Increased flexibility of the SARS-CoV-2 RNA-binding site causes resistance to remdesivir

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future var...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 19; no. 3; p. e1011231
Main Authors Torii, Shiho, Kim, Kwang Su, Koseki, Jun, Suzuki, Rigel, Iwanami, Shoya, Fujita, Yasuhisa, Jeong, Yong Dam, Ito, Jumpei, Asakura, Hiroyuki, Nagashima, Mami, Sadamasu, Kenji, Yoshimura, Kazuhisa, Sato, Kei, Matsuura, Yoshiharu, Shimamura, Teppei, Iwami, Shingo, Fukuhara, Takasuke
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.03.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn’t gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.
AbstractList Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn’t gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.
Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.
Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn’t gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection. Considering the emerging Omicron strain, quick characterization of SARS-CoV-2 mutations is important. However, owing to the difficulties in genetically modifying SARS-CoV-2, limited groups have produced multiple mutant viruses. Our cutting-edge reverse genetics technique enabled construction of eight reporter-carrying SARS-CoV-2 with the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn’t gain the virus production efficiency without remdesivir treatment. We developed a mathematical model taking into account sequential changes and identified antiviral effects against mutant viruses with differing propagation capacities and lethal effects on cells. In addition to identifying the positions of mutations, we analyzed the structural changes in SARS-CoV-2 NSP12 by computer simulation to understand the mechanism of resistance. This multidisciplinary approach promotes the evaluation of future resistance mutations.
Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.
Audience Academic
Author Shimamura, Teppei
Asakura, Hiroyuki
Sato, Kei
Koseki, Jun
Fukuhara, Takasuke
Jeong, Yong Dam
Iwanami, Shoya
Iwami, Shingo
Torii, Shiho
Nagashima, Mami
Kim, Kwang Su
Suzuki, Rigel
Ito, Jumpei
Sadamasu, Kenji
Yoshimura, Kazuhisa
Fujita, Yasuhisa
Matsuura, Yoshiharu
AuthorAffiliation 9 International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
13 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
18 AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
2 interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
6 Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
8 International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
15 NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
11 CREST, Japan Science and Technology Agency, Kawaguchi, Japan
16 Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan
1 Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
12 Center for Infectious Disease Education and Resea
AuthorAffiliation_xml – name: 17 Science Groove Inc., Fukuoka, Japan
– name: 7 Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
– name: 12 Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
– name: 18 AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
– name: 10 Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
– name: 13 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
– name: 1 Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
– name: 6 Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
– name: 3 Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
– name: 14 Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
– name: 8 International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
– name: 9 International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
– name: 11 CREST, Japan Science and Technology Agency, Kawaguchi, Japan
– name: 15 NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
– name: 16 Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan
– name: 5 Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
– name: 2 interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
– name: Erasmus Medical Center, NETHERLANDS
– name: 4 Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
Author_xml – sequence: 1
  givenname: Shiho
  surname: Torii
  fullname: Torii, Shiho
– sequence: 2
  givenname: Kwang Su
  surname: Kim
  fullname: Kim, Kwang Su
– sequence: 3
  givenname: Jun
  surname: Koseki
  fullname: Koseki, Jun
– sequence: 4
  givenname: Rigel
  surname: Suzuki
  fullname: Suzuki, Rigel
– sequence: 5
  givenname: Shoya
  surname: Iwanami
  fullname: Iwanami, Shoya
– sequence: 6
  givenname: Yasuhisa
  surname: Fujita
  fullname: Fujita, Yasuhisa
– sequence: 7
  givenname: Yong Dam
  surname: Jeong
  fullname: Jeong, Yong Dam
– sequence: 8
  givenname: Jumpei
  surname: Ito
  fullname: Ito, Jumpei
– sequence: 9
  givenname: Hiroyuki
  surname: Asakura
  fullname: Asakura, Hiroyuki
– sequence: 10
  givenname: Mami
  surname: Nagashima
  fullname: Nagashima, Mami
– sequence: 11
  givenname: Kenji
  surname: Sadamasu
  fullname: Sadamasu, Kenji
– sequence: 12
  givenname: Kazuhisa
  surname: Yoshimura
  fullname: Yoshimura, Kazuhisa
– sequence: 13
  givenname: Kei
  surname: Sato
  fullname: Sato, Kei
– sequence: 14
  givenname: Yoshiharu
  orcidid: 0000-0001-9091-8285
  surname: Matsuura
  fullname: Matsuura, Yoshiharu
– sequence: 15
  givenname: Teppei
  surname: Shimamura
  fullname: Shimamura, Teppei
– sequence: 16
  givenname: Shingo
  surname: Iwami
  fullname: Iwami, Shingo
– sequence: 17
  givenname: Takasuke
  surname: Fukuhara
  fullname: Fukuhara, Takasuke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36972312$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1v0zAUhiM0xD7gHyCIxA1cpPgrcbIbVFUDKk1DagFxZzn2cecqjYvtTtu_n7tm0zpNSCgXSY6f9z0fPsfZQe96yLK3GI0w5fjz0m18L7vRei3jCCOMCcUvsiNclrTglLODR9-H2XEIS4QYprh6lR3SquEJJ0fZn2mvPMgAOjcdXNvWdjbe5M7k8RLy-Xg2Lybud0Hy2cW4aG2vbb_Ig42QK7kJEHIPwYYoewV5dOlvpVPgyvrX2UsjuwBvhvdJ9uvr2c_J9-L8x7fpZHxeKE7qWGAGDTCUioFKUdJw1NYITNMSWmmjSm6QJoRCOkt9tHXLmNSgtCEVr5Vp6Un2fue77lwQw1CCIDUiqCSc4ERMd4R2cinW3q6kvxFOWnEXcH4hpI9WdSA0TQllRRojybYoqRpiUF1VTLcKGZO8vgzZNu0KtII-etntme6f9PZSLNyVwAjVDb2r5uPg4N3fDYQoVjYo6DrZg9ukwnmDOWoY5wn98AR9vr2BWsjUge2NS4nV1lSMOWOclU1TJmr0DJUeDSur0mYZm-J7gk97gsREuI6LdOtBTOez_2Av9tl3jyf4MLr7lUwA2wHKuxA8mAcEI7Hd_PspiO3mi2Hzk-z0iUzZKKN123uw3b_Fty6gCN8
CitedBy_id crossref_primary_10_1016_j_idcr_2025_e02199
crossref_primary_10_1016_j_isci_2024_109597
crossref_primary_10_1038_s41467_024_47941_x
crossref_primary_10_1172_jci_insight_182376
crossref_primary_10_1016_j_chembiol_2024_03_008
crossref_primary_10_1128_spectrum_02692_24
crossref_primary_10_1128_jvi_00796_23
crossref_primary_10_3390_v16050718
crossref_primary_10_1128_cmr_00119_23
crossref_primary_10_1001_jamanetworkopen_2024_35431
crossref_primary_10_1128_mbio_01060_23
Cites_doi 10.1016/j.cell.2022.04.035
10.1016/j.cell.2020.07.033
10.1038/s41422-020-0282-0
10.1126/science.abn4947
10.1056/NEJMoa2105000
10.1046/j.1365-2893.1999.00160.x
10.1126/science.abc1560
10.1016/j.chom.2020.11.007
10.1016/j.chom.2020.04.004
10.1093/cid/ciaa1474
10.1016/S1473-3099(20)30482-5
10.1016/j.celrep.2021.109014
10.1128/mBio.00221-18
10.1038/s41586-020-2294-9
10.1038/s43587-022-00170-7
10.1074/jbc.RA120.013679
10.1056/NEJM199807303390504
10.1038/s41579-021-00573-0
10.1056/NEJMc2119270
10.1093/infdis/jiq124
10.1093/bioinformatics/bty560
10.1063/1.445869
10.1038/s41586-020-2008-3
10.1016/j.chom.2021.06.006
10.1038/s41586-021-04388-0
10.4161/fly.19695
10.1038/s41467-019-13940-6
10.1371/journal.ppat.1009929
10.1038/s41467-022-29104-y
10.1056/NEJMoa2007764
10.1002/jcc.20035
10.1038/s41586-021-04245-0
10.1126/science.abl4784
10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
10.1126/scitranslmed.aal3653
10.1038/s41586-021-04266-9
10.1016/S2352-4642(21)00198-X
10.1136/bmj.317.7159.660
10.1093/bioinformatics/btp324
10.1093/bioinformatics/btp352
10.1038/s41586-022-04462-1
10.1016/j.antiviral.2019.104541
10.1056/NEJMoa2116044
10.1038/s41586-022-04474-x
ContentType Journal Article
Copyright Copyright: © 2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Torii et al 2023 Torii et al
Copyright_xml – notice: Copyright: © 2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Torii et al 2023 Torii et al
CorporateAuthor The Genotype to Phenotype Japan (G2P-Japan) Consortium
Genotype to Phenotype Japan (G2P-Japan) Consortium
CorporateAuthor_xml – name: The Genotype to Phenotype Japan (G2P-Japan) Consortium
– name: Genotype to Phenotype Japan (G2P-Japan) Consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QL
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1011231
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Remdesivir resistance of SARS-CoV-2
EISSN 1553-7374
ExternalDocumentID 2802052721
oai_doaj_org_article_d357fa629fa24023ac92f08664dbc0ff
PMC10089321
A744745995
36972312
10_1371_journal_ppat_1011231
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 20wm0225002, JP20he0822006, JP20fk0108264, JP20he0822008, JP20wm0225003, JP20fk0108267, JP20wm0125010
– fundername: ;
  grantid: 19fk0108050h0003; 19fk0108156h0001;20fk0108140s0801; 20fk0108413s0301; 19fk0210036h0502; 19fk0310114h0103;
– fundername: ;
  grantid: 20wm0325007h0001;20wm0325004s0201; 20wm0325012s0301; 20wm0325015s0301
– fundername: ;
  grantid: 18KT0018; 18H01139; 16H04845
– fundername: ;
  grantid: JPMJMS2021; JPMJMS2025
– fundername: ;
  grantid: 20H04281
– fundername: ;
  grantid: 20H04841
– fundername: ;
  grantid: 19gm1310002
– fundername: ;
  grantid: JP22gm1610008
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
~8M
3V.
ADRAZ
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
PMFND
7QL
7U9
7XB
8FK
AZQEC
C1K
COVID
DWQXO
GNUQQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
AAPBV
ABPTK
UMP
ID FETCH-LOGICAL-c728t-14e9e40231e6c32970b80ef9b236dfc57f0d223ec32374b8b44adecdf2678cfb3
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Sun May 07 16:28:46 EDT 2023
Wed Aug 27 01:23:01 EDT 2025
Thu Aug 21 18:38:34 EDT 2025
Fri Jul 11 09:19:21 EDT 2025
Tue Aug 12 09:40:32 EDT 2025
Tue Jun 17 21:36:34 EDT 2025
Tue Jun 10 20:50:35 EDT 2025
Fri Jun 27 06:10:39 EDT 2025
Fri Jun 27 06:08:01 EDT 2025
Wed Feb 19 02:04:33 EST 2025
Tue Jul 01 03:47:56 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright: © 2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c728t-14e9e40231e6c32970b80ef9b236dfc57f0d223ec32374b8b44adecdf2678cfb3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current address: Insect-Virus Interactions Unit, Department of Virology, Institute Pasteur, Paris, France
Membership of The Genotype to Phenotype Japan (G2P-Japan) Consortium is provided in Supporting Information file [S1 Acknowledgement].
The authors have declared that no competing interests exist.
Current address: Department of Scientific computing, Pukyong National University, Busan, South Korea
ORCID 0000-0001-9091-8285
OpenAccessLink https://www.proquest.com/docview/2802052721?pq-origsite=%requestingapplication%
PMID 36972312
PQID 2802052721
PQPubID 1436335
PageCount e1011231
ParticipantIDs plos_journals_2802052721
doaj_primary_oai_doaj_org_article_d357fa629fa24023ac92f08664dbc0ff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10089321
proquest_miscellaneous_2791709477
proquest_journals_2802052721
gale_infotracmisc_A744745995
gale_infotracacademiconefile_A744745995
gale_incontextgauss_ISR_A744745995
gale_incontextgauss_ISN_A744745995
pubmed_primary_36972312
crossref_primary_10_1371_journal_ppat_1011231
crossref_citationtrail_10_1371_journal_ppat_1011231
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230327
PublicationDateYYYYMMDD 2023-03-27
PublicationDate_xml – month: 3
  year: 2023
  text: 20230327
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References AJ Bernal (ppat.1011231.ref038) 2022; 386
Y Liu (ppat.1011231.ref030) 2022; 602
S Gandhi (ppat.1011231.ref019) 2022; 13
AM Szemiel (ppat.1011231.ref020) 2021; 17
M Martinot (ppat.1011231.ref018) 2021; 73
A Saito (ppat.1011231.ref025) 2022; 602
J Chen (ppat.1011231.ref047) 2020; 182
W Yin (ppat.1011231.ref048) 2020; 36
LJ Reed (ppat.1011231.ref046) 1938; 27
JH Beigel (ppat.1011231.ref012) 2020; 383
TP Sheahan (ppat.1011231.ref013) 2017; 9
D Yamasoba (ppat.1011231.ref041) 2022; 185
JM Wang (ppat.1011231.ref050) 2000; 21
S Torii (ppat.1011231.ref021) 2021; 35
TA Ruzhentsova (ppat.1011231.ref037) 2021; 13
S Collie (ppat.1011231.ref036) 2022; 386
DR Owen (ppat.1011231.ref039) 2021; 374
AJ Greaney (ppat.1011231.ref032) 2021; 29
C Motozono (ppat.1011231.ref024) 2021; 29
M Hussain (ppat.1011231.ref010) 1999; 6
TTN Thao (ppat.1011231.ref022) 2020; 582
J Wang (ppat.1011231.ref051) 2004; 25
S Tsuji (ppat.1011231.ref026) 2022; 2
WT Harvey (ppat.1011231.ref033) 2021; 19
R Suzuki (ppat.1011231.ref031) 2022; 603
ppat.1011231.ref028
TP Sheahan (ppat.1011231.ref014) 2020; 11
ppat.1011231.ref027
S Chen (ppat.1011231.ref042) 2018; 34
P Cingolani (ppat.1011231.ref045) 2012; 6
ML Agostini (ppat.1011231.ref015) 2018; 9
X Xie (ppat.1011231.ref023) 2020; 27
H Li (ppat.1011231.ref044) 2009; 25
CJ Gordon (ppat.1011231.ref017) 2020; 295
ppat.1011231.ref035
FM Hecht (ppat.1011231.ref009) 1998; 339
E Molteni (ppat.1011231.ref005) 2021; 5
University of California (ppat.1011231.ref049)
S Tabata (ppat.1011231.ref004) 2020; 20
M Wang (ppat.1011231.ref011) 2020; 30
LF Chen (ppat.1011231.ref007) 2011; 203
AJ Brown (ppat.1011231.ref016) 2019; 169
ppat.1011231.ref002
H Li (ppat.1011231.ref043) 2009; 25
L Liu (ppat.1011231.ref029) 2022; 602
JRC Pulliam (ppat.1011231.ref034) 2022; 376
D Pillay (ppat.1011231.ref008) 1998; 317
B Meng (ppat.1011231.ref040) 2022; 603
F Wu (ppat.1011231.ref001) 2020; 579
E Hacisuleyman (ppat.1011231.ref006) 2021; 384
ppat.1011231.ref003
WL Jorgensen (ppat.1011231.ref052) 1983; 79
References_xml – volume: 185
  start-page: 2103
  issue: 12
  year: 2022
  ident: ppat.1011231.ref041
  article-title: Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike
  publication-title: Cell
  doi: 10.1016/j.cell.2022.04.035
– volume: 182
  start-page: 1560
  issue: 6
  year: 2020
  ident: ppat.1011231.ref047
  article-title: Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex.
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.033
– volume: 30
  start-page: 269
  issue: 3
  year: 2020
  ident: ppat.1011231.ref011
  article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro
  publication-title: Cell Res
  doi: 10.1038/s41422-020-0282-0
– volume: 376
  start-page: eabn4947
  issue: 6593
  year: 2022
  ident: ppat.1011231.ref034
  article-title: Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa
  publication-title: Science
  doi: 10.1126/science.abn4947
– volume: 384
  start-page: 2212
  issue: 23
  year: 2021
  ident: ppat.1011231.ref006
  article-title: Vaccine Breakthrough Infections with SARS-CoV-2 Variants
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2105000
– volume: 6
  start-page: 183
  issue: 3
  year: 1999
  ident: ppat.1011231.ref010
  article-title: Mutations in the hepatitis B virus polymerase gene associated with antiviral treatment for hepatitis B
  publication-title: J Viral Hepat
  doi: 10.1046/j.1365-2893.1999.00160.x
– volume: 36
  start-page: 1499
  year: 2020
  ident: ppat.1011231.ref048
  article-title: Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir
  publication-title: Science
  doi: 10.1126/science.abc1560
– ident: ppat.1011231.ref028
– volume: 29
  start-page: 44
  issue: 1
  year: 2021
  ident: ppat.1011231.ref032
  article-title: Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.007
– volume: 27
  start-page: 841
  issue: 5
  year: 2020
  ident: ppat.1011231.ref023
  article-title: An Infectious cDNA Clone of SARS-CoV-2
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.04.004
– volume: 73
  start-page: e1762
  issue: 7
  year: 2021
  ident: ppat.1011231.ref018
  article-title: Emerging RNA-Dependent RNA Polymerase Mutation in a Remdesivir-Treated B-cell Immunodeficient Patient With Protracted Coronavirus Disease 2019
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa1474
– volume: 20
  start-page: 1043
  issue: 9
  year: 2020
  ident: ppat.1011231.ref004
  article-title: Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(20)30482-5
– volume: 35
  start-page: 109014
  issue: 3
  year: 2021
  ident: ppat.1011231.ref021
  article-title: Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109014
– volume: 9
  start-page: e00221
  issue: 2
  year: 2018
  ident: ppat.1011231.ref015
  article-title: Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease
  publication-title: mBio
  doi: 10.1128/mBio.00221-18
– volume: 582
  start-page: 561
  issue: 7813
  year: 2020
  ident: ppat.1011231.ref022
  article-title: Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform
  publication-title: Nature
  doi: 10.1038/s41586-020-2294-9
– volume: 2
  start-page: 115
  year: 2022
  ident: ppat.1011231.ref026
  article-title: SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response
  publication-title: Nature aging
  doi: 10.1038/s43587-022-00170-7
– volume: 295
  start-page: 6785
  issue: 20
  year: 2020
  ident: ppat.1011231.ref017
  article-title: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.013679
– volume: 339
  start-page: 307
  issue: 5
  year: 1998
  ident: ppat.1011231.ref009
  article-title: Sexual transmission of an HIV-1 variant resistant to multiple reverse-transcriptase and protease inhibitors
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199807303390504
– ident: ppat.1011231.ref002
– volume: 19
  start-page: 409
  issue: 7
  year: 2021
  ident: ppat.1011231.ref033
  article-title: SARS-CoV-2 variants, spike mutations and immune escape
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-021-00573-0
– volume: 386
  start-page: 494
  issue: 5
  year: 2022
  ident: ppat.1011231.ref036
  article-title: Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2119270
– volume: 203
  start-page: 838
  issue: 6
  year: 2011
  ident: ppat.1011231.ref007
  article-title: Cluster of oseltamivir-resistant 2009 pandemic influenza A (H1N1) virus infections on a hospital ward among immunocompromised patients—North Carolina, 2009
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiq124
– ident: ppat.1011231.ref027
– volume: 34
  start-page: i884
  issue: 17
  year: 2018
  ident: ppat.1011231.ref042
  article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinfomatics
  doi: 10.1093/bioinformatics/bty560
– volume: 79
  start-page: 926
  issue: 2
  year: 1983
  ident: ppat.1011231.ref052
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.445869
– volume: 579
  start-page: 265
  issue: 7798
  year: 2020
  ident: ppat.1011231.ref001
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 29
  start-page: 1124
  issue: 7
  year: 2021
  ident: ppat.1011231.ref024
  article-title: SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.06.006
– volume: 602
  start-page: 676
  year: 2022
  ident: ppat.1011231.ref029
  article-title: Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-04388-0
– volume: 6
  start-page: 80
  issue: 2
  year: 2012
  ident: ppat.1011231.ref045
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.
  publication-title: Fly (Austin).
  doi: 10.4161/fly.19695
– volume: 11
  start-page: 222
  issue: 1
  year: 2020
  ident: ppat.1011231.ref014
  article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13940-6
– volume: 13
  start-page: 12575
  issue: 11
  year: 2021
  ident: ppat.1011231.ref037
  article-title: Phase 3 trial of coronavir (favipiravir) in patients with mild to moderate COVID-19
  publication-title: Am J Transl Res
– ident: ppat.1011231.ref049
– volume: 17
  start-page: e1009929
  issue: 9
  year: 2021
  ident: ppat.1011231.ref020
  article-title: In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1009929
– volume: 13
  start-page: 1547
  year: 2022
  ident: ppat.1011231.ref019
  article-title: De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report
  publication-title: Nature commun
  doi: 10.1038/s41467-022-29104-y
– volume: 383
  start-page: 1813
  issue: 19
  year: 2020
  ident: ppat.1011231.ref012
  article-title: Remdesivir for the Treatment of Covid-19—Final Report
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2007764
– ident: ppat.1011231.ref003
– volume: 25
  start-page: 1157
  issue: 9
  year: 2004
  ident: ppat.1011231.ref051
  article-title: Development and testing of a general amber force field
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20035
– volume: 602
  start-page: 294
  issue: 7896
  year: 2022
  ident: ppat.1011231.ref030
  article-title: The N501Y spike substitution enhances SARS-CoV-2 infection and transmission
  publication-title: Nature
  doi: 10.1038/s41586-021-04245-0
– volume: 374
  start-page: 1586
  issue: 6575
  year: 2021
  ident: ppat.1011231.ref039
  article-title: An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19
  publication-title: Science
  doi: 10.1126/science.abl4784
– volume: 21
  start-page: 1049
  issue: 12
  year: 2000
  ident: ppat.1011231.ref050
  article-title: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules
  publication-title: J Comput Chem
  doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
– volume: 9
  start-page: eaal3653
  issue: 396
  year: 2017
  ident: ppat.1011231.ref013
  article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aal3653
– volume: 602
  start-page: 300
  issue: 7896
  year: 2022
  ident: ppat.1011231.ref025
  article-title: Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation
  publication-title: Nature
  doi: 10.1038/s41586-021-04266-9
– ident: ppat.1011231.ref035
– volume: 5
  start-page: 708
  issue: 10
  year: 2021
  ident: ppat.1011231.ref005
  article-title: Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2
  publication-title: Lancet Child Adolesc Health
  doi: 10.1016/S2352-4642(21)00198-X
– volume: 317
  start-page: 660
  issue: 7159
  year: 1998
  ident: ppat.1011231.ref008
  article-title: Antiviral drug resistance
  publication-title: BMJ
  doi: 10.1136/bmj.317.7159.660
– volume: 25
  start-page: 1754
  issue: 14
  year: 2009
  ident: ppat.1011231.ref043
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinfomatics
  doi: 10.1093/bioinformatics/btp324
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  ident: ppat.1011231.ref044
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinfomatics
  doi: 10.1093/bioinformatics/btp352
– volume: 603
  start-page: 700
  issue: 7902
  year: 2022
  ident: ppat.1011231.ref031
  article-title: Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant
  publication-title: Nature
  doi: 10.1038/s41586-022-04462-1
– volume: 169
  start-page: 104541
  year: 2019
  ident: ppat.1011231.ref016
  article-title: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2019.104541
– volume: 386
  start-page: 509
  issue: 6
  year: 2022
  ident: ppat.1011231.ref038
  article-title: Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2116044
– volume: 27
  start-page: 493
  issue: 3
  year: 1938
  ident: ppat.1011231.ref046
  article-title: A simple method of estimating fifty-percent endpoints
  publication-title: Am J Hyg
– volume: 603
  start-page: 706
  issue: 7902
  year: 2022
  ident: ppat.1011231.ref040
  article-title: Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity
  publication-title: Nature
  doi: 10.1038/s41586-022-04474-x
SSID ssj0041316
Score 2.474344
Snippet Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1011231
SubjectTerms Amino acids
Analysis
Antiviral activity
Antiviral Agents - metabolism
Antiviral drugs
Binding Sites
Biology and life sciences
Cloning
Coronaviruses
COVID-19
COVID-19 Drug Treatment
Drug resistance
Epidemics
FDA approval
Flexibility
Genomes
Genomics
Health aspects
Humans
Infection
Japan
Mathematical models
Medical research
Medicine and health sciences
Medicine, Experimental
Molecular dynamics
Mutagenesis
Mutants
Mutation
Physical Sciences
Prevention
Ribonucleic acid
RNA
RNA polymerase
RNA, Viral
SARS-CoV-2 - metabolism
Severe acute respiratory syndrome coronavirus 2
Vibration
Viral diseases
Virus diseases
Viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF1KpNW2UVwae1ye5eNnk8i6UK3sOdlXtb9lMLbXI0d0L_e2eSXGikpS8-3s7kYGdm54Od_Q0hHyzEYKi6piyKTDDpc8fK1FsGwd2nSuHVD74d_j7Pz87lt9V0dWvUF_aEdfDAneCOvZiqaHJeRoMXAcK4kkfIw3PprUtjRO8LMW9XTHU-GDxzO_QUh-IwJfK8fzQnVHbc6-jTem1a-Ghw3dkoKLXY_YOHnqwv6-au9PPfLspbYen0GXna55N01u3jOXkUqhfkcTdh8maPrOD8Y9t58DQi9GXbCntD60gh8aPL2WLJTuqfjNPFfIZFMkYyihfK1JltExoK1ThmmGAadFPDrysPC38url-S89MvP07OWD9MgTnFiw3LZCgDCjALuRO8VKkt0hBLy0XuowMhpx5ShQA0oaQtrJTGB-cjh3DmohWvyKSqq7BPqLPKY-JnnMOHW8FE4aHMdrGMLkRjEiJ20tSuRxrHgReXur0-U1BxdMLRqAPd6yAhbPhq3SFtPMD_GRU18CJOdrsA1qN769EPWU9C3qOaNSJhVNhq8wuE2-ivy7meKSmVRDy2e5kWI6aPPVOsYbPO9M8bQGSIsDXiPBpxwnl2I_I-mtxuz43mBaT0Uw6lOny5M8O7ye8GMv4pts9Vod4Cj4KqHAp5pRLyurPaQW4ix8FzGU9IMbLnkWDHlOridwtEjsBQkP9nB_9DFYfkCYdl7O_j6ohMNtfb8AYSvo19257tv9WPUjE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxPfCBjIIiSezxHbj5AmViWkg0YeWob5ZiT-2SSMJTTtp_z13iRsIGvDY-FLF58vd_eLz7wh5U0IMBtQ1ZV4kgkmbGpbHtmQQ3G2sFG794NnhL_P05FR-Xk1X4YNbG8oqdz6xc9S2NviN_JBnkNhMOQCW980Phl2jcHc1tNC4Te4gdRlatVoNgAv8c9f6FFvjMCXSNBydEyo5DCv1rmmKjkQaHHgyCk0dg__gpyfNZd3elIT-WUv5W3A6fkDuh6ySznozeEhuueoRudv3mbx-TFbgBbD43FnqkQCzK4i9prWnkP7R5WyxZEf1N8bpYj5DqIzxjOLEqSm2rWspYHLMM8FA6KaGX98tXLi6WD8hp8cfvx6dsNBSgRnFsw1LpMudRM43lxrBcxWXWex8XnKRWm-myscWEgYHY0LJMiulLKwz1nMIasaX4imZVHXl9gg1pbKY_hXG4PEtV3hhAWwbn3vjfFFEROy0qU3gG8e2F5e620RTgDt65WhcAx3WICJsuKvp-Tb-I_8BF2qQRbbs7kK9PtPh5dNWwMSKlOe-wM0keOSce8ByqbSlib2PyGtcZo18GBUW3JyBclv9aTnXMyWlksjK9lehxUjobRDyNUzWFOGQA6gMebZGkgcjSXirzWh4D01uN-dW_7J_uHNnhjcPvxqG8U-xiK5y9RZkFGBzgPNKReRZb7WD3kSK7ecSHpFsZM8jxY5Hqovzjo4c6aEABSTP__1c--QeB91j_R5XB2SyWW_dC0joNuXL7q39Cc7tSSk
  priority: 102
  providerName: ProQuest
Title Increased flexibility of the SARS-CoV-2 RNA-binding site causes resistance to remdesivir
URI https://www.ncbi.nlm.nih.gov/pubmed/36972312
https://www.proquest.com/docview/2802052721
https://www.proquest.com/docview/2791709477
https://pubmed.ncbi.nlm.nih.gov/PMC10089321
https://doaj.org/article/d357fa629fa24023ac92f08664dbc0ff
http://dx.doi.org/10.1371/journal.ppat.1011231
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJyReEN8LjMogJJ48JbYbJw8IddOmgbQKtRT1LUr8sU0qSWlaRP977vIlgjp4bHyO6vPZd7_4_DtC3mXggwF1jZgTgWDShJrFvskYOHfjK4VHP3h3-GoSXs7l58VocUDamq2NAsu90A7rSc3Xy5NfP3YfYcF_qKo2qKDtdLJapRUhNGzGgIcOwTcprGlwJbtzBdixq2KoWCyHKRGGzWW6u97Sc1YVp3-3cw9Wy6LcF5b-nV35h7u6eEQeNnEmHdeG8Zgc2PwJuV9Xntw9JQvYFzAd3RrqkBKzSpHd0cJRCAjpbDydsbPiG-N0OhkjeEYPR_Ggmep0W9qSAkrHyBNMhm4K-PXdwIOft-tnZH5x_vXskjVFFphWPNqwQNrYSmSBs6EWPFZ-FvnWxRkXoXF6pJxvIISw0CaUzKJMytRYbRwHN6ddJp6TQV7k9ohQnSmDAWGqNV7osqkTBuC3drHT1qWpR0SrzUQ3DORYCGOZVMdqCpBIrZwE5yBp5sAjrOu1qhk4_iN_ihPVySJ_dvWgWF8nzXJMjICBpSGPXYrHS_CXY-4A3YXSZNp3ziNvcZoTZMjIMQXnGpRbJp9mk2SspFQSedruFJr2hN43Qq6Aweq0ufYAKkPmrZ7kcU8S1rnuNR-hybVjLhMeQag_4gDhoWdrhvub33TN-FJMq8ttsQUZBWgdAL5SHnlRW22nNxFiQbqAeyTq2XNPsf2W_PamIihHwijABcHLf4_oFXnAQfeY0cfVMRls1lv7GkK8TTYk99RCDcnh6fnky3RYfSgZViv5NwElUkM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAQXxLspBRYE4rStvbvxxgeEQqFKaJtD0qLcjL2PUqm1Q5yA8qf4jcz4BUYFTj3aO7a8M7Pz8M5-Q8jLBHwwZF095oQvmDSBZqFnEgbO3XhK4dYPnh0-GgfDE_lx1pttkB_1WRgsq6xtYmGoTabxH_ku70Ng0-OQsLydf2XYNQp3V-sWGqVaHNj1d0jZ8jej9yDfV5zvfzjeG7KqqwDTiveXzJc2tBJhz2ygBQ-Vl_Q968KEi8A43VPOM-AzLYwJJZN-ImVsrDaOg13XLhHw3mvkOjheD5M9NWsSPPAHRatVbMXDlAiC6qieUP5upRk783lcgFaDw_BbrrDoGND4hc78PMsvC3r_rN38zRnu3yG3qyiWDkq1u0s2bHqP3Cj7Wq7vkxlYHSx2t4Y6BNwsCnDXNHMUwk06HUymbC_7xDidjAeYmqP_pMhoquNVbnO6sDnGtaCQdJnB1YWBG9_OFg_IyZUw-yHppFlqNwnViTIYbsZa43ExGzthILnXLnTaujjuElFzM9IVvjm22TiPik07BXlOyZwIZRBVMugS1jw1L_E9_kP_DgXV0CI6d3EjW5xG1WKPjICJxQEPXYybV_DJIXeQOwbSJNpzrkteoJgjxN9IscDnFJibR6PpOBooKZVEFLi_Ek1aRK8rIpfBZHVcHaoAliGuV4tyu0UJVkS3hjdR5eo559Gv9QZP1mp4-fDzZhhfikV7qc1WQKNCX3mhVKpLHpVa2_BNBNjuzudd0m_pc4ux7ZH07EsBf45wVJB1-Fv__q5n5Obw-OgwOhyNDx6TWxzkgLWDXG2TznKxsk8gmFwmT4sVTMnnqzYZPwHLToaM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiHdTCiwIxGmJvbvxxgeE0kfUUIiqhKLcjL2PUqm1Q5yA8tf4dcz4ETAqcOrR3rHlnZmdh3f2G0JeJOCDIevqMid8waQJNAs9kzBw7sZTCrd-8Ozwh1FweCLfTbvTDfKjPguDZZW1TSwMtck0_iPv8B4ENl0OCUvHVWURx_uDt7OvDDtI4U5r3U6jVJEju_oO6Vv-ZrgPsn7J-eDg494hqzoMMK14b8F8aUMrEQLNBlrwUHlJz7MuTLgIjNNd5TwD_tPCmFAy6SVSxsZq4zjYeO0SAe-9RjYVZkUtsrl7MDoe134AvEPReBUb8zAlgqA6uCeU36n05PVsFhcQ1uA-_IZjLPoHrL1Ea3ae5ZeFwH9Wcv7mGge3ya0qpqX9UgnvkA2b3iXXyy6Xq3tkCjYIS9-toQ7hN4ty3BXNHIXgk0764wnbyz4xTsejPibq6E0psprqeJnbnM5tjlEuqCddZHB1YeDGt7P5fXJyJex-QFppltotQnWiDAafsdZ4eMzGThhI9bULnbYujttE1NyMdIV2jk03zqNiC09B1lMyJ0IZRJUM2oStn5qVaB__od9FQa1pEau7uJHNT6Nq6UdGwMTigIcuxq0s-OSQO8gkA2kS7TnXJs9RzBGicaSo16fA3DwaTkZRX0mpJGLC_ZVo3CB6VRG5DCar4-qIBbAMUb4alDsNSrApujG8hSpXzzmPfq0-eLJWw8uHn62H8aVYwpfabAk0KvSVF0ql2uRhqbVrvokAm9_5vE16DX1uMLY5kp59KcDQEZwKchB_-9_f9ZTcAHMRvR-Ojh6RmxzEgIWEXO2Q1mK-tI8hslwkT6olTMnnq7YaPwG5nown
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+flexibility+of+the+SARS-CoV-2+RNA-binding+site+causes+resistance+to+remdesivir&rft.jtitle=PLoS+pathogens&rft.au=Torii%2C+Shiho&rft.au=Kim%2C+Kwang+Su&rft.au=Koseki%2C+Jun&rft.au=Suzuki%2C+Rigel&rft.date=2023-03-27&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=19&rft.issue=3&rft.spage=e1011231&rft_id=info:doi/10.1371%2Fjournal.ppat.1011231&rft.externalDocID=A744745995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon