Daytime Naps, Motor Memory Consolidation and Regionally Specific Sleep Spindles
Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationsh...
Saved in:
Published in | PloS one Vol. 2; no. 4; p. e341 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
04.04.2007
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0000341 |
Cover
Loading…
Abstract | Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation.
Two groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone.
These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain. |
---|---|
AbstractList | Background Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. Methodology/Principal Findings Two groups of subjects trained on a motor-skill task using their left hand – a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60–90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged–correlations that were not evident for either hemisphere alone. Conclusions/Significance These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain. Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation.Two groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone.These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain. Background Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. Methodology/Principal Findings Two groups of subjects trained on a motor-skill task using their left hand – a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60–90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged–correlations that were not evident for either hemisphere alone. Conclusions/Significance These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain. Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation.BACKGROUNDIncreasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation.Two groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone.METHODOLOGY/PRINCIPAL FINDINGSTwo groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone.These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain.CONCLUSIONS/SIGNIFICANCEThese results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain. Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. Two groups of subjects trained on a motor-skill task using their left hand - a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60-90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged-correlations that were not evident for either hemisphere alone. These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain. |
Audience | Academic |
Author | Walker, Matthew P. Nishida, Masaki |
AuthorAffiliation | University of Birmingham, United Kingdom Sleep and Neuroimaging Laboratory, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America |
AuthorAffiliation_xml | – name: University of Birmingham, United Kingdom – name: Sleep and Neuroimaging Laboratory, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America |
Author_xml | – sequence: 1 givenname: Masaki surname: Nishida fullname: Nishida, Masaki – sequence: 2 givenname: Matthew P. surname: Walker fullname: Walker, Matthew P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17406665$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1v0zAYhSM0xD7gHyCIhDQJiRZ_x-ECaSpflTYqrcCt9Sa2W09OHOIU0X-Pu3bQTggRX8R-87zH9sk5zY7a0Jose4rRGNMCv74Jq74FP-5SeYzSQxl-kJ3gkpKRIIge7c2Ps9MYbxDiVArxKDvGBUNCCH6Szd7BenCNyT9DF1_lV2EIfX5lmtCv80loY_BOw-BCm0Or82uzSFPwfp3PO1M76-p87o3p0tK12pv4OHtowUfzZPc-y75-eP9l8ml0Ofs4nVxcjuqCyGHEClpCRTESBLPSag6cEmmtsIhbqCpUCVxzQTSDCgvEteWWaMoJ0RhYYehZ9nyr2_kQ1c6LqDCRJSYl5iIR0y2hA9yorncN9GsVwKnbQugXCvrB1d4owLjClFVGMsJkWZRcFwJKhiQvsaxk0nq7221VNUbXph168Aeih19at1SL8ENhSaQgNAmc7wT68H1l4qAaF2vjPbQmrKIq0t8TlOIEvrgH_v1u4y21gHR819qQdq3T0KZxdQqEdal-wQpCJEd8I_vyoCExg_k5LGAVo5rOr_-fnX07ZM_32KUBPyxTZlabxMRD8Nm-g7-tu0tiAtgWqPsQY2_sHwSpTeDvjFCbwKtd4FPbm3tttRtuA5sccf7fzb8Ahl0FSA |
CitedBy_id | crossref_primary_10_1016_j_neuron_2011_02_043 crossref_primary_10_1038_npp_2009_6 crossref_primary_10_1016_j_nlm_2017_08_006 crossref_primary_10_1111_j_1749_6632_2009_04416_x crossref_primary_10_1152_physiol_00004_2019 crossref_primary_10_1155_2016_1796715 crossref_primary_10_1111_jsr_13695 crossref_primary_10_5665_sleep_1992 crossref_primary_10_1152_jn_00315_2009 crossref_primary_10_1016_j_neures_2017_09_006 crossref_primary_10_3758_s13414_015_0912_7 crossref_primary_10_1111_j_1365_2869_2008_00634_x crossref_primary_10_5665_sleep_2968 crossref_primary_10_1016_j_neuroimage_2014_08_044 crossref_primary_10_1101_lm_051151_119 crossref_primary_10_1310_tsr1501_1 crossref_primary_10_2522_ptj_20120502 crossref_primary_10_1016_j_nlm_2016_03_017 crossref_primary_10_1016_j_pneurobio_2020_101940 crossref_primary_10_1016_j_nlm_2018_03_019 crossref_primary_10_3389_fpsyg_2019_03014 crossref_primary_10_1109_TBME_2011_2175225 crossref_primary_10_7554_eLife_24987 crossref_primary_10_1038_nrn2762 crossref_primary_10_1177_0956797612457391 crossref_primary_10_1371_journal_pone_0174755 crossref_primary_10_1016_j_biopsych_2015_10_003 crossref_primary_10_1016_j_conb_2013_04_002 crossref_primary_10_1016_j_cub_2016_06_044 crossref_primary_10_3389_fneur_2018_01002 crossref_primary_10_3389_fneur_2022_979333 crossref_primary_10_1016_j_bbr_2010_10_019 crossref_primary_10_1111_j_1479_8425_2012_00576_x crossref_primary_10_1016_j_visres_2013_12_014 crossref_primary_10_1016_j_nlm_2018_06_002 crossref_primary_10_1371_journal_pone_0111635 crossref_primary_10_1371_journal_pone_0085918 crossref_primary_10_1111_j_1746_1561_2012_00732_x crossref_primary_10_1523_JNEUROSCI_0807_22_2022 crossref_primary_10_1093_sleep_zsaa277 crossref_primary_10_1371_journal_pbio_1002429 crossref_primary_10_2522_ptj_20080310 crossref_primary_10_5665_sleep_2380 crossref_primary_10_1016_j_smrv_2012_04_001 crossref_primary_10_3389_fnhum_2015_00507 crossref_primary_10_1007_s13311_019_00769_6 crossref_primary_10_1016_j_jsmc_2012_06_008 crossref_primary_10_3389_fnhum_2015_00624 crossref_primary_10_1026_1612_5010_a000063 crossref_primary_10_1146_annurev_clinpsy_050718_095754 crossref_primary_10_1016_j_neuron_2023_03_005 crossref_primary_10_1111_jnc_14107 crossref_primary_10_1016_j_sleep_2021_05_019 crossref_primary_10_1080_02640414_2020_1793651 crossref_primary_10_1080_87565640903133475 crossref_primary_10_1152_physrev_00042_2018 crossref_primary_10_1523_JNEUROSCI_2009_20_2020 crossref_primary_10_3390_brainsci11020261 crossref_primary_10_1073_pnas_1207532109 crossref_primary_10_1016_j_tins_2013_10_001 crossref_primary_10_1016_j_jpsychires_2010_08_015 crossref_primary_10_1016_j_tins_2013_10_002 crossref_primary_10_1152_physrev_00032_2012 crossref_primary_10_3389_fnhum_2014_00762 crossref_primary_10_1152_jn_00471_2019 crossref_primary_10_1016_j_neuropsychologia_2012_06_008 crossref_primary_10_1016_j_sleep_2010_02_009 crossref_primary_10_1007_s11910_013_0433_5 crossref_primary_10_1111_j_1460_9568_2008_06178_x crossref_primary_10_1016_j_nlm_2021_107384 crossref_primary_10_1093_sleep_zsz241 crossref_primary_10_1111_j_1479_8301_2012_00411_x crossref_primary_10_1093_sleep_zsae072 crossref_primary_10_5665_sleep_2954 crossref_primary_10_1016_j_neuroimage_2015_10_041 crossref_primary_10_1093_braincomms_fcab108 crossref_primary_10_1523_ENEURO_0150_23_2024 crossref_primary_10_1002_wcs_52 crossref_primary_10_1016_j_neuroscience_2021_03_003 crossref_primary_10_1080_15374416_2016_1157756 crossref_primary_10_3389_fneur_2018_00056 crossref_primary_10_1111_desc_12463 crossref_primary_10_1016_j_brainres_2020_146739 crossref_primary_10_1016_j_tics_2007_09_001 crossref_primary_10_1371_journal_pcbi_1006171 crossref_primary_10_1016_j_celrep_2022_111367 crossref_primary_10_1016_j_neuropsychologia_2017_11_002 crossref_primary_10_1556_2053_01_2017_002 crossref_primary_10_1007_s40279_015_0377_9 crossref_primary_10_1097_WNP_0000000000000068 crossref_primary_10_3389_fnins_2022_803387 crossref_primary_10_1523_JNEUROSCI_1857_14_2014 crossref_primary_10_1093_cercor_bhr034 crossref_primary_10_1016_j_jad_2012_06_016 crossref_primary_10_5665_sleep_3572 crossref_primary_10_1111_j_1469_185X_2010_00165_x crossref_primary_10_1016_j_nlm_2022_107662 crossref_primary_10_1101_lm_043042_116 crossref_primary_10_1371_journal_pone_0057394 crossref_primary_10_1016_j_smrv_2012_01_004 crossref_primary_10_1016_j_neuroimage_2017_12_066 crossref_primary_10_1038_s44159_023_00262_0 crossref_primary_10_1016_j_physbeh_2012_05_021 crossref_primary_10_5665_sleep_2808 crossref_primary_10_1016_j_neubiorev_2024_105597 crossref_primary_10_1016_j_smrv_2009_05_004 crossref_primary_10_1016_j_nlm_2015_02_011 crossref_primary_10_3389_fneur_2015_00225 crossref_primary_10_3758_s13415_011_0052_z crossref_primary_10_1038_s41537_019_0086_8 crossref_primary_10_1111_j_1467_7687_2012_01146_x crossref_primary_10_1093_schbul_sbae059 crossref_primary_10_1016_j_neuropsychologia_2014_09_016 crossref_primary_10_1371_journal_pone_0052805 crossref_primary_10_1007_BF03373824 crossref_primary_10_1016_j_biopsycho_2013_10_010 crossref_primary_10_1523_JNEUROSCI_3127_12_2013 crossref_primary_10_1016_j_jfma_2012_05_011 crossref_primary_10_1016_j_neubiorev_2010_12_003 crossref_primary_10_1016_j_cub_2020_01_091 crossref_primary_10_1016_j_jneumeth_2013_04_003 crossref_primary_10_1111_j_1460_9568_2012_08181_x crossref_primary_10_1016_j_smrv_2008_08_002 crossref_primary_10_3389_fpsyt_2017_00140 crossref_primary_10_1523_JNEUROSCI_5548_07_2008 crossref_primary_10_3390_brainsci5040494 crossref_primary_10_1016_j_nlm_2019_04_005 crossref_primary_10_1111_j_1460_9568_2009_06767_x crossref_primary_10_1007_s40675_024_00291_y crossref_primary_10_1007_s41105_017_0136_4 crossref_primary_10_1080_17461391_2021_1892197 crossref_primary_10_1016_j_neuroimage_2021_118573 crossref_primary_10_1016_j_sleep_2015_01_017 crossref_primary_10_1590_S1676_26492007000400006 crossref_primary_10_1523_JNEUROSCI_3162_15_2016 crossref_primary_10_1016_j_neurobiolaging_2014_12_014 crossref_primary_10_1093_sleep_zsz289 crossref_primary_10_3389_fspor_2021_697535 crossref_primary_10_1111_psyp_12656 crossref_primary_10_1097_WCO_0b013e3283052cf7 crossref_primary_10_3233_RNN_150521 crossref_primary_10_1016_j_isci_2023_107314 crossref_primary_10_3389_fpsyg_2016_01698 crossref_primary_10_1371_journal_pone_0280591 crossref_primary_10_1111_ejn_15468 crossref_primary_10_1016_j_smrv_2022_101666 crossref_primary_10_1016_j_nlm_2021_107460 crossref_primary_10_1111_jsr_14151 crossref_primary_10_1371_journal_pone_0152489 crossref_primary_10_1523_JNEUROSCI_2604_11_2011 crossref_primary_10_1016_j_tics_2023_09_002 crossref_primary_10_1016_j_neuroimage_2014_05_028 crossref_primary_10_1016_j_bbr_2019_112157 crossref_primary_10_3390_clockssleep4030033 crossref_primary_10_1016_j_neuroimage_2016_04_031 crossref_primary_10_1093_cercor_bhab360 crossref_primary_10_1523_JNEUROSCI_0325_24_2024 crossref_primary_10_1016_j_bandl_2015_09_003 crossref_primary_10_1038_s41598_018_33209_0 crossref_primary_10_1080_15402002_2013_845782 crossref_primary_10_1098_rspb_2023_1408 crossref_primary_10_3389_fnagi_2016_00125 crossref_primary_10_3389_fnhum_2014_00910 crossref_primary_10_1007_s00424_011_1031_5 crossref_primary_10_1249_JES_0000000000000273 crossref_primary_10_1038_s41598_024_58123_6 crossref_primary_10_3389_fnsys_2014_00046 crossref_primary_10_1017_S0952675720000044 crossref_primary_10_5665_sleep_4502 crossref_primary_10_1016_j_biopsych_2011_08_008 crossref_primary_10_3389_fnins_2019_00813 crossref_primary_10_1007_s00221_010_2497_7 crossref_primary_10_7554_eLife_66761 crossref_primary_10_1371_journal_pcbi_1006322 crossref_primary_10_1098_rsta_2011_0078 crossref_primary_10_1111_jsr_12082 crossref_primary_10_1016_j_slsci_2016_04_002 crossref_primary_10_1016_j_schres_2018_04_019 crossref_primary_10_1016_j_jsmc_2010_12_004 crossref_primary_10_1016_j_neurobiolaging_2016_10_009 crossref_primary_10_1007_s12304_021_09471_7 crossref_primary_10_1073_pnas_0900271106 crossref_primary_10_1093_sleep_zsab056 crossref_primary_10_1631_jzus_B0820384 crossref_primary_10_3389_fneur_2022_871166 crossref_primary_10_1007_s11910_013_0430_8 crossref_primary_10_1002_hipo_23101 crossref_primary_10_1109_TCDS_2020_2991176 crossref_primary_10_1016_j_sleep_2021_04_016 crossref_primary_10_1162_imag_a_00250 crossref_primary_10_1111_jsr_14370 crossref_primary_10_1111_jsr_14371 crossref_primary_10_1007_s10943_015_0093_7 crossref_primary_10_1523_JNEUROSCI_2291_14_2014 crossref_primary_10_3389_fnagi_2021_787654 crossref_primary_10_4236_jbise_2017_105B002 crossref_primary_10_1002_hbm_22426 crossref_primary_10_1016_j_smrv_2020_101280 crossref_primary_10_1523_JNEUROSCI_3033_16_2017 crossref_primary_10_1093_schbul_sbx151 crossref_primary_10_1016_j_smrv_2009_09_005 crossref_primary_10_1016_j_neubiorev_2014_10_021 crossref_primary_10_1016_j_physbeh_2023_114287 crossref_primary_10_3389_fpsyg_2023_1230281 crossref_primary_10_1016_j_cub_2008_03_022 crossref_primary_10_1093_sleep_zsad025 crossref_primary_10_1016_j_sleep_2017_09_005 crossref_primary_10_1038_s41597_020_0533_4 crossref_primary_10_1093_sleepadvances_zpae090 crossref_primary_10_3109_07420528_2013_782312 crossref_primary_10_1016_j_neuroimage_2022_119820 crossref_primary_10_1093_sleep_zsz095 crossref_primary_10_1016_j_smrv_2021_101453 crossref_primary_10_1038_s41598_017_12489_y crossref_primary_10_24985_kjss_2013_24_3_477 crossref_primary_10_1016_j_nlm_2015_11_009 crossref_primary_10_1038_nn_2206 crossref_primary_10_1162_jocn_a_00579 crossref_primary_10_1016_j_mhpa_2020_100365 crossref_primary_10_1523_JNEUROSCI_1011_14_2014 crossref_primary_10_1016_j_nlm_2016_04_007 crossref_primary_10_1098_rstb_2019_0230 crossref_primary_10_1016_j_neuroimage_2011_08_023 crossref_primary_10_1016_j_neuroimage_2016_06_057 crossref_primary_10_1016_j_parkreldis_2013_03_014 crossref_primary_10_1093_sleep_33_10_1315 crossref_primary_10_1016_j_physbeh_2011_01_020 crossref_primary_10_1098_rstb_2019_0232 crossref_primary_10_1167_19_12_12 crossref_primary_10_1097_WNP_0000000000000655 crossref_primary_10_1016_j_ijpsycho_2013_06_022 crossref_primary_10_1093_sleep_zsw013 crossref_primary_10_1016_j_neubiorev_2012_02_014 crossref_primary_10_1016_j_neubiorev_2017_04_026 crossref_primary_10_1007_s11332_019_00553_1 crossref_primary_10_3389_fnhum_2021_667574 crossref_primary_10_1016_j_schres_2016_05_023 crossref_primary_10_1016_j_physbeh_2016_11_024 crossref_primary_10_1016_j_smrv_2018_01_004 crossref_primary_10_1159_000369022 crossref_primary_10_1016_j_jneumeth_2015_11_015 crossref_primary_10_1038_srep36001 crossref_primary_10_1093_cercor_bhn155 crossref_primary_10_1007_s40675_020_00193_9 crossref_primary_10_1016_j_cub_2018_09_054 crossref_primary_10_1186_s40798_018_0151_2 crossref_primary_10_1007_s11920_023_01444_6 crossref_primary_10_1093_brain_awz269 crossref_primary_10_1371_journal_pbio_1002263 crossref_primary_10_1016_j_nlm_2013_06_007 crossref_primary_10_1016_j_ijer_2015_09_008 crossref_primary_10_1038_nrn3315 crossref_primary_10_7554_eLife_51005 crossref_primary_10_2147_NSS_S326151 crossref_primary_10_1152_physrev_00010_2015 crossref_primary_10_1002_hipo_22183 crossref_primary_10_1016_j_jsmc_2010_01_002 crossref_primary_10_1523_JNEUROSCI_3028_10_2010 crossref_primary_10_1111_jsr_12961 crossref_primary_10_1093_sleep_zsad206 crossref_primary_10_1111_j_1365_2869_2009_00740_x crossref_primary_10_1016_j_clinph_2019_02_019 crossref_primary_10_1051_sm_2013070 crossref_primary_10_1093_sleep_zsy142 crossref_primary_10_1093_sleep_zsy263 crossref_primary_10_3389_frsle_2023_1082253 crossref_primary_10_1098_rstb_2019_0655 crossref_primary_10_3389_fneur_2016_00054 crossref_primary_10_1016_j_psyneuen_2011_11_006 crossref_primary_10_1101_lm_569407 crossref_primary_10_1162_jocn_a_00675 crossref_primary_10_1080_15402002_2016_1178115 crossref_primary_10_1016_j_sleep_2013_05_019 crossref_primary_10_1371_journal_pone_0159608 crossref_primary_10_3389_fpsyg_2017_00665 crossref_primary_10_3389_fpsyg_2021_757052 crossref_primary_10_1016_j_schres_2019_05_027 crossref_primary_10_1016_j_neuroscience_2018_12_049 crossref_primary_10_1523_JNEUROSCI_0552_13_2014 crossref_primary_10_1155_2017_2962479 crossref_primary_10_1093_cercor_bhy174 crossref_primary_10_1101_lm_052464_120 crossref_primary_10_1111_jsr_12832 crossref_primary_10_1016_j_nlm_2014_07_001 crossref_primary_10_1212_WNL_0000000000210232 crossref_primary_10_1016_j_neuron_2012_08_034 crossref_primary_10_1016_j_conb_2017_05_001 crossref_primary_10_3389_fnhum_2017_00433 crossref_primary_10_1111_ane_13651 crossref_primary_10_1038_nn_3152 crossref_primary_10_1016_j_euroneuro_2015_06_005 crossref_primary_10_1038_s41598_017_15195_x crossref_primary_10_1038_s42003_024_07197_z crossref_primary_10_1186_s13024_019_0309_5 crossref_primary_10_1016_j_tine_2014_02_004 crossref_primary_10_1111_nyas_13855 crossref_primary_10_1016_j_slsci_2015_01_001 crossref_primary_10_1093_sleep_zsx036 crossref_primary_10_3389_fnhum_2016_00315 crossref_primary_10_1155_2016_6936381 crossref_primary_10_1007_s40279_015_0358_z crossref_primary_10_1155_2016_3024342 crossref_primary_10_1093_sleep_zsx151 crossref_primary_10_1016_j_nlm_2019_107100 crossref_primary_10_1007_s12144_024_06384_9 crossref_primary_10_1371_journal_pone_0060296 crossref_primary_10_1038_s41562_017_0111 crossref_primary_10_1097_YCO_0000000000000365 crossref_primary_10_1073_pnas_1208093110 crossref_primary_10_5665_sleep_5214 crossref_primary_10_5665_SLEEP_1290 crossref_primary_10_1007_s41105_022_00426_0 crossref_primary_10_1155_2016_7328725 crossref_primary_10_1080_10673220802432517 crossref_primary_10_1016_j_biopsycho_2013_02_020 crossref_primary_10_1016_j_nlm_2016_01_008 crossref_primary_10_1016_j_nlm_2021_107508 crossref_primary_10_1016_j_sleep_2012_02_003 crossref_primary_10_1093_sleep_zsw059 crossref_primary_10_1016_S1389_9457_08_70014_5 crossref_primary_10_1016_j_sleep_2024_09_031 crossref_primary_10_1016_j_neuropsychologia_2023_108661 crossref_primary_10_15268_ksim_2014_2_3_009 crossref_primary_10_1016_j_tins_2011_06_003 crossref_primary_10_1111_psyp_12015 crossref_primary_10_1523_JNEUROSCI_1198_13_2013 crossref_primary_10_3389_fnsys_2023_1154489 crossref_primary_10_1038_s41598_017_09263_5 crossref_primary_10_1016_j_tics_2024_04_007 crossref_primary_10_1044_2016_JSLHR_S_16_0104 crossref_primary_10_1016_j_nlm_2024_107953 crossref_primary_10_1038_s41467_018_05518_5 crossref_primary_10_1016_j_bbr_2008_04_028 crossref_primary_10_1146_annurev_psych_010419_050815 crossref_primary_10_1111_j_1532_5415_2011_03324_x |
Cites_doi | 10.1146/annurev.psych.56.091103.070307 10.1111/j.1365-2869.1994.tb00133.x 10.1007/s00221-002-1181-y 10.5334/pb.1018 10.1038/nature01930 10.1038/nrn1426 10.1177/155005949202300308 10.1073/pnas.182178199 10.1073/pnas.2035019100 10.1101/lm.76304 10.7551/mitpress/3822.001.0001 10.1016/j.neuroscience.2005.04.007 10.1046/j.1365-2869.1997.00046.x 10.1101/lm.58503 10.1523/JNEUROSCI.22-11-04702.2002 10.1016/0166-4328(95)00024-N 10.1038/nature02663 10.1111/j.1365-2869.2006.00522.x 10.1016/j.cub.2004.01.027 10.1046/j.1365-2869.2000.00230.x 10.1038/nn1758 10.1111/j.1365-2869.1994.tb00123.x 10.1016/j.smrv.2005.05.002 10.1017/S0140525X05000026 10.1016/S0896-6273(02)00746-8 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2007 Public Library of Science 2007 Nishida, Walker. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Nishida, Walker. 2007 |
Copyright_xml | – notice: COPYRIGHT 2007 Public Library of Science – notice: 2007 Nishida, Walker. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Nishida, Walker. 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0000341 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Naps, Consolidation & Spindles |
EISSN | 1932-6203 |
ExternalDocumentID | 1289129156 oai_doaj_org_article_a11b134be842489795d76a94085918b8 PMC1828623 2896714681 A472285051 17406665 10_1371_journal_pone_0000341 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Massachusetts |
GeographicLocations_xml | – name: Massachusetts – name: United States--US |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH67754 – fundername: NIMH NIH HHS grantid: MH65292 – fundername: NIMH NIH HHS grantid: R01 MH048832 – fundername: NIMH NIH HHS grantid: R21 MH067754 – fundername: NIMH NIH HHS grantid: R03 MH069935 – fundername: NIMH NIH HHS grantid: MH48832 – fundername: NIMH NIH HHS grantid: MH069935 – fundername: NIMH NIH HHS grantid: R01 MH065292 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RNS RPM TR2 UKHRP WOQ WOW ~02 ~KM BBORY CGR CUY CVF ECM EIF NPM PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM A8Z PUEGO AAPBV ABPTK BBAFP |
ID | FETCH-LOGICAL-c728t-4739ab31062149fd5a5328ff6f05fabb0b61c562d4ab1605df5f2d3522d1a47e3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Mon Dec 05 23:08:15 EST 2022 Wed Aug 27 01:27:44 EDT 2025 Thu Aug 21 13:46:58 EDT 2025 Thu Jul 10 23:35:01 EDT 2025 Fri Jul 25 12:09:15 EDT 2025 Tue Jun 10 21:31:11 EDT 2025 Fri Jun 27 03:58:23 EDT 2025 Fri Jun 27 03:43:50 EDT 2025 Thu May 22 20:57:32 EDT 2025 Thu Apr 03 07:01:49 EDT 2025 Tue Jul 01 00:45:05 EDT 2025 Thu Apr 24 23:13:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c728t-4739ab31062149fd5a5328ff6f05fabb0b61c562d4ab1605df5f2d3522d1a47e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: MW MN. Performed the experiments: MW MN. Analyzed the data: MW MN. Contributed reagents/materials/analysis tools: MW MN. Wrote the paper: MW MN. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0000341 |
PMID | 17406665 |
PQID | 1289129156 |
PQPubID | 1436336 |
PageCount | e341 |
ParticipantIDs | plos_journals_1289129156 doaj_primary_oai_doaj_org_article_a11b134be842489795d76a94085918b8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1828623 proquest_miscellaneous_70346331 proquest_journals_1289129156 gale_infotracacademiconefile_A472285051 gale_incontextgauss_ISR_A472285051 gale_incontextgauss_IOV_A472285051 gale_healthsolutions_A472285051 pubmed_primary_17406665 crossref_primary_10_1371_journal_pone_0000341 crossref_citationtrail_10_1371_journal_pone_0000341 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-04 |
PublicationDateYYYYMMDD | 2007-04-04 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-04 day: 04 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2007 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | H Kattler (ref20) 1994; 3 ST Grafton (ref16) 2002; 146 M Korman (ref19) 2003; 100 MP Walker (ref18) 2003; 425 A Rechtschaffen (ref30) 1968 MP Walker (ref14) 2005; 133 V Vyazovskiy (ref21) 2000; 9 J Zeitlhofer (ref15) 1997; 6 G Tononi (ref23) 2006; 10 C Smith (ref5) 1994; 3 K Kuriyama (ref28) 2004; 11 TJ Sejnowski (ref11) 2000; 886 C Smith (ref29) 1995; 69 EM Robertson (ref2) 2004; 5 S Fischer (ref9) 2002; 99 F Ferrarelli (ref31); In press EM Robertson (ref6) 2004; 14 JL Cantero (ref22) 2002; 22 SC Mednick (ref26) 2002; 28 MP Walker (ref1) 2005; 28 R Huber (ref7) 2004; 430 MP Walker (ref3) 2006; 10 K Peters (ref25) R Huber (ref24) 2006; 9 SM Fogel (ref8) 2006; 15 M Steriade (ref10) 2001 CT Smith (ref12) 2004; 44 MP Walker (ref4) 2002; 35 A Iyama (ref32) 1992; 23 MP Walker (ref17) 2003; 10 L De Gennaro (ref13) 2000; 3 MA Tucker (ref27) 2006 |
References_xml | – volume: 10 start-page: 139 year: 2006 ident: ref3 article-title: Sleep, Memory and Plasticity. publication-title: Annu Rev Psychol doi: 10.1146/annurev.psych.56.091103.070307 – volume: 3 start-page: 206 year: 1994 ident: ref5 article-title: Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. publication-title: J Sleep Res doi: 10.1111/j.1365-2869.1994.tb00133.x – volume: 146 start-page: 369 year: 2002 ident: ref16 article-title: Motor sequence learning with the nondominant left hand. A PET functional imaging study. publication-title: Exp Brain Res doi: 10.1007/s00221-002-1181-y – volume: 44 start-page: 81 year: 2004 ident: ref12 article-title: Different roles for REM and stage 2 sleep in motor learning: A proposed model. publication-title: Psychologica Belgica doi: 10.5334/pb.1018 – volume: 425 start-page: 616 year: 2003 ident: ref18 article-title: Dissociable stages of human memory consolidation and reconsolidation. publication-title: Nature doi: 10.1038/nature01930 – volume: In press ident: ref31 article-title: Reduced sleep spindle activity in schizophrenics. publication-title: American Journal of Psychiatry – volume: 5 start-page: 576 year: 2004 ident: ref2 article-title: Current concepts in procedural consolidation. publication-title: Nat Rev Neurosci doi: 10.1038/nrn1426 – volume: 23 start-page: 137 year: 1992 ident: ref32 article-title: Spindle activity in the waking EEG in older adults. publication-title: Clin Electroencephalogr doi: 10.1177/155005949202300308 – volume: 99 start-page: 11987 year: 2002 ident: ref9 article-title: Sleep forms memory for finger skills. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.182178199 – volume: 100 start-page: 12492 year: 2003 ident: ref19 article-title: Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2035019100 – volume: 11 start-page: 705 year: 2004 ident: ref28 article-title: Sleep-dependent learning and motor skill complexity. publication-title: Learn Mem doi: 10.1101/lm.76304 – year: 2001 ident: ref10 article-title: The Intact and Sliced Brain doi: 10.7551/mitpress/3822.001.0001 – volume: 133 start-page: 911 year: 2005 ident: ref14 article-title: Sleep-dependent motor memory plasticity in the human brain. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.04.007 – volume: 6 start-page: 149 year: 1997 ident: ref15 article-title: Topographic distribution of sleep spindles in young healthy subjects. publication-title: J Sleep Res doi: 10.1046/j.1365-2869.1997.00046.x – volume: 3 start-page: 155 year: 2000 ident: ref13 article-title: Topographical distribution of spindles: variations between and within NREM sleep cycles. publication-title: Sleep Res Online – volume: 10 start-page: 275 year: 2003 ident: ref17 article-title: Sleep and the time course of motor skill learning. publication-title: Learn Mem doi: 10.1101/lm.58503 – volume: 22 start-page: 4702 year: 2002 ident: ref22 article-title: Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-11-04702.2002 – year: 2006 ident: ref27 article-title: A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. publication-title: Neurobiol Learn Mem – volume: 69 start-page: 137 year: 1995 ident: ref29 article-title: Sleep states and memory processes. publication-title: Behav Brain Res doi: 10.1016/0166-4328(95)00024-N – volume: 28 start-page: 28 year: 2002 ident: ref26 article-title: The restorative effect of naps on perceptual deterioration. publication-title: Nat Neurosci – volume: 430 start-page: 78 year: 2004 ident: ref7 article-title: Local sleep and learning. publication-title: Nature doi: 10.1038/nature02663 – ident: ref25 article-title: Changes in sleep architecture following motor learning depend on intitial skill level. publication-title: J Cogn Neurosci – volume: 15 start-page: 250 year: 2006 ident: ref8 article-title: Learning-dependent changes in sleep spindles and Stage 2 sleep. publication-title: J Sleep Res doi: 10.1111/j.1365-2869.2006.00522.x – volume: 14 start-page: 208 year: 2004 ident: ref6 article-title: Awareness modifies the skill-learning benefits of sleep. publication-title: Curr Biol doi: 10.1016/j.cub.2004.01.027 – volume: 9 start-page: 367 year: 2000 ident: ref21 article-title: Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. publication-title: J Sleep Res doi: 10.1046/j.1365-2869.2000.00230.x – volume: 9 start-page: 1169 year: 2006 ident: ref24 article-title: Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. publication-title: Nat Neurosci doi: 10.1038/nn1758 – year: 1968 ident: ref30 article-title: A manual standardized terminology, techniques and scoring system for sleep stages of human subjects – volume: 3 start-page: 159 year: 1994 ident: ref20 article-title: Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. publication-title: J Sleep Res doi: 10.1111/j.1365-2869.1994.tb00123.x – volume: 10 start-page: 49 year: 2006 ident: ref23 article-title: Sleep function and synaptic homeostasis. publication-title: Sleep Med Rev doi: 10.1016/j.smrv.2005.05.002 – volume: 28 start-page: 51 year: 2005 ident: ref1 article-title: A refined model of sleep and the time course of memory formation. publication-title: Behav Brain Sci doi: 10.1017/S0140525X05000026 – volume: 35 start-page: 205 year: 2002 ident: ref4 article-title: Practice with sleep makes perfect: sleep dependent motor skill learning. publication-title: Neuron doi: 10.1016/S0896-6273(02)00746-8 – volume: 886 start-page: 208 year: 2000 ident: ref11 article-title: Why do we sleep? publication-title: Brain Res |
SSID | ssj0053866 |
Score | 2.4204636 |
Snippet | Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role... Background Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly... Background Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e341 |
SubjectTerms | Accuracy Activity patterns Behavior Brain Consolidation Correlation Correlation analysis Cortex (motor) Daytime Electrodes Electroencephalography Eye Eye movements Hemispheric laterality Homeostasis Humans Laboratories Learning Medical imaging Memory Motor Activity Motor skill Motor skill learning Neuronal Plasticity Neurophysiology Neuroscience/Behavioral Neuroscience Neuroscience/Cognitive Neuroscience Neuroscience/Motor Systems NREM sleep Older people Plasticity Psychiatry REM sleep Sleep Sleep (NREM) Sleep (REM) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBlloICZAIXcePJMfyqAoHKgFFvVl2YpeVliRqdg_77zsTe0ODKpUDp2jj2c1mZmx_k8x8Q8jLeQl-4GqeuspDgFJKl5Z2XqSF41VReSPggNkWX9XJmfhyLs-vtfrCnLBADxwUd2gYs4wL6wqRiaLMS1nnypQDMRcr7FDmC3veNpgKazDMYqVioRzP2WG0y7uubdzAWMgFm2xEA1__uCrPumXb3wQ5_86cvLYVHd8n9yKGpEfhv--QO655QHbiLO3p60gl_eYhOf1oNtg9njam699SMEt7SX9jcu2GQiAMfrcIPZWoaWqKTRoQmC83FAswMYmI9kvnOvi4QDKG_hE5O_7048NJGlsopFWeFatU5Lw0FiCcyiAU8rU0kmeF98rPpTfWzq1iFUCgWhjLILKpvfRZjaCsZkbkjj8mswaUtkuolNbBXg8Rj_TCKOSFA2zlFLOlyaq6Tgjf6lNXkV8c21ws9fDSLIc4I6hHoxV0tEJC0vFbXeDXuEX-PZpqlEV27OEE-IyOPqNv85mEHKChdSg1Hee4PkLmzAIwIVzmxSCBDBkNpuBcmHXf68-nP_9B6Pu3idCrKORbUEdlYtkD3BMyb00kd9Hvtrfda4AOJcAxiLATsrf1xZuHD8ZhWB3wlY9pXLvuNaznQnEOv_0kOO4fJecCQ1eZkHzi0hPNTkeaxa-Bf5wh9UDGn_4PUzwjd8PTckyH2iOz1eXa7QPMW9nnw4y-Anu9Tr0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF8rG8xCSIBEWB3b-XhC42MaSNukjaG-RXZsd5WqJFvah_733DluRtAEPFWtL0lzX76zz78j5PUkBz2whke2dJCg5NJGuZ5kUWZ5mZVOCfjAaouT5OhCfJ_KaVhwa0NZ5cYnekdt6hLXyPfBj-YwN0G68bG5irBrFO6uhhYad8k9hC7Dkq502idcYMtJEo7L8ZTtB-l8aOrKetxCLthgOvKo_b1vHjWLur0t8PyzfvK3CenwIXkQIkl60Il-i9yx1SOyFWy1pW8DoPS7x-T0i1pjD3l6opr2PT2uIc-mx1hiu6bYsLNezLvOSlRVhp7ZmV8eXKypb07v5iU9X1jbwNc5QjK0T8jF4dcfn4-i0EghKtM4W0Yi5bnSEMglMSREzkgleZw5l7iJdErriU5YCYGQEUozyG-Mky42GJoZpkRq-VMyqoBp24RKqS3M-JD3SCdUguhwEGHZhOlcxaUxY8I3_CzKgDKOzS4Whd86SyHb6NhToBSKIIUxifqrmg5l4x_0n1BUPS1iZPsf6utZEUyuUIxpxoW2mYhFlqe5NGmicg_pxjKdjckeCrroDpz2ll4cIH5mBpEhPOaVp0CcjAoLcWZq1bbFt9Of_0F0fjYgehOIXA3sKFU4_ADvhPhbA8pt1LvNa7fFjeKPye5GF28f3uuHwUfgxo-qbL1qC_DqIuEc7v2sU9wbJqcCE1g5JulApQecHY5U80uPQs4QgCDmz__-p3bI_W41HMuddsloeb2yLyCMW-qX3lZ_ASCoRug priority: 102 providerName: ProQuest |
Title | Daytime Naps, Motor Memory Consolidation and Regionally Specific Sleep Spindles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17406665 https://www.proquest.com/docview/1289129156 https://www.proquest.com/docview/70346331 https://pubmed.ncbi.nlm.nih.gov/PMC1828623 https://doaj.org/article/a11b134be842489795d76a94085918b8 http://dx.doi.org/10.1371/journal.pone.0000341 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnytMDoLIQESmZrEiZMHhLaxMpDaoY6ivkV2YpdKUdI1rbT-99w5biCoE7wkSn1um_Od_Tt__I6Q1_0Y7EBlvqNSDQFKHCgnlv3IiZSfRqkWDG6422IUXk7Y12kw3SPbnK1WgdXO0A7zSU2W-cntzeYjOPwHk7WBu9tKJ4uyUIaP0MeT7PswNnF01SFr1hXAu8PQHqC7q2ZrgDI8_k1v3VnkZbULiv69o_KPIWrwkDyw2JKe1sZwQPZU8YgcWO-t6FtLMf3uMbn6JDaYVZ6OxKJ6T4clRN50iJtuNxRTeJb5vM61REWR0bGamQnDfENNuno9T-l1rtQCHudI0lA9IZPBxffzS8emVnBS7kUrh3E_FhKgXehBiKSzQAS-F2kd6n6ghZR9GbopQKOMCelCxJPpQHsZgrXMFYwr_ynpFKC0Q0KDQCrAABAJBZqJEPniAHOp0JWx8NIs6xJ_q88ktbzjmP4iT8xiGof4o1ZPgq2Q2FboEqeptah5N_4hf4ZN1cgia7b5oFzOEuuEiXBd6fpMqoh5LIp5HGQ8FLEheXMjGXXJMTZ0Uh9BbXw_OUVGzQiwIvzMKyOBzBkFbs2ZiXVVJV-ufvyH0PW4JfTGCukS1JEKexwC3gkZuVqSh2h329euEoAUMcA0iLy75Ghri7uLj5ti6DVwKUgUqlxXCfTzLPR9-O5nteH-VjJnGNIGXcJbJt3SbLukmP80vOQuUhJ4_vO7_-8Lcr-eG8fNT0eks1qu1UsAdSvZI_f4lMM1OnfxOvjcI_tnF6Nv456ZJukZP_4F8bNQBQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOMAFUV4NLcRCIEBiabz2vg4IFUqV0CaVmrbKzdi73jRStLt0E6H8KX4jM_sqiyrg0lOUeOJkZ8bzsMffEPKyH4AemIhbJowhQQkcYwW671u-4aEfxkrAC1ZbjN3Bmfg6daYb5Gd9FwbLKmubWBjqKA1xj3wX7GgAvgnSjY_Zdwu7RuHpat1Co1SLQ7P-ASlb_mG4D_J9ZdsHX04_D6yqq4AVera_tITHA6UhqnFtyA7iyFEOt_04duO-Eyut-9plIUQFkVCaQbAfxU5sRxinREwJz3CY9xa5LXAGWD_etEnwwHa4bnU9j3tst9KG91mamAInkQvWcn9Fl4DGF3SyRZpfF-j-Wa_5mwM8uE_uVZEr3StVbZNsmOQB2axsQ07fVADWbx-S4321xp71dKyy_B0dpZDX0xGW9K4pNghNF_OykxNVSURPzKzYjlys6SQzRYkgnSyMyeDtHCEg8kfk7EZY_Jh0EmDaFqGOow1EGJBnObFQLqLRQURnXKYDZYdR1CW85qcMK1RzbK6xkMVRnQfZTckeiVKQlRS6xGq-lZWoHv-g_4SiamgRk7v4IL2cyWqJS8WYZlxo4wtb-IEXOJHnqqCAkGO-9rukh4KW5QXXxrLIPcTr9CEShZ95UVAgLkeChT8ztcpzOTw-_w-iyUmL6HVFFKfAjlBVly3gmRDvq0W5hXpXP3YurxZal-zUunj9cK8ZBpuEB00qMekql-BFhMs5zP2kVNwrJnsCE2anS7yWSrc42x5J5hcF6jlDwAObP_37n-qRO4PT0ZE8Go4Pt8ndciceS612SGd5uTLPIIRc6ufFuqXk200bil9eYYNd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wqARAgESoXVs5-MBoUGpVsY6tDLUN-Mk9qhUJWFphfqv8ddxlzgZRRPwsqcq9SVt7s73YZ9_R8iTQQR6oFPm6sRAghIJ7UbxIHRDzZIwMYrDB1ZbTPz9E_5hJmZb5GdzFgbLKhubWBnqNE9wjbwPdjQC3wTpRt_YsohPw9Gb4ruLHaRwp7Vpp1GryIFe_4D0rXw9HoKsn3re6P3nd_uu7TDgJoEXLl0esEjFEOH4HmQKJhVKMC80xjcDYVQcD2KfJhAhpFzFFAL_1AjjpRizpFTxQDN47hVyNWCC4hwLZm2yB3bE9-1RPRbQvtWMV0We6QozkXG64QqrjgGtX-gUi7y8KOj9s3bzN2c4uklu2CjW2avVbpts6ewW2bZ2onSeWzDrF7fJ0VCtsX-9M1FF-dI5zCHHdw6xvHftYLPQfDGvuzo5KkudY31aLU0u1s600FW5oDNdaF3A5RzhIMo75ORSWHyXdDJg2g5xhIg1RBuQcwnDlY_IdBDdaZ_GkfKSNO0S1vBTJhbhHBttLGS1bRdAplOzR6IUpJVCl7jtXUWN8PEP-rcoqpYW8bmrL_KzU2mnu1SUxpTxWIfc42EURCINfBVVcHI0jMMu6aGgZX3YtbUycg-xO0OISuFnHlcUiNGRobafqlVZyvHRl_8gmh5vED2zRCYHdiTKHryAd0Lsrw3KHdS75rVLeT7pumS30cWLh3vtMNgn3HRSmc5XpQSPwn3G4Nn3asU9Z3LAMXkWXRJsqPQGZzdHsvm3CgGdIviBx-7__U_1yDUwEfLjeHLwgFyvF-Wx6mqXdJZnK_0Qosll_Kiatg75etl24heQ_YeT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Daytime+Naps%2C+Motor+Memory+Consolidation+and+Regionally+Specific+Sleep+Spindles&rft.jtitle=PloS+one&rft.au=Nishida%2C+Masaki&rft.au=Matthew+P+Walker&rft.date=2007-04-04&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0000341&rft.externalDocID=1289129156 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |