep_zsae072
crossref_primary_10_5665_sleep_2954
crossref_primary_10_1016_j_neuroimage_2015_10_041
crossref_primary_10_1093_braincomms_fcab108
crossref_primary_10_1523_ENEURO_0150_23_2024
crossref_primary_10_1002_wcs_52
crossref_primary_10_1016_j_neuroscience_2021_03_003
crossref_primary_10_1080_15374416_2016_1157756
crossref_primary_10_3389_fneur_2018_00056
crossref_primary_10_1111_desc_12463
crossref_primary_10_1016_j_brainres_2020_146739
crossref_primary_10_1016_j_tics_2007_09_001
crossref_primary_10_1371_journal_pcbi_1006171
crossref_primary_10_1016_j_celrep_2022_111367
crossref_primary_10_1016_j_neuropsychologia_2017_11_002
crossref_primary_10_1556_2053_01_2017_002
crossref_primary_10_1007_s40279_015_0377_9
crossref_primary_10_1097_WNP_0000000000000068
crossref_primary_10_3389_fnins_2022_803387
crossref_primary_10_1523_JNEUROSCI_1857_14_2014
crossref_primary_10_1093_cercor_bhr034
crossref_primary_10_1016_j_jad_2012_06_016
crossref_primary_10_5665_sleep_3572
crossref_primary_10_1111_j_1469_185X_2010_00165_x
crossref_primary_10_1016_j_nlm_2022_107662
crossref_primary_10_1101_lm_043042_116
crossref_primary_10_1371_journal_pone_0057394
crossref_primary_10_1016_j_smrv_2012_01_004
crossref_primary_10_1016_j_neuroimage_2017_12_066
crossref_primary_10_1038_s44159_023_00262_0
crossref_primary_10_1016_j_physbeh_2012_05_021
crossref_primary_10_5665_sleep_2808
crossref_primary_10_1016_j_neubiorev_2024_105597
crossref_primary_10_1016_j_smrv_2009_05_004
crossref_primary_10_1016_j_nlm_2015_02_011
crossref_primary_10_3389_fneur_2015_00225
crossref_primary_10_3758_s13415_011_0052_z
crossref_primary_10_1038_s41537_019_0086_8
crossref_primary_10_1111_j_1467_7687_2012_01146_x
crossref_primary_10_1093_schbul_sbae059
crossref_primary_10_1016_j_neuropsychologia_2014_09_016
crossref_primary_10_1371_journal_pone_0052805
crossref_primary_10_1007_BF03373824
crossref_primary_10_1016_j_biopsycho_2013_10_010
crossref_primary_10_1523_JNEUROSCI_3127_12_2013
crossref_primary_10_1016_j_jfma_2012_05_011
crossref_primary_10_1016_j_neubiorev_2010_12_003
crossref_primary_10_1016_j_cub_2020_01_091
crossref_primary_10_1016_j_jneumeth_2013_04_003
crossref_primary_10_1111_j_1460_9568_2012_08181_x
crossref_primary_10_1016_j_smrv_2008_08_002
crossref_primary_10_3389_fpsyt_2017_00140
crossref_primary_10_1523_JNEUROSCI_5548_07_2008
crossref_primary_10_3390_brainsci5040494
crossref_primary_10_1016_j_nlm_2019_04_005
crossref_primary_10_1111_j_1460_9568_2009_06767_x
crossref_primary_10_1007_s40675_024_00291_y
crossref_primary_10_1007_s41105_017_0136_4
crossref_primary_10_1080_17461391_2021_1892197
crossref_primary_10_1016_j_neuroimage_2021_118573
crossref_primary_10_1016_j_sleep_2015_01_017
crossref_primary_10_1590_S1676_26492007000400006
crossref_primary_10_1523_JNEUROSCI_3162_15_2016
crossref_primary_10_1016_j_neurobiolaging_2014_12_014
crossref_primary_10_1093_sleep_zsz289
crossref_primary_10_3389_fspor_2021_697535
crossref_primary_10_1111_psyp_12656
crossref_primary_10_1097_WCO_0b013e3283052cf7
crossref_primary_10_3233_RNN_150521
crossref_primary_10_1016_j_isci_2023_107314
crossref_primary_10_3389_fpsyg_2016_01698
crossref_primary_10_1371_journal_pone_0280591
crossref_primary_10_1111_ejn_15468
crossref_primary_10_1016_j_smrv_2022_101666
crossref_primary_10_1016_j_nlm_2021_107460
crossref_primary_10_1111_jsr_14151
crossref_primary_10_1371_journal_pone_0152489
crossref_primary_10_1523_JNEUROSCI_2604_11_2011
crossref_primary_10_1016_j_tics_2023_09_002
crossref_primary_10_1016_j_neuroimage_2014_05_028
crossref_primary_10_1016_j_bbr_2019_112157
crossref_primary_10_3390_clockssleep4030033
crossref_primary_10_1016_j_neuroimage_2016_04_031
crossref_primary_10_1093_cercor_bhab360
crossref_primary_10_1523_JNEUROSCI_0325_24_2024
crossref_primary_10_1016_j_bandl_2015_09_003
crossref_primary_10_1038_s41598_018_33209_0
crossref_primary_10_1080_15402002_2013_845782
crossref_primary_10_1098_rspb_2023_1408
crossref_primary_10_3389_fnagi_2016_00125
crossref_primary_10_3389_fnhum_2014_00910
crossref_primary_10_1007_s00424_011_1031_5
crossref_primary_10_1249_JES_0000000000000273
crossref_primary_10_1038_s41598_024_58123_6
crossref_primary_10_3389_fnsys_2014_00046
crossref_primary_10_1017_S0952675720000044
crossref_primary_10_5665_sleep_4502
crossref_primary_10_1016_j_biopsych_2011_08_008
crossref_primary_10_3389_fnins_2019_00813
crossref_primary_10_1007_s00221_010_2497_7
crossref_primary_10_7554_eLife_66761
crossref_primary_10_1371_journal_pcbi_1006322
crossref_primary_10_1098_rsta_2011_0078
crossref_primary_10_1111_jsr_12082
crossref_primary_10_1016_j_slsci_2016_04_002
crossref_primary_10_1016_j_schres_2018_04_019
crossref_primary_10_1016_j_jsmc_2010_12_004
crossref_primary_10_1016_j_neurobiolaging_2016_10_009
crossref_primary_10_1007_s12304_021_09471_7
crossref_primary_10_1073_pnas_0900271106
crossref_primary_10_1093_sleep_zsab056
crossref_primary_10_1631_jzus_B0820384
crossref_primary_10_3389_fneur_2022_871166
crossref_primary_10_1007_s11910_013_0430_8
crossref_primary_10_1002_hipo_23101
crossref_primary_10_1109_TCDS_2020_2991176
crossref_primary_10_1016_j_sleep_2021_04_016
crossref_primary_10_1162_imag_a_00250
crossref_primary_10_1111_jsr_14370
crossref_primary_10_1111_jsr_14371
crossref_primary_10_1007_s10943_015_0093_7
crossref_primary_10_1523_JNEUROSCI_2291_14_2014
crossref_primary_10_3389_fnagi_2021_787654
crossref_primary_10_4236_jbise_2017_105B002
crossref_primary_10_1002_hbm_22426
crossref_primary_10_1016_j_smrv_2020_101280
crossref_primary_10_1523_JNEUROSCI_3033_16_2017
crossref_primary_10_1093_schbul_sbx151
crossref_primary_10_1016_j_smrv_2009_09_005
crossref_primary_10_1016_j_neubiorev_2014_10_021
crossref_primary_10_1016_j_physbeh_2023_114287
crossref_primary_10_3389_fpsyg_2023_1230281
crossref_primary_10_1016_j_cub_2008_03_022
crossref_primary_10_1093_sleep_zsad025
crossref_primary_10_1016_j_sleep_2017_09_005
crossref_primary_10_1038_s41597_020_0533_4
crossref_primary_10_1093_sleepadvances_zpae090
crossref_primary_10_3109_07420528_2013_782312
crossref_primary_10_1016_j_neuroimage_2022_119820
crossref_primary_10_1093_sleep_zsz095
crossref_primary_10_1016_j_smrv_2021_101453
crossref_primary_10_1038_s41598_017_12489_y
crossref_primary_10_24985_kjss_2013_24_3_477
crossref_primary_10_1016_j_nlm_2015_11_009
crossref_primary_10_1038_nn_2206
crossref_primary_10_1162_jocn_a_00579
crossref_primary_10_1016_j_mhpa_2020_100365
crossref_primary_10_1523_JNEUROSCI_1011_14_2014
crossref_primary_10_1016_j_nlm_2016_04_007
crossref_primary_10_1098_rstb_2019_0230
crossref_primary_10_1016_j_neuroimage_2011_08_023
crossref_primary_10_1016_j_neuroimage_2016_06_057
crossref_primary_10_1016_j_parkreldis_2013_03_014
crossref_primary_10_1093_sleep_33_10_1315
crossref_primary_10_1016_j_physbeh_2011_01_020
crossref_primary_10_1098_rstb_2019_0232
crossref_primary_10_1167_19_12_12
crossref_primary_10_1097_WNP_0000000000000655
crossref_primary_10_1016_j_ijpsycho_2013_06_022
crossref_primary_10_1093_sleep_zsw013
crossref_primary_10_1016_j_neubiorev_2012_02_014
crossref_primary_10_1016_j_neubiorev_2017_04_026
crossref_primary_10_1007_s11332_019_00553_1
crossref_primary_10_3389_fnhum_2021_667574
crossref_primary_10_1016_j_schres_2016_05_023
crossref_primary_10_1016_j_physbeh_2016_11_024
crossref_primary_10_1016_j_smrv_2018_01_004
crossref_primary_10_1159_000369022
crossref_primary_10_1016_j_jneumeth_2015_11_015
crossref_primary_10_1038_srep36001
crossref_primary_10_1093_cercor_bhn155
crossref_primary_10_1007_s40675_020_00193_9
crossref_primary_10_1016_j_cub_2018_09_054
crossref_primary_10_1186_s40798_018_0151_2
crossref_primary_10_1007_s11920_023_01444_6
crossref_primary_10_1093_brain_awz269
crossref_primary_10_1371_journal_pbio_1002263
crossref_primary_10_1016_j_nlm_2013_06_007
crossref_primary_10_1016_j_ijer_2015_09_008
crossref_primary_10_1038_nrn3315
crossref_primary_10_7554_eLife_51005
crossref_primary_10_2147_NSS_S326151
crossref_primary_10_1152_physrev_00010_2015
crossref_primary_10_1002_hipo_22183
crossref_primary_10_1016_j_jsmc_2010_01_002
crossref_primary_10_1523_JNEUROSCI_3028_10_2010
crossref_primary_10_1111_jsr_12961
crossref_primary_10_1093_sleep_zsad206
crossref_primary_10_1111_j_1365_2869_2009_00740_x
crossref_primary_10_1016_j_clinph_2019_02_019
crossref_primary_10_1051_sm_2013070
crossref_primary_10_1093_sleep_zsy142
crossref_primary_10_1093_sleep_zsy263
crossref_primary_10_3389_frsle_2023_1082253
crossref_primary_10_1098_rstb_2019_0655
crossref_primary_10_3389_fneur_2016_00054
crossref_primary_10_1016_j_psyneuen_2011_11_006
crossref_primary_10_1101_lm_569407
crossref_primary_10_1162_jocn_a_00675
crossref_primary_10_1080_15402002_2016_1178115
crossref_primary_10_1016_j_sleep_2013_05_019
crossref_primary_10_1371_journal_pone_0159608
crossref_primary_10_3389_fpsyg_2017_00665
crossref_primary_10_3389_fpsyg_2021_757052
crossref_primary_10_1016_j_schres_2019_05_027
crossref_primary_10_1016_j_neuroscience_2018_12_049
crossref_primary_10_1523_JNEUROSCI_0552_13_2014
crossref_primary_10_1155_2017_2962479
crossref_primary_10_1093_cercor_bhy174
crossref_primary_10_1101_lm_052464_120
crossref_primary_10_1111_jsr_12832
crossref_primary_10_1016_j_nlm_2014_07_001
crossref_primary_10_1212_WNL_0000000000210232
crossref_primary_10_1016_j_neuron_2012_08_034
crossref_primary_10_1016_j_conb_2017_05_001
crossref_primary_10_3389_fnhum_2017_00433
crossref_primary_10_1111_ane_13651
crossref_primary_10_1038_nn_3152
crossref_primary_10_1016_j_euroneuro_2015_06_005
crossref_primary_10_1038_s41598_017_15195_x
crossref_primary_10_1038_s42003_024_07197_z
crossref_primary_10_1186_s13024_019_0309_5
crossref_primary_10_1016_j_tine_2014_02_004
crossref_primary_10_1111_nyas_13855
crossref_primary_10_1016_j_slsci_2015_01_001
crossref_primary_10_1093_sleep_zsx036
crossref_primary_10_3389_fnhum_2016_00315
crossref_primary_10_1155_2016_6936381
crossref_primary_10_1007_s40279_015_0358_z
crossref_primary_10_1155_2016_3024342
crossref_primary_10_1093_sleep_zsx151
crossref_primary_10_1016_j_nlm_2019_107100
crossref_primary_10_1007_s12144_024_06384_9
crossref_primary_10_1371_journal_pone_0060296
crossref_primary_10_1038_s41562_017_0111
crossref_primary_10_1097_YCO_0000000000000365
crossref_primary_10_1073_pnas_1208093110
crossref_primary_10_5665_sleep_5214
crossref_primary_10_5665_SLEEP_1290
crossref_primary_10_1007_s41105_022_00426_0
crossref_primary_10_1155_2016_7328725
crossref_primary_10_1080_10673220802432517
crossref_primary_10_1016_j_biopsycho_2013_02_020
crossref_primary_10_1016_j_nlm_2016_01_008
crossref_primary_10_1016_j_nlm_2021_107508
crossref_primary_10_1016_j_sleep_2012_02_003
crossref_primary_10_1093_sleep_zsw059
crossref_primary_10_1016_S1389_9457_08_70014_5
crossref_primary_10_1016_j_sleep_2024_09_031
crossref_primary_10_1016_j_neuropsychologia_2023_108661
crossref_primary_10_15268_ksim_2014_2_3_009
crossref_primary_10_1016_j_tins_2011_06_003
crossref_primary_10_1111_psyp_12015
crossref_primary_10_1523_JNEUROSCI_1198_13_2013
crossref_primary_10_3389_fnsys_2023_1154489
crossref_primary_10_1038_s41598_017_09263_5
crossref_primary_10_1016_j_tics_2024_04_007
crossref_primary_10_1044_2016_JSLHR_S_16_0104
crossref_primary_10_1016_j_nlm_2024_107953
crossref_primary_10_1038_s41467_018_05518_5
crossref_primary_10_1016_j_bbr_2008_04_028
crossref_primary_10_1146_annurev_psych_010419_050815
crossref_primary_10_1111_j_1532_5415_2011_03324_x
Cites_doi 10.1146/annurev.psych.56.091103.070307
10.1111/j.1365-2869.1994.tb00133.x
10.1007/s00221-002-1181-y
10.5334/pb.1018
10.1038/nature01930
10.1038/nrn1426
10.1177/155005949202300308
10.1073/pnas.182178199
10.1073/pnas.2035019100
10.1101/lm.76304
10.7551/mitpress/3822.001.0001
10.1016/j.neuroscience.2005.04.007
10.1046/j.1365-2869.1997.00046.x
10.1101/lm.58503
10.1523/JNEUROSCI.22-11-04702.2002
10.1016/0166-4328(95)00024-N
10.1038/nature02663
10.1111/j.1365-2869.2006.00522.x
10.1016/j.cub.2004.01.027
10.1046/j.1365-2869.2000.00230.x
10.1038/nn1758
10.1111/j.1365-2869.1994.tb00123.x
10.1016/j.smrv.2005.05.002
10.1017/S0140525X05000026
10.1016/S0896-6273(02)00746-8
ContentType Journal Article
Copyright COPYRIGHT 2007 Public Library of Science
2007 Nishida, Walker. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Nishida, Walker. 2007
Copyright_xml – notice: COPYRIGHT 2007 Public Library of Science
– notice: 2007 Nishida, Walker. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Nishida, Walker. 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0000341
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database






MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Naps, Consolidation & Spindles
EISSN 1932-6203
ExternalDocumentID 1289129156
oai_doaj_org_article_a11b134be842489795d76a94085918b8
PMC1828623
2896714681
A472285051
17406665
10_1371_journal_pone_0000341
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Massachusetts
GeographicLocations_xml – name: Massachusetts
– name: United States--US
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH67754
– fundername: NIMH NIH HHS
  grantid: MH65292
– fundername: NIMH NIH HHS
  grantid: R01 MH048832
– fundername: NIMH NIH HHS
  grantid: R21 MH067754
– fundername: NIMH NIH HHS
  grantid: R03 MH069935
– fundername: NIMH NIH HHS
  grantid: MH48832
– fundername: NIMH NIH HHS
  grantid: MH069935
– fundername: NIMH NIH HHS
  grantid: R01 MH065292
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RNS
RPM
TR2
UKHRP
WOQ
WOW
~02
~KM
BBORY
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
A8Z
PUEGO
AAPBV
ABPTK
BBAFP
ID FETCH-LOGICAL-c728t-4739ab31062149fd5a5328ff6f05fabb0b61c562d4ab1605df5f2d3522d1a47e3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Mon Dec 05 23:08:15 EST 2022
Wed Aug 27 01:27:44 EDT 2025
Thu Aug 21 13:46:58 EDT 2025
Thu Jul 10 23:35:01 EDT 2025
Fri Jul 25 12:09:15 EDT 2025
Tue Jun 10 21:31:11 EDT 2025
Fri Jun 27 03:58:23 EDT 2025
Fri Jun 27 03:43:50 EDT 2025
Thu May 22 20:57:32 EDT 2025
Thu Apr 03 07:01:49 EDT 2025
Tue Jul 01 00:45:05 EDT 2025
Thu Apr 24 23:13:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c728t-4739ab31062149fd5a5328ff6f05fabb0b61c562d4ab1605df5f2d3522d1a47e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: MW MN. Performed the experiments: MW MN. Analyzed the data: MW MN. Contributed reagents/materials/analysis tools: MW MN. Wrote the paper: MW MN.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0000341
PMID 17406665
PQID 1289129156
PQPubID 1436336
PageCount e341
ParticipantIDs plos_journals_1289129156
doaj_primary_oai_doaj_org_article_a11b134be842489795d76a94085918b8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1828623
proquest_miscellaneous_70346331
proquest_journals_1289129156
gale_infotracacademiconefile_A472285051
gale_incontextgauss_ISR_A472285051
gale_incontextgauss_IOV_A472285051
gale_healthsolutions_A472285051
pubmed_primary_17406665
crossref_primary_10_1371_journal_pone_0000341
crossref_citationtrail_10_1371_journal_pone_0000341
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-04
PublicationDateYYYYMMDD 2007-04-04
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-04
  day: 04
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2007
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References H Kattler (ref20) 1994; 3
ST Grafton (ref16) 2002; 146
M Korman (ref19) 2003; 100
MP Walker (ref18) 2003; 425
A Rechtschaffen (ref30) 1968
MP Walker (ref14) 2005; 133
V Vyazovskiy (ref21) 2000; 9
J Zeitlhofer (ref15) 1997; 6
G Tononi (ref23) 2006; 10
C Smith (ref5) 1994; 3
K Kuriyama (ref28) 2004; 11
TJ Sejnowski (ref11) 2000; 886
C Smith (ref29) 1995; 69
EM Robertson (ref2) 2004; 5
S Fischer (ref9) 2002; 99
F Ferrarelli (ref31); In press
EM Robertson (ref6) 2004; 14
JL Cantero (ref22) 2002; 22
SC Mednick (ref26) 2002; 28
MP Walker (ref1) 2005; 28
R Huber (ref7) 2004; 430
MP Walker (ref3) 2006; 10
K Peters (ref25)
R Huber (ref24) 2006; 9
SM Fogel (ref8) 2006; 15
M Steriade (ref10) 2001
CT Smith (ref12) 2004; 44
MP Walker (ref4) 2002; 35
A Iyama (ref32) 1992; 23
MP Walker (ref17) 2003; 10
L De Gennaro (ref13) 2000; 3
MA Tucker (ref27) 2006
References_xml – volume: 10
  start-page: 139
  year: 2006
  ident: ref3
  article-title: Sleep, Memory and Plasticity.
  publication-title: Annu Rev Psychol
  doi: 10.1146/annurev.psych.56.091103.070307
– volume: 3
  start-page: 206
  year: 1994
  ident: ref5
  article-title: Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students.
  publication-title: J Sleep Res
  doi: 10.1111/j.1365-2869.1994.tb00133.x
– volume: 146
  start-page: 369
  year: 2002
  ident: ref16
  article-title: Motor sequence learning with the nondominant left hand. A PET functional imaging study.
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1181-y
– volume: 44
  start-page: 81
  year: 2004
  ident: ref12
  article-title: Different roles for REM and stage 2 sleep in motor learning: A proposed model.
  publication-title: Psychologica Belgica
  doi: 10.5334/pb.1018
– volume: 425
  start-page: 616
  year: 2003
  ident: ref18
  article-title: Dissociable stages of human memory consolidation and reconsolidation.
  publication-title: Nature
  doi: 10.1038/nature01930
– volume: In press
  ident: ref31
  article-title: Reduced sleep spindle activity in schizophrenics.
  publication-title: American Journal of Psychiatry
– volume: 5
  start-page: 576
  year: 2004
  ident: ref2
  article-title: Current concepts in procedural consolidation.
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1426
– volume: 23
  start-page: 137
  year: 1992
  ident: ref32
  article-title: Spindle activity in the waking EEG in older adults.
  publication-title: Clin Electroencephalogr
  doi: 10.1177/155005949202300308
– volume: 99
  start-page: 11987
  year: 2002
  ident: ref9
  article-title: Sleep forms memory for finger skills.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.182178199
– volume: 100
  start-page: 12492
  year: 2003
  ident: ref19
  article-title: Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2035019100
– volume: 11
  start-page: 705
  year: 2004
  ident: ref28
  article-title: Sleep-dependent learning and motor skill complexity.
  publication-title: Learn Mem
  doi: 10.1101/lm.76304
– year: 2001
  ident: ref10
  article-title: The Intact and Sliced Brain
  doi: 10.7551/mitpress/3822.001.0001
– volume: 133
  start-page: 911
  year: 2005
  ident: ref14
  article-title: Sleep-dependent motor memory plasticity in the human brain.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.04.007
– volume: 6
  start-page: 149
  year: 1997
  ident: ref15
  article-title: Topographic distribution of sleep spindles in young healthy subjects.
  publication-title: J Sleep Res
  doi: 10.1046/j.1365-2869.1997.00046.x
– volume: 3
  start-page: 155
  year: 2000
  ident: ref13
  article-title: Topographical distribution of spindles: variations between and within NREM sleep cycles.
  publication-title: Sleep Res Online
– volume: 10
  start-page: 275
  year: 2003
  ident: ref17
  article-title: Sleep and the time course of motor skill learning.
  publication-title: Learn Mem
  doi: 10.1101/lm.58503
– volume: 22
  start-page: 4702
  year: 2002
  ident: ref22
  article-title: Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-11-04702.2002
– year: 2006
  ident: ref27
  article-title: A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory.
  publication-title: Neurobiol Learn Mem
– volume: 69
  start-page: 137
  year: 1995
  ident: ref29
  article-title: Sleep states and memory processes.
  publication-title: Behav Brain Res
  doi: 10.1016/0166-4328(95)00024-N
– volume: 28
  start-page: 28
  year: 2002
  ident: ref26
  article-title: The restorative effect of naps on perceptual deterioration.
  publication-title: Nat Neurosci
– volume: 430
  start-page: 78
  year: 2004
  ident: ref7
  article-title: Local sleep and learning.
  publication-title: Nature
  doi: 10.1038/nature02663
– ident: ref25
  article-title: Changes in sleep architecture following motor learning depend on intitial skill level.
  publication-title: J Cogn Neurosci
– volume: 15
  start-page: 250
  year: 2006
  ident: ref8
  article-title: Learning-dependent changes in sleep spindles and Stage 2 sleep.
  publication-title: J Sleep Res
  doi: 10.1111/j.1365-2869.2006.00522.x
– volume: 14
  start-page: 208
  year: 2004
  ident: ref6
  article-title: Awareness modifies the skill-learning benefits of sleep.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2004.01.027
– volume: 9
  start-page: 367
  year: 2000
  ident: ref21
  article-title: Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat.
  publication-title: J Sleep Res
  doi: 10.1046/j.1365-2869.2000.00230.x
– volume: 9
  start-page: 1169
  year: 2006
  ident: ref24
  article-title: Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity.
  publication-title: Nat Neurosci
  doi: 10.1038/nn1758
– year: 1968
  ident: ref30
  article-title: A manual standardized terminology, techniques and scoring system for sleep stages of human subjects
– volume: 3
  start-page: 159
  year: 1994
  ident: ref20
  article-title: Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans.
  publication-title: J Sleep Res
  doi: 10.1111/j.1365-2869.1994.tb00123.x
– volume: 10
  start-page: 49
  year: 2006
  ident: ref23
  article-title: Sleep function and synaptic homeostasis.
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2005.05.002
– volume: 28
  start-page: 51
  year: 2005
  ident: ref1
  article-title: A refined model of sleep and the time course of memory formation.
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X05000026
– volume: 35
  start-page: 205
  year: 2002
  ident: ref4
  article-title: Practice with sleep makes perfect: sleep dependent motor skill learning.
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00746-8
– volume: 886
  start-page: 208
  year: 2000
  ident: ref11
  article-title: Why do we sleep?
  publication-title: Brain Res
SSID ssj0053866
Score 2.4204636
Snippet Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role...
Background Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly...
Background Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e341
SubjectTerms Accuracy
Activity patterns
Behavior
Brain
Consolidation
Correlation
Correlation analysis
Cortex (motor)
Daytime
Electrodes
Electroencephalography
Eye
Eye movements
Hemispheric laterality
Homeostasis
Humans
Laboratories
Learning
Medical imaging
Memory
Motor Activity
Motor skill
Motor skill learning
Neuronal Plasticity
Neurophysiology
Neuroscience/Behavioral Neuroscience
Neuroscience/Cognitive Neuroscience
Neuroscience/Motor Systems
NREM sleep
Older people
Plasticity
Psychiatry
REM sleep
Sleep
Sleep (NREM)
Sleep (REM)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBlloICZAIXcePJMfyqAoHKgFFvVl2YpeVliRqdg_77zsTe0ODKpUDp2jj2c1mZmx_k8x8Q8jLeQl-4GqeuspDgFJKl5Z2XqSF41VReSPggNkWX9XJmfhyLs-vtfrCnLBADxwUd2gYs4wL6wqRiaLMS1nnypQDMRcr7FDmC3veNpgKazDMYqVioRzP2WG0y7uubdzAWMgFm2xEA1__uCrPumXb3wQ5_86cvLYVHd8n9yKGpEfhv--QO655QHbiLO3p60gl_eYhOf1oNtg9njam699SMEt7SX9jcu2GQiAMfrcIPZWoaWqKTRoQmC83FAswMYmI9kvnOvi4QDKG_hE5O_7048NJGlsopFWeFatU5Lw0FiCcyiAU8rU0kmeF98rPpTfWzq1iFUCgWhjLILKpvfRZjaCsZkbkjj8mswaUtkuolNbBXg8Rj_TCKOSFA2zlFLOlyaq6Tgjf6lNXkV8c21ws9fDSLIc4I6hHoxV0tEJC0vFbXeDXuEX-PZpqlEV27OEE-IyOPqNv85mEHKChdSg1Hee4PkLmzAIwIVzmxSCBDBkNpuBcmHXf68-nP_9B6Pu3idCrKORbUEdlYtkD3BMyb00kd9Hvtrfda4AOJcAxiLATsrf1xZuHD8ZhWB3wlY9pXLvuNaznQnEOv_0kOO4fJecCQ1eZkHzi0hPNTkeaxa-Bf5wh9UDGn_4PUzwjd8PTckyH2iOz1eXa7QPMW9nnw4y-Anu9Tr0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF8rG8xCSIBEWB3b-XhC42MaSNukjaG-RXZsd5WqJFvah_733DluRtAEPFWtL0lzX76zz78j5PUkBz2whke2dJCg5NJGuZ5kUWZ5mZVOCfjAaouT5OhCfJ_KaVhwa0NZ5cYnekdt6hLXyPfBj-YwN0G68bG5irBrFO6uhhYad8k9hC7Dkq502idcYMtJEo7L8ZTtB-l8aOrKetxCLthgOvKo_b1vHjWLur0t8PyzfvK3CenwIXkQIkl60Il-i9yx1SOyFWy1pW8DoPS7x-T0i1pjD3l6opr2PT2uIc-mx1hiu6bYsLNezLvOSlRVhp7ZmV8eXKypb07v5iU9X1jbwNc5QjK0T8jF4dcfn4-i0EghKtM4W0Yi5bnSEMglMSREzkgleZw5l7iJdErriU5YCYGQEUozyG-Mky42GJoZpkRq-VMyqoBp24RKqS3M-JD3SCdUguhwEGHZhOlcxaUxY8I3_CzKgDKOzS4Whd86SyHb6NhToBSKIIUxifqrmg5l4x_0n1BUPS1iZPsf6utZEUyuUIxpxoW2mYhFlqe5NGmicg_pxjKdjckeCrroDpz2ll4cIH5mBpEhPOaVp0CcjAoLcWZq1bbFt9Of_0F0fjYgehOIXA3sKFU4_ADvhPhbA8pt1LvNa7fFjeKPye5GF28f3uuHwUfgxo-qbL1qC_DqIuEc7v2sU9wbJqcCE1g5JulApQecHY5U80uPQs4QgCDmz__-p3bI_W41HMuddsloeb2yLyCMW-qX3lZ_ASCoRug
  priority: 102
  providerName: ProQuest
Title Daytime Naps, Motor Memory Consolidation and Regionally Specific Sleep Spindles
URI https://www.ncbi.nlm.nih.gov/pubmed/17406665
https://www.proquest.com/docview/1289129156
https://www.proquest.com/docview/70346331
https://pubmed.ncbi.nlm.nih.gov/PMC1828623
https://doaj.org/article/a11b134be842489795d76a94085918b8
http://dx.doi.org/10.1371/journal.pone.0000341
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnytMDoLIQESmZrEiZMHhLaxMpDaoY6ivkV2YpdKUdI1rbT-99w5biCoE7wkSn1um_Od_Tt__I6Q1_0Y7EBlvqNSDQFKHCgnlv3IiZSfRqkWDG6422IUXk7Y12kw3SPbnK1WgdXO0A7zSU2W-cntzeYjOPwHk7WBu9tKJ4uyUIaP0MeT7PswNnF01SFr1hXAu8PQHqC7q2ZrgDI8_k1v3VnkZbULiv69o_KPIWrwkDyw2JKe1sZwQPZU8YgcWO-t6FtLMf3uMbn6JDaYVZ6OxKJ6T4clRN50iJtuNxRTeJb5vM61REWR0bGamQnDfENNuno9T-l1rtQCHudI0lA9IZPBxffzS8emVnBS7kUrh3E_FhKgXehBiKSzQAS-F2kd6n6ghZR9GbopQKOMCelCxJPpQHsZgrXMFYwr_ynpFKC0Q0KDQCrAABAJBZqJEPniAHOp0JWx8NIs6xJ_q88ktbzjmP4iT8xiGof4o1ZPgq2Q2FboEqeptah5N_4hf4ZN1cgia7b5oFzOEuuEiXBd6fpMqoh5LIp5HGQ8FLEheXMjGXXJMTZ0Uh9BbXw_OUVGzQiwIvzMKyOBzBkFbs2ZiXVVJV-ufvyH0PW4JfTGCukS1JEKexwC3gkZuVqSh2h329euEoAUMcA0iLy75Ghri7uLj5ti6DVwKUgUqlxXCfTzLPR9-O5nteH-VjJnGNIGXcJbJt3SbLukmP80vOQuUhJ4_vO7_-8Lcr-eG8fNT0eks1qu1UsAdSvZI_f4lMM1OnfxOvjcI_tnF6Nv456ZJukZP_4F8bNQBQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOMAFUV4NLcRCIEBiabz2vg4IFUqV0CaVmrbKzdi73jRStLt0E6H8KX4jM_sqiyrg0lOUeOJkZ8bzsMffEPKyH4AemIhbJowhQQkcYwW671u-4aEfxkrAC1ZbjN3Bmfg6daYb5Gd9FwbLKmubWBjqKA1xj3wX7GgAvgnSjY_Zdwu7RuHpat1Co1SLQ7P-ASlb_mG4D_J9ZdsHX04_D6yqq4AVera_tITHA6UhqnFtyA7iyFEOt_04duO-Eyut-9plIUQFkVCaQbAfxU5sRxinREwJz3CY9xa5LXAGWD_etEnwwHa4bnU9j3tst9KG91mamAInkQvWcn9Fl4DGF3SyRZpfF-j-Wa_5mwM8uE_uVZEr3StVbZNsmOQB2axsQ07fVADWbx-S4321xp71dKyy_B0dpZDX0xGW9K4pNghNF_OykxNVSURPzKzYjlys6SQzRYkgnSyMyeDtHCEg8kfk7EZY_Jh0EmDaFqGOow1EGJBnObFQLqLRQURnXKYDZYdR1CW85qcMK1RzbK6xkMVRnQfZTckeiVKQlRS6xGq-lZWoHv-g_4SiamgRk7v4IL2cyWqJS8WYZlxo4wtb-IEXOJHnqqCAkGO-9rukh4KW5QXXxrLIPcTr9CEShZ95UVAgLkeChT8ztcpzOTw-_w-iyUmL6HVFFKfAjlBVly3gmRDvq0W5hXpXP3YurxZal-zUunj9cK8ZBpuEB00qMekql-BFhMs5zP2kVNwrJnsCE2anS7yWSrc42x5J5hcF6jlDwAObP_37n-qRO4PT0ZE8Go4Pt8ndciceS612SGd5uTLPIIRc6ufFuqXk200bil9eYYNd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wqARAgESoXVs5-MBoUGpVsY6tDLUN-Mk9qhUJWFphfqv8ddxlzgZRRPwsqcq9SVt7s73YZ9_R8iTQQR6oFPm6sRAghIJ7UbxIHRDzZIwMYrDB1ZbTPz9E_5hJmZb5GdzFgbLKhubWBnqNE9wjbwPdjQC3wTpRt_YsohPw9Gb4ruLHaRwp7Vpp1GryIFe_4D0rXw9HoKsn3re6P3nd_uu7TDgJoEXLl0esEjFEOH4HmQKJhVKMC80xjcDYVQcD2KfJhAhpFzFFAL_1AjjpRizpFTxQDN47hVyNWCC4hwLZm2yB3bE9-1RPRbQvtWMV0We6QozkXG64QqrjgGtX-gUi7y8KOj9s3bzN2c4uklu2CjW2avVbpts6ewW2bZ2onSeWzDrF7fJ0VCtsX-9M1FF-dI5zCHHdw6xvHftYLPQfDGvuzo5KkudY31aLU0u1s600FW5oDNdaF3A5RzhIMo75ORSWHyXdDJg2g5xhIg1RBuQcwnDlY_IdBDdaZ_GkfKSNO0S1vBTJhbhHBttLGS1bRdAplOzR6IUpJVCl7jtXUWN8PEP-rcoqpYW8bmrL_KzU2mnu1SUxpTxWIfc42EURCINfBVVcHI0jMMu6aGgZX3YtbUycg-xO0OISuFnHlcUiNGRobafqlVZyvHRl_8gmh5vED2zRCYHdiTKHryAd0Lsrw3KHdS75rVLeT7pumS30cWLh3vtMNgn3HRSmc5XpQSPwn3G4Nn3asU9Z3LAMXkWXRJsqPQGZzdHsvm3CgGdIviBx-7__U_1yDUwEfLjeHLwgFyvF-Wx6mqXdJZnK_0Qosll_Kiatg75etl24heQ_YeT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Daytime+Naps%2C+Motor+Memory+Consolidation+and+Regionally+Specific+Sleep+Spindles&rft.jtitle=PloS+one&rft.au=Nishida%2C+Masaki&rft.au=Matthew+P+Walker&rft.date=2007-04-04&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0000341&rft.externalDocID=1289129156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon