Tracking collective cell motion by topological data analysis

By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active f...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 16; no. 12; p. e1008407
Main Authors Bonilla, Luis L., Carpio, Ana, Trenado, Carolina
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.12.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1008407

Cover

Loading…
Abstract By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration.
AbstractList By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration.
Introduction Confluent motion of epithelial cell monolayers [1–28] is crucial in many biological processes, such as morphogenesis [3, 26], biological pattern formation [9, 23], biological aggregation and swarming [17, 21], tissue repair [6, 18, 19], development [4], and tumor invasion and metastasis [1–3, 28]. In agreement with experiments in the literature, simulations of spreading test with our model exhibit formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time, all of which has been observed in experiments [10, 11, 16, 37, 38, 43]. Recent experiments have connected metastasis in colorectal cancer to wound healing and tumor invasion of tissue using appropriate molecular markers [28]. [...]our description of spreading of cellular tissue and antagonistic migration assays using our modified active vertex model might be relevant for metastatic cancer. The numerical values of the parameters are calibrated so as to reproduce experimental observations of collective cell migration in two different cases: an aggregate spreading to an empty space and the collision of two different cellular monolayers in antagonistic migration assays.
By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration.By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration.
Introduction Confluent motion of epithelial cell monolayers [1–28] is crucial in many biological processes, such as morphogenesis [3, 26], biological pattern formation [9, 23], biological aggregation and swarming [17, 21], tissue repair [6, 18, 19], development [4], and tumor invasion and metastasis [1–3, 28]. In agreement with experiments in the literature, simulations of spreading test with our model exhibit formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time, all of which has been observed in experiments [10, 11, 16, 37, 38, 43]. Recent experiments have connected metastasis in colorectal cancer to wound healing and tumor invasion of tissue using appropriate molecular markers [28]. [...]our description of spreading of cellular tissue and antagonistic migration assays using our modified active vertex model might be relevant for metastatic cancer. The numerical values of the parameters are calibrated so as to reproduce experimental observations of collective cell migration in two different cases: an aggregate spreading to an empty space and the collision of two different cellular monolayers in antagonistic migration assays.
By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration. Confluent motion of cells in tissues plays a crucial role in wound healing, tissue repair, development, morphogenesis and in numerous pathological processes such as tumor invasion and metastatic cancer. For such complex processes, controlled experiments help clarifying the roles of chemical, mechanical and biological cues. Among them, spreading of cellular tissues on an empty space and antagonistic migration assays between cancerous and normal cells are quite revealing. The interfaces between confluent cellular aggregates uncover properties thereof when a combination of modeling, numerical simulation and data analysis is used. Here we have modified an active vertex model with a dynamics that includes inertia, friction and active forces that tend to align cells based on interaction with its immediate neighborhood. Selecting appropriately junction tensions among cells and using the SAMoS software, we have succeed in simulating assays of cellular tissue spreading on an empty space and the invasion of healthy tissue by cancerous one. We have introduced topological data analysis to characterize, track and compare in an automatic manner the interfaces of the tissue both in numerical simulations and from experimental data of normal and Ras modified precancerous Human Embryonic Kidney cells. We find good agreement when normal cells are solidlike and modified cells are liquidlike according to their shape parameters. In addition, cell variability means that a fraction of randomly distributed cells favor mixing, the others segregation. Topological data analysis techniques are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant in ascertaining how the biophysical features of materials may affect tissue and organ regeneration.
Audience Academic
Author Carpio, Ana
Bonilla, Luis L.
Trenado, Carolina
AuthorAffiliation 3 Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain
Oxford, UNITED KINGDOM
1 G. Millán Institute for Fluid Dynamics, Nanoscience & Industrial Mathematics, and Department of Mathematics, Universidad Carlos III de Madrid, Leganés, Spain
2 Courant Institute of Mathematical Sciences, New York University, New York, United States of America
AuthorAffiliation_xml – name: 2 Courant Institute of Mathematical Sciences, New York University, New York, United States of America
– name: 1 G. Millán Institute for Fluid Dynamics, Nanoscience & Industrial Mathematics, and Department of Mathematics, Universidad Carlos III de Madrid, Leganés, Spain
– name: 3 Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain
– name: Oxford, UNITED KINGDOM
Author_xml – sequence: 1
  givenname: Luis L.
  orcidid: 0000-0002-7687-8595
  surname: Bonilla
  fullname: Bonilla, Luis L.
– sequence: 2
  givenname: Ana
  orcidid: 0000-0001-8623-6521
  surname: Carpio
  fullname: Carpio, Ana
– sequence: 3
  givenname: Carolina
  orcidid: 0000-0002-7639-2181
  surname: Trenado
  fullname: Trenado, Carolina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33362204$$D View this record in MEDLINE/PubMed
BookMark eNqVkluL1DAcxYOsuBf9BqIFX_RhxqRJmlREWBYvA4uCrs8hTZOaMdOMSbo43950pyPbZRGkDw3J75z_hXMKjnrfawCeIrhEmKHXaz-EXrrlVjV2iSDkBLIH4ARRihcMU35063wMTmNcQ5iPdfUIHGOMq7KE5AS8vQpS_bR9VyjvnFbJXutCaeeKjU_W90WzK5Lfeuc7q6QrWplkIXPdXbTxMXhopIv6yfQ_A98_vL-6-LS4_PJxdXF-uVCsZGmheFu3UnFCTasU5rmNGmGF6tKQChqKKZSUQ0o1UojBxkBMjCFNYzhCJdP4DDzf-26dj2IaPIqSsJpUFaM4E6s90Xq5FttgNzLshJdW3Fz40AkZklVOC6kRMhq1pIUkd8Q5qYyu66ZRNWEa0ez1bqo2NBvdKt2nIN3MdP7S2x-i89eCMcp4SbLBy8kg-F-DjklsbBx3Knvth5u-MRknG2u9uIPeP91EdTIPYHvjc101morzikKOSA2rTC3vofLX6o1VOTzG5vuZ4NVMkJmkf6dODjGK1bev_8F-nrPPbi_w7-YOqcvAmz2ggo8xaCOUTXKMW-7YOoGgGCN-2IUYIy6miGcxuSM--P9T9ger3_7w
CitedBy_id crossref_primary_10_1016_j_jtbi_2021_110903
crossref_primary_10_1038_s41598_024_69426_z
crossref_primary_10_1016_j_jmaa_2024_128338
crossref_primary_10_1063_5_0126848
crossref_primary_10_1007_s11538_023_01214_8
crossref_primary_10_1016_j_compchemeng_2025_109052
crossref_primary_10_1103_PhysRevE_108_054407
crossref_primary_10_1371_journal_pone_0257215
crossref_primary_10_51847_lnpeqvTvFD
crossref_primary_10_1016_j_jtbi_2023_111560
crossref_primary_10_3934_mbe_2023143
crossref_primary_10_1137_22M1543082
crossref_primary_10_1103_PhysRevE_108_044118
crossref_primary_10_3390_biomedicines9020224
crossref_primary_10_1039_D1SM00626F
Cites_doi 10.1073/pnas.0705062104
10.1038/nmat4848
10.1103/PhysRevLett.104.168104
10.1137/15M1031151
10.1038/nrm2720
10.1137/130925669
10.1371/journal.pcbi.1002944
10.1088/1361-6633/aa65ef
10.1073/pnas.1521151113
10.1073/pnas.1001994107
10.1016/j.tcb.2011.06.006
10.1073/pnas.1511814112
10.1016/j.bpj.2009.05.064
10.1090/S0273-0979-09-01249-X
10.1073/pnas.1010059108
10.1371/journal.pcbi.1006919
10.1073/pnas.1917763117
10.1038/s43018-019-0006-x
10.1039/C4IB00115J
10.1103/RevModPhys.85.1143
10.1021/acs.chemrev.6b00654
10.18632/oncotarget.25692
10.1038/nphys2355
10.1038/ncomms8683
10.1016/j.cub.2016.09.037
10.1038/s41467-018-05629-z
10.1103/PhysRevE.99.012612
10.1098/rsif.2017.0512
10.1039/C8SM01523F
10.1016/j.jbiomech.2020.109763
10.1103/PhysRevLett.75.1226
10.1038/nmat4357
10.1038/nphys3040
10.1146/annurev.cellbio.042308.113231
10.1038/s41563-019-0425-1
10.1103/PhysRevLett.122.088104
10.1080/01621459.1963.10500845
10.1038/nphys1269
10.1016/j.bpj.2010.01.030
10.1529/biophysj.105.061150
10.1016/S0022-5193(80)80021-X
10.1007/s00454-004-1146-y
10.1103/PhysRevX.6.021011
10.1073/pnas.0408482102
10.1371/journal.pone.0126383
10.1039/C8SM00126J
10.1242/jcs.036517
10.1088/1361-6463/aa7f8e
10.1146/annurev-conmatphys-031218-013516
10.1002/9780470316801
10.1371/journal.pcbi.1005569
10.1038/nrc1075
10.1038/nmat4972
10.1016/j.physrep.2012.03.004
10.1038/embor.2012.149
10.1098/rsif.2017.0338
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Bonilla et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Bonilla et al 2020 Bonilla et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Bonilla et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Bonilla et al 2020 Bonilla et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1008407
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Tracking collective cell motion by topological data analysis
EISSN 1553-7358
ExternalDocumentID 2479466753
oai_doaj_org_article_ae11fe1d4d0445f8846fe99bbc947e15
PMC7757824
A650814906
33362204
10_1371_journal_pcbi_1008407
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: MTM2017-84446-C2-2-R
– fundername: ;
  grantid: MTM2017-84446-C2-1-R
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
5PM
PUEGO
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
ID FETCH-LOGICAL-c727t-c8d9dac845fdcc38035913c192f460f5350a58055e1c170bf034ff4bbf81127e3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:12:22 EST 2021
Wed Aug 27 01:31:10 EDT 2025
Thu Aug 21 14:10:39 EDT 2025
Fri Jul 11 07:50:10 EDT 2025
Fri Jul 25 12:08:41 EDT 2025
Tue Jun 17 21:00:37 EDT 2025
Tue Jun 10 20:46:39 EDT 2025
Fri Jun 27 04:03:44 EDT 2025
Fri Jun 27 04:11:20 EDT 2025
Thu Apr 03 07:04:46 EDT 2025
Tue Jul 01 04:04:50 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c727t-c8d9dac845fdcc38035913c192f460f5350a58055e1c170bf034ff4bbf81127e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
I have read the journal’s policy and the authors of this manuscript have no competing interests.
ORCID 0000-0002-7639-2181
0000-0001-8623-6521
0000-0002-7687-8595
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1008407
PMID 33362204
PQID 2479466753
PQPubID 1436340
ParticipantIDs plos_journals_2479466753
doaj_primary_oai_doaj_org_article_ae11fe1d4d0445f8846fe99bbc947e15
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7757824
proquest_miscellaneous_2473411275
proquest_journals_2479466753
gale_infotracmisc_A650814906
gale_infotracacademiconefile_A650814906
gale_incontextgauss_ISR_A650814906
gale_incontextgauss_ISN_A650814906
pubmed_primary_33362204
crossref_citationtrail_10_1371_journal_pcbi_1008407
crossref_primary_10_1371_journal_pcbi_1008407
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-23
PublicationDateYYYYMMDD 2020-12-23
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References CJ Weijer (pcbi.1008407.ref004) 2009; 122
HB Taylor (pcbi.1008407.ref024) 2017; 14
M Poujade (pcbi.1008407.ref006) 2007; 104
GY Ouaknin (pcbi.1008407.ref037) 2009; 97
MR McGuirl (pcbi.1008407.ref053) 2020; 117
P Rodríguez-Franco (pcbi.1008407.ref036) 2017; 16
R Alert (pcbi.1008407.ref038) 2019; 122
ME Cates (pcbi.1008407.ref009) 2010; 107
S Porazinski (pcbi.1008407.ref022) 2016; 26
K Ganesh (pcbi.1008407.ref028) 2020; 1
E Méhes (pcbi.1008407.ref030) 2014; 6
X Serra-Picamal (pcbi.1008407.ref015) 2012; 8
P Rørth (pcbi.1008407.ref008) 2009; 25
T Vicsek (pcbi.1008407.ref042) 2012; 517
A Zomorodian (pcbi.1008407.ref058) 2002; 33
A Palamidessi (pcbi.1008407.ref035) 2019; 18
N Sepúlveda (pcbi.1008407.ref016) 2013; 9
H Honda (pcbi.1008407.ref055) 1980; 84
X Trepat (pcbi.1008407.ref007) 2009; 5
T Angelini (pcbi.1008407.ref012) 2011; 108
F Giavazzi (pcbi.1008407.ref034) 2018; 14
X Trepat (pcbi.1008407.ref013) 2011; 21
L Petitjean (pcbi.1008407.ref010) 2010; 98
T Angelini (pcbi.1008407.ref011) 2010; 104
F Bocci (pcbi.1008407.ref048) 2018; 9
A Ravasio (pcbi.1008407.ref019) 2015; 6
Giavazzi (pcbi.1008407.ref033) 2017; 50
AJ Bernoff (pcbi.1008407.ref021) 2016; 15
L Kaufman (pcbi.1008407.ref065) 1990
P Friedl (pcbi.1008407.ref003) 2009; 10
P Friedl (pcbi.1008407.ref002) 2003; 3
P Friedl (pcbi.1008407.ref001) 1995; 55
A Volkening (pcbi.1008407.ref026) 2018; 9
Y Li (pcbi.1008407.ref045) 2017; 117
C Hofer (pcbi.1008407.ref060) 2017; 30
RR Sokal (pcbi.1008407.ref063) 1962; 11
R Alert (pcbi.1008407.ref040) 2020; 11
A Brugués (pcbi.1008407.ref018) 2014; 10
D Bi (pcbi.1008407.ref031) 2016; 6
R Vega (pcbi.1008407.ref049) 2020; 16
R Ghrist (pcbi.1008407.ref066) 2014
pcbi.1008407.ref054
O du Roure (pcbi.1008407.ref005) 2005; 102
JH Ward (pcbi.1008407.ref061) 1963; 58
M Boareto (pcbi.1008407.ref046) 2015; 112
J-Q Lv (pcbi.1008407.ref044) 2020; 104
P Rørth (pcbi.1008407.ref014) 2012; 13
L Petitjean (pcbi.1008407.ref043) 2011
AJ Bernoff (pcbi.1008407.ref017) 2013; 55
M Kerber (pcbi.1008407.ref052) 2017; 22
S Moitrier (pcbi.1008407.ref027) 2019; 15
C Malinverno (pcbi.1008407.ref032) 2017; 16
F Bocci (pcbi.1008407.ref047) 2017; 14
V Hakim (pcbi.1008407.ref025) 2017; 80
J-A Park (pcbi.1008407.ref020) 2015; 14
B Smeets (pcbi.1008407.ref023) 2016; 113
T Vicsek (pcbi.1008407.ref041) 1995; 75
DL Barton (pcbi.1008407.ref039) 2017; 13
H Edelsbrunner (pcbi.1008407.ref051) 2010
D Selmeczi (pcbi.1008407.ref056) 2005; 89
pcbi.1008407.ref067
LL Bonilla (pcbi.1008407.ref057) 2019; 99
C Topaz (pcbi.1008407.ref059) 2015; 10
pcbi.1008407.ref064
pcbi.1008407.ref062
MC Marchetti (pcbi.1008407.ref029) 2013; 85
G Carlsson (pcbi.1008407.ref050) 2009; 46
References_xml – volume: 104
  start-page: 15988
  year: 2007
  ident: pcbi.1008407.ref006
  article-title: Collective migration of an epithelial monolayer in response to a model wound
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0705062104
– volume: 16
  start-page: 587
  year: 2017
  ident: pcbi.1008407.ref032
  article-title: Endocytic reawakening of motility in jammed epithelia
  publication-title: Nature Materals
  doi: 10.1038/nmat4848
– volume-title: Computational Topology: An Introduction
  year: 2010
  ident: pcbi.1008407.ref051
– volume: 104
  start-page: 168104
  year: 2010
  ident: pcbi.1008407.ref011
  article-title: Cell migration driven by cooperative substrate deformation patterns
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.104.168104
– volume: 15
  start-page: 1528
  issue: 3
  year: 2016
  ident: pcbi.1008407.ref021
  article-title: Biological aggregation driven by social and environmental factors: A nonlocal model and its degenerate Cahn-Hilliard approximation
  publication-title: SIAM Journal of Applied Dynamical Systems
  doi: 10.1137/15M1031151
– volume: 10
  start-page: 445
  year: 2009
  ident: pcbi.1008407.ref003
  article-title: Collective cell migration in morphogenesis, regeneration and cancer
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm2720
– volume: 55
  start-page: 709
  issue: 4
  year: 2013
  ident: pcbi.1008407.ref017
  article-title: Nonlocal aggregation models: A primer of swarm equilibria
  publication-title: SIAM Review
  doi: 10.1137/130925669
– volume: 9
  start-page: e1002944
  year: 2013
  ident: pcbi.1008407.ref016
  article-title: Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1002944
– volume: 80
  start-page: 076601
  year: 2017
  ident: pcbi.1008407.ref025
  article-title: Collective cell migration: a physics perspective
  publication-title: Reports on Progress in Physics
  doi: 10.1088/1361-6633/aa65ef
– volume: 55
  start-page: 4557
  year: 1995
  ident: pcbi.1008407.ref001
  article-title: Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro
  publication-title: Cancer Research
– volume: 113
  start-page: 14621
  issue: 51
  year: 2016
  ident: pcbi.1008407.ref023
  article-title: Emergent structures and dynamics of cell colonies by contact inhibition of locomotion
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1521151113
– volume: 107
  start-page: 11715
  year: 2010
  ident: pcbi.1008407.ref009
  article-title: Arrested phase separation in reproducing bacteria creates a generic route to pattern formation
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1001994107
– volume: 21
  start-page: 638
  issue: 11
  year: 2011
  ident: pcbi.1008407.ref013
  article-title: Plithotaxis and emergent dynamics in collective cellular migration
  publication-title: Trends in Cell Biology
  doi: 10.1016/j.tcb.2011.06.006
– volume: 112
  start-page: E3836
  year: 2015
  ident: pcbi.1008407.ref046
  article-title: Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1511814112
– volume: 97
  start-page: 1811
  year: 2009
  ident: pcbi.1008407.ref037
  article-title: Stochastic collective movement of cells and fingering morphology: no maverick cells
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2009.05.064
– volume-title: Elementary Applied Topology
  year: 2014
  ident: pcbi.1008407.ref066
– volume: 46
  start-page: 255
  issue: 2
  year: 2009
  ident: pcbi.1008407.ref050
  article-title: Topology and data
  publication-title: American Mathematical Society Bulletin
  doi: 10.1090/S0273-0979-09-01249-X
– ident: pcbi.1008407.ref067
– volume: 108
  start-page: 4714
  year: 2011
  ident: pcbi.1008407.ref012
  article-title: Glass-like dynamics of collective cell migration
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1010059108
– volume: 16
  start-page: e1006919
  issue: 1
  year: 2020
  ident: pcbi.1008407.ref049
  article-title: Notch signaling and taxis mechanims regulate early stage angiogenesis: A mathematical and computational model
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1006919
– volume: 117
  start-page: 5113
  issue: 10
  year: 2020
  ident: pcbi.1008407.ref053
  article-title: Topological data analysis of zebrafish patterns
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1917763117
– volume: 1
  start-page: 28
  year: 2020
  ident: pcbi.1008407.ref028
  article-title: L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer
  publication-title: Nature Cancer
  doi: 10.1038/s43018-019-0006-x
– volume: 6
  start-page: 831
  year: 2014
  ident: pcbi.1008407.ref030
  article-title: Collective motion of cells: from experiments to models
  publication-title: Integrative Biology
  doi: 10.1039/C4IB00115J
– volume: 85
  start-page: 1143
  year: 2013
  ident: pcbi.1008407.ref029
  article-title: Hydrodynamics of soft active matter
  publication-title: Reviews of Modern Physics
  doi: 10.1103/RevModPhys.85.1143
– volume: 117
  start-page: 4376
  year: 2017
  ident: pcbi.1008407.ref045
  article-title: The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.6b00654
– volume: 9
  start-page: 29906
  issue: 52
  year: 2018
  ident: pcbi.1008407.ref048
  article-title: A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.25692
– volume: 8
  start-page: 628
  year: 2012
  ident: pcbi.1008407.ref015
  article-title: Mechanical waves during tissue expansion
  publication-title: Nature Physics
  doi: 10.1038/nphys2355
– volume: 6
  start-page: 7683
  year: 2015
  ident: pcbi.1008407.ref019
  article-title: Gap geometry dictates epithelial closure efficiency
  publication-title: Nature Communications
  doi: 10.1038/ncomms8683
– volume: 26
  start-page: 3220
  year: 2016
  ident: pcbi.1008407.ref022
  article-title: EphA2 drives the segregation of Ras-transformed epithelial cells from normal neighbors
  publication-title: Current Biology
  doi: 10.1016/j.cub.2016.09.037
– volume: 9
  start-page: 3231
  year: 2018
  ident: pcbi.1008407.ref026
  article-title: Iridophores as a source of robustness in zebrafish stripes and variability in Danio patterns
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-05629-z
– volume: 99
  start-page: 012612
  year: 2019
  ident: pcbi.1008407.ref057
  article-title: Contrarian compulsions produce exotic time-dependent flocking of active particles
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.99.012612
– volume: 14
  start-page: 20170512
  year: 2017
  ident: pcbi.1008407.ref047
  article-title: Numb prevents a complete epithelial-mesenchymal transition by modulating Notch signalling
  publication-title: Journal of the Royal Society Interface
  doi: 10.1098/rsif.2017.0512
– volume: 15
  start-page: 537
  year: 2019
  ident: pcbi.1008407.ref027
  article-title: Collective stresses drive competition between monolayers of normal and Ras-transformed cells
  publication-title: Soft Matter
  doi: 10.1039/C8SM01523F
– volume: 104
  start-page: 109763
  year: 2020
  ident: pcbi.1008407.ref044
  article-title: Mechanical adaptions of collective cells nearby free tissue boundaries
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2020.109763
– volume: 22
  start-page: 1.4
  issue: 1
  year: 2017
  ident: pcbi.1008407.ref052
  article-title: Geometry helps to compare persistence diagrams
  publication-title: ACM Journal of Experimental Algorithmics
– volume: 75
  start-page: 1226
  year: 1995
  ident: pcbi.1008407.ref041
  article-title: Novel type of phase transition in a system of self-driven particles
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.75.1226
– volume: 14
  start-page: 1040
  year: 2015
  ident: pcbi.1008407.ref020
  article-title: Unjamming and cell shape in the asthmatic airway epithelium
  publication-title: Nature Materials
  doi: 10.1038/nmat4357
– ident: pcbi.1008407.ref062
– volume: 10
  start-page: 683
  year: 2014
  ident: pcbi.1008407.ref018
  article-title: Forces driving epithelial wound healing
  publication-title: Nature Physics
  doi: 10.1038/nphys3040
– volume: 25
  start-page: 407
  year: 2009
  ident: pcbi.1008407.ref008
  article-title: Collective cell migration
  publication-title: Annual Review of Cell and Developmental Biology
  doi: 10.1146/annurev.cellbio.042308.113231
– volume: 18
  start-page: 1252
  year: 2019
  ident: pcbi.1008407.ref035
  article-title: Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma
  publication-title: Nature Materials
  doi: 10.1038/s41563-019-0425-1
– volume: 30
  year: 2017
  ident: pcbi.1008407.ref060
  article-title: Deep learning with topological signatures
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 33
  year: 1962
  ident: pcbi.1008407.ref063
  publication-title: The comparison of dendrograms by objective methods, Taxon
– volume: 122
  start-page: 088104
  year: 2019
  ident: pcbi.1008407.ref038
  article-title: Active Fingering instability in tissue spreading
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.122.088104
– volume: 58
  start-page: 236
  issue: 301
  year: 1963
  ident: pcbi.1008407.ref061
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1963.10500845
– year: 2011
  ident: pcbi.1008407.ref043
  article-title: Réponse active d’un épithélium à une stimulation mécanique
  publication-title: PhD Thesis, University Paris VI—Pierre et Marie Curie
– volume: 5
  start-page: 426
  year: 2009
  ident: pcbi.1008407.ref007
  article-title: Physical forces during collective cell migration
  publication-title: Nature Physics
  doi: 10.1038/nphys1269
– volume: 98
  start-page: 1790
  year: 2010
  ident: pcbi.1008407.ref010
  article-title: Velocity fields in a collectively migrating epithelium
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2010.01.030
– volume: 89
  start-page: 912
  year: 2005
  ident: pcbi.1008407.ref056
  article-title: Cell motility as persistent random motion: Theories from experiments
  publication-title: Biophysical Journal
  doi: 10.1529/biophysj.105.061150
– volume: 84
  start-page: 575
  issue: 3
  year: 1980
  ident: pcbi.1008407.ref055
  article-title: How much does the cell boundary contract in a monolayered cell sheet?
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/S0022-5193(80)80021-X
– volume: 33
  start-page: 249
  year: 2002
  ident: pcbi.1008407.ref058
  article-title: Computing persistent homology
  publication-title: Discrete and Computational Geometry
  doi: 10.1007/s00454-004-1146-y
– volume: 6
  start-page: 021011
  year: 2016
  ident: pcbi.1008407.ref031
  article-title: Motility-driven glass and jamming transitions in biological tissues
  publication-title: Physical Review X
  doi: 10.1103/PhysRevX.6.021011
– volume: 102
  start-page: 2390
  year: 2005
  ident: pcbi.1008407.ref005
  article-title: Force mapping in epithelial cell migration
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0408482102
– volume: 10
  start-page: e0126383
  issue: 5
  year: 2015
  ident: pcbi.1008407.ref059
  article-title: Topological data analysis of biological aggregation Models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126383
– ident: pcbi.1008407.ref054
– volume: 14
  start-page: 3471
  year: 2018
  ident: pcbi.1008407.ref034
  article-title: Flocking transition in confluent tissues
  publication-title: Soft Matter
  doi: 10.1039/C8SM00126J
– volume: 122
  start-page: 3215
  issue: 18
  year: 2009
  ident: pcbi.1008407.ref004
  article-title: Collective cell migration in development
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.036517
– volume: 50
  start-page: 384003
  year: 2017
  ident: pcbi.1008407.ref033
  article-title: Giant fluctuations and structural effects in a flocking epithelium
  publication-title: Journal of Physics D: Applied Physics
  doi: 10.1088/1361-6463/aa7f8e
– volume: 11
  start-page: 77
  year: 2020
  ident: pcbi.1008407.ref040
  article-title: Physical Models of Collective Cell Migration
  publication-title: Annual Review of Condensed Matter Physics
  doi: 10.1146/annurev-conmatphys-031218-013516
– volume-title: Finding groups in data: An introduction to cluster analysis
  year: 1990
  ident: pcbi.1008407.ref065
  doi: 10.1002/9780470316801
– volume: 13
  start-page: e1005569
  year: 2017
  ident: pcbi.1008407.ref039
  article-title: Active vertex model for cell-resolution description of epithelial tissue mechanics
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1005569
– volume: 3
  start-page: 362
  year: 2003
  ident: pcbi.1008407.ref002
  article-title: Tumour-cell invasion and migration: diversity and escape mechanisms
  publication-title: Nature Cancer
  doi: 10.1038/nrc1075
– volume: 16
  start-page: 1029
  year: 2017
  ident: pcbi.1008407.ref036
  article-title: Long-lived force patterns and deformation waves at repulsive epithelial boundaries
  publication-title: Nature Materials
  doi: 10.1038/nmat4972
– volume: 517
  start-page: 71
  year: 2012
  ident: pcbi.1008407.ref042
  article-title: Collective motion
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2012.03.004
– volume: 13
  start-page: 984
  year: 2012
  ident: pcbi.1008407.ref014
  article-title: Fellow travellers: emergent properties of collective cell migration
  publication-title: EMBO Reports
  doi: 10.1038/embor.2012.149
– volume: 14
  start-page: 20170338
  year: 2017
  ident: pcbi.1008407.ref024
  article-title: Cell segregation and border sharpening by Eph receptor-ephrin-mediated heterotypic repulsion
  publication-title: Journal of the Royal Society Interface
  doi: 10.1098/rsif.2017.0338
– ident: pcbi.1008407.ref064
SSID ssj0035896
Score 2.4644194
Snippet By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space...
Introduction Confluent motion of epithelial cell monolayers [1–28] is crucial in many biological processes, such as morphogenesis [3, 26], biological pattern...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1008407
SubjectTerms Aggregates
Biological activity
Biology and Life Sciences
Cancer
Cell adhesion & migration
Cell migration
Cell Movement
Cells
Colorectal cancer
Colorectal carcinoma
Data Analysis
Earth Sciences
Electronic data processing
Epithelial cells
Experiments
Humans
Interfaces
Mathematical models
Medicine and Health Sciences
Metastases
Metastasis
Methods
Microscopy
Model testing
Models, Biological
Monolayers
Morphogenesis
Motility
Order parameters
Pattern formation
Physical Sciences
Simulation
Swarming
Tissues
Tumors
Velocity
Velocity distribution
Wound Healing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG5kQfAixlc2RhlF8DSmXzM9A16iGKJgDmpgb00_NRBmF3f3kH-fqu7eISORXLxOVw_0VzVdVT3VXxHyllreQdwKmWq0ppbON7WJitUxRB-9oc6lo4tvZ-3pufy6aBY3Wn1hTVimB87AHZnAWAzMS0-lbGIH_jKGvrfW9VKFdL2cg8_bJVN5DxZNlzpzYVOcWgm5KJfmhGJHRUfvV85eYI0AZDhq4pQSd_-4Q89Wl8v1beHn31WUN9zSySPysMST1XFexx65F4bH5H7uMHn1hHwAX-TwNLxChefNrcLD-iq376nsVbXJfRJQWxUWjFamEJU8Jecnn39-Oq1Lw4TaQRiyqV3ne29cBzh550SH9HxMOAjiomxpbERDTdPRpgnMMUVtpELGKK2NoC-ugnhGZsNyCPukom1vuWXe9yLKzqgegIJ3R06NDa2ScyJ2iGlX2MSxqcWlTr_IFGQVGQCNOOuC85zU46xVZtO4Q_4jKmOURS7s9AAsRBcL0XdZyJy8QVVqZLsYsJzml9mu1_rLjzN9jPEp5Ii0_afQ94nQuyIUl7BYZ8oVBoAMWbQmkocTSfhm3WR4H81qt-a15pnoH3JHmLkztduHX4_D-FIskRvCcptkICJBvv45eZ4tc8RNCIhTOAWtqYnNToCdjgwXvxPZuEoND-TB_9DEC_KA43EF4zUXh2S2-bMNLyGm29hX6fO9BlDnSRU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_0iuCL-N2rVaIIPsXuZnezCQjSSksVPKRauLewn22hJGdz99D_vjPJJhqp-pqdhOzM7OxvJ5PfEPKWmqwA3Aon1WB0KqyTqQ6KpcEHF5ym1napi6-L_PhUfFnKZUy4tbGscoiJXaB2jcUc-V7WU6EDuv64-pli1yj8uhpbaNwlWxCCCzkjWweHi28nQyzmsug6dGFznFRxsYw_z3HF9qKt3q-sucBaATjpqMnm1HH4j5F6trps2ttg6J_VlL9tT0cPyYOIK5P93hEekTu-fkzu9Z0mr5-QD7AnWcyKJ2j4PsglmLRP-jY-iblO1n2_BLRagoWjiY6EJU_J6dHhj0_HaWyckFqAI-vUFq502hZCBmctL5Cmj3ELYC6InAbJJdWyoFJ6ZpmiJlAuQhDGBLBbpjx_RmZ1U_ttktC8NJlhzpU8iEKrEhQFzw4Z1cbnSswJHzRW2cgqjs0tLqvuU5mC00WvgAr1XEU9z0k63rXqWTX-I3-AxhhlkRO7u9BcnVVxiVXaMxY8c8JRATMvAFkFX5bG2FIoz-ScvEFTVsh6UWNZzZnetG31-fui2kecCmdFmv9V6GQi9C4KhQYma3X8lQFUhmxaE8ndiSSsXTsZ3ka3GubcVr-8HO4cXO324dfjMD4US-Vq32w6GUAmyNs_J897zxz1xjnglYyC1dTEZyeKnY7UF-cd6bjqGh-InX-_1gtyP8OEBMvSjO-S2fpq418CalubV3Fp3gB55UF6
  priority: 102
  providerName: ProQuest
Title Tracking collective cell motion by topological data analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/33362204
https://www.proquest.com/docview/2479466753
https://www.proquest.com/docview/2473411275
https://pubmed.ncbi.nlm.nih.gov/PMC7757824
https://doaj.org/article/ae11fe1d4d0445f8846fe99bbc947e15
http://dx.doi.org/10.1371/journal.pcbi.1008407
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBdtykZfxj7bbF3wxmBPLpIlWzZsjGRr1g0aRrdA3owkS10hOFk-YPnvd2fLZh4Ne7HBOgl0Okl3J_n3I-QN1VEKfitEqk6rUJgiDpWTLHTWFa5Q1JgqdXE1SS6n4ussnh2QhrPVK3B9Z2iHfFLT1fz896_dB5jw7yvWBsmaSudLo2_x1B9iFnlIjmBvStDOr0R7rsDjNEv8D3T7ah6T-5zDsh557rZmr6og_duFu7ecL9Z3eaX_Xq78a7caPyQPvJsZDGu7eEQObPmY3KuJJ3dPyDvYogwmyQO0g3rNCzCHH9SsPoHeBZuaPgEHMcB7pIHy-CVPyXR88ePjZeh5FEID3skmNGmRFcqkInaFMTxF1D7GDfh2TiTUxTymKk5pHFtmmKTaUS6cE1o7GMZIWv6M9MpFaU9JQJNMR5oVRcadSJXMQGfQtouo0jaRok94o7HceJBx5LqY59XJmYRgo1ZAjirPvcr7JGxrLWuQjf_Ij3AwWlmEyK4-LFY3uZ9xubKMOcsKUVABPU_B0XI2y7Q2mZCWxX3yGocyRxCMEm_Z3Kjtep1_-T7Jh-i2QuhIk71C1x2ht17ILaCzRvk_G0BlCK7VkTzrSMJUNp3iUzSrps_rPKrx_yGkhJqNqd1d_Kotxkbx5lxpF9tKBhwVhPHvk5PaMlu9NXbeJ7Jjsx3FdkvK258VBrmseBDE871tviDHEaYmWBRG_Iz0NqutfQn-20YPyKGcSXim488DcjQcfRqN4T26mHy7HlQ5kUE1af8A0JVJUQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEIIL4t1AgQWBOG1rr73xrgRC5RES2uYArZSb8bNUqnZDkwjlT_EbmdlHYFGBU6_xrBWPxzNje_x9hDyjJskgb4WdajA6FtalsQ6SxcEHF5ym1lZHFweTwehIfJym0w3yo30Lg2WVrU-sHLUrLZ6R7yQ1FDpk169n32JkjcLb1ZZCozaLPb_6Dlu2-avxO5jf50kyfH_4dhQ3rAKxhVi9iG3mcqdtJtLgrOUZYtgxbiHTCWJAQ8pTqtOMpqlnlklqAuUiBGFMgEEl0nPo9xK5LDjPEas_G35oPT9Ps4oPDKl4YsnFtHmqxyXbaSxje2bNCVYmwL5KdkJhxRiwjgu92Wk5Py_p_bN287dgOLxBrjdZbLRbm91NsuGLW-RKzWu5uk1eQgS0eAYfoZnVLjXCK4KoJg2KzCpa1OwMaCMRlqlGuoFHuUOOLkShd0mvKAu_SSI6yE1imHM5DyLTMgdFQd8hodr4gRR9wluNKdtgmCOVxqmqLuYk7GVqBSjUs2r03Cfx-qtZjeHxH_k3OBlrWUTgrn4oz45Vs6CV9owFz5xwVMDIM8jjgs9zY2wupGdpnzzFqVSIsVFgEc-xXs7navx5onYxK4adKR38VehTR-hFIxRKGKzVzcMJUBlid3UktzqS4Clsp3kTzaod81z9WlPwZWtq5zc_WTdjp1iYV_hyWclAHoQsAX1yr7bMtd44h-wooTBrsmOzHcV2W4qTrxXEuaxoFsT9f_-tx-Tq6PBgX-2PJ3sPyLUEj0JYEid8i_QWZ0v_EPLFhXlULdKIfLlor_ATNJ58WA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviO8VBgQE4inUiZ06kUBoY5tWBtU0mNQ3488xaUrK2gr1X-Ov4y5xCkEDnvZaX6z6fL772T7fj5DnVKc54FbYqXqtYm5sFisvktg7b71V1Jj66OLjeLh_zN9Psska-dG-hcG0ytYn1o7aVgbPyAdpUwod0PXAh7SIw529t9NvMTJI4U1rS6fRmMiBW36H7dvszWgH5vpFmu7tfn63HweGgdhA3J7HJreFVSbnmbfGsBzr2SXMAOrxfEh9xjKqspxmmUtMIqj2lHHvudYeBpgKx6DfK2RdQFTMe2R9e3d8eNTGAZblNTsYEvPEgvFJeLjHRDIIdvJqavQp5inALkt0AmPNH7CKEr3pWTW7CAL_mcn5W2jcu0luBEwbbTVGeIusufI2udqwXC7vkNcQDw2eyEdodI2DjfDCIGoohCK9jOYNVwNaTIRJq5EKxVLukuNLUek90iur0m2QiA4LnerE2oJ5nitRgKKgb59Spd1Q8D5hrcakCRXNkVjjTNbXdAJ2No0CJOpZBj33Sbz6atpU9PiP_DZOxkoW63HXP1TnJzIsb6lckniXWG4ph5HngOq8KwqtTcGFS7I-eYZTKbHiRom2e6IWs5kcfRrLLcTIsE-lw78KHXWEXgYhX8FgjQrPKEBlWMmrI7nZkQS_YTrNG2hW7Zhn8tcKgy9bU7u4-emqGTvFNL3SVYtaBlARcgb0yf3GMld6YwywUkph1kTHZjuK7baUp1_rgueiJl3gD_79t56Qa-AR5IfR-OAhuZ7iuUiSxinbJL35-cI9AvA414_DKo3Il8t2DD8Bk9eB8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+collective+cell+motion+by+topological+data+analysis&rft.jtitle=PLoS+computational+biology&rft.au=Bonilla%2C+Luis+L&rft.au=Carpio%2C+Ana&rft.au=Trenado%2C+Carolina&rft.date=2020-12-23&rft.eissn=1553-7358&rft.volume=16&rft.issue=12&rft.spage=e1008407&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008407&rft_id=info%3Apmid%2F33362204&rft.externalDocID=33362204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon