Increased flexibility of the SARS-CoV-2 RNA-binding site causes resistance to remdesivir
Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future var...
Saved in:
Published in | PLoS pathogens Vol. 19; no. 3; p. e1011231 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
27.03.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in
in vitro
serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn’t gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection. |
---|---|
AbstractList | Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in
in vitro
serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn’t gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection. Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection. Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn’t gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection. Considering the emerging Omicron strain, quick characterization of SARS-CoV-2 mutations is important. However, owing to the difficulties in genetically modifying SARS-CoV-2, limited groups have produced multiple mutant viruses. Our cutting-edge reverse genetics technique enabled construction of eight reporter-carrying SARS-CoV-2 with the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn’t gain the virus production efficiency without remdesivir treatment. We developed a mathematical model taking into account sequential changes and identified antiviral effects against mutant viruses with differing propagation capacities and lethal effects on cells. In addition to identifying the positions of mutations, we analyzed the structural changes in SARS-CoV-2 NSP12 by computer simulation to understand the mechanism of resistance. This multidisciplinary approach promotes the evaluation of future resistance mutations. Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection. |
Audience | Academic |
Author | Shimamura, Teppei Asakura, Hiroyuki Sato, Kei Koseki, Jun Fukuhara, Takasuke Jeong, Yong Dam Iwanami, Shoya Iwami, Shingo Torii, Shiho Nagashima, Mami Kim, Kwang Su Suzuki, Rigel Ito, Jumpei Sadamasu, Kenji Yoshimura, Kazuhisa Fujita, Yasuhisa Matsuura, Yoshiharu |
AuthorAffiliation | 9 International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan 13 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan 18 AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan 2 interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan 6 Tokyo Metropolitan Institute of Public Health, Tokyo, Japan 8 International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan 15 NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan 11 CREST, Japan Science and Technology Agency, Kawaguchi, Japan 16 Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan 1 Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan 12 Center for Infectious Disease Education and Resea |
AuthorAffiliation_xml | – name: 17 Science Groove Inc., Fukuoka, Japan – name: 7 Graduate School of Medicine, The University of Tokyo, Tokyo, Japan – name: 12 Center for Infectious Disease Education and Research, Osaka University, Suita, Japan – name: 18 AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan – name: 10 Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan – name: 13 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan – name: 1 Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan – name: 6 Tokyo Metropolitan Institute of Public Health, Tokyo, Japan – name: 3 Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan – name: 14 Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan – name: 8 International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan – name: 9 International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan – name: 11 CREST, Japan Science and Technology Agency, Kawaguchi, Japan – name: 15 NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan – name: 16 Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan – name: 5 Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan – name: 2 interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan – name: Erasmus Medical Center, NETHERLANDS – name: 4 Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan |
Author_xml | – sequence: 1 givenname: Shiho surname: Torii fullname: Torii, Shiho – sequence: 2 givenname: Kwang Su surname: Kim fullname: Kim, Kwang Su – sequence: 3 givenname: Jun surname: Koseki fullname: Koseki, Jun – sequence: 4 givenname: Rigel surname: Suzuki fullname: Suzuki, Rigel – sequence: 5 givenname: Shoya surname: Iwanami fullname: Iwanami, Shoya – sequence: 6 givenname: Yasuhisa surname: Fujita fullname: Fujita, Yasuhisa – sequence: 7 givenname: Yong Dam surname: Jeong fullname: Jeong, Yong Dam – sequence: 8 givenname: Jumpei surname: Ito fullname: Ito, Jumpei – sequence: 9 givenname: Hiroyuki surname: Asakura fullname: Asakura, Hiroyuki – sequence: 10 givenname: Mami surname: Nagashima fullname: Nagashima, Mami – sequence: 11 givenname: Kenji surname: Sadamasu fullname: Sadamasu, Kenji – sequence: 12 givenname: Kazuhisa surname: Yoshimura fullname: Yoshimura, Kazuhisa – sequence: 13 givenname: Kei surname: Sato fullname: Sato, Kei – sequence: 14 givenname: Yoshiharu orcidid: 0000-0001-9091-8285 surname: Matsuura fullname: Matsuura, Yoshiharu – sequence: 15 givenname: Teppei surname: Shimamura fullname: Shimamura, Teppei – sequence: 16 givenname: Shingo surname: Iwami fullname: Iwami, Shingo – sequence: 17 givenname: Takasuke surname: Fukuhara fullname: Fukuhara, Takasuke |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36972312$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl1v0zAUhiM0xD7gHyCIxA1cpPgrcbIbVFUDKk1DagFxZzn2cecqjYvtTtu_n7tm0zpNSCgXSY6f9z0fPsfZQe96yLK3GI0w5fjz0m18L7vRei3jCCOMCcUvsiNclrTglLODR9-H2XEIS4QYprh6lR3SquEJJ0fZn2mvPMgAOjcdXNvWdjbe5M7k8RLy-Xg2Lybud0Hy2cW4aG2vbb_Ig42QK7kJEHIPwYYoewV5dOlvpVPgyvrX2UsjuwBvhvdJ9uvr2c_J9-L8x7fpZHxeKE7qWGAGDTCUioFKUdJw1NYITNMSWmmjSm6QJoRCOkt9tHXLmNSgtCEVr5Vp6Un2fue77lwQw1CCIDUiqCSc4ERMd4R2cinW3q6kvxFOWnEXcH4hpI9WdSA0TQllRRojybYoqRpiUF1VTLcKGZO8vgzZNu0KtII-etntme6f9PZSLNyVwAjVDb2r5uPg4N3fDYQoVjYo6DrZg9ukwnmDOWoY5wn98AR9vr2BWsjUge2NS4nV1lSMOWOclU1TJmr0DJUeDSur0mYZm-J7gk97gsREuI6LdOtBTOez_2Av9tl3jyf4MLr7lUwA2wHKuxA8mAcEI7Hd_PspiO3mi2Hzk-z0iUzZKKN123uw3b_Fty6gCN8 |
CitedBy_id | crossref_primary_10_1016_j_idcr_2025_e02199 crossref_primary_10_1016_j_isci_2024_109597 crossref_primary_10_1038_s41467_024_47941_x crossref_primary_10_1172_jci_insight_182376 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_1128_spectrum_02692_24 crossref_primary_10_1128_jvi_00796_23 crossref_primary_10_3390_v16050718 crossref_primary_10_1128_cmr_00119_23 crossref_primary_10_1001_jamanetworkopen_2024_35431 crossref_primary_10_1128_mbio_01060_23 |
Cites_doi | 10.1016/j.cell.2022.04.035 10.1016/j.cell.2020.07.033 10.1038/s41422-020-0282-0 10.1126/science.abn4947 10.1056/NEJMoa2105000 10.1046/j.1365-2893.1999.00160.x 10.1126/science.abc1560 10.1016/j.chom.2020.11.007 10.1016/j.chom.2020.04.004 10.1093/cid/ciaa1474 10.1016/S1473-3099(20)30482-5 10.1016/j.celrep.2021.109014 10.1128/mBio.00221-18 10.1038/s41586-020-2294-9 10.1038/s43587-022-00170-7 10.1074/jbc.RA120.013679 10.1056/NEJM199807303390504 10.1038/s41579-021-00573-0 10.1056/NEJMc2119270 10.1093/infdis/jiq124 10.1093/bioinformatics/bty560 10.1063/1.445869 10.1038/s41586-020-2008-3 10.1016/j.chom.2021.06.006 10.1038/s41586-021-04388-0 10.4161/fly.19695 10.1038/s41467-019-13940-6 10.1371/journal.ppat.1009929 10.1038/s41467-022-29104-y 10.1056/NEJMoa2007764 10.1002/jcc.20035 10.1038/s41586-021-04245-0 10.1126/science.abl4784 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F 10.1126/scitranslmed.aal3653 10.1038/s41586-021-04266-9 10.1016/S2352-4642(21)00198-X 10.1136/bmj.317.7159.660 10.1093/bioinformatics/btp324 10.1093/bioinformatics/btp352 10.1038/s41586-022-04462-1 10.1016/j.antiviral.2019.104541 10.1056/NEJMoa2116044 10.1038/s41586-022-04474-x |
ContentType | Journal Article |
Copyright | Copyright: © 2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Torii et al 2023 Torii et al |
Copyright_xml | – notice: Copyright: © 2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Torii et al 2023 Torii et al |
CorporateAuthor | The Genotype to Phenotype Japan (G2P-Japan) Consortium Genotype to Phenotype Japan (G2P-Japan) Consortium |
CorporateAuthor_xml | – name: The Genotype to Phenotype Japan (G2P-Japan) Consortium – name: Genotype to Phenotype Japan (G2P-Japan) Consortium |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1011231 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Remdesivir resistance of SARS-CoV-2 |
EISSN | 1553-7374 |
ExternalDocumentID | 2802052721 oai_doaj_org_article_d357fa629fa24023ac92f08664dbc0ff PMC10089321 A744745995 36972312 10_1371_journal_ppat_1011231 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 20wm0225002, JP20he0822006, JP20fk0108264, JP20he0822008, JP20wm0225003, JP20fk0108267, JP20wm0125010 – fundername: ; grantid: 19fk0108050h0003; 19fk0108156h0001;20fk0108140s0801; 20fk0108413s0301; 19fk0210036h0502; 19fk0310114h0103; – fundername: ; grantid: 20wm0325007h0001;20wm0325004s0201; 20wm0325012s0301; 20wm0325015s0301 – fundername: ; grantid: 18KT0018; 18H01139; 16H04845 – fundername: ; grantid: JPMJMS2021; JPMJMS2025 – fundername: ; grantid: 20H04281 – fundername: ; grantid: 20H04841 – fundername: ; grantid: 19gm1310002 – fundername: ; grantid: JP22gm1610008 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW ~8M 3V. ADRAZ CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM RIG WOQ PMFND 7QL 7U9 7XB 8FK AZQEC C1K COVID DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO AAPBV ABPTK UMP |
ID | FETCH-LOGICAL-c728t-14e9e40231e6c32970b80ef9b236dfc57f0d223ec32374b8b44adecdf2678cfb3 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun May 07 16:28:46 EDT 2023 Wed Aug 27 01:23:01 EDT 2025 Thu Aug 21 18:38:34 EDT 2025 Fri Jul 11 09:19:21 EDT 2025 Tue Aug 12 09:40:32 EDT 2025 Tue Jun 17 21:36:34 EDT 2025 Tue Jun 10 20:50:35 EDT 2025 Fri Jun 27 06:10:39 EDT 2025 Fri Jun 27 06:08:01 EDT 2025 Wed Feb 19 02:04:33 EST 2025 Tue Jul 01 03:47:56 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Copyright: © 2023 Torii et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c728t-14e9e40231e6c32970b80ef9b236dfc57f0d223ec32374b8b44adecdf2678cfb3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current address: Insect-Virus Interactions Unit, Department of Virology, Institute Pasteur, Paris, France Membership of The Genotype to Phenotype Japan (G2P-Japan) Consortium is provided in Supporting Information file [S1 Acknowledgement]. The authors have declared that no competing interests exist. Current address: Department of Scientific computing, Pukyong National University, Busan, South Korea |
ORCID | 0000-0001-9091-8285 |
OpenAccessLink | https://www.proquest.com/docview/2802052721?pq-origsite=%requestingapplication% |
PMID | 36972312 |
PQID | 2802052721 |
PQPubID | 1436335 |
PageCount | e1011231 |
ParticipantIDs | plos_journals_2802052721 doaj_primary_oai_doaj_org_article_d357fa629fa24023ac92f08664dbc0ff pubmedcentral_primary_oai_pubmedcentral_nih_gov_10089321 proquest_miscellaneous_2791709477 proquest_journals_2802052721 gale_infotracmisc_A744745995 gale_infotracacademiconefile_A744745995 gale_incontextgauss_ISR_A744745995 gale_incontextgauss_ISN_A744745995 pubmed_primary_36972312 crossref_primary_10_1371_journal_ppat_1011231 crossref_citationtrail_10_1371_journal_ppat_1011231 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230327 |
PublicationDateYYYYMMDD | 2023-03-27 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230327 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | AJ Bernal (ppat.1011231.ref038) 2022; 386 Y Liu (ppat.1011231.ref030) 2022; 602 S Gandhi (ppat.1011231.ref019) 2022; 13 AM Szemiel (ppat.1011231.ref020) 2021; 17 M Martinot (ppat.1011231.ref018) 2021; 73 A Saito (ppat.1011231.ref025) 2022; 602 J Chen (ppat.1011231.ref047) 2020; 182 W Yin (ppat.1011231.ref048) 2020; 36 LJ Reed (ppat.1011231.ref046) 1938; 27 JH Beigel (ppat.1011231.ref012) 2020; 383 TP Sheahan (ppat.1011231.ref013) 2017; 9 D Yamasoba (ppat.1011231.ref041) 2022; 185 JM Wang (ppat.1011231.ref050) 2000; 21 S Torii (ppat.1011231.ref021) 2021; 35 TA Ruzhentsova (ppat.1011231.ref037) 2021; 13 S Collie (ppat.1011231.ref036) 2022; 386 DR Owen (ppat.1011231.ref039) 2021; 374 AJ Greaney (ppat.1011231.ref032) 2021; 29 C Motozono (ppat.1011231.ref024) 2021; 29 M Hussain (ppat.1011231.ref010) 1999; 6 TTN Thao (ppat.1011231.ref022) 2020; 582 J Wang (ppat.1011231.ref051) 2004; 25 S Tsuji (ppat.1011231.ref026) 2022; 2 WT Harvey (ppat.1011231.ref033) 2021; 19 R Suzuki (ppat.1011231.ref031) 2022; 603 ppat.1011231.ref028 TP Sheahan (ppat.1011231.ref014) 2020; 11 ppat.1011231.ref027 S Chen (ppat.1011231.ref042) 2018; 34 P Cingolani (ppat.1011231.ref045) 2012; 6 ML Agostini (ppat.1011231.ref015) 2018; 9 X Xie (ppat.1011231.ref023) 2020; 27 H Li (ppat.1011231.ref044) 2009; 25 CJ Gordon (ppat.1011231.ref017) 2020; 295 ppat.1011231.ref035 FM Hecht (ppat.1011231.ref009) 1998; 339 E Molteni (ppat.1011231.ref005) 2021; 5 University of California (ppat.1011231.ref049) S Tabata (ppat.1011231.ref004) 2020; 20 M Wang (ppat.1011231.ref011) 2020; 30 LF Chen (ppat.1011231.ref007) 2011; 203 AJ Brown (ppat.1011231.ref016) 2019; 169 ppat.1011231.ref002 H Li (ppat.1011231.ref043) 2009; 25 L Liu (ppat.1011231.ref029) 2022; 602 JRC Pulliam (ppat.1011231.ref034) 2022; 376 D Pillay (ppat.1011231.ref008) 1998; 317 B Meng (ppat.1011231.ref040) 2022; 603 F Wu (ppat.1011231.ref001) 2020; 579 E Hacisuleyman (ppat.1011231.ref006) 2021; 384 ppat.1011231.ref003 WL Jorgensen (ppat.1011231.ref052) 1983; 79 |
References_xml | – volume: 185 start-page: 2103 issue: 12 year: 2022 ident: ppat.1011231.ref041 article-title: Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike publication-title: Cell doi: 10.1016/j.cell.2022.04.035 – volume: 182 start-page: 1560 issue: 6 year: 2020 ident: ppat.1011231.ref047 article-title: Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. publication-title: Cell doi: 10.1016/j.cell.2020.07.033 – volume: 30 start-page: 269 issue: 3 year: 2020 ident: ppat.1011231.ref011 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro publication-title: Cell Res doi: 10.1038/s41422-020-0282-0 – volume: 376 start-page: eabn4947 issue: 6593 year: 2022 ident: ppat.1011231.ref034 article-title: Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa publication-title: Science doi: 10.1126/science.abn4947 – volume: 384 start-page: 2212 issue: 23 year: 2021 ident: ppat.1011231.ref006 article-title: Vaccine Breakthrough Infections with SARS-CoV-2 Variants publication-title: N Engl J Med doi: 10.1056/NEJMoa2105000 – volume: 6 start-page: 183 issue: 3 year: 1999 ident: ppat.1011231.ref010 article-title: Mutations in the hepatitis B virus polymerase gene associated with antiviral treatment for hepatitis B publication-title: J Viral Hepat doi: 10.1046/j.1365-2893.1999.00160.x – volume: 36 start-page: 1499 year: 2020 ident: ppat.1011231.ref048 article-title: Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir publication-title: Science doi: 10.1126/science.abc1560 – ident: ppat.1011231.ref028 – volume: 29 start-page: 44 issue: 1 year: 2021 ident: ppat.1011231.ref032 article-title: Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.007 – volume: 27 start-page: 841 issue: 5 year: 2020 ident: ppat.1011231.ref023 article-title: An Infectious cDNA Clone of SARS-CoV-2 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.004 – volume: 73 start-page: e1762 issue: 7 year: 2021 ident: ppat.1011231.ref018 article-title: Emerging RNA-Dependent RNA Polymerase Mutation in a Remdesivir-Treated B-cell Immunodeficient Patient With Protracted Coronavirus Disease 2019 publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa1474 – volume: 20 start-page: 1043 issue: 9 year: 2020 ident: ppat.1011231.ref004 article-title: Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(20)30482-5 – volume: 35 start-page: 109014 issue: 3 year: 2021 ident: ppat.1011231.ref021 article-title: Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109014 – volume: 9 start-page: e00221 issue: 2 year: 2018 ident: ppat.1011231.ref015 article-title: Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease publication-title: mBio doi: 10.1128/mBio.00221-18 – volume: 582 start-page: 561 issue: 7813 year: 2020 ident: ppat.1011231.ref022 article-title: Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform publication-title: Nature doi: 10.1038/s41586-020-2294-9 – volume: 2 start-page: 115 year: 2022 ident: ppat.1011231.ref026 article-title: SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response publication-title: Nature aging doi: 10.1038/s43587-022-00170-7 – volume: 295 start-page: 6785 issue: 20 year: 2020 ident: ppat.1011231.ref017 article-title: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency publication-title: J Biol Chem doi: 10.1074/jbc.RA120.013679 – volume: 339 start-page: 307 issue: 5 year: 1998 ident: ppat.1011231.ref009 article-title: Sexual transmission of an HIV-1 variant resistant to multiple reverse-transcriptase and protease inhibitors publication-title: N Engl J Med doi: 10.1056/NEJM199807303390504 – ident: ppat.1011231.ref002 – volume: 19 start-page: 409 issue: 7 year: 2021 ident: ppat.1011231.ref033 article-title: SARS-CoV-2 variants, spike mutations and immune escape publication-title: Nat Rev Microbiol doi: 10.1038/s41579-021-00573-0 – volume: 386 start-page: 494 issue: 5 year: 2022 ident: ppat.1011231.ref036 article-title: Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa publication-title: N Engl J Med doi: 10.1056/NEJMc2119270 – volume: 203 start-page: 838 issue: 6 year: 2011 ident: ppat.1011231.ref007 article-title: Cluster of oseltamivir-resistant 2009 pandemic influenza A (H1N1) virus infections on a hospital ward among immunocompromised patients—North Carolina, 2009 publication-title: J Infect Dis doi: 10.1093/infdis/jiq124 – ident: ppat.1011231.ref027 – volume: 34 start-page: i884 issue: 17 year: 2018 ident: ppat.1011231.ref042 article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinfomatics doi: 10.1093/bioinformatics/bty560 – volume: 79 start-page: 926 issue: 2 year: 1983 ident: ppat.1011231.ref052 article-title: Comparison of simple potential functions for simulating liquid water publication-title: The Journal of Chemical Physics doi: 10.1063/1.445869 – volume: 579 start-page: 265 issue: 7798 year: 2020 ident: ppat.1011231.ref001 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 29 start-page: 1124 issue: 7 year: 2021 ident: ppat.1011231.ref024 article-title: SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.06.006 – volume: 602 start-page: 676 year: 2022 ident: ppat.1011231.ref029 article-title: Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-04388-0 – volume: 6 start-page: 80 issue: 2 year: 2012 ident: ppat.1011231.ref045 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. publication-title: Fly (Austin). doi: 10.4161/fly.19695 – volume: 11 start-page: 222 issue: 1 year: 2020 ident: ppat.1011231.ref014 article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV publication-title: Nat Commun doi: 10.1038/s41467-019-13940-6 – volume: 13 start-page: 12575 issue: 11 year: 2021 ident: ppat.1011231.ref037 article-title: Phase 3 trial of coronavir (favipiravir) in patients with mild to moderate COVID-19 publication-title: Am J Transl Res – ident: ppat.1011231.ref049 – volume: 17 start-page: e1009929 issue: 9 year: 2021 ident: ppat.1011231.ref020 article-title: In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009929 – volume: 13 start-page: 1547 year: 2022 ident: ppat.1011231.ref019 article-title: De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report publication-title: Nature commun doi: 10.1038/s41467-022-29104-y – volume: 383 start-page: 1813 issue: 19 year: 2020 ident: ppat.1011231.ref012 article-title: Remdesivir for the Treatment of Covid-19—Final Report publication-title: N Engl J Med doi: 10.1056/NEJMoa2007764 – ident: ppat.1011231.ref003 – volume: 25 start-page: 1157 issue: 9 year: 2004 ident: ppat.1011231.ref051 article-title: Development and testing of a general amber force field publication-title: J Comput Chem doi: 10.1002/jcc.20035 – volume: 602 start-page: 294 issue: 7896 year: 2022 ident: ppat.1011231.ref030 article-title: The N501Y spike substitution enhances SARS-CoV-2 infection and transmission publication-title: Nature doi: 10.1038/s41586-021-04245-0 – volume: 374 start-page: 1586 issue: 6575 year: 2021 ident: ppat.1011231.ref039 article-title: An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19 publication-title: Science doi: 10.1126/science.abl4784 – volume: 21 start-page: 1049 issue: 12 year: 2000 ident: ppat.1011231.ref050 article-title: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules publication-title: J Comput Chem doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F – volume: 9 start-page: eaal3653 issue: 396 year: 2017 ident: ppat.1011231.ref013 article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aal3653 – volume: 602 start-page: 300 issue: 7896 year: 2022 ident: ppat.1011231.ref025 article-title: Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation publication-title: Nature doi: 10.1038/s41586-021-04266-9 – ident: ppat.1011231.ref035 – volume: 5 start-page: 708 issue: 10 year: 2021 ident: ppat.1011231.ref005 article-title: Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2 publication-title: Lancet Child Adolesc Health doi: 10.1016/S2352-4642(21)00198-X – volume: 317 start-page: 660 issue: 7159 year: 1998 ident: ppat.1011231.ref008 article-title: Antiviral drug resistance publication-title: BMJ doi: 10.1136/bmj.317.7159.660 – volume: 25 start-page: 1754 issue: 14 year: 2009 ident: ppat.1011231.ref043 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinfomatics doi: 10.1093/bioinformatics/btp324 – volume: 25 start-page: 2078 issue: 16 year: 2009 ident: ppat.1011231.ref044 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinfomatics doi: 10.1093/bioinformatics/btp352 – volume: 603 start-page: 700 issue: 7902 year: 2022 ident: ppat.1011231.ref031 article-title: Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant publication-title: Nature doi: 10.1038/s41586-022-04462-1 – volume: 169 start-page: 104541 year: 2019 ident: ppat.1011231.ref016 article-title: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase publication-title: Antiviral Res doi: 10.1016/j.antiviral.2019.104541 – volume: 386 start-page: 509 issue: 6 year: 2022 ident: ppat.1011231.ref038 article-title: Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients publication-title: N Engl J Med doi: 10.1056/NEJMoa2116044 – volume: 27 start-page: 493 issue: 3 year: 1938 ident: ppat.1011231.ref046 article-title: A simple method of estimating fifty-percent endpoints publication-title: Am J Hyg – volume: 603 start-page: 706 issue: 7902 year: 2022 ident: ppat.1011231.ref040 article-title: Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity publication-title: Nature doi: 10.1038/s41586-022-04474-x |
SSID | ssj0041316 |
Score | 2.474344 |
Snippet | Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1011231 |
SubjectTerms | Amino acids Analysis Antiviral activity Antiviral Agents - metabolism Antiviral drugs Binding Sites Biology and life sciences Cloning Coronaviruses COVID-19 COVID-19 Drug Treatment Drug resistance Epidemics FDA approval Flexibility Genomes Genomics Health aspects Humans Infection Japan Mathematical models Medical research Medicine and health sciences Medicine, Experimental Molecular dynamics Mutagenesis Mutants Mutation Physical Sciences Prevention Ribonucleic acid RNA RNA polymerase RNA, Viral SARS-CoV-2 - metabolism Severe acute respiratory syndrome coronavirus 2 Vibration Viral diseases Virus diseases Viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF1KpNW2UVwae1ye5eNnk8i6UK3sOdlXtb9lMLbXI0d0L_e2eSXGikpS8-3s7kYGdm54Od_Q0hHyzEYKi6piyKTDDpc8fK1FsGwd2nSuHVD74d_j7Pz87lt9V0dWvUF_aEdfDAneCOvZiqaHJeRoMXAcK4kkfIw3PprUtjRO8LMW9XTHU-GDxzO_QUh-IwJfK8fzQnVHbc6-jTem1a-Ghw3dkoKLXY_YOHnqwv6-au9PPfLspbYen0GXna55N01u3jOXkUqhfkcTdh8maPrOD8Y9t58DQi9GXbCntD60gh8aPL2WLJTuqfjNPFfIZFMkYyihfK1JltExoK1ThmmGAadFPDrysPC38url-S89MvP07OWD9MgTnFiw3LZCgDCjALuRO8VKkt0hBLy0XuowMhpx5ShQA0oaQtrJTGB-cjh3DmohWvyKSqq7BPqLPKY-JnnMOHW8FE4aHMdrGMLkRjEiJ20tSuRxrHgReXur0-U1BxdMLRqAPd6yAhbPhq3SFtPMD_GRU18CJOdrsA1qN769EPWU9C3qOaNSJhVNhq8wuE2-ivy7meKSmVRDy2e5kWI6aPPVOsYbPO9M8bQGSIsDXiPBpxwnl2I_I-mtxuz43mBaT0Uw6lOny5M8O7ye8GMv4pts9Vod4Cj4KqHAp5pRLyurPaQW4ix8FzGU9IMbLnkWDHlOridwtEjsBQkP9nB_9DFYfkCYdl7O_j6ohMNtfb8AYSvo19257tv9WPUjE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxPfCBjIIiSezxHbj5AmViWkg0YeWob5ZiT-2SSMJTTtp_z13iRsIGvDY-FLF58vd_eLz7wh5U0IMBtQ1ZV4kgkmbGpbHtmQQ3G2sFG794NnhL_P05FR-Xk1X4YNbG8oqdz6xc9S2NviN_JBnkNhMOQCW980Phl2jcHc1tNC4Te4gdRlatVoNgAv8c9f6FFvjMCXSNBydEyo5DCv1rmmKjkQaHHgyCk0dg__gpyfNZd3elIT-WUv5W3A6fkDuh6ySznozeEhuueoRudv3mbx-TFbgBbD43FnqkQCzK4i9prWnkP7R5WyxZEf1N8bpYj5DqIzxjOLEqSm2rWspYHLMM8FA6KaGX98tXLi6WD8hp8cfvx6dsNBSgRnFsw1LpMudRM43lxrBcxWXWex8XnKRWm-myscWEgYHY0LJMiulLKwz1nMIasaX4imZVHXl9gg1pbKY_hXG4PEtV3hhAWwbn3vjfFFEROy0qU3gG8e2F5e620RTgDt65WhcAx3WICJsuKvp-Tb-I_8BF2qQRbbs7kK9PtPh5dNWwMSKlOe-wM0keOSce8ByqbSlib2PyGtcZo18GBUW3JyBclv9aTnXMyWlksjK9lehxUjobRDyNUzWFOGQA6gMebZGkgcjSXirzWh4D01uN-dW_7J_uHNnhjcPvxqG8U-xiK5y9RZkFGBzgPNKReRZb7WD3kSK7ecSHpFsZM8jxY5Hqovzjo4c6aEABSTP__1c--QeB91j_R5XB2SyWW_dC0joNuXL7q39Cc7tSSk priority: 102 providerName: ProQuest |
Title | Increased flexibility of the SARS-CoV-2 RNA-binding site causes resistance to remdesivir |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36972312 https://www.proquest.com/docview/2802052721 https://www.proquest.com/docview/2791709477 https://pubmed.ncbi.nlm.nih.gov/PMC10089321 https://doaj.org/article/d357fa629fa24023ac92f08664dbc0ff http://dx.doi.org/10.1371/journal.ppat.1011231 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJyReEN8LjMogJJ48JbYbJw8IddOmgbQKtRT1LUr8sU0qSWlaRP977vIlgjp4bHyO6vPZd7_4_DtC3mXggwF1jZgTgWDShJrFvskYOHfjK4VHP3h3-GoSXs7l58VocUDamq2NAsu90A7rSc3Xy5NfP3YfYcF_qKo2qKDtdLJapRUhNGzGgIcOwTcprGlwJbtzBdixq2KoWCyHKRGGzWW6u97Sc1YVp3-3cw9Wy6LcF5b-nV35h7u6eEQeNnEmHdeG8Zgc2PwJuV9Xntw9JQvYFzAd3RrqkBKzSpHd0cJRCAjpbDydsbPiG-N0OhkjeEYPR_Ggmep0W9qSAkrHyBNMhm4K-PXdwIOft-tnZH5x_vXskjVFFphWPNqwQNrYSmSBs6EWPFZ-FvnWxRkXoXF6pJxvIISw0CaUzKJMytRYbRwHN6ddJp6TQV7k9ohQnSmDAWGqNV7osqkTBuC3drHT1qWpR0SrzUQ3DORYCGOZVMdqCpBIrZwE5yBp5sAjrOu1qhk4_iN_ihPVySJ_dvWgWF8nzXJMjICBpSGPXYrHS_CXY-4A3YXSZNp3ziNvcZoTZMjIMQXnGpRbJp9mk2SspFQSedruFJr2hN43Qq6Aweq0ufYAKkPmrZ7kcU8S1rnuNR-hybVjLhMeQag_4gDhoWdrhvub33TN-FJMq8ttsQUZBWgdAL5SHnlRW22nNxFiQbqAeyTq2XNPsf2W_PamIihHwijABcHLf4_oFXnAQfeY0cfVMRls1lv7GkK8TTYk99RCDcnh6fnky3RYfSgZViv5NwElUkM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAQXxLspBRYE4rStvbvxxgeEQqFKaJtD0qLcjL2PUqm1Q5yA8qf4jcz4BUYFTj3aO7a8M7Pz8M5-Q8jLBHwwZF095oQvmDSBZqFnEgbO3XhK4dYPnh0-GgfDE_lx1pttkB_1WRgsq6xtYmGoTabxH_ku70Ng0-OQsLydf2XYNQp3V-sWGqVaHNj1d0jZ8jej9yDfV5zvfzjeG7KqqwDTiveXzJc2tBJhz2ygBQ-Vl_Q968KEi8A43VPOM-AzLYwJJZN-ImVsrDaOg13XLhHw3mvkOjheD5M9NWsSPPAHRatVbMXDlAiC6qieUP5upRk783lcgFaDw_BbrrDoGND4hc78PMsvC3r_rN38zRnu3yG3qyiWDkq1u0s2bHqP3Cj7Wq7vkxlYHSx2t4Y6BNwsCnDXNHMUwk06HUymbC_7xDidjAeYmqP_pMhoquNVbnO6sDnGtaCQdJnB1YWBG9_OFg_IyZUw-yHppFlqNwnViTIYbsZa43ExGzthILnXLnTaujjuElFzM9IVvjm22TiPik07BXlOyZwIZRBVMugS1jw1L_E9_kP_DgXV0CI6d3EjW5xG1WKPjICJxQEPXYybV_DJIXeQOwbSJNpzrkteoJgjxN9IscDnFJibR6PpOBooKZVEFLi_Ek1aRK8rIpfBZHVcHaoAliGuV4tyu0UJVkS3hjdR5eo559Gv9QZP1mp4-fDzZhhfikV7qc1WQKNCX3mhVKpLHpVa2_BNBNjuzudd0m_pc4ux7ZH07EsBf45wVJB1-Fv__q5n5Obw-OgwOhyNDx6TWxzkgLWDXG2TznKxsk8gmFwmT4sVTMnnqzYZPwHLToaM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiHdTCiwIxGmJvbvxxgeE0kfUUIiqhKLcjL2PUqm1Q5yA8tf4dcz4ETAqcOrR3rHlnZmdh3f2G0JeJOCDIevqMid8waQJNAs9kzBw7sZTCrd-8Ozwh1FweCLfTbvTDfKjPguDZZW1TSwMtck0_iPv8B4ENl0OCUvHVWURx_uDt7OvDDtI4U5r3U6jVJEju_oO6Vv-ZrgPsn7J-eDg494hqzoMMK14b8F8aUMrEQLNBlrwUHlJz7MuTLgIjNNd5TwD_tPCmFAy6SVSxsZq4zjYeO0SAe-9RjYVZkUtsrl7MDoe134AvEPReBUb8zAlgqA6uCeU36n05PVsFhcQ1uA-_IZjLPoHrL1Ea3ae5ZeFwH9Wcv7mGge3ya0qpqX9UgnvkA2b3iXXyy6Xq3tkCjYIS9-toQ7hN4ty3BXNHIXgk0764wnbyz4xTsejPibq6E0psprqeJnbnM5tjlEuqCddZHB1YeDGt7P5fXJyJex-QFppltotQnWiDAafsdZ4eMzGThhI9bULnbYujttE1NyMdIV2jk03zqNiC09B1lMyJ0IZRJUM2oStn5qVaB__od9FQa1pEau7uJHNT6Nq6UdGwMTigIcuxq0s-OSQO8gkA2kS7TnXJs9RzBGicaSo16fA3DwaTkZRX0mpJGLC_ZVo3CB6VRG5DCar4-qIBbAMUb4alDsNSrApujG8hSpXzzmPfq0-eLJWw8uHn62H8aVYwpfabAk0KvSVF0ql2uRhqbVrvokAm9_5vE16DX1uMLY5kp59KcDQEZwKchB_-9_f9ZTcAHMRvR-Ojh6RmxzEgIWEXO2Q1mK-tI8hslwkT6olTMnnq7YaPwG5nown |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+flexibility+of+the+SARS-CoV-2+RNA-binding+site+causes+resistance+to+remdesivir&rft.jtitle=PLoS+pathogens&rft.au=Torii%2C+Shiho&rft.au=Kim%2C+Kwang+Su&rft.au=Koseki%2C+Jun&rft.au=Suzuki%2C+Rigel&rft.date=2023-03-27&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=19&rft.issue=3&rft.spage=e1011231&rft_id=info:doi/10.1371%2Fjournal.ppat.1011231&rft.externalDocID=A744745995 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |