Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein

Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interf...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 8; no. 11; p. e1003059
Main Authors Rajsbaum, Ricardo, Albrecht, Randy A., Wang, May K., Maharaj, Natalya P., Versteeg, Gijs A., Nistal-Villán, Estanislao, García-Sastre, Adolfo, Gack, Michaela U.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.11.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
AbstractList Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25- independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. Influenza viruses cause annual epidemics and occasionally, major global pandemics. To establish productive infection these viruses have mechanisms to evade host immune responses, including the type-I interferon (IFN) response. An important component of the IFN system is the helicase RIG-I that recognizes viral RNA, and is subsequently ubiquitinated by TRIM25 ubiquitin E3 ligase to induce downstream signaling resulting in IFN-α/β production. The NS1 protein of influenza A viruses binds to human TRIM25 and inhibits TRIM25-dependent RIG-I ubiquitination and downstream RIG-I signaling. An important unresolved question is how viruses can inhibit the RIG-I pathway when infecting new hosts. Here we show that while human TRIM25 is able to bind to different NS1 proteins, chicken TRIM25 binds preferentially to the NS1 from an avian virus. Strikingly, mouse TRIM25 was unable to bind NS1. We found that NS1 blocks RIG-I signaling in mouse and human cells by different mechanisms. While NS1 inhibits human TRIM25-mediated RIG-I ubiquitination, in mouse cells NS1 suppresses RIG-I signaling by binding to and inhibiting the ubiquitin E3 ligase Riplet. These results help understand the immune evasion strategies used by influenza virus in different species, and may partly explain the ability of this virus to adapt to different host species.
  Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
Audience Academic
Author García-Sastre, Adolfo
Versteeg, Gijs A.
Albrecht, Randy A.
Maharaj, Natalya P.
Rajsbaum, Ricardo
Wang, May K.
Nistal-Villán, Estanislao
Gack, Michaela U.
AuthorAffiliation 2 Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
4 Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
3 Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
Johns Hopkins University - Bloomberg School of Public Health, United States of America
1 Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
AuthorAffiliation_xml – name: 3 Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
– name: 4 Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
– name: 2 Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
– name: Johns Hopkins University - Bloomberg School of Public Health, United States of America
– name: 1 Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
Author_xml – sequence: 1
  givenname: Ricardo
  surname: Rajsbaum
  fullname: Rajsbaum, Ricardo
– sequence: 2
  givenname: Randy A.
  surname: Albrecht
  fullname: Albrecht, Randy A.
– sequence: 3
  givenname: May K.
  surname: Wang
  fullname: Wang, May K.
– sequence: 4
  givenname: Natalya P.
  surname: Maharaj
  fullname: Maharaj, Natalya P.
– sequence: 5
  givenname: Gijs A.
  surname: Versteeg
  fullname: Versteeg, Gijs A.
– sequence: 6
  givenname: Estanislao
  surname: Nistal-Villán
  fullname: Nistal-Villán, Estanislao
– sequence: 7
  givenname: Adolfo
  surname: García-Sastre
  fullname: García-Sastre, Adolfo
– sequence: 8
  givenname: Michaela U.
  surname: Gack
  fullname: Gack, Michaela U.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23209422$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAUhiM0xD7gHyCIxA1cpPgzdnaBVE1sRJoKWhm3luPYravUzuIEMX49bpuidZqQSC4cvXne1_bROafJkfNOJ8lrCCYQM_hx5YfOyWbStrKfQAAwoMWz5ARSijOGGTl68H2cnIawAoBADPMXyTHCCBQEoZNkNW-1sjpk29VYlZZuaSvbW-9Sb9Kb8ior09vK3g1Rc3KrS1en5eUsovWgtkp1n_ZLHQXTDNr9luk0_WG7IaSzOUy_db7X1r1MnhvZBP1qXM-S28vP3y--ZNdfr8qL6XWmGGJ9pjBWnBcVQJhLZGDFdJEzjhmihJkcYlpVSmqGSc1ySiUAgDOW4xopQIDm-Cx5u8ttGx_EWKYgIOIFhIgwFolyR9RerkTb2bXs7oWXVmwF3y2E7HqrGi1yrlnBjal1XRFICS-4wgBDkgNiqorErE_jbkO11rXSru9kcxB6-MfZpVj4nwJTCBDFMeD9GND5u0GHXqxtULpppNN-2Jw7PpgSgiL67hH69O1GaiHjBawzPu6rNqFiiiGCgDKQR2ryBBXfWq-tiq1mbNQPDB8ODJHp9a9-IYcQRDm_-Q92dsi-eVjAv5Xb92gEzneA6nwInTZC2X7biPHEthEQiM1A7GshNgMhxoGIZvLIvM__p-0PaZgMRg
CitedBy_id crossref_primary_10_1016_j_chom_2015_02_014
crossref_primary_10_1099_vir_0_062836_0
crossref_primary_10_3389_fmicb_2022_1068328
crossref_primary_10_3390_v15102063
crossref_primary_10_3390_pathogens9100812
crossref_primary_10_3390_v13101909
crossref_primary_10_1016_j_molimm_2020_08_001
crossref_primary_10_1128_JVI_02260_16
crossref_primary_10_3390_v10120708
crossref_primary_10_1099_vir_0_071001_0
crossref_primary_10_1128_JVI_00559_19
crossref_primary_10_1128_JVI_00725_19
crossref_primary_10_1016_j_meegid_2025_105724
crossref_primary_10_3389_fcimb_2024_1420854
crossref_primary_10_1128_JVI_01960_17
crossref_primary_10_1099_jgv_0_001341
crossref_primary_10_1016_j_virusres_2020_198061
crossref_primary_10_1371_journal_pone_0111640
crossref_primary_10_3389_fimmu_2022_1065211
crossref_primary_10_1016_j_chom_2017_10_003
crossref_primary_10_1002_jmv_24944
crossref_primary_10_1016_j_coviro_2015_02_005
crossref_primary_10_3390_pathogens13070561
crossref_primary_10_1016_j_antiviral_2014_04_010
crossref_primary_10_1038_s41467_022_33909_2
crossref_primary_10_3389_fimmu_2020_01296
crossref_primary_10_3390_vaccines5030023
crossref_primary_10_3390_cells8030228
crossref_primary_10_1016_j_it_2015_01_004
crossref_primary_10_1016_j_cell_2013_08_014
crossref_primary_10_1016_j_tim_2013_06_006
crossref_primary_10_1128_JVI_01443_18
crossref_primary_10_1016_j_celrep_2019_05_105
crossref_primary_10_1016_j_celrep_2016_06_070
crossref_primary_10_3389_fimmu_2019_01069
crossref_primary_10_3389_fvets_2018_00347
crossref_primary_10_1186_s12929_021_00764_0
crossref_primary_10_1128_mSystems_00016_21
crossref_primary_10_1016_S0021_9258_17_49923_6
crossref_primary_10_1080_1040841X_2020_1794791
crossref_primary_10_1186_1743_422X_10_243
crossref_primary_10_3389_fimmu_2018_01083
crossref_primary_10_3389_fmicb_2020_00280
crossref_primary_10_3389_fimmu_2022_978824
crossref_primary_10_3389_fcimb_2021_670177
crossref_primary_10_1016_j_antiviral_2013_06_005
crossref_primary_10_3389_fimmu_2016_00200
crossref_primary_10_3390_ijms23094593
crossref_primary_10_3389_fcimb_2021_628275
crossref_primary_10_1016_j_antiviral_2013_10_002
crossref_primary_10_3389_fvets_2022_825150
crossref_primary_10_3389_fcimb_2018_00127
crossref_primary_10_3390_ijms19071877
crossref_primary_10_1080_03079457_2016_1193665
crossref_primary_10_3390_v13020145
crossref_primary_10_1016_j_vetmic_2016_02_005
crossref_primary_10_2222_jsv_71_33
crossref_primary_10_1016_j_jbc_2024_105779
crossref_primary_10_1038_s41392_022_01152_2
crossref_primary_10_1002_rmv_1865
crossref_primary_10_1016_j_coi_2022_102252
crossref_primary_10_1038_s41572_018_0002_y
crossref_primary_10_3389_fcimb_2024_1357866
crossref_primary_10_1089_jir_2017_0032
crossref_primary_10_1016_j_jmb_2013_12_005
crossref_primary_10_1016_j_dci_2017_04_003
crossref_primary_10_7554_eLife_18491
crossref_primary_10_1089_vim_2016_0178
crossref_primary_10_1016_j_virusres_2014_03_012
crossref_primary_10_1096_fj_201701361R
crossref_primary_10_3389_fimmu_2021_700926
crossref_primary_10_1155_2019_1356540
crossref_primary_10_1128_JVI_01383_14
crossref_primary_10_3389_fmicb_2023_1267078
crossref_primary_10_3390_v14051064
crossref_primary_10_1093_nar_gkac512
crossref_primary_10_3389_fimmu_2016_00662
crossref_primary_10_1128_spectrum_01883_21
crossref_primary_10_3389_fimmu_2017_00779
crossref_primary_10_3389_fimmu_2023_1220081
crossref_primary_10_3390_v12040409
crossref_primary_10_1007_s11262_016_1377_z
crossref_primary_10_1016_j_tim_2017_12_006
crossref_primary_10_1186_s12929_022_00793_3
crossref_primary_10_1128_JVI_03529_14
crossref_primary_10_1128_JVI_01282_19
crossref_primary_10_1371_journal_pone_0152031
crossref_primary_10_1089_dna_2022_0071
crossref_primary_10_1093_nar_gkv1078
crossref_primary_10_1101_cshperspect_a038729
crossref_primary_10_1073_pnas_1920582117
crossref_primary_10_3389_fimmu_2017_01187
crossref_primary_10_3390_ijms21114088
crossref_primary_10_3390_v8040101
crossref_primary_10_4049_jimmunol_1300842
crossref_primary_10_1007_s00018_016_2191_4
crossref_primary_10_1186_s43556_021_00046_z
crossref_primary_10_1128_JVI_03370_13
crossref_primary_10_1002_eji_201746959
crossref_primary_10_1016_j_fsi_2016_06_005
crossref_primary_10_1007_s40588_020_00150_8
crossref_primary_10_3389_fcimb_2022_937460
crossref_primary_10_3390_v14081808
crossref_primary_10_1128_mBio_00620_21
crossref_primary_10_3389_fimmu_2019_01024
crossref_primary_10_3390_v12101153
crossref_primary_10_1186_s12985_020_01357_3
crossref_primary_10_15252_embj_201593741
crossref_primary_10_1007_s00251_021_01238_1
crossref_primary_10_1089_vim_2022_0112
crossref_primary_10_1016_j_mib_2014_05_002
crossref_primary_10_3389_fmicb_2022_953738
crossref_primary_10_3390_v7072813
crossref_primary_10_1007_s11262_021_01876_3
crossref_primary_10_1128_JVI_00283_21
crossref_primary_10_1016_j_antiviral_2023_105641
crossref_primary_10_3389_fmicb_2021_628545
crossref_primary_10_3934_Allergy_2021006
crossref_primary_10_3390_pathogens13020127
crossref_primary_10_1016_j_it_2016_10_008
crossref_primary_10_1128_JVI_00999_19
crossref_primary_10_1186_s12985_016_0585_4
crossref_primary_10_1371_journal_ppat_1010505
crossref_primary_10_1016_j_virusres_2015_10_002
crossref_primary_10_1128_JVI_01567_14
crossref_primary_10_1186_s13567_018_0594_y
crossref_primary_10_4049_jimmunol_1402777
crossref_primary_10_1016_j_jviromet_2023_114731
crossref_primary_10_1042_BCJ20170427
crossref_primary_10_3389_fimmu_2023_1323560
crossref_primary_10_3390_ijms22169094
crossref_primary_10_1080_23144599_2019_1637046
crossref_primary_10_1146_annurev_virology_100114_055249
crossref_primary_10_1371_journal_ppat_1003533
crossref_primary_10_1074_jbc_RA119_011410
crossref_primary_10_3390_pathogens11121521
crossref_primary_10_1101_cshperspect_a038414
crossref_primary_10_3389_fimmu_2024_1432743
crossref_primary_10_1016_j_bbrc_2017_05_146
crossref_primary_10_1016_j_virol_2015_02_017
crossref_primary_10_3390_microorganisms8091424
crossref_primary_10_1038_s41467_019_12632_5
crossref_primary_10_1128_JVI_01081_17
crossref_primary_10_3389_fmicb_2018_00303
crossref_primary_10_3390_ijms23158285
crossref_primary_10_1007_s11262_019_01673_z
crossref_primary_10_1016_j_tim_2018_03_005
crossref_primary_10_1128_JVI_00126_14
crossref_primary_10_1016_j_tibs_2017_01_002
crossref_primary_10_3390_vetsci6010005
crossref_primary_10_2139_ssrn_3188495
crossref_primary_10_1089_dna_2014_2374
crossref_primary_10_1038_s41423_020_00602_7
crossref_primary_10_3390_v11111010
crossref_primary_10_1128_JVI_01430_15
crossref_primary_10_2217_fvl_14_89
crossref_primary_10_3389_fimmu_2017_01942
crossref_primary_10_1016_j_pharmthera_2017_10_020
crossref_primary_10_4161_viru_26360
crossref_primary_10_3389_fcimb_2020_00209
crossref_primary_10_1099_jgv_0_000509
crossref_primary_10_1371_journal_pone_0086968
crossref_primary_10_3389_fmicb_2021_794882
crossref_primary_10_1016_j_bpc_2024_107176
crossref_primary_10_1016_j_cyto_2019_154961
crossref_primary_10_1128_JVI_00454_20
crossref_primary_10_1128_JVI_02021_17
crossref_primary_10_1016_j_mib_2016_05_015
crossref_primary_10_1126_sciadv_abm5859
crossref_primary_10_3389_fimmu_2019_01586
crossref_primary_10_3389_fmicb_2020_517461
crossref_primary_10_1093_ve_veac074
crossref_primary_10_1016_j_virol_2015_02_033
crossref_primary_10_1038_nrmicro_2016_45
crossref_primary_10_1016_j_virol_2018_04_004
crossref_primary_10_1002_wrna_1588
crossref_primary_10_1128_JVI_01675_20
crossref_primary_10_1038_cr_2016_40
crossref_primary_10_1371_journal_ppat_1010835
crossref_primary_10_1080_08820139_2022_2113407
crossref_primary_10_3389_fimmu_2022_901913
crossref_primary_10_1101_cshperspect_a038620
crossref_primary_10_1128_JVI_00905_18
crossref_primary_10_1128_JVI_02097_17
crossref_primary_10_1111_cmi_12559
crossref_primary_10_1128_JVI_00149_18
crossref_primary_10_3389_fcimb_2022_998584
crossref_primary_10_3390_ijms241310495
crossref_primary_10_1371_journal_pone_0084673
crossref_primary_10_1089_vim_2024_0068
crossref_primary_10_3390_ijms18081673
crossref_primary_10_1016_j_cyto_2015_03_007
crossref_primary_10_1371_journal_pcbi_1008874
crossref_primary_10_1016_j_immuni_2024_03_003
crossref_primary_10_1016_j_vetmic_2020_108853
crossref_primary_10_1146_annurev_virology_092917_043323
crossref_primary_10_1073_pnas_1907031116
crossref_primary_10_1080_22221751_2022_2071175
crossref_primary_10_1371_journal_ppat_1008186
crossref_primary_10_3389_fmicb_2021_693204
crossref_primary_10_1002_hsr2_626
crossref_primary_10_1084_jem_20151531
crossref_primary_10_1038_s41577_020_0288_3
crossref_primary_10_1128_JVI_00830_14
crossref_primary_10_3390_v13071373
crossref_primary_10_1016_j_jmb_2018_10_003
crossref_primary_10_1016_j_virusres_2017_07_021
crossref_primary_10_3390_v12030338
crossref_primary_10_3389_fimmu_2020_00051
crossref_primary_10_1111_cmi_13150
crossref_primary_10_3390_v5061431
crossref_primary_10_1016_j_virol_2025_110456
crossref_primary_10_1128_JVI_00549_16
crossref_primary_10_1016_j_coviro_2015_01_007
crossref_primary_10_1016_j_coviro_2015_01_004
crossref_primary_10_1016_j_cytogfr_2014_08_005
crossref_primary_10_1099_vir_0_069542_0
crossref_primary_10_1099_vir_0_069914_0
crossref_primary_10_1016_j_cytogfr_2014_08_001
crossref_primary_10_3390_v12070755
crossref_primary_10_3390_v8100293
crossref_primary_10_3390_cells4030277
crossref_primary_10_3389_fimmu_2018_00323
crossref_primary_10_1007_s00705_021_05322_5
crossref_primary_10_1186_s13104_018_3779_6
crossref_primary_10_1183_09031936_00186214
crossref_primary_10_1371_journal_ppat_1012426
crossref_primary_10_1111_imm_13030
crossref_primary_10_1007_s00253_017_8433_z
crossref_primary_10_1038_s41467_023_40469_6
crossref_primary_10_3389_fmicb_2020_583252
crossref_primary_10_1042_BJ20121425
crossref_primary_10_3390_v13030522
crossref_primary_10_1128_Spectrum_00734_21
crossref_primary_10_3390_v13112309
crossref_primary_10_1016_j_tim_2013_05_005
crossref_primary_10_3390_v14050906
crossref_primary_10_3390_pr8060719
crossref_primary_10_1021_acs_jproteome_7b00815
crossref_primary_10_1007_s12250_021_00410_x
crossref_primary_10_3389_fimmu_2022_970750
crossref_primary_10_3390_cancers14092309
crossref_primary_10_1128_JVI_00120_16
crossref_primary_10_1016_j_dci_2013_04_010
crossref_primary_10_1093_abbs_gmu133
crossref_primary_10_1128_jvi_00776_22
crossref_primary_10_3389_fimmu_2017_00350
crossref_primary_10_1016_j_fsirep_2021_100012
crossref_primary_10_3389_fmicb_2018_02192
crossref_primary_10_1101_cshperspect_a038307
crossref_primary_10_1016_j_jprot_2019_01_012
crossref_primary_10_3389_fimmu_2017_00352
crossref_primary_10_3390_v13020182
Cites_doi 10.1006/meth.2001.1262
10.1126/science.1213362
10.1371/journal.pone.0005760
10.1128/JVI.74.17.7989-7996.2000
10.1016/j.chom.2010.11.008
10.1038/41131
10.1016/j.vaccine.2007.03.046
10.1016/j.antiviral.2008.04.006
10.1074/jbc.M804259200
10.1353/bhm.2002.0022
10.1128/JVI.79.13.8431-8439.2005
10.1128/JVI.00879-10
10.1016/S0378-1135(00)00164-4
10.1128/JVI.79.12.7535-7543.2005
10.1016/j.cell.2006.02.015
10.1126/science.1125676
10.1371/journal.pone.0031839
10.1099/vir.0.82764-0
10.1016/S0042-6822(02)00127-7
10.1016/S0042-6822(03)00119-3
10.1165/rcmb.2006-0283RC
10.1016/j.chom.2009.04.006
10.1038/nature10831
10.1016/j.immuni.2005.04.010
10.1128/JVI.80.8.3957-3965.2006
10.1128/JVI.01265-06
10.1371/journal.ppat.1000745
10.1093/emboj/17.4.1087
10.1093/bioinformatics/btp033
10.1128/JVI.02323-08
10.1073/pnas.112338099
10.1016/0378-1119(91)90434-D
10.1016/S1097-2765(00)80099-4
10.1128/JVI.00081-10
10.1038/nature05732
10.1126/science.1132505
10.1073/pnas.1005077107
10.1128/JVI.77.2.1501-1511.2003
10.1126/science.1132998
10.1038/nature04946
10.1371/journal.ppat.1002067
10.1038/nrmicro2613
10.1111/j.1462-5822.2006.00841.x
10.1128/JVI.77.24.13257-13266.2003
10.1074/jbc.M110.112458
10.1006/viro.1998.9508
10.1099/vir.0.2008/004606-0
10.1128/JVI.73.11.9679-9682.1999
10.1016/j.chom.2010.05.009
10.1038/nature09907
10.1073/pnas.1001755107
ContentType Journal Article
Copyright COPYRIGHT 2012 Public Library of Science
2012 Rajsbaum et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, et al. (2012) Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathog 8(11): e1003059. doi:10.1371/journal.ppat.1003059
2012 Rajsbaum et al 2012 Rajsbaum et al
Copyright_xml – notice: COPYRIGHT 2012 Public Library of Science
– notice: 2012 Rajsbaum et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, et al. (2012) Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathog 8(11): e1003059. doi:10.1371/journal.ppat.1003059
– notice: 2012 Rajsbaum et al 2012 Rajsbaum et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QL
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1003059
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
DocumentTitleAlternate Species-Specific RIG-I Inhibition by Influenza NS1
EISSN 1553-7374
ExternalDocumentID 1289112477
oai_doaj_org_article_68e798ffdedb4154898c30314604fbb4
PMC3510253
2896693221
A312105706
23209422
10_1371_journal_ppat_1003059
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI046954
– fundername: NCRR NIH HHS
  grantid: RR00168
– fundername: NCRR NIH HHS
  grantid: K26 RR000168
– fundername: NIAID NIH HHS
  grantid: U19 AI083025
– fundername: NCRR NIH HHS
  grantid: P51 RR000168
– fundername: NIAID NIH HHS
  grantid: R01 AI087846
– fundername: NIAID NIH HHS
  grantid: HHSN266200700010C
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
3V.
7QL
7U9
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c727t-c33c889b0238a2f1b7e9678372547f6135bbcae734d7655a00087763d2c040e83
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:19 EDT 2023
Wed Aug 27 01:15:49 EDT 2025
Thu Aug 21 18:10:35 EDT 2025
Sun Aug 24 03:55:51 EDT 2025
Fri Jul 25 10:29:14 EDT 2025
Tue Jun 17 21:57:38 EDT 2025
Tue Jun 10 20:14:38 EDT 2025
Fri Jun 27 05:14:18 EDT 2025
Fri Jun 27 04:00:43 EDT 2025
Mon Jul 21 05:43:36 EDT 2025
Tue Jul 01 01:31:02 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c727t-c33c889b0238a2f1b7e9678372547f6135bbcae734d7655a00087763d2c040e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current address: Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.
Conceived and designed the experiments: RR MUG AGS. Performed the experiments: RR RAA MKW NPM MUG. Analyzed the data: RR MUG. Contributed reagents/materials/analysis tools: RAA GAV ENV. Wrote the paper: RR MUG AGS.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1003059
PMID 23209422
PQID 1289112477
PQPubID 1436335
ParticipantIDs plos_journals_1289112477
doaj_primary_oai_doaj_org_article_68e798ffdedb4154898c30314604fbb4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3510253
proquest_miscellaneous_1222235442
proquest_journals_1289112477
gale_infotracmisc_A312105706
gale_infotracacademiconefile_A312105706
gale_incontextgauss_ISR_A312105706
gale_incontextgauss_ISN_A312105706
pubmed_primary_23209422
crossref_citationtrail_10_1371_journal_ppat_1003059
crossref_primary_10_1371_journal_ppat_1003059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2012
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References V Hornung (ref22) 2006; 314
B Opitz (ref30) 2007; 9
AM Waterhouse (ref52) 2009; 25
R Medzhitov (ref20) 1997; 388
E Meylan (ref21) 2006; 442
J Talon (ref41) 2000; 74
NA Molinari (ref2) 2007; 25
NR Donelan (ref10) 2003; 77
JW Schoggins (ref17) 2011; 472
GK Geiss (ref11) 2002; 99
JK Taubenberger (ref3) 2010; 7
A Solorzano (ref14) 2005; 79
M Mibayashi (ref29) 2007; 81
M Imai (ref6) 2012; 486
A Baum (ref24) 2010; 107
KJ Livak (ref51) 2001; 25
MR Barber (ref39) 2010; 107
BG Hale (ref40) 2010; 84
H Kato (ref19) 2005; 23
H Oshiumi (ref27) 2010; 8
S Herfst (ref5) 2012; 336
ref8
H Oshiumi (ref26) 2009; 284
KY Twu (ref33) 2006; 80
A Garcia-Sastre (ref42) 1998; 252
MS Park (ref50) 2003; 77
RA Medina (ref9) 2011; 9
DL Noah (ref32) 2003; 307
Z Guo (ref28) 2007; 36
K Haye (ref44) 2009; 83
A Garcia-Sastre (ref16) 2006; 312
B Manicassamy (ref48) 2010; 6
CF Basler (ref4) 2008; 79
RM Krug (ref15) 2003; 309
IH Brown (ref7) 2000; 74
A Pichlmair (ref23) 2006; 314
MU Gack (ref25) 2007; 446
KM Graef (ref35) 2010; 84
D Gao (ref43) 2009; 4
NE Forbes (ref34) 2012; 7
ZT Varga (ref37) 2011; 7
NP Johnson (ref1) 2002; 76
G Kochs (ref13) 2007; 88
A Iwai (ref36) 2010; 285
BG Hale (ref12) 2008; 89
MU Gack (ref38) 2009; 5
S Akira (ref18) 2006; 124
M Yoneyama (ref46) 1998; 17
ME Nemeroff (ref31) 1998; 1
H Niwa (ref45) 1991; 108
M Quinlivan (ref47) 2005; 79
E Fodor (ref49) 1999; 73
References_xml – volume: 25
  start-page: 402
  year: 2001
  ident: ref51
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 336
  start-page: 1534
  year: 2012
  ident: ref5
  article-title: Airborne transmission of influenza A/H5N1 virus between ferrets
  publication-title: Science
  doi: 10.1126/science.1213362
– volume: 4
  start-page: e5760
  year: 2009
  ident: ref43
  article-title: REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005760
– volume: 74
  start-page: 7989
  year: 2000
  ident: ref41
  article-title: Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein
  publication-title: J Virol
  doi: 10.1128/JVI.74.17.7989-7996.2000
– volume: 8
  start-page: 496
  year: 2010
  ident: ref27
  article-title: The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.11.008
– volume: 388
  start-page: 394
  year: 1997
  ident: ref20
  article-title: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity
  publication-title: Nature
  doi: 10.1038/41131
– volume: 25
  start-page: 5086
  year: 2007
  ident: ref2
  article-title: The annual impact of seasonal influenza in the US: measuring disease burden and costs
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.03.046
– volume: 79
  start-page: 166
  year: 2008
  ident: ref4
  article-title: Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2008.04.006
– volume: 284
  start-page: 807
  year: 2009
  ident: ref26
  article-title: Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M804259200
– volume: 76
  start-page: 105
  year: 2002
  ident: ref1
  article-title: Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic
  publication-title: Bull Hist Med
  doi: 10.1353/bhm.2002.0022
– volume: 79
  start-page: 8431
  year: 2005
  ident: ref47
  article-title: Attenuation of equine influenza viruses through truncations of the NS1 protein
  publication-title: J Virol
  doi: 10.1128/JVI.79.13.8431-8439.2005
– volume: 84
  start-page: 8433
  year: 2010
  ident: ref35
  article-title: The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon
  publication-title: J Virol
  doi: 10.1128/JVI.00879-10
– volume: 74
  start-page: 29
  year: 2000
  ident: ref7
  article-title: The epidemiology and evolution of influenza viruses in pigs
  publication-title: Vet Microbiol
  doi: 10.1016/S0378-1135(00)00164-4
– volume: 79
  start-page: 7535
  year: 2005
  ident: ref14
  article-title: Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs
  publication-title: J Virol
  doi: 10.1128/JVI.79.12.7535-7543.2005
– volume: 124
  start-page: 783
  year: 2006
  ident: ref18
  article-title: Pathogen recognition and innate immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.015
– volume: 312
  start-page: 879
  year: 2006
  ident: ref16
  article-title: Type 1 interferons and the virus-host relationship: a lesson in detente
  publication-title: Science
  doi: 10.1126/science.1125676
– volume: 7
  start-page: e31839
  year: 2012
  ident: ref34
  article-title: Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0031839
– volume: 88
  start-page: 1403
  year: 2007
  ident: ref13
  article-title: Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.82764-0
– volume: 307
  start-page: 386
  year: 2003
  ident: ref32
  article-title: Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS
  publication-title: Virology
  doi: 10.1016/S0042-6822(02)00127-7
– volume: 309
  start-page: 181
  year: 2003
  ident: ref15
  article-title: Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein
  publication-title: Virology
  doi: 10.1016/S0042-6822(03)00119-3
– volume: 36
  start-page: 263
  year: 2007
  ident: ref28
  article-title: NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2006-0283RC
– volume: 5
  start-page: 439
  year: 2009
  ident: ref38
  article-title: Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.04.006
– volume: 486
  start-page: 420
  year: 2012
  ident: ref6
  article-title: Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets
  publication-title: Nature
  doi: 10.1038/nature10831
– volume: 23
  start-page: 19
  year: 2005
  ident: ref19
  article-title: Cell type-specific involvement of RIG-I in antiviral response
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.04.010
– volume: 80
  start-page: 3957
  year: 2006
  ident: ref33
  article-title: The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target
  publication-title: J Virol
  doi: 10.1128/JVI.80.8.3957-3965.2006
– volume: 81
  start-page: 514
  year: 2007
  ident: ref29
  article-title: Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus
  publication-title: J Virol
  doi: 10.1128/JVI.01265-06
– volume: 6
  start-page: e1000745
  year: 2010
  ident: ref48
  article-title: Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000745
– volume: 17
  start-page: 1087
  year: 1998
  ident: ref46
  article-title: Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300
  publication-title: Embo J
  doi: 10.1093/emboj/17.4.1087
– volume: 25
  start-page: 1189
  year: 2009
  ident: ref52
  article-title: Jalview Version 2–a multiple sequence alignment editor and analysis workbench
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp033
– volume: 83
  start-page: 6849
  year: 2009
  ident: ref44
  article-title: The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells
  publication-title: J Virol
  doi: 10.1128/JVI.02323-08
– volume: 99
  start-page: 10736
  year: 2002
  ident: ref11
  article-title: Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.112338099
– volume: 108
  start-page: 193
  year: 1991
  ident: ref45
  article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90434-D
– volume: 1
  start-page: 991
  year: 1998
  ident: ref31
  article-title: Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80099-4
– volume: 84
  start-page: 6909
  year: 2010
  ident: ref40
  article-title: Inefficient control of host gene expression by the 2009 pandemic H1N1 influenza A virus NS1 protein
  publication-title: J Virol
  doi: 10.1128/JVI.00081-10
– volume: 446
  start-page: 916
  year: 2007
  ident: ref25
  article-title: TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
  publication-title: Nature
  doi: 10.1038/nature05732
– volume: 314
  start-page: 994
  year: 2006
  ident: ref22
  article-title: 5′-Triphosphate RNA is the ligand for RIG-I
  publication-title: Science
  doi: 10.1126/science.1132505
– volume: 107
  start-page: 16303
  year: 2010
  ident: ref24
  article-title: Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1005077107
– volume: 77
  start-page: 1501
  year: 2003
  ident: ref50
  article-title: Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins
  publication-title: J Virol
  doi: 10.1128/JVI.77.2.1501-1511.2003
– volume: 314
  start-page: 997
  year: 2006
  ident: ref23
  article-title: RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates
  publication-title: Science
  doi: 10.1126/science.1132998
– volume: 442
  start-page: 39
  year: 2006
  ident: ref21
  article-title: Intracellular pattern recognition receptors in the host response
  publication-title: Nature
  doi: 10.1038/nature04946
– volume: 7
  start-page: e1002067
  year: 2011
  ident: ref37
  article-title: The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002067
– volume: 9
  start-page: 590
  year: 2011
  ident: ref9
  article-title: Influenza A viruses: new research developments
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2613
– volume: 9
  start-page: 930
  year: 2007
  ident: ref30
  article-title: IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2006.00841.x
– volume: 77
  start-page: 13257
  year: 2003
  ident: ref10
  article-title: A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice
  publication-title: J Virol
  doi: 10.1128/JVI.77.24.13257-13266.2003
– volume: 285
  start-page: 32064
  year: 2010
  ident: ref36
  article-title: Influenza A virus polymerase inhibits type I interferon induction by binding to interferon beta promoter stimulator 1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.112458
– volume: 252
  start-page: 324
  year: 1998
  ident: ref42
  article-title: Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems
  publication-title: Virology
  doi: 10.1006/viro.1998.9508
– volume: 89
  start-page: 2359
  year: 2008
  ident: ref12
  article-title: The multifunctional NS1 protein of influenza A viruses
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.2008/004606-0
– ident: ref8
– volume: 73
  start-page: 9679
  year: 1999
  ident: ref49
  article-title: Rescue of influenza A virus from recombinant DNA
  publication-title: J Virol
  doi: 10.1128/JVI.73.11.9679-9682.1999
– volume: 7
  start-page: 440
  year: 2010
  ident: ref3
  article-title: Influenza virus evolution, host adaptation, and pandemic formation
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.05.009
– volume: 472
  start-page: 481
  year: 2011
  ident: ref17
  article-title: A diverse range of gene products are effectors of the type I interferon antiviral response
  publication-title: Nature
  doi: 10.1038/nature09907
– volume: 107
  start-page: 5913
  year: 2010
  ident: ref39
  article-title: Association of RIG-I with innate immunity of ducks to influenza
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1001755107
SSID ssj0041316
Score 2.5163877
Snippet Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses...
  Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003059
SubjectTerms Animals
Biology
Chlorocebus aethiops
DEAD Box Protein 58
DEAD-box RNA Helicases - genetics
DEAD-box RNA Helicases - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Dogs
Health aspects
HeLa Cells
Hogs
Humans
Immune response
Infections
Influenza
Influenza A virus - genetics
Influenza A virus - metabolism
Influenza viruses
Influenza, Human - genetics
Influenza, Human - metabolism
Interferon
Interferons - biosynthesis
Interferons - genetics
Medicine
Mice
Mice, Knockout
Microscopy
Physiological aspects
Proteins
Receptors, Immunologic
Swine
Transcription Factors - genetics
Transcription Factors - metabolism
Tripartite Motif Proteins
Ubiquitin-proteasome system
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Vero Cells
Viral Nonstructural Proteins - genetics
Viral Nonstructural Proteins - metabolism
Viral proteins
Virulence (Microbiology)
Viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEOXVhYIMQuJkuontODkuiKWLxB5aKvUW-RUaVCVLs6lUfj0zdnbVoKJeuNqTSJ4Ze75Jxt8Q8s7aWZJb6VkutGIitykzklvmMLdwxs5MuPX-bZUdnYqvZ_LsRqsvrAmL9MBRcYdZ7lWRV5XzzgjE10VuOXKuZzNRGROYQCHmbZOpeAbDyRyanmJTHKZ4lg2X5rhKDgcbfVivNdJHo8MXo6AUuPt3J_RkfdF2t8HPv6sob4SlxSPycMCTdB7XsUfu-eYxuR87TF4_IT9Df3nfMbxRiVVBtG7OaxPqtGhb0ePlF7akval_9TAWvwxS3Ti6XKxA1EVuWWquKQBFGAgdTX5rOqdX9WXf0dVJQgPVQ908JaeLz98_HbGhvQKzAFo2zHJu87wwGLV1WiVG-QJCF1eQM6oKwrw0xmqvuHAqk1IjXFBwHLnUws73OX9GJk3b-H1Cs8wrLYtEGKeFT7wx2kPqKW3qOAQ8MyV8q9_SDtzj2ALjogw_1BTkIFFdJVqlHKwyJWz31Dpyb9wh_xFNt5NF5uwwAP5UDv5U3uVPU_IWDV8iN0aDxTc_dN915fJkVc45sq1JNcv-KXQ8Eno_CFUtLNbq4cIDqAw5t0aSByNJ2OF2NL2PTrhdc1cCpoAYlQql4MmtY94-_WY3jS_FgrrGtz3KIDCUQqRT8jz68U5vALIh6U9hRo08fKTY8UxTnwdqcg5HfCr5i_9hiZfkAaDTNF78PCCTzWXvXwEC3JjXYbP_AafUVfU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9MwFLegCIkL4nuFgQxC4mTWxHacnFBBlBWJCm0U7RbZjrNlmpKuaQ_jr-c9xw0EDThFsl-ixO_b8fs9Ql5bO4lSKx1LhVZMpDZmRnLLCswtCmMnxle9f1kkh0vx-USehA23Nhyr3NlEb6iLxuIe-QHYUdDLWCj1bnXJsGsU_l0NLTRuklsIXYZSrU76hAvss299iq1xmOJJEkrnuIoOAqferlYaQaRR7LOBa_II_r2dHq0umva6IPTPs5S_OafZPXI3RJV02onBfXLD1Q_I7a7P5NVDcu67zLuW-WtZWTqvzyrjT2vRpqRH809sTpemutzCWLc_SHVd0PlsQbG5hy9-oOaKQrgIA76vyQ9Np_R7td62dHEc0a8I-FDVj8hy9vHbh0MWmiwwC6HLhlnObZpmBn23jsvIKJeBA-MKMkdVgrOXxljtFBeFSqTUGDQoMEpFbEH_Xcofk1Hd1G6P0CRxSsssEqbQwkXOGO0gAZU2Lji4PTMmfLe-uQ0I5NgI4yL3v9UUZCLdcuXIlTxwZUxYf9eqQ-D4D_17ZF1Pi_jZfqBZn-ZBHfMkdSpLy7JwhRGYtWWp5Yjkn0xEaYwYk1fI-BwRMmo8gnOqt22bz48X-ZQj5ppUk-SvREcDojeBqGzgY60OZQ-wZIi8NaDcH1CCntvB9B4K4e6b2_yXRsCdO8G8fvplP40PxWN1tWu2SIPhoRQiHpMnnRz36wahNqT-McyogYQPFnY4U1dnHqCcg6GPJX_679d6Ru5A9Bl3hZ37ZLRZb91ziPA25oVX458oJ0y_
  priority: 102
  providerName: ProQuest
Title Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein
URI https://www.ncbi.nlm.nih.gov/pubmed/23209422
https://www.proquest.com/docview/1289112477
https://www.proquest.com/docview/1222235442
https://pubmed.ncbi.nlm.nih.gov/PMC3510253
https://doaj.org/article/68e798ffdedb4154898c30314604fbb4
http://dx.doi.org/10.1371/journal.ppat.1003059
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZtysZextZdmq0L2hjsySW2ZMt-GCMdzZpBQkmXkTcjyXLrEZw0TmDZr9858oV5pAz2ZJCODD46OhdL-j5C3mvdd0PtGyfkUjg81J6jfKadBGuLROm-srfex5Pgcsa_zv35Aak5WysFFntLO-STmq0XZz_vdp9gwX-0rA3CrQedrVYSAaHRhKNDcgSxSSCnwZg3-wrgsS0ZKpLlOIIFQXWZ7r63IFQw86AC8rxW3LLw_o0T76wWy2Jfhvr3Qcs_ItfwCXlcpZx0UNrIU3Jg8mPyoCSh3B2Th-Nqe_0Z-WHZ6E3h2GeaaTrKbzNlT3XRZUqnoy_OiM5UdreFtvI_IpV5QkfDCUUSEHtJgqodhbQSGiz_yS9JB_R7tt4WdHLt0isEhsjy52Q2vPj2-dKpyBgcDSnOxtGM6TCMFMZ46aWuEiaCQMcEVJgihaTAV0pLIxhPROD7EpMLAc4r8TT4CROyF6STL3NzQmgQGCH9yOUqkdy4RilpoFD1tZcwCI-qS1it6lhXSOVImLGI7fabgIql1FyMcxVXc9UlTjNqVSJ1_EP-HGexkUWcbduwXN_E1bKNg9CIKEzTxCSKY3UXhZoh4n_Q56lSvEveoQ3EiKSR41GdG7ktinh0PYkHDLHZfNEP7hWatoQ-VELpEj5Wy-p6BKgMEbpakqctSfAHutV9gvZYf3MRQwYCEc3jQsDI2kb3d79tuvGlePwuN8stymAa6XPudcnL0qQbvdULpEtEy9hbim335NmtBTJnEBA8n73675GvySNIYL3ybugp6WzWW_MGksSN6pFDMRc9cnR-Mbma9uyvlp71Bb8BcDRmdw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAQXxLuBAgsCcTK1vWuvfUAoPEJN2wi1DcrNeNfr1qiy0zgRCj-K38jM-gFGBU49RdodW_HsPO2Z-Qh5ppTtBMrTVsATYfFAuZb0mLJSzC1SqWxput73J_7OlH-cebMN8qPthcGyytYmGkOdlgrfkW-DHQW9dLkQr-dnFqJG4dfVFkKjFotdvf4GKVv1KnoH5_vcdcfvj97uWA2qgKXAVy8txZgKglCis0rczJFCh2CxmYBUSWTg3TwpVaIF46nwPS9BLylAC1NXgcDrgMF9L5HL4HhtTPbErEvwwB8YqFWE4rEE8_2mVY8JZ7uRjJfzeYJDq1HNwp4rNIgBnV8YzE_L6ryg98_azd-c4fgGud5EsXRUi91NsqGLW-RKjWu5vk2-GlR7XVnmN8sVjYqTXJrqMFpm9CD6YEV0KvOzFazV7yNpUqQ0Gk8ogomYZgsq1xTCU1gwOCrfEzqin_PFqqKTQ4d-wgETeXGHTC-E_XfJoCgLvUmo72uReKHDZZpw7WgpEw0Jr6fclIGblUPCWv7Gqpl4jsAbp7H5jCcg86nZFeOpxM2pDInVXTWvJ378h_4NHl1Hi_O6zUK5OI4b9Y_9QIswyLJUp5JjlhgGiiFygG_zTEo-JE_x4GOcyFFgyc9xsqqqODqcxCOGM948Yft_JTroEb1oiLISHlYlTZsFsAwnffUot3qUYFdUb3sThbB95ir-pYFwZSuY528_6bbxpljGV-hyhTQYjnqcu0Nyr5bjjm8Q2tshd2FH9CS8x9j-TpGfmIHoDByL67H7__5bj8nVnaP9vXgvmuw-INcg8nXrptItMlguVvohRJdL-cioNCVfLtqG_ATKb4cy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviO8VBhgE4im0iZ04eUCoYysLg6jaKNpbsB1nC5qSrmmFyp_GX8ddPgpBA572VMm-RI3vfL-7xHc_Qp5rPbR97RrL51JY3NeOpVymrQRzi0Tpoaqq3j9G3v6Uvz92jzfIj7YWBo9Vtj6xctRJofEd-QD8KOxLhwsxSJtjEZPd8ZvZuYUMUviltaXTqE3kwKy-QfpWvg53QdcvHGe89-ntvtUwDFgacHthaca07wcKgUs6qa2ECcB7MwFpk0gB6VyltDSC8UR4risRMQXsyMTRYPzGZ3DfK2RTYFbUI5s7e9HksMUBQIeKeBWJeSzBPK8p3GPCHjR28mo2k9jCGjdd0AHGij9gjRK92VlRXhQC_3mS8zdoHN8kN5qYlo5qI7xFNkx-m1ytWS5Xd8jXiuPelFb1m2aahvlppqqzYrRI6WH4zgrpVGXnSxir305SmSc0HEcUqUWq0guqVhSCVRioWFW-Szqin7P5sqTRkU0n2G4iy--S6aUo4B7p5UVutgj1PCOkG9hcJZIb2yglDaS_rnYSBqCr-oS16xvrpv850nCcxdVHPQF5UL1cMWolbrTSJ9b6qlnd_-M_8juourUsdu-uBor5Sdw4g9jzjQj8NE1MojjmjIGvGfIIeEOeKsX75BkqPsb-HDla-olclmUcHkXxiGHHN1cMvb8KHXaEXjZCaQEPq2VTdAFLhn2_OpLbHUnwMrozvYVG2D5zGf_aj3Bla5gXTz9dT-NN8VBfboolymBw6nLu9Mn92o7X6waB_jDgDsyIjoV3FrY7k2enVXt0BjDjuOzBv__WE3IN_Ef8IYwOHpLrEAY7dYXpNukt5kvzCELNhXrc7GlKvly2G_kJHiWMzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species-Specific+Inhibition+of+RIG-I+Ubiquitination+and+IFN+Induction+by+the+Influenza+A+Virus+NS1+Protein&rft.jtitle=PLoS+pathogens&rft.au=Rajsbaum%2C+Ricardo&rft.au=Albrecht%2C+Randy+A.&rft.au=Wang%2C+May+K.&rft.au=Maharaj%2C+Natalya+P.&rft.date=2012-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=8&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.ppat.1003059&rft_id=info%3Apmid%2F23209422&rft.externalDocID=PMC3510253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon