K18-hACE2 mice develop respiratory disease resembling severe COVID-19
SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-1...
Saved in:
Published in | PLoS pathogens Vol. 17; no. 1; p. e1009195 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
19.01.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7374 1553-7366 1553-7374 |
DOI | 10.1371/journal.ppat.1009195 |
Cover
Loading…
Abstract | SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 10
4
TCID
50
or 10
5
TCID
50
, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 10
5
TCID
50
group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 10
2
TCID
50
SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development. |
---|---|
AbstractList | SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development. Expression of hACE2 is driven by a cytokeratin promoter in the airway epithelial cells as well as in epithelia of other internal organs, including the liver, kidney, gastrointestinal tract and brain. Blue: 104 TCID50 (low dose animals, n = 6); red: 105 TCID50 (high dose animals, n = 6); green: 105 TCID50 γ-irradiated (control animals, n = 2); dotted line = limit of detection. https://doi.org/10.1371/journal.ppat.1009195.g001 Viral shedding in SARS-CoV-2-inoculated K18-hACE mice To gain an understanding of dose-dependent virus shedding patterns of SARS-CoV-2 in infected K18-hACE2 mice, daily nasal, oropharyngeal and rectal swabs were obtained until 11 DPI. At 7 DPI, mice exhibit multifocal, and often peripheral, pulmonary pathology consistent with interstitial pneumonia characterized by type II pneumocyte hyperplasia, septal, alveolar and perivascular inflammation comprised of lymphocytes, macrophages and neutrophils, variable amounts of alveolar fibrin and edema, frequent syncytial cells and single cell necrosis (Fig 3I–3K). Pathological changes in lungs of K18-hACE mice inoculated with SARS-CoV-2 at 3 and 7 DPI. a, b, c, d. γ-irradiated SARS-CoV-2 inoculated control lungs appear normal and lack SARS-CoV-2 antigen immunoreactivity. e, f, g. Inflammation at 3 DPI, characterized by perivascular and septal infiltration by neutrophils, macrophages, lymphocytes, and edema. i, j, k. Multifocal interstitial pneumonia at 7 DPI, characterized by type II pneumocyte hyperplasia (arrowheads), alveolar and perivascular inflammation, fibrin, edema, syncytial cells (inset arrowheads) and single cell necrosis. h, l. SARS-CoV-2 antigen immunoreactivity in type I (arrowheads) and type II pneumocytes (arrows) at 3 and 7 DPI. SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 10.sup.4 TCID.sub.50 or 10.sup.5 TCID.sub.50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 10.sup.5 TCID.sub.50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 10.sup.2 TCID.sub.50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development. SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 10 4 TCID 50 or 10 5 TCID 50 , the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 10 5 TCID 50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 10 2 TCID 50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development. The disease manifestation of COVID-19 in humans ranges from asymptomatic to severe. While several mild to moderate disease models have been developed, there is still a need for animal models that recapitulate the severe and fatal progression observed in a subset of patients. Here, we show that humanized transgenic mice developed dose-dependent disease when inoculated with SARS-CoV-2, the etiological agent of COVID-19. The mice developed upper and lower respiratory tract infection, with virus replication also in the brain after day 3 post inoculation. The pathological and immunological diseases manifestation observed in these mice bears resemblance to human COVID-19. This suggests increased usefulness of this model for elucidating COVID-19 pathogenesis and for testing of countermeasures, both of which are urgently needed. Expression of hACE2 is driven by a cytokeratin promoter in the airway epithelial cells as well as in epithelia of other internal organs, including the liver, kidney, gastrointestinal tract and brain. Blue: 104 TCID50 (low dose animals, n = 6); red: 105 TCID50 (high dose animals, n = 6); green: 105 TCID50 γ-irradiated (control animals, n = 2); dotted line = limit of detection. https://doi.org/10.1371/journal.ppat.1009195.g001 Viral shedding in SARS-CoV-2-inoculated K18-hACE mice To gain an understanding of dose-dependent virus shedding patterns of SARS-CoV-2 in infected K18-hACE2 mice, daily nasal, oropharyngeal and rectal swabs were obtained until 11 DPI. At 7 DPI, mice exhibit multifocal, and often peripheral, pulmonary pathology consistent with interstitial pneumonia characterized by type II pneumocyte hyperplasia, septal, alveolar and perivascular inflammation comprised of lymphocytes, macrophages and neutrophils, variable amounts of alveolar fibrin and edema, frequent syncytial cells and single cell necrosis (Fig 3I–3K). Pathological changes in lungs of K18-hACE mice inoculated with SARS-CoV-2 at 3 and 7 DPI. a, b, c, d. γ-irradiated SARS-CoV-2 inoculated control lungs appear normal and lack SARS-CoV-2 antigen immunoreactivity. e, f, g. Inflammation at 3 DPI, characterized by perivascular and septal infiltration by neutrophils, macrophages, lymphocytes, and edema. i, j, k. Multifocal interstitial pneumonia at 7 DPI, characterized by type II pneumocyte hyperplasia (arrowheads), alveolar and perivascular inflammation, fibrin, edema, syncytial cells (inset arrowheads) and single cell necrosis. h, l. SARS-CoV-2 antigen immunoreactivity in type I (arrowheads) and type II pneumocytes (arrows) at 3 and 7 DPI. SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 10 4 TCID 50 or 10 5 TCID 50 , the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 10 5 TCID 50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 10 2 TCID 50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development. SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development.SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development. |
Audience | Academic |
Author | Port, Julia R. Schulz, Jonathan E. Holbrook, Myndi G. Hebner, Madison J. van Doremalen, Neeltje Offei Owusu, Irene Shaia, Carl Thomas, Tina Avanzato, Victoria A. Yinda, Claude Kwe Munster, Vincent J. Rosenke, Rebecca Fischer, Robert J. Bushmaker, Trenton Best, Sonja M. Purushotham, Jyothi N. Marzi, Andrea de Wit, Emmie |
AuthorAffiliation | 1 Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America 2 Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America The Peter Doherty Institute and Melbourne University, AUSTRALIA |
AuthorAffiliation_xml | – name: The Peter Doherty Institute and Melbourne University, AUSTRALIA – name: 1 Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America – name: 2 Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America |
Author_xml | – sequence: 1 givenname: Claude Kwe orcidid: 0000-0002-5195-5478 surname: Yinda fullname: Yinda, Claude Kwe – sequence: 2 givenname: Julia R. orcidid: 0000-0002-0489-6591 surname: Port fullname: Port, Julia R. – sequence: 3 givenname: Trenton surname: Bushmaker fullname: Bushmaker, Trenton – sequence: 4 givenname: Irene orcidid: 0000-0002-8523-955X surname: Offei Owusu fullname: Offei Owusu, Irene – sequence: 5 givenname: Jyothi N. orcidid: 0000-0002-6190-4199 surname: Purushotham fullname: Purushotham, Jyothi N. – sequence: 6 givenname: Victoria A. surname: Avanzato fullname: Avanzato, Victoria A. – sequence: 7 givenname: Robert J. orcidid: 0000-0002-1816-472X surname: Fischer fullname: Fischer, Robert J. – sequence: 8 givenname: Jonathan E. orcidid: 0000-0001-5462-5952 surname: Schulz fullname: Schulz, Jonathan E. – sequence: 9 givenname: Myndi G. orcidid: 0000-0001-6669-0583 surname: Holbrook fullname: Holbrook, Myndi G. – sequence: 10 givenname: Madison J. orcidid: 0000-0002-4415-762X surname: Hebner fullname: Hebner, Madison J. – sequence: 11 givenname: Rebecca orcidid: 0000-0003-3779-7423 surname: Rosenke fullname: Rosenke, Rebecca – sequence: 12 givenname: Tina surname: Thomas fullname: Thomas, Tina – sequence: 13 givenname: Andrea orcidid: 0000-0003-0186-9587 surname: Marzi fullname: Marzi, Andrea – sequence: 14 givenname: Sonja M. orcidid: 0000-0003-0206-297X surname: Best fullname: Best, Sonja M. – sequence: 15 givenname: Emmie orcidid: 0000-0002-9763-7758 surname: de Wit fullname: de Wit, Emmie – sequence: 16 givenname: Carl orcidid: 0000-0001-8907-8821 surname: Shaia fullname: Shaia, Carl – sequence: 17 givenname: Neeltje orcidid: 0000-0003-4368-6359 surname: van Doremalen fullname: van Doremalen, Neeltje – sequence: 18 givenname: Vincent J. orcidid: 0000-0002-2288-3196 surname: Munster fullname: Munster, Vincent J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33465158$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkktv1DAUhSNURB_wDxBEYgOLDL6xHTtdII2GAUZUVOK1tRznZuoqEwc7U9F_j8OkVaeqkFAWiW6-c2wfn-PkoHMdJslzIDOgAt5euq3vdDvrez3MgJASSv4oOQLOaSaoYAd3vg-T4xAuCWFAoXiSHFLKCg5cHiXLzyCzi_limacbazCt8Qpb16ceQ2-9Hpy_TmsbUAccZ7ipWtut0xAxj-ni_OfqfQbl0-Rxo9uAz6b3SfLjw_L74lN2dv5xtZifZUbkYshqBAO6EDLnjAtNc8mlBsS6qkpgVcPqQnJeS2qqsgbKcsFBVpJxWWlKyoqeJC93vn3rgpoSCCpnJaHAc15EYrUjaqcvVe_tRvtr5bRVfwfOr5X2gzUtKlFKjbmAqiA1Y4JrwjhqA3nJWW0ajF7vptW21QZrg93gdbtnuv-nsxdq7a6UkIJTJqPB68nAu19bDIPa2GCwbXWHbjvuW5QMSlJARF_dQx8-3UStdTyA7RoX1zWjqZoXnEiIUeWRmj1AxafGeMexRY2N8z3Bmz1BZAb8Paz1NgS1-vb1P9gv--yLuwHeJndTvwiwHWC8C8Fjc4sAUWPLb1JQY8vV1PIoO70nM3bQg3XjNdj23-I_RRgAEg |
CitedBy_id | crossref_primary_10_1038_s41467_021_21239_8 crossref_primary_10_1371_journal_ppat_1010741 crossref_primary_10_1016_j_tips_2022_02_010 crossref_primary_10_1177_03009858211071016 crossref_primary_10_1371_journal_ppat_1009758 crossref_primary_10_1128_spectrum_02371_22 crossref_primary_10_1016_j_micpath_2021_104836 crossref_primary_10_5319_wjo_v10_i2_4 crossref_primary_10_3390_v14081627 crossref_primary_10_1111_jpi_12772 crossref_primary_10_1038_s41541_023_00645_7 crossref_primary_10_3390_ijms25158245 crossref_primary_10_1016_j_bbih_2024_100905 crossref_primary_10_1007_s12015_022_10409_w crossref_primary_10_1016_j_isci_2021_103670 crossref_primary_10_14348_molcells_2022_0089 crossref_primary_10_1038_s41564_021_01047_y crossref_primary_10_3390_v14050966 crossref_primary_10_3390_vaccines10020251 crossref_primary_10_1016_j_virusres_2021_198563 crossref_primary_10_7554_eLife_98344_3 crossref_primary_10_1016_j_vaccine_2023_09_033 crossref_primary_10_1172_jci_insight_155896 crossref_primary_10_3390_microorganisms9040868 crossref_primary_10_3390_v14051020 crossref_primary_10_3390_cells12162107 crossref_primary_10_1080_22221751_2023_2178242 crossref_primary_10_3390_biomedicines10020351 crossref_primary_10_1016_j_immuni_2021_08_016 crossref_primary_10_3390_v16071158 crossref_primary_10_1099_jgv_0_002039 crossref_primary_10_1016_j_bbadis_2024_167347 crossref_primary_10_1016_j_isci_2022_105507 crossref_primary_10_1016_j_ajpath_2023_03_008 crossref_primary_10_1016_j_scitotenv_2022_160163 crossref_primary_10_1038_s42003_023_05626_z crossref_primary_10_1097_CCE_0000000000001225 crossref_primary_10_1038_s41392_024_02007_8 crossref_primary_10_1186_s12985_023_02230_9 crossref_primary_10_2139_ssrn_4181455 crossref_primary_10_1093_cid_ciab903 crossref_primary_10_3389_fimmu_2022_950666 crossref_primary_10_1002_mds_29116 crossref_primary_10_1371_journal_ppat_1009064 crossref_primary_10_3390_biomedicines12091941 crossref_primary_10_3390_pathogens12010020 crossref_primary_10_1161_ATVBAHA_121_316925 crossref_primary_10_1371_journal_ppat_1012100 crossref_primary_10_1016_j_jhin_2021_12_010 crossref_primary_10_4110_in_2024_24_e7 crossref_primary_10_1021_acsomega_2c02794 crossref_primary_10_1016_j_antiviral_2021_105138 crossref_primary_10_1084_jem_20211862 crossref_primary_10_1080_22221751_2024_2353302 crossref_primary_10_1038_s44298_023_00012_2 crossref_primary_10_1186_s13567_024_01325_7 crossref_primary_10_1016_j_isci_2022_105038 crossref_primary_10_3389_fphar_2024_1351655 crossref_primary_10_1016_j_matpr_2021_11_013 crossref_primary_10_1038_s41467_021_25156_8 crossref_primary_10_1038_s42003_023_04689_2 crossref_primary_10_1073_pnas_2026785118 crossref_primary_10_1111_acel_13771 crossref_primary_10_26508_lsa_202301997 crossref_primary_10_3389_fimmu_2022_1055811 crossref_primary_10_3389_fmicb_2023_1320856 crossref_primary_10_1016_j_chom_2024_10_016 crossref_primary_10_1128_mbio_00683_22 crossref_primary_10_1371_journal_ppat_1011409 crossref_primary_10_1523_ENEURO_0106_24_2024 crossref_primary_10_1016_j_celrep_2022_110387 crossref_primary_10_1038_s41598_023_39628_y crossref_primary_10_1371_journal_pone_0302344 crossref_primary_10_3389_fcimb_2022_841447 crossref_primary_10_1016_j_bbadis_2024_167322 crossref_primary_10_1016_j_medj_2022_08_002 crossref_primary_10_1126_science_abq0839 crossref_primary_10_1186_s13578_022_00770_1 crossref_primary_10_1371_journal_ppat_1010432 crossref_primary_10_1021_acsinfecdis_2c00091 crossref_primary_10_1016_j_isci_2023_105972 crossref_primary_10_1128_msphere_00243_22 crossref_primary_10_1371_journal_ppat_1009723 crossref_primary_10_3390_v15112151 crossref_primary_10_3390_cells11162572 crossref_primary_10_1371_journal_ppat_1011240 crossref_primary_10_3390_vaccines9111346 crossref_primary_10_1128_spectrum_04194_22 crossref_primary_10_3389_fphar_2024_1414406 crossref_primary_10_1134_S1990747825700035 crossref_primary_10_1172_jci_insight_152529 crossref_primary_10_3389_fimmu_2022_871276 crossref_primary_10_1016_j_ebiom_2021_103291 crossref_primary_10_7554_eLife_87094 crossref_primary_10_3389_fimmu_2022_1011185 crossref_primary_10_1186_s13054_022_04034_9 crossref_primary_10_1007_s00401_021_02314_2 crossref_primary_10_1016_j_celrep_2021_109452 crossref_primary_10_1038_s44298_024_00037_1 crossref_primary_10_1152_ajplung_00223_2021 crossref_primary_10_1038_s41467_021_23779_5 crossref_primary_10_1002_eji_202250332 crossref_primary_10_3389_fimmu_2022_948431 crossref_primary_10_1038_s41392_024_01917_x crossref_primary_10_1038_s41598_022_21223_2 crossref_primary_10_1038_s43856_024_00610_y crossref_primary_10_1128_aac_00341_24 crossref_primary_10_1128_jvi_02184_21 crossref_primary_10_1007_s00204_021_03214_w crossref_primary_10_1016_j_bbr_2023_114662 crossref_primary_10_3389_fimmu_2022_820131 crossref_primary_10_3390_cells10071756 crossref_primary_10_1172_JCI159876 crossref_primary_10_1128_jvi_01194_23 crossref_primary_10_1016_j_celrep_2023_113275 crossref_primary_10_3390_nu13072216 crossref_primary_10_1038_s41467_022_34571_4 crossref_primary_10_1016_j_vaccine_2024_04_079 crossref_primary_10_1038_s41392_022_01087_8 crossref_primary_10_1128_spectrum_02687_22 crossref_primary_10_1371_journal_ppat_1009544 crossref_primary_10_1136_thoraxjnl_2021_217650 crossref_primary_10_3390_medicina59091554 crossref_primary_10_2139_ssrn_4172117 crossref_primary_10_1371_journal_ppat_1010092 crossref_primary_10_7554_eLife_87094_3 crossref_primary_10_1038_s41467_023_42346_8 crossref_primary_10_1134_S160767292201001X crossref_primary_10_1016_j_virol_2024_109997 crossref_primary_10_3390_biomedicines11061736 crossref_primary_10_1016_j_isci_2022_104614 crossref_primary_10_1038_s41589_022_01094_4 crossref_primary_10_1038_s41467_022_33395_6 crossref_primary_10_3390_vaccines12080921 crossref_primary_10_3390_vaccines10040613 crossref_primary_10_1016_j_coviro_2023_101375 crossref_primary_10_1038_s41586_021_04342_0 crossref_primary_10_1126_scitranslmed_abo5070 crossref_primary_10_1038_s41541_023_00636_8 crossref_primary_10_1371_journal_ppat_1011614 crossref_primary_10_1016_j_bone_2021_116227 crossref_primary_10_1002_biot_202300130 crossref_primary_10_3389_fcimb_2021_679878 crossref_primary_10_1016_j_heliyon_2023_e19226 crossref_primary_10_1007_s00335_024_10033_8 crossref_primary_10_1038_s42003_024_06529_3 crossref_primary_10_1038_s41551_023_01054_w crossref_primary_10_1128_Spectrum_00536_21 crossref_primary_10_3389_fimmu_2023_1223260 crossref_primary_10_1002_jmv_27747 crossref_primary_10_3390_v15010139 crossref_primary_10_1089_jamp_2022_0043 crossref_primary_10_1016_j_ebiom_2021_103704 crossref_primary_10_7554_eLife_98344 crossref_primary_10_1038_s41440_021_00800_4 crossref_primary_10_1128_JVI_01537_21 crossref_primary_10_1182_bloodadvances_2022007444 crossref_primary_10_3389_fmicb_2024_1348405 crossref_primary_10_1080_21505594_2024_2316438 crossref_primary_10_3390_v16121856 crossref_primary_10_1016_j_bbrc_2024_151224 crossref_primary_10_3390_antib10040045 crossref_primary_10_1371_journal_pone_0273430 crossref_primary_10_3389_fmicb_2024_1404312 crossref_primary_10_1038_s41598_023_29909_x crossref_primary_10_1177_03009858221092015 crossref_primary_10_1073_pnas_2406332121 crossref_primary_10_1371_journal_pone_0294176 crossref_primary_10_1007_s11248_024_00413_w crossref_primary_10_3390_vaccines12070766 crossref_primary_10_1038_s41541_022_00451_7 crossref_primary_10_3390_vaccines9080881 crossref_primary_10_1038_s41594_023_01023_6 crossref_primary_10_1128_msphere_00558_22 crossref_primary_10_3390_vaccines9111266 crossref_primary_10_3389_fbioe_2021_737627 crossref_primary_10_1038_s41467_023_40076_5 crossref_primary_10_1080_08830185_2022_2089666 crossref_primary_10_1016_j_isci_2021_102479 crossref_primary_10_1016_j_jtcms_2021_10_001 crossref_primary_10_3389_fcimb_2023_1307553 crossref_primary_10_3390_v15010123 crossref_primary_10_1007_s11914_022_00734_x crossref_primary_10_1126_scitranslmed_abn6868 crossref_primary_10_1371_journal_ppat_1010867 crossref_primary_10_1371_journal_ppat_1012804 crossref_primary_10_1038_s41592_022_01427_0 crossref_primary_10_1016_j_intimp_2022_109325 crossref_primary_10_1038_s41541_022_00440_w crossref_primary_10_1007_s11357_024_01102_6 crossref_primary_10_1007_s00011_024_01948_8 |
Cites_doi | 10.4049/jimmunol.1202448 10.2807/1560-7917.ES.2020.25.3.2000045 10.1097/01.CCM.0000149854.61192.DC 10.1172/JCI137244 10.1016/j.phrs.2020.104833 10.1002/ame2.12108 10.1038/s41586-020-2012-7 10.1093/nsr/nwaa037 10.1016/S0140-6736(20)30183-5 10.1126/sciimmunol.abd6832 10.1016/j.jinf.2020.03.037 10.1016/j.ejrad.2020.109147 10.1371/journal.pone.0124080 10.1016/j.jtho.2020.02.010 10.1016/j.rmed.2020.105951 10.4269/ajtmh.18-0937 10.1016/j.chom.2020.03.023 10.1155/2017/6104054 10.1038/s41564-020-0688-y 10.1001/jama.2020.8907 10.1007/s11606-020-05762-w 10.1016/j.jaci.2020.04.027 10.1016/j.ajem.2007.10.031 10.1016/j.antiviral.2017.03.025 10.1128/JVI.02012-06 10.1038/s41591-020-0897-1 10.1126/science.abb7314 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1009195 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Severe respiratory disease in K18-hACE2 mice |
EISSN | 1553-7374 |
ExternalDocumentID | 2490315256 oai_doaj_org_article_798ae271b60d4475a045eac12954dcfe PMC7875348 A650814582 33465158 10_1371_journal_ppat_1009195 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: 1ZIAAI00117901 – fundername: Intramural NIH HHS grantid: ZIA AI001179 – fundername: NIGMS NIH HHS grantid: T32 GM008169 – fundername: ; grantid: 1ZIAAI001179-01 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW ~8M ADRAZ CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 3V. 7QL 7U9 7XB 8FK AZQEC C1K COVID DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO - AAPBV ABPTK ADACO BBAFP M~E |
ID | FETCH-LOGICAL-c727t-de1c1a67825457a32858a1eedbb914bf4d6855d83cb9d13427518b8458ba309b3 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Fri Nov 26 17:12:50 EST 2021 Wed Aug 27 01:26:44 EDT 2025 Thu Aug 21 18:41:53 EDT 2025 Fri Jul 11 09:32:45 EDT 2025 Fri Jul 25 10:39:40 EDT 2025 Tue Jun 17 21:00:34 EDT 2025 Tue Jun 10 20:46:38 EDT 2025 Fri Jun 27 04:03:42 EDT 2025 Fri Jun 27 04:11:19 EDT 2025 Mon Jul 21 05:35:25 EDT 2025 Tue Jul 01 04:24:28 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Creative Commons CC0 public domain |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c727t-de1c1a67825457a32858a1eedbb914bf4d6855d83cb9d13427518b8458ba309b3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors share first authorship on this work. The authors have declared that no competing interests exist. |
ORCID | 0000-0002-2288-3196 0000-0002-8523-955X 0000-0001-5462-5952 0000-0002-0489-6591 0000-0001-8907-8821 0000-0002-4415-762X 0000-0003-0186-9587 0000-0002-5195-5478 0000-0003-4368-6359 0000-0003-3779-7423 0000-0003-0206-297X 0000-0002-1816-472X 0000-0001-6669-0583 0000-0002-9763-7758 0000-0002-6190-4199 |
OpenAccessLink | https://doaj.org/article/798ae271b60d4475a045eac12954dcfe |
PMID | 33465158 |
PQID | 2490315256 |
PQPubID | 1436335 |
ParticipantIDs | plos_journals_2490315256 doaj_primary_oai_doaj_org_article_798ae271b60d4475a045eac12954dcfe pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875348 proquest_miscellaneous_2479419061 proquest_journals_2490315256 gale_infotracmisc_A650814582 gale_infotracacademiconefile_A650814582 gale_incontextgauss_ISR_A650814582 gale_incontextgauss_ISN_A650814582 pubmed_primary_33465158 crossref_primary_10_1371_journal_ppat_1009195 crossref_citationtrail_10_1371_journal_ppat_1009195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-19 |
PublicationDateYYYYMMDD | 2021-01-19 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | Y Li (ppat.1009195.ref046) 2020; 157 B Schumak (ppat.1009195.ref049) 2015; 10 KH Dinnon (ppat.1009195.ref022) 2020 M Letko (ppat.1009195.ref015) 2020; 5 Jing Sun (ppat.1009195.ref018) 2020 Q Ye (ppat.1009195.ref025) 2020; 80 R Kolde (ppat.1009195.ref053) 2019 JF Chan (ppat.1009195.ref009) 2020 KD Cook (ppat.1009195.ref048) 2013; 190 L Chen (ppat.1009195.ref041) 2020; 43 Y Liu (ppat.1009195.ref039); 7 PB McCray (ppat.1009195.ref019) 2007; 81 F Jiang (ppat.1009195.ref005) 2020; 35 N Calcagno (ppat.1009195.ref006); 41 RD Jiang (ppat.1009195.ref032) 2020 JW Golden (ppat.1009195.ref034); 2020 F Feldmann (ppat.1009195.ref047) 2019; 100 QX Long (ppat.1009195.ref045) 2020; 26 Y Wu (ppat.1009195.ref029) 2020; 5 H Wang (ppat.1009195.ref042) 2008; 26 SH Sun (ppat.1009195.ref020) 2020 C Huang (ppat.1009195.ref026) 2020; 395 Y Yang (ppat.1009195.ref027); 146 PE Parsons (ppat.1009195.ref043) 2005; 33 BP Dhakal (ppat.1009195.ref007) 2020 VM Corman (ppat.1009195.ref050) 2020; 25 VJ Munster (ppat.1009195.ref011) 2020 P Zhou (ppat.1009195.ref016) 2020; 579 L Bao (ppat.1009195.ref030) 2020 B Rockx (ppat.1009195.ref014) 2020; 368 T Schaller (ppat.1009195.ref037) 2020; 323 GB Moreau (ppat.1009195.ref035); 2020 S Nie (ppat.1009195.ref002) 2020; 167 ppat.1009195.ref001 SE Fox (ppat.1009195.ref038); 2020 C Woolsey (ppat.1009195.ref012) 2020 S Wan (ppat.1009195.ref040); 2020 ppat.1009195.ref052 YI Kim (ppat.1009195.ref010) 2020; 27 Hongjing Gu (ppat.1009195.ref021) 2020 ASS Girija (ppat.1009195.ref044) 2020; 11 S Tian (ppat.1009195.ref036); 15 B Israelow (ppat.1009195.ref033) 2020 P Yu (ppat.1009195.ref013) 2020; 3 X Zhao (ppat.1009195.ref017) 2020 X Li (ppat.1009195.ref004); 24 ppat.1009195.ref054 AO Hassan (ppat.1009195.ref031) 2020 N van Doremalen (ppat.1009195.ref051) 2017; 143 JM Rojas (ppat.1009195.ref023) 2017; 2017 AH Parry (ppat.1009195.ref003) 2020; 129 L Mao (ppat.1009195.ref008) 2020 G Chen (ppat.1009195.ref024) 2020; 130 C Maucourant (ppat.1009195.ref028) 2020; 5 32803199 - bioRxiv. 2020 Aug 11:2020.08.11.246314. doi: 10.1101/2020.08.11.246314. |
References_xml | – year: 2020 ident: ppat.1009195.ref030 article-title: The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice publication-title: Nature – volume: 190 start-page: 641 issue: 2 year: 2013 ident: ppat.1009195.ref048 article-title: The depletion of NK cells prevents T cell exhaustion to efficiently control disseminating virus infection publication-title: J Immunol doi: 10.4049/jimmunol.1202448 – volume: 2020 ident: ppat.1009195.ref040 article-title: Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) publication-title: medRxiv – volume: 25 issue: 3 year: 2020 ident: ppat.1009195.ref050 article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR publication-title: Euro Surveill doi: 10.2807/1560-7917.ES.2020.25.3.2000045 – volume: 33 start-page: 1 issue: 1 year: 2005 ident: ppat.1009195.ref043 article-title: Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury publication-title: Crit Care Med doi: 10.1097/01.CCM.0000149854.61192.DC – ident: ppat.1009195.ref054 – volume: 130 start-page: 2620 issue: 5 year: 2020 ident: ppat.1009195.ref024 article-title: Clinical and immunological features of severe and moderate coronavirus disease 2019 publication-title: J Clin Invest doi: 10.1172/JCI137244 – volume: 157 start-page: 104833 year: 2020 ident: ppat.1009195.ref046 article-title: Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor publication-title: Pharmacol Res doi: 10.1016/j.phrs.2020.104833 – volume: 41 start-page: 1339 issue: 6 ident: ppat.1009195.ref006 article-title: Rising evidence for neurological involvement in COVID-19 pandemic publication-title: Neurol Sci. 2020 – volume: 3 start-page: 93 issue: 1 year: 2020 ident: ppat.1009195.ref013 article-title: Age-related rhesus macaque models of COVID-19 publication-title: Animal Model Exp Med doi: 10.1002/ame2.12108 – year: 2020 ident: ppat.1009195.ref018 article-title: Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment publication-title: Cell – volume: 579 start-page: 270 issue: 7798 year: 2020 ident: ppat.1009195.ref016 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 7 start-page: 1003 issue: 6 ident: ppat.1009195.ref039 article-title: Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury publication-title: National Science Review. 2020 doi: 10.1093/nsr/nwaa037 – volume: 395 start-page: 497 issue: 10223 year: 2020 ident: ppat.1009195.ref026 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: The Lancet doi: 10.1016/S0140-6736(20)30183-5 – year: 2020 ident: ppat.1009195.ref020 article-title: A Mouse Model of SARS-CoV-2 Infection and Pathogenesis publication-title: Cell Host Microbe – volume: 5 issue: 50 year: 2020 ident: ppat.1009195.ref028 article-title: Natural killer cell immunotypes related to COVID-19 disease severity publication-title: Sci Immunol doi: 10.1126/sciimmunol.abd6832 – year: 2020 ident: ppat.1009195.ref032 article-title: Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2 publication-title: Cell – volume: 80 start-page: 607 issue: 6 year: 2020 ident: ppat.1009195.ref025 article-title: The pathogenesis and treatment of the `Cytokine Storm' in COVID-19 publication-title: J Infect doi: 10.1016/j.jinf.2020.03.037 – volume: 129 start-page: 109147 year: 2020 ident: ppat.1009195.ref003 article-title: Spectrum of chest computed tomographic (CT) findings in coronavirus disease-19 (COVID-19) patients in India publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2020.109147 – volume: 2020 ident: ppat.1009195.ref035 article-title: Evaluation of K18-hACE2 mice as a model of SARS-CoV-2 infection publication-title: bioRxiv – volume: 10 start-page: e0124080 issue: 4 year: 2015 ident: ppat.1009195.ref049 article-title: Specific Depletion of Ly6Chi Inflammatory Monocytes Prevents Immunopathology in Experimental Cerebral Malaria publication-title: PLOS ONE doi: 10.1371/journal.pone.0124080 – year: 2020 ident: ppat.1009195.ref008 article-title: Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China publication-title: JAMA Neurol – year: 2020 ident: ppat.1009195.ref017 article-title: Broad and differential animal ACE2 receptor usage by SARS-CoV-2 publication-title: bioRxiv – volume: 43 start-page: E005 issue: 0 year: 2020 ident: ppat.1009195.ref041 article-title: [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia] publication-title: Zhonghua Jie He He Hu Xi Za Zhi – volume: 15 start-page: 700 issue: 5 ident: ppat.1009195.ref036 article-title: Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer publication-title: J Thorac Oncol. 2020 doi: 10.1016/j.jtho.2020.02.010 – ident: ppat.1009195.ref001 – volume: 167 start-page: 105951 year: 2020 ident: ppat.1009195.ref002 article-title: Coronavirus Disease 2019-related dyspnea cases difficult to interpret using chest computed tomography publication-title: Respir Med doi: 10.1016/j.rmed.2020.105951 – volume: 100 start-page: 1275 issue: 5 year: 2019 ident: ppat.1009195.ref047 article-title: Gamma Irradiation as an Effective Method for Inactivation of Emerging Viral Pathogens publication-title: The American journal of tropical medicine and hygiene doi: 10.4269/ajtmh.18-0937 – volume: 27 start-page: 704 issue: 5 year: 2020 ident: ppat.1009195.ref010 article-title: Infection and Rapid Transmission of SARS-CoV-2 in Ferrets publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.03.023 – year: 2020 ident: ppat.1009195.ref012 article-title: Establishment of an African green monkey model for COVID-19 publication-title: bioRxiv – volume: 2017 start-page: 6104054 year: 2017 ident: ppat.1009195.ref023 article-title: IL-10: A Multifunctional Cytokine in Viral Infections publication-title: J Immunol Res doi: 10.1155/2017/6104054 – ident: ppat.1009195.ref052 – volume: 5 start-page: 562 issue: 4 year: 2020 ident: ppat.1009195.ref015 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nature microbiology doi: 10.1038/s41564-020-0688-y – year: 2020 ident: ppat.1009195.ref022 article-title: A mouse-adapted SARS-CoV-2 model for the evaluation of COVID-19 medical countermeasures publication-title: bioRxiv – year: 2020 ident: ppat.1009195.ref031 article-title: A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies publication-title: Cell – volume: 2020 ident: ppat.1009195.ref034 article-title: Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease publication-title: bioRxiv – volume: 323 start-page: 2518 issue: 24 year: 2020 ident: ppat.1009195.ref037 article-title: Postmortem Examination of Patients With COVID-19 publication-title: JAMA doi: 10.1001/jama.2020.8907 – volume: 35 start-page: 1545 issue: 5 year: 2020 ident: ppat.1009195.ref005 article-title: Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19) publication-title: J Gen Intern Med doi: 10.1007/s11606-020-05762-w – volume: 24 start-page: 198 issue: 1 ident: ppat.1009195.ref004 article-title: Acute respiratory failure in COVID-19: is it "typical" ARDS? publication-title: Crit Care. 2020 – volume: 146 start-page: 119 issue: 1 ident: ppat.1009195.ref027 article-title: Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2020.04.027 – volume: 2020 ident: ppat.1009195.ref038 article-title: Pulmonary and Cardiac Pathology in Covid-19: The First Autopsy Series from New Orleans publication-title: medRxiv – volume: 26 start-page: 711 issue: 6 year: 2008 ident: ppat.1009195.ref042 article-title: The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome publication-title: Am J Emerg Med doi: 10.1016/j.ajem.2007.10.031 – volume: 143 start-page: 30 year: 2017 ident: ppat.1009195.ref051 article-title: Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets publication-title: Antiviral Res doi: 10.1016/j.antiviral.2017.03.025 – year: 2019 ident: ppat.1009195.ref053 publication-title: Implementation of heatmaps that offers more control over dimensions and appearance – year: 2020 ident: ppat.1009195.ref007 article-title: SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart publication-title: Heart Lung Circ – year: 2020 ident: ppat.1009195.ref033 article-title: Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling publication-title: bioRxiv – volume: 11 issue: 1206 year: 2020 ident: ppat.1009195.ref044 article-title: Could SARS-CoV-2-Induced Hyperinflammation Magnify the Severity of Coronavirus Disease (CoViD-19) Leading to Acute Respiratory Distress Syndrome? publication-title: Frontiers in Immunology – year: 2020 ident: ppat.1009195.ref009 article-title: Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility publication-title: Clin Infect Dis – volume: 5 start-page: e00362 issue: 4 year: 2020 ident: ppat.1009195.ref029 article-title: Clinical Characteristics and Immune Injury Mechanisms in 71 Patients with COVID-19 publication-title: Msphere – volume: 81 start-page: 813 issue: 2 year: 2007 ident: ppat.1009195.ref019 article-title: Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus publication-title: J Virol doi: 10.1128/JVI.02012-06 – year: 2020 ident: ppat.1009195.ref011 article-title: Respiratory disease in rhesus macaques inoculated with SARS-CoV-2 publication-title: Nature – volume: 26 start-page: 845 issue: 6 year: 2020 ident: ppat.1009195.ref045 article-title: Antibody responses to SARS-CoV-2 in patients with COVID-19 publication-title: Nat Med doi: 10.1038/s41591-020-0897-1 – year: 2020 ident: ppat.1009195.ref021 article-title: Rapid adaption of SARS-CoV-2 in BALB/c mice: Novel mouse model for vaccine efficacy publication-title: BioRxiv – volume: 368 start-page: 1012 issue: 6494 year: 2020 ident: ppat.1009195.ref014 article-title: Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model publication-title: Science doi: 10.1126/science.abb7314 – reference: 32803199 - bioRxiv. 2020 Aug 11:2020.08.11.246314. doi: 10.1101/2020.08.11.246314. |
SSID | ssj0041316 |
Score | 2.6616552 |
Snippet | SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the... Expression of hACE2 is driven by a cytokeratin promoter in the airway epithelial cells as well as in epithelia of other internal organs, including the liver,... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1009195 |
SubjectTerms | Alveoli Angiotensin-Converting Enzyme 2 - genetics Angiotensin-Converting Enzyme 2 - immunology Animals Antigens Biology and life sciences Coronaviruses COVID-19 COVID-19 - genetics COVID-19 - immunology COVID-19 - pathology COVID-19 - virology Cytokeratin Disease Models, Animal Dose-response relationship (Biochemistry) Edema Engineering and Technology Epithelial cells Female Fibrin Gastrointestinal system Gastrointestinal tract Gene expression Genomes Health aspects Humans Hyperplasia Immunoreactivity Infections Inflammation Irradiated Keratin-18 - genetics Keratin-18 - immunology Kidneys Leukocytes (neutrophilic) Lung - immunology Lung - pathology Lungs Lymphocytes Lymphocytes - immunology Macrophages Macrophages - immunology Male Medicine and health sciences Mice Mice, Transgenic Necrosis Neutrophils Organs Pathology Pneumocytes Pneumonia Promoter Regions, Genetic Promoters (Genetics) Rectum Research and Analysis Methods Respiratory diseases SARS-CoV-2 - physiology Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Shedding Trachea - immunology Trachea - virology Transgenic animals Viral diseases Viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEOXVQEEBIXEyjWM7to_LslULokhAUW-W7XhbpJJd7ePQf89M4g0bVNQL13gcyePxzGfN-BtC3si6NnxmIq08wDekLKe-dJIic4jURsfC4QPnz6fV8Zn4eC7Pd1p9YU1YRw_cKe5QGe1iqZivihrJ6RxgEHAWDPNTdZhF9L4Q87aXqc4Hg2dum55iUxyqeFWlR3NcscO0R-8WC4f00TAXe0vsBKWWu7_30KPF1Xx1E_z8u4pyJywdPSD3E57Mx9069sid2Dwkd7sOk9ePyPQT0_RyPJmWOfadz9MbqXz5J8OepxwNfou_PD5PzyFcxmXMJ19-nHygzDwmZ0fT75Njmjon0AB4ZE3ryAJzEIfg-ieV46WW2jEIh94bJrA2r9JS1poHb2rGRYnJF6-F1N7xwnj-hIyaeRP3Se5rySonnSxCEMEUXgmNKNJEKSKrVUb4VnU2JFpx7G5xZdtcmYLrRacJiwq3SeEZof2sRUercYv8e9yVXhZJsdsPYCo2mYq9zVQy8hr31CLtRYN1NRdus1rZk2-ndoxAlWEO8Z9CXwdCb5PQbA6LDS69ZQCVIZ3WQPJgIAmHNwyG99G-tmteWbgNY98NAKIwc2tzNw-_6ofxp1gr18T5BmXAxwLOq1hGnnYm2uuNc1EBgtUZUQPjHSh2ONL8vGxZxxXebIV-9j924jm5V2JtUMHAhg_IaL3cxBcA7tb-ZXuOfwPRNEgh priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXxLspBQWExMk0juPYOaFl2aoFUSSgaG-RX9sitUnY7B7498wk3rRBBa7xJErG43lkZr4h5JVwruDLwtPcgPuGkOXUpFpQRA4RqlA-0djg_Ok4PzzJPizEIvxwa0NZ5VYndora1Rb_ke9DmIADCcBCv21-UpwahdnVMELjJrmF0GUYfMnFEHCBfu5Gn-JoHCp5nofWOS7ZftipN02jEUQarCZOmLhimjoE_0FPT5rzur3OCf2zlvKKcTq4R-4GrzKe9mJwn9zw1QNyu58z-eshmX9kip5NZ_M0xunzceiUileXefY4ZGrwmr8w2KQeg9H0Kx_PPn8_ek9Z8YicHMy_zQ5pmJ9ALXgla-o8s0yDNYIgUEjNUyWUZmAUjSlYhhV6uRLCKW5N4RjPUkzBGJUJZTRPCsMfk0lVV36HxMYJlmuhRWJtZovEyEyhL1l4kXnmZET4lnWlDeDiOOPivOwyZhKCjJ4TJTK8DAyPCB3uanpwjf_Qv8NdGWgRGru7UK9Oy3DSSlko7VPJTJ44RDPU4LSCdWGY0HR26SPyEve0RPCLCqtrTvWmbcujr8flFN1VhpnEvxJ9GRG9DkTLGj7W6tDRACxDUK0R5d6IEo6wHS3voHxtv7ktL4Ud7tzK3PXLL4ZlfChWzFW-3iANaFrw9nIWkSe9iA584zzLwY9VEZEj4R0xdrxS_TjrsMclxreZ2v33az0ld1Ks_UkYSOcemaxXG_8MnLe1ed6d0N-9HT-B priority: 102 providerName: ProQuest |
Title | K18-hACE2 mice develop respiratory disease resembling severe COVID-19 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33465158 https://www.proquest.com/docview/2490315256 https://www.proquest.com/docview/2479419061 https://pubmed.ncbi.nlm.nih.gov/PMC7875348 https://doaj.org/article/798ae271b60d4475a045eac12954dcfe http://dx.doi.org/10.1371/journal.ppat.1009195 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELa2Tki8IH4vY1QBIfGUKU7i2H5AqCudNtAKGhT1LbITd5tUki5pJfbfc5c4gaAOXuNzJF_Ovs85-_sIecOyTIYLabxYA3xDynJPB4p5yBzChBTGV3jB-Xwan86ij3M23yGtZqt1YLV1a4d6UrNyefTz5vY9TPh3tWoDp22no9VKISE0ZEDJdske5CaOYg7nUVdXgBW7FkNFsRyPh3FsL9Pd9ZZesqo5_buVe7BaFtU2WPr36co_0tXJQ_LA4kx31ATGI7Jj8sfkXqM8efuETD5R4V2NxpPART16196dcsvflXfX1m7wmfmh8dq6C2nUlMYdf_5-9sGj8imZnUy-jU89q6jgpYBT1l5maEoV5CfYFjKuwkAwoSikSa0ljfDMXiwYy0SYapnRMAqwKKNFxIRWoS91-IwM8iI3-8TVGaOxYor5aRql0tc8EogupWGRoRl3SNi6Lkkt3TiqXiyTuobGYdvReCJBhyfW4Q7xul6rhm7jP_bH-FU6WyTLrh8U5WVi517CpVAm4FTHfob8hgpgLOQbiiXOLF0Yh7zGb5ogHUaO520u1aaqkrOv02SEAJZibfFOo4ue0VtrtChgsKmydxzAZUiz1bM87FnCpE57zfsYX-2YqwR2yajHAQAVerYxt735VdeML8UzdLkpNmgDay_gv5g65HkTop3fwjCKAdkKh_Be8PYc22_Jr69qNnKOO95IHPx7QC_I_QBPA_kUovOQDNblxrwEOLfWQ7LL53xI9o4n0y8Xw_qnyLCetb8A2Z5IjA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiHcXCgQE4hQax3HiHBDabrfaZdsFlbbqzdiOt63UJss-hPqn-I3MJM62QQVOvcaTKBmP55F5fIS85VmWsnFq_ViD-4Yjy30dKu7j5BAuUmEDhQ3Ou6O4fxB9PuJHK-RX3QuDZZW1TiwVdVYY_Ee-AWECAhKAhf40-eEjahRmV2sIjUoshvbiJ4Rss4-DLdjfd2G43dvv9n2HKuAbsNVzP7PUUAU6GkIjnigWCi4UBVOhdUojrFuLBeeZYEanGWVRiIkJLSIutGJBqhk89xZZjRi4Ci2yutkbfd2rdT9YhBJsFcF4_ITFsWvWYwndcLLxYTJROLYa7DRiWlwxhiVmwNIytCZnxew6t_fP6s0r5nD7Prnn_FivUwneA7Ji84fkdoVsefGI9IZU-Cedbi_0EO_ec71Z3vQys--53BBes-ca2-I9MNN2ar3ul8PBlk_Tx-TgRnj7hLTyIrdrxNMZp7HiigfGRCYNdBIJ9F5TyyNLs6RNWM06adw4c0TVOJNlji6BsKbihESGS8fwNvGXd02qcR7_od_EXVnS4jDu8kIxPZbubMskFcqGCdVxkOH8RAVuMtgziinUzIxtm7zBPZU4biPHep5jtZjN5ODbSHbQQaaYu_wr0V6D6L0jGhfwsUa5HgpgGY7xalCuNyhBaZjG8hrKV_3NM3l5vODOWuauX369XMaHYo1ebosF0oBuB_8ypm3ytBLRJd8Yi2LwnEWbJA3hbTC2uZKfnpTTzhOMqCPx7N-v9Yrc6e_v7sidwWj4nNwNsfIooCCp66Q1ny7sC3Ad5_qlO68e-X7TKuI3wDp83A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIhAXxLsLBQICcQobx3HsHBBa9qEuCwUBRXsLtuNtkdpk2YdQ_xq_jpnESRtU4NRrPImS8Xi-mcyLkGc8yxI2T6wfazDfsGW5r0PFfewcwmUibaCwwPn9Xry7H72d8dkW-VXXwmBaZa0TS0WdFQb_kffATcCBBIDQvblLi_g4HL9e_PBxghRGWutxGpWITO3JT3DfVq8mQ9jr52E4Hn0Z7PpuwoBvALfXfmapoQr0NbhJXCgWSi4VBdjQOqER5rDFkvNMMqOTjLIoxCCFlhGXWrEg0Qyee4lcFgxgE86SmDXOHmBDOXYVx_L4gsWxK9tjgvaclLxcLBQ2sAbExukWZ2CxnB7QYERncVSszjOA_8zjPAOM4xvkurNovX4lgjfJls1vkSvVjMuT22Q0pdI_7A9GoXcMSslzVVre8jTG77koEV6zxxoL5D0AbLu03uDD18nQp8kdsn8hnL1LOnmR223i6YzTWHHFA2MikwRaRBLt2MTyyNJMdAmrWZca19gc52scpWW0ToCDU3EiRYanjuFd4jd3LarGHv-hf4O70tBiW-7yQrE8SN0pT0UilQ0F1XGQYSdFBQYzIBvFYGpm5rZLnuKepth4I0cRPlCb1SqdfN5L-2gqU4xi_pXoU4vohSOaF_CxRrlqCmAZNvRqUe60KEF9mNbyNspX_c2r9PSgwZ21zJ2__KRZxoditl5uiw3SgJYHSzOmXXKvEtGGb4xFMdjQsktES3hbjG2v5N8Py77nAn3rSN7_92s9JldBMaTvJnvTB-RaiClIAQVB3SGd9XJjH4INudaPysPqkW8XrR1-A1j6f6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K18-hACE2+mice+develop+respiratory+disease+resembling+severe+COVID-19&rft.jtitle=PLoS+pathogens&rft.au=Yinda%2C+Claude+Kwe&rft.au=Port%2C+Julia+R&rft.au=Bushmaker%2C+Trenton&rft.au=Offei+Owusu%2C+Irene&rft.date=2021-01-19&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.ppat.1009195&rft.externalDocID=A650814582 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |