Tracking collective cell motion by topological data analysis
By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active f...
Saved in:
Published in | PLoS computational biology Vol. 16; no. 12; p. e1008407 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
23.12.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1008407 |
Cover
Loading…
Abstract | By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration. |
---|---|
AbstractList | By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration. Introduction Confluent motion of epithelial cell monolayers [1–28] is crucial in many biological processes, such as morphogenesis [3, 26], biological pattern formation [9, 23], biological aggregation and swarming [17, 21], tissue repair [6, 18, 19], development [4], and tumor invasion and metastasis [1–3, 28]. In agreement with experiments in the literature, simulations of spreading test with our model exhibit formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time, all of which has been observed in experiments [10, 11, 16, 37, 38, 43]. Recent experiments have connected metastasis in colorectal cancer to wound healing and tumor invasion of tissue using appropriate molecular markers [28]. [...]our description of spreading of cellular tissue and antagonistic migration assays using our modified active vertex model might be relevant for metastatic cancer. The numerical values of the parameters are calibrated so as to reproduce experimental observations of collective cell migration in two different cases: an aggregate spreading to an empty space and the collision of two different cellular monolayers in antagonistic migration assays. By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration.By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration. Introduction Confluent motion of epithelial cell monolayers [1–28] is crucial in many biological processes, such as morphogenesis [3, 26], biological pattern formation [9, 23], biological aggregation and swarming [17, 21], tissue repair [6, 18, 19], development [4], and tumor invasion and metastasis [1–3, 28]. In agreement with experiments in the literature, simulations of spreading test with our model exhibit formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time, all of which has been observed in experiments [10, 11, 16, 37, 38, 43]. Recent experiments have connected metastasis in colorectal cancer to wound healing and tumor invasion of tissue using appropriate molecular markers [28]. [...]our description of spreading of cellular tissue and antagonistic migration assays using our modified active vertex model might be relevant for metastatic cancer. The numerical values of the parameters are calibrated so as to reproduce experimental observations of collective cell migration in two different cases: an aggregate spreading to an empty space and the collision of two different cellular monolayers in antagonistic migration assays. By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration. Confluent motion of cells in tissues plays a crucial role in wound healing, tissue repair, development, morphogenesis and in numerous pathological processes such as tumor invasion and metastatic cancer. For such complex processes, controlled experiments help clarifying the roles of chemical, mechanical and biological cues. Among them, spreading of cellular tissues on an empty space and antagonistic migration assays between cancerous and normal cells are quite revealing. The interfaces between confluent cellular aggregates uncover properties thereof when a combination of modeling, numerical simulation and data analysis is used. Here we have modified an active vertex model with a dynamics that includes inertia, friction and active forces that tend to align cells based on interaction with its immediate neighborhood. Selecting appropriately junction tensions among cells and using the SAMoS software, we have succeed in simulating assays of cellular tissue spreading on an empty space and the invasion of healthy tissue by cancerous one. We have introduced topological data analysis to characterize, track and compare in an automatic manner the interfaces of the tissue both in numerical simulations and from experimental data of normal and Ras modified precancerous Human Embryonic Kidney cells. We find good agreement when normal cells are solidlike and modified cells are liquidlike according to their shape parameters. In addition, cell variability means that a fraction of randomly distributed cells favor mixing, the others segregation. Topological data analysis techniques are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant in ascertaining how the biophysical features of materials may affect tissue and organ regeneration. |
Audience | Academic |
Author | Carpio, Ana Bonilla, Luis L. Trenado, Carolina |
AuthorAffiliation | 3 Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain Oxford, UNITED KINGDOM 1 G. Millán Institute for Fluid Dynamics, Nanoscience & Industrial Mathematics, and Department of Mathematics, Universidad Carlos III de Madrid, Leganés, Spain 2 Courant Institute of Mathematical Sciences, New York University, New York, United States of America |
AuthorAffiliation_xml | – name: 2 Courant Institute of Mathematical Sciences, New York University, New York, United States of America – name: 1 G. Millán Institute for Fluid Dynamics, Nanoscience & Industrial Mathematics, and Department of Mathematics, Universidad Carlos III de Madrid, Leganés, Spain – name: 3 Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain – name: Oxford, UNITED KINGDOM |
Author_xml | – sequence: 1 givenname: Luis L. orcidid: 0000-0002-7687-8595 surname: Bonilla fullname: Bonilla, Luis L. – sequence: 2 givenname: Ana orcidid: 0000-0001-8623-6521 surname: Carpio fullname: Carpio, Ana – sequence: 3 givenname: Carolina orcidid: 0000-0002-7639-2181 surname: Trenado fullname: Trenado, Carolina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33362204$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkluL1DAcxYOsuBf9BqIFX_RhxqRJmlREWBYvA4uCrs8hTZOaMdOMSbo43950pyPbZRGkDw3J75z_hXMKjnrfawCeIrhEmKHXaz-EXrrlVjV2iSDkBLIH4ARRihcMU35063wMTmNcQ5iPdfUIHGOMq7KE5AS8vQpS_bR9VyjvnFbJXutCaeeKjU_W90WzK5Lfeuc7q6QrWplkIXPdXbTxMXhopIv6yfQ_A98_vL-6-LS4_PJxdXF-uVCsZGmheFu3UnFCTasU5rmNGmGF6tKQChqKKZSUQ0o1UojBxkBMjCFNYzhCJdP4DDzf-26dj2IaPIqSsJpUFaM4E6s90Xq5FttgNzLshJdW3Fz40AkZklVOC6kRMhq1pIUkd8Q5qYyu66ZRNWEa0ez1bqo2NBvdKt2nIN3MdP7S2x-i89eCMcp4SbLBy8kg-F-DjklsbBx3Knvth5u-MRknG2u9uIPeP91EdTIPYHvjc101morzikKOSA2rTC3vofLX6o1VOTzG5vuZ4NVMkJmkf6dODjGK1bev_8F-nrPPbi_w7-YOqcvAmz2ggo8xaCOUTXKMW-7YOoGgGCN-2IUYIy6miGcxuSM--P9T9ger3_7w |
CitedBy_id | crossref_primary_10_1016_j_jtbi_2021_110903 crossref_primary_10_1038_s41598_024_69426_z crossref_primary_10_1016_j_jmaa_2024_128338 crossref_primary_10_1063_5_0126848 crossref_primary_10_1007_s11538_023_01214_8 crossref_primary_10_1016_j_compchemeng_2025_109052 crossref_primary_10_1103_PhysRevE_108_054407 crossref_primary_10_1371_journal_pone_0257215 crossref_primary_10_51847_lnpeqvTvFD crossref_primary_10_1016_j_jtbi_2023_111560 crossref_primary_10_3934_mbe_2023143 crossref_primary_10_1137_22M1543082 crossref_primary_10_1103_PhysRevE_108_044118 crossref_primary_10_3390_biomedicines9020224 crossref_primary_10_1039_D1SM00626F |
Cites_doi | 10.1073/pnas.0705062104 10.1038/nmat4848 10.1103/PhysRevLett.104.168104 10.1137/15M1031151 10.1038/nrm2720 10.1137/130925669 10.1371/journal.pcbi.1002944 10.1088/1361-6633/aa65ef 10.1073/pnas.1521151113 10.1073/pnas.1001994107 10.1016/j.tcb.2011.06.006 10.1073/pnas.1511814112 10.1016/j.bpj.2009.05.064 10.1090/S0273-0979-09-01249-X 10.1073/pnas.1010059108 10.1371/journal.pcbi.1006919 10.1073/pnas.1917763117 10.1038/s43018-019-0006-x 10.1039/C4IB00115J 10.1103/RevModPhys.85.1143 10.1021/acs.chemrev.6b00654 10.18632/oncotarget.25692 10.1038/nphys2355 10.1038/ncomms8683 10.1016/j.cub.2016.09.037 10.1038/s41467-018-05629-z 10.1103/PhysRevE.99.012612 10.1098/rsif.2017.0512 10.1039/C8SM01523F 10.1016/j.jbiomech.2020.109763 10.1103/PhysRevLett.75.1226 10.1038/nmat4357 10.1038/nphys3040 10.1146/annurev.cellbio.042308.113231 10.1038/s41563-019-0425-1 10.1103/PhysRevLett.122.088104 10.1080/01621459.1963.10500845 10.1038/nphys1269 10.1016/j.bpj.2010.01.030 10.1529/biophysj.105.061150 10.1016/S0022-5193(80)80021-X 10.1007/s00454-004-1146-y 10.1103/PhysRevX.6.021011 10.1073/pnas.0408482102 10.1371/journal.pone.0126383 10.1039/C8SM00126J 10.1242/jcs.036517 10.1088/1361-6463/aa7f8e 10.1146/annurev-conmatphys-031218-013516 10.1002/9780470316801 10.1371/journal.pcbi.1005569 10.1038/nrc1075 10.1038/nmat4972 10.1016/j.physrep.2012.03.004 10.1038/embor.2012.149 10.1098/rsif.2017.0338 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Bonilla et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Bonilla et al 2020 Bonilla et al |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Bonilla et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Bonilla et al 2020 Bonilla et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1008407 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Tracking collective cell motion by topological data analysis |
EISSN | 1553-7358 |
ExternalDocumentID | 2479466753 oai_doaj_org_article_ae11fe1d4d0445f8846fe99bbc947e15 PMC7757824 A650814906 33362204 10_1371_journal_pcbi_1008407 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: MTM2017-84446-C2-2-R – fundername: ; grantid: MTM2017-84446-C2-1-R |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ PMFND 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM PUEGO - AAPBV ABPTK ADACO BBAFP M~E |
ID | FETCH-LOGICAL-c727t-c8d9dac845fdcc38035913c192f460f5350a58055e1c170bf034ff4bbf81127e3 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:12:22 EST 2021 Wed Aug 27 01:31:10 EDT 2025 Thu Aug 21 14:10:39 EDT 2025 Fri Jul 11 07:50:10 EDT 2025 Fri Jul 25 12:08:41 EDT 2025 Tue Jun 17 21:00:37 EDT 2025 Tue Jun 10 20:46:39 EDT 2025 Fri Jun 27 04:03:44 EDT 2025 Fri Jun 27 04:11:20 EDT 2025 Thu Apr 03 07:04:46 EDT 2025 Tue Jul 01 04:04:50 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c727t-c8d9dac845fdcc38035913c192f460f5350a58055e1c170bf034ff4bbf81127e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 I have read the journal’s policy and the authors of this manuscript have no competing interests. |
ORCID | 0000-0002-7639-2181 0000-0001-8623-6521 0000-0002-7687-8595 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1008407 |
PMID | 33362204 |
PQID | 2479466753 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2479466753 doaj_primary_oai_doaj_org_article_ae11fe1d4d0445f8846fe99bbc947e15 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7757824 proquest_miscellaneous_2473411275 proquest_journals_2479466753 gale_infotracmisc_A650814906 gale_infotracacademiconefile_A650814906 gale_incontextgauss_ISR_A650814906 gale_incontextgauss_ISN_A650814906 pubmed_primary_33362204 crossref_citationtrail_10_1371_journal_pcbi_1008407 crossref_primary_10_1371_journal_pcbi_1008407 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-23 |
PublicationDateYYYYMMDD | 2020-12-23 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | CJ Weijer (pcbi.1008407.ref004) 2009; 122 HB Taylor (pcbi.1008407.ref024) 2017; 14 M Poujade (pcbi.1008407.ref006) 2007; 104 GY Ouaknin (pcbi.1008407.ref037) 2009; 97 MR McGuirl (pcbi.1008407.ref053) 2020; 117 P Rodríguez-Franco (pcbi.1008407.ref036) 2017; 16 R Alert (pcbi.1008407.ref038) 2019; 122 ME Cates (pcbi.1008407.ref009) 2010; 107 S Porazinski (pcbi.1008407.ref022) 2016; 26 K Ganesh (pcbi.1008407.ref028) 2020; 1 E Méhes (pcbi.1008407.ref030) 2014; 6 X Serra-Picamal (pcbi.1008407.ref015) 2012; 8 P Rørth (pcbi.1008407.ref008) 2009; 25 T Vicsek (pcbi.1008407.ref042) 2012; 517 A Zomorodian (pcbi.1008407.ref058) 2002; 33 A Palamidessi (pcbi.1008407.ref035) 2019; 18 N Sepúlveda (pcbi.1008407.ref016) 2013; 9 H Honda (pcbi.1008407.ref055) 1980; 84 X Trepat (pcbi.1008407.ref007) 2009; 5 T Angelini (pcbi.1008407.ref012) 2011; 108 F Giavazzi (pcbi.1008407.ref034) 2018; 14 X Trepat (pcbi.1008407.ref013) 2011; 21 L Petitjean (pcbi.1008407.ref010) 2010; 98 T Angelini (pcbi.1008407.ref011) 2010; 104 F Bocci (pcbi.1008407.ref048) 2018; 9 A Ravasio (pcbi.1008407.ref019) 2015; 6 Giavazzi (pcbi.1008407.ref033) 2017; 50 AJ Bernoff (pcbi.1008407.ref021) 2016; 15 L Kaufman (pcbi.1008407.ref065) 1990 P Friedl (pcbi.1008407.ref003) 2009; 10 P Friedl (pcbi.1008407.ref002) 2003; 3 P Friedl (pcbi.1008407.ref001) 1995; 55 A Volkening (pcbi.1008407.ref026) 2018; 9 Y Li (pcbi.1008407.ref045) 2017; 117 C Hofer (pcbi.1008407.ref060) 2017; 30 RR Sokal (pcbi.1008407.ref063) 1962; 11 R Alert (pcbi.1008407.ref040) 2020; 11 A Brugués (pcbi.1008407.ref018) 2014; 10 D Bi (pcbi.1008407.ref031) 2016; 6 R Vega (pcbi.1008407.ref049) 2020; 16 R Ghrist (pcbi.1008407.ref066) 2014 pcbi.1008407.ref054 O du Roure (pcbi.1008407.ref005) 2005; 102 JH Ward (pcbi.1008407.ref061) 1963; 58 M Boareto (pcbi.1008407.ref046) 2015; 112 J-Q Lv (pcbi.1008407.ref044) 2020; 104 P Rørth (pcbi.1008407.ref014) 2012; 13 L Petitjean (pcbi.1008407.ref043) 2011 AJ Bernoff (pcbi.1008407.ref017) 2013; 55 M Kerber (pcbi.1008407.ref052) 2017; 22 S Moitrier (pcbi.1008407.ref027) 2019; 15 C Malinverno (pcbi.1008407.ref032) 2017; 16 F Bocci (pcbi.1008407.ref047) 2017; 14 V Hakim (pcbi.1008407.ref025) 2017; 80 J-A Park (pcbi.1008407.ref020) 2015; 14 B Smeets (pcbi.1008407.ref023) 2016; 113 T Vicsek (pcbi.1008407.ref041) 1995; 75 DL Barton (pcbi.1008407.ref039) 2017; 13 H Edelsbrunner (pcbi.1008407.ref051) 2010 D Selmeczi (pcbi.1008407.ref056) 2005; 89 pcbi.1008407.ref067 LL Bonilla (pcbi.1008407.ref057) 2019; 99 C Topaz (pcbi.1008407.ref059) 2015; 10 pcbi.1008407.ref064 pcbi.1008407.ref062 MC Marchetti (pcbi.1008407.ref029) 2013; 85 G Carlsson (pcbi.1008407.ref050) 2009; 46 |
References_xml | – volume: 104 start-page: 15988 year: 2007 ident: pcbi.1008407.ref006 article-title: Collective migration of an epithelial monolayer in response to a model wound publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0705062104 – volume: 16 start-page: 587 year: 2017 ident: pcbi.1008407.ref032 article-title: Endocytic reawakening of motility in jammed epithelia publication-title: Nature Materals doi: 10.1038/nmat4848 – volume-title: Computational Topology: An Introduction year: 2010 ident: pcbi.1008407.ref051 – volume: 104 start-page: 168104 year: 2010 ident: pcbi.1008407.ref011 article-title: Cell migration driven by cooperative substrate deformation patterns publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.104.168104 – volume: 15 start-page: 1528 issue: 3 year: 2016 ident: pcbi.1008407.ref021 article-title: Biological aggregation driven by social and environmental factors: A nonlocal model and its degenerate Cahn-Hilliard approximation publication-title: SIAM Journal of Applied Dynamical Systems doi: 10.1137/15M1031151 – volume: 10 start-page: 445 year: 2009 ident: pcbi.1008407.ref003 article-title: Collective cell migration in morphogenesis, regeneration and cancer publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm2720 – volume: 55 start-page: 709 issue: 4 year: 2013 ident: pcbi.1008407.ref017 article-title: Nonlocal aggregation models: A primer of swarm equilibria publication-title: SIAM Review doi: 10.1137/130925669 – volume: 9 start-page: e1002944 year: 2013 ident: pcbi.1008407.ref016 article-title: Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1002944 – volume: 80 start-page: 076601 year: 2017 ident: pcbi.1008407.ref025 article-title: Collective cell migration: a physics perspective publication-title: Reports on Progress in Physics doi: 10.1088/1361-6633/aa65ef – volume: 55 start-page: 4557 year: 1995 ident: pcbi.1008407.ref001 article-title: Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro publication-title: Cancer Research – volume: 113 start-page: 14621 issue: 51 year: 2016 ident: pcbi.1008407.ref023 article-title: Emergent structures and dynamics of cell colonies by contact inhibition of locomotion publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1521151113 – volume: 107 start-page: 11715 year: 2010 ident: pcbi.1008407.ref009 article-title: Arrested phase separation in reproducing bacteria creates a generic route to pattern formation publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1001994107 – volume: 21 start-page: 638 issue: 11 year: 2011 ident: pcbi.1008407.ref013 article-title: Plithotaxis and emergent dynamics in collective cellular migration publication-title: Trends in Cell Biology doi: 10.1016/j.tcb.2011.06.006 – volume: 112 start-page: E3836 year: 2015 ident: pcbi.1008407.ref046 article-title: Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1511814112 – volume: 97 start-page: 1811 year: 2009 ident: pcbi.1008407.ref037 article-title: Stochastic collective movement of cells and fingering morphology: no maverick cells publication-title: Biophysical Journal doi: 10.1016/j.bpj.2009.05.064 – volume-title: Elementary Applied Topology year: 2014 ident: pcbi.1008407.ref066 – volume: 46 start-page: 255 issue: 2 year: 2009 ident: pcbi.1008407.ref050 article-title: Topology and data publication-title: American Mathematical Society Bulletin doi: 10.1090/S0273-0979-09-01249-X – ident: pcbi.1008407.ref067 – volume: 108 start-page: 4714 year: 2011 ident: pcbi.1008407.ref012 article-title: Glass-like dynamics of collective cell migration publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1010059108 – volume: 16 start-page: e1006919 issue: 1 year: 2020 ident: pcbi.1008407.ref049 article-title: Notch signaling and taxis mechanims regulate early stage angiogenesis: A mathematical and computational model publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1006919 – volume: 117 start-page: 5113 issue: 10 year: 2020 ident: pcbi.1008407.ref053 article-title: Topological data analysis of zebrafish patterns publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1917763117 – volume: 1 start-page: 28 year: 2020 ident: pcbi.1008407.ref028 article-title: L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer publication-title: Nature Cancer doi: 10.1038/s43018-019-0006-x – volume: 6 start-page: 831 year: 2014 ident: pcbi.1008407.ref030 article-title: Collective motion of cells: from experiments to models publication-title: Integrative Biology doi: 10.1039/C4IB00115J – volume: 85 start-page: 1143 year: 2013 ident: pcbi.1008407.ref029 article-title: Hydrodynamics of soft active matter publication-title: Reviews of Modern Physics doi: 10.1103/RevModPhys.85.1143 – volume: 117 start-page: 4376 year: 2017 ident: pcbi.1008407.ref045 article-title: The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.6b00654 – volume: 9 start-page: 29906 issue: 52 year: 2018 ident: pcbi.1008407.ref048 article-title: A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling publication-title: Oncotarget doi: 10.18632/oncotarget.25692 – volume: 8 start-page: 628 year: 2012 ident: pcbi.1008407.ref015 article-title: Mechanical waves during tissue expansion publication-title: Nature Physics doi: 10.1038/nphys2355 – volume: 6 start-page: 7683 year: 2015 ident: pcbi.1008407.ref019 article-title: Gap geometry dictates epithelial closure efficiency publication-title: Nature Communications doi: 10.1038/ncomms8683 – volume: 26 start-page: 3220 year: 2016 ident: pcbi.1008407.ref022 article-title: EphA2 drives the segregation of Ras-transformed epithelial cells from normal neighbors publication-title: Current Biology doi: 10.1016/j.cub.2016.09.037 – volume: 9 start-page: 3231 year: 2018 ident: pcbi.1008407.ref026 article-title: Iridophores as a source of robustness in zebrafish stripes and variability in Danio patterns publication-title: Nature Communications doi: 10.1038/s41467-018-05629-z – volume: 99 start-page: 012612 year: 2019 ident: pcbi.1008407.ref057 article-title: Contrarian compulsions produce exotic time-dependent flocking of active particles publication-title: Physical Review E doi: 10.1103/PhysRevE.99.012612 – volume: 14 start-page: 20170512 year: 2017 ident: pcbi.1008407.ref047 article-title: Numb prevents a complete epithelial-mesenchymal transition by modulating Notch signalling publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2017.0512 – volume: 15 start-page: 537 year: 2019 ident: pcbi.1008407.ref027 article-title: Collective stresses drive competition between monolayers of normal and Ras-transformed cells publication-title: Soft Matter doi: 10.1039/C8SM01523F – volume: 104 start-page: 109763 year: 2020 ident: pcbi.1008407.ref044 article-title: Mechanical adaptions of collective cells nearby free tissue boundaries publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2020.109763 – volume: 22 start-page: 1.4 issue: 1 year: 2017 ident: pcbi.1008407.ref052 article-title: Geometry helps to compare persistence diagrams publication-title: ACM Journal of Experimental Algorithmics – volume: 75 start-page: 1226 year: 1995 ident: pcbi.1008407.ref041 article-title: Novel type of phase transition in a system of self-driven particles publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.75.1226 – volume: 14 start-page: 1040 year: 2015 ident: pcbi.1008407.ref020 article-title: Unjamming and cell shape in the asthmatic airway epithelium publication-title: Nature Materials doi: 10.1038/nmat4357 – ident: pcbi.1008407.ref062 – volume: 10 start-page: 683 year: 2014 ident: pcbi.1008407.ref018 article-title: Forces driving epithelial wound healing publication-title: Nature Physics doi: 10.1038/nphys3040 – volume: 25 start-page: 407 year: 2009 ident: pcbi.1008407.ref008 article-title: Collective cell migration publication-title: Annual Review of Cell and Developmental Biology doi: 10.1146/annurev.cellbio.042308.113231 – volume: 18 start-page: 1252 year: 2019 ident: pcbi.1008407.ref035 article-title: Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma publication-title: Nature Materials doi: 10.1038/s41563-019-0425-1 – volume: 30 year: 2017 ident: pcbi.1008407.ref060 article-title: Deep learning with topological signatures publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 33 year: 1962 ident: pcbi.1008407.ref063 publication-title: The comparison of dendrograms by objective methods, Taxon – volume: 122 start-page: 088104 year: 2019 ident: pcbi.1008407.ref038 article-title: Active Fingering instability in tissue spreading publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.122.088104 – volume: 58 start-page: 236 issue: 301 year: 1963 ident: pcbi.1008407.ref061 article-title: Hierarchical grouping to optimize an objective function publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1963.10500845 – year: 2011 ident: pcbi.1008407.ref043 article-title: Réponse active d’un épithélium à une stimulation mécanique publication-title: PhD Thesis, University Paris VI—Pierre et Marie Curie – volume: 5 start-page: 426 year: 2009 ident: pcbi.1008407.ref007 article-title: Physical forces during collective cell migration publication-title: Nature Physics doi: 10.1038/nphys1269 – volume: 98 start-page: 1790 year: 2010 ident: pcbi.1008407.ref010 article-title: Velocity fields in a collectively migrating epithelium publication-title: Biophysical Journal doi: 10.1016/j.bpj.2010.01.030 – volume: 89 start-page: 912 year: 2005 ident: pcbi.1008407.ref056 article-title: Cell motility as persistent random motion: Theories from experiments publication-title: Biophysical Journal doi: 10.1529/biophysj.105.061150 – volume: 84 start-page: 575 issue: 3 year: 1980 ident: pcbi.1008407.ref055 article-title: How much does the cell boundary contract in a monolayered cell sheet? publication-title: Journal of Theoretical Biology doi: 10.1016/S0022-5193(80)80021-X – volume: 33 start-page: 249 year: 2002 ident: pcbi.1008407.ref058 article-title: Computing persistent homology publication-title: Discrete and Computational Geometry doi: 10.1007/s00454-004-1146-y – volume: 6 start-page: 021011 year: 2016 ident: pcbi.1008407.ref031 article-title: Motility-driven glass and jamming transitions in biological tissues publication-title: Physical Review X doi: 10.1103/PhysRevX.6.021011 – volume: 102 start-page: 2390 year: 2005 ident: pcbi.1008407.ref005 article-title: Force mapping in epithelial cell migration publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0408482102 – volume: 10 start-page: e0126383 issue: 5 year: 2015 ident: pcbi.1008407.ref059 article-title: Topological data analysis of biological aggregation Models publication-title: PLoS ONE doi: 10.1371/journal.pone.0126383 – ident: pcbi.1008407.ref054 – volume: 14 start-page: 3471 year: 2018 ident: pcbi.1008407.ref034 article-title: Flocking transition in confluent tissues publication-title: Soft Matter doi: 10.1039/C8SM00126J – volume: 122 start-page: 3215 issue: 18 year: 2009 ident: pcbi.1008407.ref004 article-title: Collective cell migration in development publication-title: Journal of Cell Science doi: 10.1242/jcs.036517 – volume: 50 start-page: 384003 year: 2017 ident: pcbi.1008407.ref033 article-title: Giant fluctuations and structural effects in a flocking epithelium publication-title: Journal of Physics D: Applied Physics doi: 10.1088/1361-6463/aa7f8e – volume: 11 start-page: 77 year: 2020 ident: pcbi.1008407.ref040 article-title: Physical Models of Collective Cell Migration publication-title: Annual Review of Condensed Matter Physics doi: 10.1146/annurev-conmatphys-031218-013516 – volume-title: Finding groups in data: An introduction to cluster analysis year: 1990 ident: pcbi.1008407.ref065 doi: 10.1002/9780470316801 – volume: 13 start-page: e1005569 year: 2017 ident: pcbi.1008407.ref039 article-title: Active vertex model for cell-resolution description of epithelial tissue mechanics publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1005569 – volume: 3 start-page: 362 year: 2003 ident: pcbi.1008407.ref002 article-title: Tumour-cell invasion and migration: diversity and escape mechanisms publication-title: Nature Cancer doi: 10.1038/nrc1075 – volume: 16 start-page: 1029 year: 2017 ident: pcbi.1008407.ref036 article-title: Long-lived force patterns and deformation waves at repulsive epithelial boundaries publication-title: Nature Materials doi: 10.1038/nmat4972 – volume: 517 start-page: 71 year: 2012 ident: pcbi.1008407.ref042 article-title: Collective motion publication-title: Physics Reports doi: 10.1016/j.physrep.2012.03.004 – volume: 13 start-page: 984 year: 2012 ident: pcbi.1008407.ref014 article-title: Fellow travellers: emergent properties of collective cell migration publication-title: EMBO Reports doi: 10.1038/embor.2012.149 – volume: 14 start-page: 20170338 year: 2017 ident: pcbi.1008407.ref024 article-title: Cell segregation and border sharpening by Eph receptor-ephrin-mediated heterotypic repulsion publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2017.0338 – ident: pcbi.1008407.ref064 |
SSID | ssj0035896 |
Score | 2.4644194 |
Snippet | By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space... Introduction Confluent motion of epithelial cell monolayers [1–28] is crucial in many biological processes, such as morphogenesis [3, 26], biological pattern... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1008407 |
SubjectTerms | Aggregates Biological activity Biology and Life Sciences Cancer Cell adhesion & migration Cell migration Cell Movement Cells Colorectal cancer Colorectal carcinoma Data Analysis Earth Sciences Electronic data processing Epithelial cells Experiments Humans Interfaces Mathematical models Medicine and Health Sciences Metastases Metastasis Methods Microscopy Model testing Models, Biological Monolayers Morphogenesis Motility Order parameters Pattern formation Physical Sciences Simulation Swarming Tissues Tumors Velocity Velocity distribution Wound Healing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG5kQfAixlc2RhlF8DSmXzM9A16iGKJgDmpgb00_NRBmF3f3kH-fqu7eISORXLxOVw_0VzVdVT3VXxHyllreQdwKmWq0ppbON7WJitUxRB-9oc6lo4tvZ-3pufy6aBY3Wn1hTVimB87AHZnAWAzMS0-lbGIH_jKGvrfW9VKFdL2cg8_bJVN5DxZNlzpzYVOcWgm5KJfmhGJHRUfvV85eYI0AZDhq4pQSd_-4Q89Wl8v1beHn31WUN9zSySPysMST1XFexx65F4bH5H7uMHn1hHwAX-TwNLxChefNrcLD-iq376nsVbXJfRJQWxUWjFamEJU8Jecnn39-Oq1Lw4TaQRiyqV3ne29cBzh550SH9HxMOAjiomxpbERDTdPRpgnMMUVtpELGKK2NoC-ugnhGZsNyCPukom1vuWXe9yLKzqgegIJ3R06NDa2ScyJ2iGlX2MSxqcWlTr_IFGQVGQCNOOuC85zU46xVZtO4Q_4jKmOURS7s9AAsRBcL0XdZyJy8QVVqZLsYsJzml9mu1_rLjzN9jPEp5Ii0_afQ94nQuyIUl7BYZ8oVBoAMWbQmkocTSfhm3WR4H81qt-a15pnoH3JHmLkztduHX4_D-FIskRvCcptkICJBvv45eZ4tc8RNCIhTOAWtqYnNToCdjgwXvxPZuEoND-TB_9DEC_KA43EF4zUXh2S2-bMNLyGm29hX6fO9BlDnSRU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_0iuCL-N2rVaIIPsXuZnezCQjSSksVPKRauLewn22hJGdz99D_vjPJJhqp-pqdhOzM7OxvJ5PfEPKWmqwA3Aon1WB0KqyTqQ6KpcEHF5ym1napi6-L_PhUfFnKZUy4tbGscoiJXaB2jcUc-V7WU6EDuv64-pli1yj8uhpbaNwlWxCCCzkjWweHi28nQyzmsug6dGFznFRxsYw_z3HF9qKt3q-sucBaATjpqMnm1HH4j5F6trps2ttg6J_VlL9tT0cPyYOIK5P93hEekTu-fkzu9Z0mr5-QD7AnWcyKJ2j4PsglmLRP-jY-iblO1n2_BLRagoWjiY6EJU_J6dHhj0_HaWyckFqAI-vUFq502hZCBmctL5Cmj3ELYC6InAbJJdWyoFJ6ZpmiJlAuQhDGBLBbpjx_RmZ1U_ttktC8NJlhzpU8iEKrEhQFzw4Z1cbnSswJHzRW2cgqjs0tLqvuU5mC00WvgAr1XEU9z0k63rXqWTX-I3-AxhhlkRO7u9BcnVVxiVXaMxY8c8JRATMvAFkFX5bG2FIoz-ScvEFTVsh6UWNZzZnetG31-fui2kecCmdFmv9V6GQi9C4KhQYma3X8lQFUhmxaE8ndiSSsXTsZ3ka3GubcVr-8HO4cXO324dfjMD4US-Vq32w6GUAmyNs_J897zxz1xjnglYyC1dTEZyeKnY7UF-cd6bjqGh-InX-_1gtyP8OEBMvSjO-S2fpq418CalubV3Fp3gB55UF6 priority: 102 providerName: ProQuest |
Title | Tracking collective cell motion by topological data analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33362204 https://www.proquest.com/docview/2479466753 https://www.proquest.com/docview/2473411275 https://pubmed.ncbi.nlm.nih.gov/PMC7757824 https://doaj.org/article/ae11fe1d4d0445f8846fe99bbc947e15 http://dx.doi.org/10.1371/journal.pcbi.1008407 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBdtykZfxj7bbF3wxmBPLpIlWzZsjGRr1g0aRrdA3owkS10hOFk-YPnvd2fLZh4Ne7HBOgl0Okl3J_n3I-QN1VEKfitEqk6rUJgiDpWTLHTWFa5Q1JgqdXE1SS6n4ussnh2QhrPVK3B9Z2iHfFLT1fz896_dB5jw7yvWBsmaSudLo2_x1B9iFnlIjmBvStDOr0R7rsDjNEv8D3T7ah6T-5zDsh557rZmr6og_duFu7ecL9Z3eaX_Xq78a7caPyQPvJsZDGu7eEQObPmY3KuJJ3dPyDvYogwmyQO0g3rNCzCHH9SsPoHeBZuaPgEHMcB7pIHy-CVPyXR88ePjZeh5FEID3skmNGmRFcqkInaFMTxF1D7GDfh2TiTUxTymKk5pHFtmmKTaUS6cE1o7GMZIWv6M9MpFaU9JQJNMR5oVRcadSJXMQGfQtouo0jaRok94o7HceJBx5LqY59XJmYRgo1ZAjirPvcr7JGxrLWuQjf_Ij3AwWlmEyK4-LFY3uZ9xubKMOcsKUVABPU_B0XI2y7Q2mZCWxX3yGocyRxCMEm_Z3Kjtep1_-T7Jh-i2QuhIk71C1x2ht17ILaCzRvk_G0BlCK7VkTzrSMJUNp3iUzSrps_rPKrx_yGkhJqNqd1d_Kotxkbx5lxpF9tKBhwVhPHvk5PaMlu9NXbeJ7Jjsx3FdkvK258VBrmseBDE871tviDHEaYmWBRG_Iz0NqutfQn-20YPyKGcSXim488DcjQcfRqN4T26mHy7HlQ5kUE1af8A0JVJUQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEIIL4t1AgQWBOG1rr73xrgRC5RES2uYArZSb8bNUqnZDkwjlT_EbmdlHYFGBU6_xrBWPxzNje_x9hDyjJskgb4WdajA6FtalsQ6SxcEHF5ym1lZHFweTwehIfJym0w3yo30Lg2WVrU-sHLUrLZ6R7yQ1FDpk169n32JkjcLb1ZZCozaLPb_6Dlu2-avxO5jf50kyfH_4dhQ3rAKxhVi9iG3mcqdtJtLgrOUZYtgxbiHTCWJAQ8pTqtOMpqlnlklqAuUiBGFMgEEl0nPo9xK5LDjPEas_G35oPT9Ps4oPDKl4YsnFtHmqxyXbaSxje2bNCVYmwL5KdkJhxRiwjgu92Wk5Py_p_bN287dgOLxBrjdZbLRbm91NsuGLW-RKzWu5uk1eQgS0eAYfoZnVLjXCK4KoJg2KzCpa1OwMaCMRlqlGuoFHuUOOLkShd0mvKAu_SSI6yE1imHM5DyLTMgdFQd8hodr4gRR9wluNKdtgmCOVxqmqLuYk7GVqBSjUs2r03Cfx-qtZjeHxH_k3OBlrWUTgrn4oz45Vs6CV9owFz5xwVMDIM8jjgs9zY2wupGdpnzzFqVSIsVFgEc-xXs7navx5onYxK4adKR38VehTR-hFIxRKGKzVzcMJUBlid3UktzqS4Clsp3kTzaod81z9WlPwZWtq5zc_WTdjp1iYV_hyWclAHoQsAX1yr7bMtd44h-wooTBrsmOzHcV2W4qTrxXEuaxoFsT9f_-tx-Tq6PBgX-2PJ3sPyLUEj0JYEid8i_QWZ0v_EPLFhXlULdKIfLlor_ATNJ58WA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviO8VBgQE4inUiZ06kUBoY5tWBtU0mNQ3488xaUrK2gr1X-Ov4y5xCkEDnvZaX6z6fL772T7fj5DnVKc54FbYqXqtYm5sFisvktg7b71V1Jj66OLjeLh_zN9Psska-dG-hcG0ytYn1o7aVgbPyAdpUwod0PXAh7SIw529t9NvMTJI4U1rS6fRmMiBW36H7dvszWgH5vpFmu7tfn63HweGgdhA3J7HJreFVSbnmbfGsBzr2SXMAOrxfEh9xjKqspxmmUtMIqj2lHHvudYeBpgKx6DfK2RdQFTMe2R9e3d8eNTGAZblNTsYEvPEgvFJeLjHRDIIdvJqavQp5inALkt0AmPNH7CKEr3pWTW7CAL_mcn5W2jcu0luBEwbbTVGeIusufI2udqwXC7vkNcQDw2eyEdodI2DjfDCIGoohCK9jOYNVwNaTIRJq5EKxVLukuNLUek90iur0m2QiA4LnerE2oJ5nitRgKKgb59Spd1Q8D5hrcakCRXNkVjjTNbXdAJ2No0CJOpZBj33Sbz6atpU9PiP_DZOxkoW63HXP1TnJzIsb6lckniXWG4ph5HngOq8KwqtTcGFS7I-eYZTKbHiRom2e6IWs5kcfRrLLcTIsE-lw78KHXWEXgYhX8FgjQrPKEBlWMmrI7nZkQS_YTrNG2hW7Zhn8tcKgy9bU7u4-emqGTvFNL3SVYtaBlARcgb0yf3GMld6YwywUkph1kTHZjuK7baUp1_rgueiJl3gD_79t56Qa-AR5IfR-OAhuZ7iuUiSxinbJL35-cI9AvA414_DKo3Il8t2DD8Bk9eB8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+collective+cell+motion+by+topological+data+analysis&rft.jtitle=PLoS+computational+biology&rft.au=Bonilla%2C+Luis+L&rft.au=Carpio%2C+Ana&rft.au=Trenado%2C+Carolina&rft.date=2020-12-23&rft.eissn=1553-7358&rft.volume=16&rft.issue=12&rft.spage=e1008407&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008407&rft_id=info%3Apmid%2F33362204&rft.externalDocID=33362204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |