Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interf...
Saved in:
Published in | PLoS pathogens Vol. 8; no. 11; p. e1003059 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.11.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. |
---|---|
AbstractList | Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25- independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. Influenza viruses cause annual epidemics and occasionally, major global pandemics. To establish productive infection these viruses have mechanisms to evade host immune responses, including the type-I interferon (IFN) response. An important component of the IFN system is the helicase RIG-I that recognizes viral RNA, and is subsequently ubiquitinated by TRIM25 ubiquitin E3 ligase to induce downstream signaling resulting in IFN-α/β production. The NS1 protein of influenza A viruses binds to human TRIM25 and inhibits TRIM25-dependent RIG-I ubiquitination and downstream RIG-I signaling. An important unresolved question is how viruses can inhibit the RIG-I pathway when infecting new hosts. Here we show that while human TRIM25 is able to bind to different NS1 proteins, chicken TRIM25 binds preferentially to the NS1 from an avian virus. Strikingly, mouse TRIM25 was unable to bind NS1. We found that NS1 blocks RIG-I signaling in mouse and human cells by different mechanisms. While NS1 inhibits human TRIM25-mediated RIG-I ubiquitination, in mouse cells NS1 suppresses RIG-I signaling by binding to and inhibiting the ubiquitin E3 ligase Riplet. These results help understand the immune evasion strategies used by influenza virus in different species, and may partly explain the ability of this virus to adapt to different host species. Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. |
Audience | Academic |
Author | García-Sastre, Adolfo Versteeg, Gijs A. Albrecht, Randy A. Maharaj, Natalya P. Rajsbaum, Ricardo Wang, May K. Nistal-Villán, Estanislao Gack, Michaela U. |
AuthorAffiliation | 2 Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America 4 Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America 3 Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America Johns Hopkins University - Bloomberg School of Public Health, United States of America 1 Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America |
AuthorAffiliation_xml | – name: 3 Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America – name: 4 Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America – name: 2 Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America – name: Johns Hopkins University - Bloomberg School of Public Health, United States of America – name: 1 Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America |
Author_xml | – sequence: 1 givenname: Ricardo surname: Rajsbaum fullname: Rajsbaum, Ricardo – sequence: 2 givenname: Randy A. surname: Albrecht fullname: Albrecht, Randy A. – sequence: 3 givenname: May K. surname: Wang fullname: Wang, May K. – sequence: 4 givenname: Natalya P. surname: Maharaj fullname: Maharaj, Natalya P. – sequence: 5 givenname: Gijs A. surname: Versteeg fullname: Versteeg, Gijs A. – sequence: 6 givenname: Estanislao surname: Nistal-Villán fullname: Nistal-Villán, Estanislao – sequence: 7 givenname: Adolfo surname: García-Sastre fullname: García-Sastre, Adolfo – sequence: 8 givenname: Michaela U. surname: Gack fullname: Gack, Michaela U. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23209422$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAUhiM0xD7gHyCIxA1cpPgzdnaBVE1sRJoKWhm3luPYravUzuIEMX49bpuidZqQSC4cvXne1_bROafJkfNOJ8lrCCYQM_hx5YfOyWbStrKfQAAwoMWz5ARSijOGGTl68H2cnIawAoBADPMXyTHCCBQEoZNkNW-1sjpk29VYlZZuaSvbW-9Sb9Kb8ior09vK3g1Rc3KrS1en5eUsovWgtkp1n_ZLHQXTDNr9luk0_WG7IaSzOUy_db7X1r1MnhvZBP1qXM-S28vP3y--ZNdfr8qL6XWmGGJ9pjBWnBcVQJhLZGDFdJEzjhmihJkcYlpVSmqGSc1ySiUAgDOW4xopQIDm-Cx5u8ttGx_EWKYgIOIFhIgwFolyR9RerkTb2bXs7oWXVmwF3y2E7HqrGi1yrlnBjal1XRFICS-4wgBDkgNiqorErE_jbkO11rXSru9kcxB6-MfZpVj4nwJTCBDFMeD9GND5u0GHXqxtULpppNN-2Jw7PpgSgiL67hH69O1GaiHjBawzPu6rNqFiiiGCgDKQR2ryBBXfWq-tiq1mbNQPDB8ODJHp9a9-IYcQRDm_-Q92dsi-eVjAv5Xb92gEzneA6nwInTZC2X7biPHEthEQiM1A7GshNgMhxoGIZvLIvM__p-0PaZgMRg |
CitedBy_id | crossref_primary_10_1016_j_chom_2015_02_014 crossref_primary_10_1099_vir_0_062836_0 crossref_primary_10_3389_fmicb_2022_1068328 crossref_primary_10_3390_v15102063 crossref_primary_10_3390_pathogens9100812 crossref_primary_10_3390_v13101909 crossref_primary_10_1016_j_molimm_2020_08_001 crossref_primary_10_1128_JVI_02260_16 crossref_primary_10_3390_v10120708 crossref_primary_10_1099_vir_0_071001_0 crossref_primary_10_1128_JVI_00559_19 crossref_primary_10_1128_JVI_00725_19 crossref_primary_10_1016_j_meegid_2025_105724 crossref_primary_10_3389_fcimb_2024_1420854 crossref_primary_10_1128_JVI_01960_17 crossref_primary_10_1099_jgv_0_001341 crossref_primary_10_1016_j_virusres_2020_198061 crossref_primary_10_1371_journal_pone_0111640 crossref_primary_10_3389_fimmu_2022_1065211 crossref_primary_10_1016_j_chom_2017_10_003 crossref_primary_10_1002_jmv_24944 crossref_primary_10_1016_j_coviro_2015_02_005 crossref_primary_10_3390_pathogens13070561 crossref_primary_10_1016_j_antiviral_2014_04_010 crossref_primary_10_1038_s41467_022_33909_2 crossref_primary_10_3389_fimmu_2020_01296 crossref_primary_10_3390_vaccines5030023 crossref_primary_10_3390_cells8030228 crossref_primary_10_1016_j_it_2015_01_004 crossref_primary_10_1016_j_cell_2013_08_014 crossref_primary_10_1016_j_tim_2013_06_006 crossref_primary_10_1128_JVI_01443_18 crossref_primary_10_1016_j_celrep_2019_05_105 crossref_primary_10_1016_j_celrep_2016_06_070 crossref_primary_10_3389_fimmu_2019_01069 crossref_primary_10_3389_fvets_2018_00347 crossref_primary_10_1186_s12929_021_00764_0 crossref_primary_10_1128_mSystems_00016_21 crossref_primary_10_1016_S0021_9258_17_49923_6 crossref_primary_10_1080_1040841X_2020_1794791 crossref_primary_10_1186_1743_422X_10_243 crossref_primary_10_3389_fimmu_2018_01083 crossref_primary_10_3389_fmicb_2020_00280 crossref_primary_10_3389_fimmu_2022_978824 crossref_primary_10_3389_fcimb_2021_670177 crossref_primary_10_1016_j_antiviral_2013_06_005 crossref_primary_10_3389_fimmu_2016_00200 crossref_primary_10_3390_ijms23094593 crossref_primary_10_3389_fcimb_2021_628275 crossref_primary_10_1016_j_antiviral_2013_10_002 crossref_primary_10_3389_fvets_2022_825150 crossref_primary_10_3389_fcimb_2018_00127 crossref_primary_10_3390_ijms19071877 crossref_primary_10_1080_03079457_2016_1193665 crossref_primary_10_3390_v13020145 crossref_primary_10_1016_j_vetmic_2016_02_005 crossref_primary_10_2222_jsv_71_33 crossref_primary_10_1016_j_jbc_2024_105779 crossref_primary_10_1038_s41392_022_01152_2 crossref_primary_10_1002_rmv_1865 crossref_primary_10_1016_j_coi_2022_102252 crossref_primary_10_1038_s41572_018_0002_y crossref_primary_10_3389_fcimb_2024_1357866 crossref_primary_10_1089_jir_2017_0032 crossref_primary_10_1016_j_jmb_2013_12_005 crossref_primary_10_1016_j_dci_2017_04_003 crossref_primary_10_7554_eLife_18491 crossref_primary_10_1089_vim_2016_0178 crossref_primary_10_1016_j_virusres_2014_03_012 crossref_primary_10_1096_fj_201701361R crossref_primary_10_3389_fimmu_2021_700926 crossref_primary_10_1155_2019_1356540 crossref_primary_10_1128_JVI_01383_14 crossref_primary_10_3389_fmicb_2023_1267078 crossref_primary_10_3390_v14051064 crossref_primary_10_1093_nar_gkac512 crossref_primary_10_3389_fimmu_2016_00662 crossref_primary_10_1128_spectrum_01883_21 crossref_primary_10_3389_fimmu_2017_00779 crossref_primary_10_3389_fimmu_2023_1220081 crossref_primary_10_3390_v12040409 crossref_primary_10_1007_s11262_016_1377_z crossref_primary_10_1016_j_tim_2017_12_006 crossref_primary_10_1186_s12929_022_00793_3 crossref_primary_10_1128_JVI_03529_14 crossref_primary_10_1128_JVI_01282_19 crossref_primary_10_1371_journal_pone_0152031 crossref_primary_10_1089_dna_2022_0071 crossref_primary_10_1093_nar_gkv1078 crossref_primary_10_1101_cshperspect_a038729 crossref_primary_10_1073_pnas_1920582117 crossref_primary_10_3389_fimmu_2017_01187 crossref_primary_10_3390_ijms21114088 crossref_primary_10_3390_v8040101 crossref_primary_10_4049_jimmunol_1300842 crossref_primary_10_1007_s00018_016_2191_4 crossref_primary_10_1186_s43556_021_00046_z crossref_primary_10_1128_JVI_03370_13 crossref_primary_10_1002_eji_201746959 crossref_primary_10_1016_j_fsi_2016_06_005 crossref_primary_10_1007_s40588_020_00150_8 crossref_primary_10_3389_fcimb_2022_937460 crossref_primary_10_3390_v14081808 crossref_primary_10_1128_mBio_00620_21 crossref_primary_10_3389_fimmu_2019_01024 crossref_primary_10_3390_v12101153 crossref_primary_10_1186_s12985_020_01357_3 crossref_primary_10_15252_embj_201593741 crossref_primary_10_1007_s00251_021_01238_1 crossref_primary_10_1089_vim_2022_0112 crossref_primary_10_1016_j_mib_2014_05_002 crossref_primary_10_3389_fmicb_2022_953738 crossref_primary_10_3390_v7072813 crossref_primary_10_1007_s11262_021_01876_3 crossref_primary_10_1128_JVI_00283_21 crossref_primary_10_1016_j_antiviral_2023_105641 crossref_primary_10_3389_fmicb_2021_628545 crossref_primary_10_3934_Allergy_2021006 crossref_primary_10_3390_pathogens13020127 crossref_primary_10_1016_j_it_2016_10_008 crossref_primary_10_1128_JVI_00999_19 crossref_primary_10_1186_s12985_016_0585_4 crossref_primary_10_1371_journal_ppat_1010505 crossref_primary_10_1016_j_virusres_2015_10_002 crossref_primary_10_1128_JVI_01567_14 crossref_primary_10_1186_s13567_018_0594_y crossref_primary_10_4049_jimmunol_1402777 crossref_primary_10_1016_j_jviromet_2023_114731 crossref_primary_10_1042_BCJ20170427 crossref_primary_10_3389_fimmu_2023_1323560 crossref_primary_10_3390_ijms22169094 crossref_primary_10_1080_23144599_2019_1637046 crossref_primary_10_1146_annurev_virology_100114_055249 crossref_primary_10_1371_journal_ppat_1003533 crossref_primary_10_1074_jbc_RA119_011410 crossref_primary_10_3390_pathogens11121521 crossref_primary_10_1101_cshperspect_a038414 crossref_primary_10_3389_fimmu_2024_1432743 crossref_primary_10_1016_j_bbrc_2017_05_146 crossref_primary_10_1016_j_virol_2015_02_017 crossref_primary_10_3390_microorganisms8091424 crossref_primary_10_1038_s41467_019_12632_5 crossref_primary_10_1128_JVI_01081_17 crossref_primary_10_3389_fmicb_2018_00303 crossref_primary_10_3390_ijms23158285 crossref_primary_10_1007_s11262_019_01673_z crossref_primary_10_1016_j_tim_2018_03_005 crossref_primary_10_1128_JVI_00126_14 crossref_primary_10_1016_j_tibs_2017_01_002 crossref_primary_10_3390_vetsci6010005 crossref_primary_10_2139_ssrn_3188495 crossref_primary_10_1089_dna_2014_2374 crossref_primary_10_1038_s41423_020_00602_7 crossref_primary_10_3390_v11111010 crossref_primary_10_1128_JVI_01430_15 crossref_primary_10_2217_fvl_14_89 crossref_primary_10_3389_fimmu_2017_01942 crossref_primary_10_1016_j_pharmthera_2017_10_020 crossref_primary_10_4161_viru_26360 crossref_primary_10_3389_fcimb_2020_00209 crossref_primary_10_1099_jgv_0_000509 crossref_primary_10_1371_journal_pone_0086968 crossref_primary_10_3389_fmicb_2021_794882 crossref_primary_10_1016_j_bpc_2024_107176 crossref_primary_10_1016_j_cyto_2019_154961 crossref_primary_10_1128_JVI_00454_20 crossref_primary_10_1128_JVI_02021_17 crossref_primary_10_1016_j_mib_2016_05_015 crossref_primary_10_1126_sciadv_abm5859 crossref_primary_10_3389_fimmu_2019_01586 crossref_primary_10_3389_fmicb_2020_517461 crossref_primary_10_1093_ve_veac074 crossref_primary_10_1016_j_virol_2015_02_033 crossref_primary_10_1038_nrmicro_2016_45 crossref_primary_10_1016_j_virol_2018_04_004 crossref_primary_10_1002_wrna_1588 crossref_primary_10_1128_JVI_01675_20 crossref_primary_10_1038_cr_2016_40 crossref_primary_10_1371_journal_ppat_1010835 crossref_primary_10_1080_08820139_2022_2113407 crossref_primary_10_3389_fimmu_2022_901913 crossref_primary_10_1101_cshperspect_a038620 crossref_primary_10_1128_JVI_00905_18 crossref_primary_10_1128_JVI_02097_17 crossref_primary_10_1111_cmi_12559 crossref_primary_10_1128_JVI_00149_18 crossref_primary_10_3389_fcimb_2022_998584 crossref_primary_10_3390_ijms241310495 crossref_primary_10_1371_journal_pone_0084673 crossref_primary_10_1089_vim_2024_0068 crossref_primary_10_3390_ijms18081673 crossref_primary_10_1016_j_cyto_2015_03_007 crossref_primary_10_1371_journal_pcbi_1008874 crossref_primary_10_1016_j_immuni_2024_03_003 crossref_primary_10_1016_j_vetmic_2020_108853 crossref_primary_10_1146_annurev_virology_092917_043323 crossref_primary_10_1073_pnas_1907031116 crossref_primary_10_1080_22221751_2022_2071175 crossref_primary_10_1371_journal_ppat_1008186 crossref_primary_10_3389_fmicb_2021_693204 crossref_primary_10_1002_hsr2_626 crossref_primary_10_1084_jem_20151531 crossref_primary_10_1038_s41577_020_0288_3 crossref_primary_10_1128_JVI_00830_14 crossref_primary_10_3390_v13071373 crossref_primary_10_1016_j_jmb_2018_10_003 crossref_primary_10_1016_j_virusres_2017_07_021 crossref_primary_10_3390_v12030338 crossref_primary_10_3389_fimmu_2020_00051 crossref_primary_10_1111_cmi_13150 crossref_primary_10_3390_v5061431 crossref_primary_10_1016_j_virol_2025_110456 crossref_primary_10_1128_JVI_00549_16 crossref_primary_10_1016_j_coviro_2015_01_007 crossref_primary_10_1016_j_coviro_2015_01_004 crossref_primary_10_1016_j_cytogfr_2014_08_005 crossref_primary_10_1099_vir_0_069542_0 crossref_primary_10_1099_vir_0_069914_0 crossref_primary_10_1016_j_cytogfr_2014_08_001 crossref_primary_10_3390_v12070755 crossref_primary_10_3390_v8100293 crossref_primary_10_3390_cells4030277 crossref_primary_10_3389_fimmu_2018_00323 crossref_primary_10_1007_s00705_021_05322_5 crossref_primary_10_1186_s13104_018_3779_6 crossref_primary_10_1183_09031936_00186214 crossref_primary_10_1371_journal_ppat_1012426 crossref_primary_10_1111_imm_13030 crossref_primary_10_1007_s00253_017_8433_z crossref_primary_10_1038_s41467_023_40469_6 crossref_primary_10_3389_fmicb_2020_583252 crossref_primary_10_1042_BJ20121425 crossref_primary_10_3390_v13030522 crossref_primary_10_1128_Spectrum_00734_21 crossref_primary_10_3390_v13112309 crossref_primary_10_1016_j_tim_2013_05_005 crossref_primary_10_3390_v14050906 crossref_primary_10_3390_pr8060719 crossref_primary_10_1021_acs_jproteome_7b00815 crossref_primary_10_1007_s12250_021_00410_x crossref_primary_10_3389_fimmu_2022_970750 crossref_primary_10_3390_cancers14092309 crossref_primary_10_1128_JVI_00120_16 crossref_primary_10_1016_j_dci_2013_04_010 crossref_primary_10_1093_abbs_gmu133 crossref_primary_10_1128_jvi_00776_22 crossref_primary_10_3389_fimmu_2017_00350 crossref_primary_10_1016_j_fsirep_2021_100012 crossref_primary_10_3389_fmicb_2018_02192 crossref_primary_10_1101_cshperspect_a038307 crossref_primary_10_1016_j_jprot_2019_01_012 crossref_primary_10_3389_fimmu_2017_00352 crossref_primary_10_3390_v13020182 |
Cites_doi | 10.1006/meth.2001.1262 10.1126/science.1213362 10.1371/journal.pone.0005760 10.1128/JVI.74.17.7989-7996.2000 10.1016/j.chom.2010.11.008 10.1038/41131 10.1016/j.vaccine.2007.03.046 10.1016/j.antiviral.2008.04.006 10.1074/jbc.M804259200 10.1353/bhm.2002.0022 10.1128/JVI.79.13.8431-8439.2005 10.1128/JVI.00879-10 10.1016/S0378-1135(00)00164-4 10.1128/JVI.79.12.7535-7543.2005 10.1016/j.cell.2006.02.015 10.1126/science.1125676 10.1371/journal.pone.0031839 10.1099/vir.0.82764-0 10.1016/S0042-6822(02)00127-7 10.1016/S0042-6822(03)00119-3 10.1165/rcmb.2006-0283RC 10.1016/j.chom.2009.04.006 10.1038/nature10831 10.1016/j.immuni.2005.04.010 10.1128/JVI.80.8.3957-3965.2006 10.1128/JVI.01265-06 10.1371/journal.ppat.1000745 10.1093/emboj/17.4.1087 10.1093/bioinformatics/btp033 10.1128/JVI.02323-08 10.1073/pnas.112338099 10.1016/0378-1119(91)90434-D 10.1016/S1097-2765(00)80099-4 10.1128/JVI.00081-10 10.1038/nature05732 10.1126/science.1132505 10.1073/pnas.1005077107 10.1128/JVI.77.2.1501-1511.2003 10.1126/science.1132998 10.1038/nature04946 10.1371/journal.ppat.1002067 10.1038/nrmicro2613 10.1111/j.1462-5822.2006.00841.x 10.1128/JVI.77.24.13257-13266.2003 10.1074/jbc.M110.112458 10.1006/viro.1998.9508 10.1099/vir.0.2008/004606-0 10.1128/JVI.73.11.9679-9682.1999 10.1016/j.chom.2010.05.009 10.1038/nature09907 10.1073/pnas.1001755107 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 Public Library of Science 2012 Rajsbaum et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, et al. (2012) Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathog 8(11): e1003059. doi:10.1371/journal.ppat.1003059 2012 Rajsbaum et al 2012 Rajsbaum et al |
Copyright_xml | – notice: COPYRIGHT 2012 Public Library of Science – notice: 2012 Rajsbaum et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, et al. (2012) Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathog 8(11): e1003059. doi:10.1371/journal.ppat.1003059 – notice: 2012 Rajsbaum et al 2012 Rajsbaum et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1003059 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
DocumentTitleAlternate | Species-Specific RIG-I Inhibition by Influenza NS1 |
EISSN | 1553-7374 |
ExternalDocumentID | 1289112477 oai_doaj_org_article_68e798ffdedb4154898c30314604fbb4 PMC3510253 2896693221 A312105706 23209422 10_1371_journal_ppat_1003059 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI046954 – fundername: NCRR NIH HHS grantid: RR00168 – fundername: NCRR NIH HHS grantid: K26 RR000168 – fundername: NIAID NIH HHS grantid: U19 AI083025 – fundername: NCRR NIH HHS grantid: P51 RR000168 – fundername: NIAID NIH HHS grantid: R01 AI087846 – fundername: NIAID NIH HHS grantid: HHSN266200700010C |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 3V. 7QL 7U9 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c727t-c33c889b0238a2f1b7e9678372547f6135bbcae734d7655a00087763d2c040e83 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:19 EDT 2023 Wed Aug 27 01:15:49 EDT 2025 Thu Aug 21 18:10:35 EDT 2025 Sun Aug 24 03:55:51 EDT 2025 Fri Jul 25 10:29:14 EDT 2025 Tue Jun 17 21:57:38 EDT 2025 Tue Jun 10 20:14:38 EDT 2025 Fri Jun 27 05:14:18 EDT 2025 Fri Jun 27 04:00:43 EDT 2025 Mon Jul 21 05:43:36 EDT 2025 Tue Jul 01 01:31:02 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c727t-c33c889b0238a2f1b7e9678372547f6135bbcae734d7655a00087763d2c040e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current address: Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain. Conceived and designed the experiments: RR MUG AGS. Performed the experiments: RR RAA MKW NPM MUG. Analyzed the data: RR MUG. Contributed reagents/materials/analysis tools: RAA GAV ENV. Wrote the paper: RR MUG AGS. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1003059 |
PMID | 23209422 |
PQID | 1289112477 |
PQPubID | 1436335 |
ParticipantIDs | plos_journals_1289112477 doaj_primary_oai_doaj_org_article_68e798ffdedb4154898c30314604fbb4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3510253 proquest_miscellaneous_1222235442 proquest_journals_1289112477 gale_infotracmisc_A312105706 gale_infotracacademiconefile_A312105706 gale_incontextgauss_ISR_A312105706 gale_incontextgauss_ISN_A312105706 pubmed_primary_23209422 crossref_citationtrail_10_1371_journal_ppat_1003059 crossref_primary_10_1371_journal_ppat_1003059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-01 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2012 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | V Hornung (ref22) 2006; 314 B Opitz (ref30) 2007; 9 AM Waterhouse (ref52) 2009; 25 R Medzhitov (ref20) 1997; 388 E Meylan (ref21) 2006; 442 J Talon (ref41) 2000; 74 NA Molinari (ref2) 2007; 25 NR Donelan (ref10) 2003; 77 JW Schoggins (ref17) 2011; 472 GK Geiss (ref11) 2002; 99 JK Taubenberger (ref3) 2010; 7 A Solorzano (ref14) 2005; 79 M Mibayashi (ref29) 2007; 81 M Imai (ref6) 2012; 486 A Baum (ref24) 2010; 107 KJ Livak (ref51) 2001; 25 MR Barber (ref39) 2010; 107 BG Hale (ref40) 2010; 84 H Kato (ref19) 2005; 23 H Oshiumi (ref27) 2010; 8 S Herfst (ref5) 2012; 336 ref8 H Oshiumi (ref26) 2009; 284 KY Twu (ref33) 2006; 80 A Garcia-Sastre (ref42) 1998; 252 MS Park (ref50) 2003; 77 RA Medina (ref9) 2011; 9 DL Noah (ref32) 2003; 307 Z Guo (ref28) 2007; 36 K Haye (ref44) 2009; 83 A Garcia-Sastre (ref16) 2006; 312 B Manicassamy (ref48) 2010; 6 CF Basler (ref4) 2008; 79 RM Krug (ref15) 2003; 309 IH Brown (ref7) 2000; 74 A Pichlmair (ref23) 2006; 314 MU Gack (ref25) 2007; 446 KM Graef (ref35) 2010; 84 D Gao (ref43) 2009; 4 NE Forbes (ref34) 2012; 7 ZT Varga (ref37) 2011; 7 NP Johnson (ref1) 2002; 76 G Kochs (ref13) 2007; 88 A Iwai (ref36) 2010; 285 BG Hale (ref12) 2008; 89 MU Gack (ref38) 2009; 5 S Akira (ref18) 2006; 124 M Yoneyama (ref46) 1998; 17 ME Nemeroff (ref31) 1998; 1 H Niwa (ref45) 1991; 108 M Quinlivan (ref47) 2005; 79 E Fodor (ref49) 1999; 73 |
References_xml | – volume: 25 start-page: 402 year: 2001 ident: ref51 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 336 start-page: 1534 year: 2012 ident: ref5 article-title: Airborne transmission of influenza A/H5N1 virus between ferrets publication-title: Science doi: 10.1126/science.1213362 – volume: 4 start-page: e5760 year: 2009 ident: ref43 article-title: REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I publication-title: PLoS One doi: 10.1371/journal.pone.0005760 – volume: 74 start-page: 7989 year: 2000 ident: ref41 article-title: Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein publication-title: J Virol doi: 10.1128/JVI.74.17.7989-7996.2000 – volume: 8 start-page: 496 year: 2010 ident: ref27 article-title: The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.11.008 – volume: 388 start-page: 394 year: 1997 ident: ref20 article-title: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity publication-title: Nature doi: 10.1038/41131 – volume: 25 start-page: 5086 year: 2007 ident: ref2 article-title: The annual impact of seasonal influenza in the US: measuring disease burden and costs publication-title: Vaccine doi: 10.1016/j.vaccine.2007.03.046 – volume: 79 start-page: 166 year: 2008 ident: ref4 article-title: Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses publication-title: Antiviral Res doi: 10.1016/j.antiviral.2008.04.006 – volume: 284 start-page: 807 year: 2009 ident: ref26 article-title: Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection publication-title: J Biol Chem doi: 10.1074/jbc.M804259200 – volume: 76 start-page: 105 year: 2002 ident: ref1 article-title: Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic publication-title: Bull Hist Med doi: 10.1353/bhm.2002.0022 – volume: 79 start-page: 8431 year: 2005 ident: ref47 article-title: Attenuation of equine influenza viruses through truncations of the NS1 protein publication-title: J Virol doi: 10.1128/JVI.79.13.8431-8439.2005 – volume: 84 start-page: 8433 year: 2010 ident: ref35 article-title: The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon publication-title: J Virol doi: 10.1128/JVI.00879-10 – volume: 74 start-page: 29 year: 2000 ident: ref7 article-title: The epidemiology and evolution of influenza viruses in pigs publication-title: Vet Microbiol doi: 10.1016/S0378-1135(00)00164-4 – volume: 79 start-page: 7535 year: 2005 ident: ref14 article-title: Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs publication-title: J Virol doi: 10.1128/JVI.79.12.7535-7543.2005 – volume: 124 start-page: 783 year: 2006 ident: ref18 article-title: Pathogen recognition and innate immunity publication-title: Cell doi: 10.1016/j.cell.2006.02.015 – volume: 312 start-page: 879 year: 2006 ident: ref16 article-title: Type 1 interferons and the virus-host relationship: a lesson in detente publication-title: Science doi: 10.1126/science.1125676 – volume: 7 start-page: e31839 year: 2012 ident: ref34 article-title: Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse publication-title: PLoS One doi: 10.1371/journal.pone.0031839 – volume: 88 start-page: 1403 year: 2007 ident: ref13 article-title: Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens publication-title: J Gen Virol doi: 10.1099/vir.0.82764-0 – volume: 307 start-page: 386 year: 2003 ident: ref32 article-title: Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS publication-title: Virology doi: 10.1016/S0042-6822(02)00127-7 – volume: 309 start-page: 181 year: 2003 ident: ref15 article-title: Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein publication-title: Virology doi: 10.1016/S0042-6822(03)00119-3 – volume: 36 start-page: 263 year: 2007 ident: ref28 article-title: NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2006-0283RC – volume: 5 start-page: 439 year: 2009 ident: ref38 article-title: Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.04.006 – volume: 486 start-page: 420 year: 2012 ident: ref6 article-title: Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets publication-title: Nature doi: 10.1038/nature10831 – volume: 23 start-page: 19 year: 2005 ident: ref19 article-title: Cell type-specific involvement of RIG-I in antiviral response publication-title: Immunity doi: 10.1016/j.immuni.2005.04.010 – volume: 80 start-page: 3957 year: 2006 ident: ref33 article-title: The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target publication-title: J Virol doi: 10.1128/JVI.80.8.3957-3965.2006 – volume: 81 start-page: 514 year: 2007 ident: ref29 article-title: Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus publication-title: J Virol doi: 10.1128/JVI.01265-06 – volume: 6 start-page: e1000745 year: 2010 ident: ref48 article-title: Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000745 – volume: 17 start-page: 1087 year: 1998 ident: ref46 article-title: Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300 publication-title: Embo J doi: 10.1093/emboj/17.4.1087 – volume: 25 start-page: 1189 year: 2009 ident: ref52 article-title: Jalview Version 2–a multiple sequence alignment editor and analysis workbench publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp033 – volume: 83 start-page: 6849 year: 2009 ident: ref44 article-title: The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells publication-title: J Virol doi: 10.1128/JVI.02323-08 – volume: 99 start-page: 10736 year: 2002 ident: ref11 article-title: Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.112338099 – volume: 108 start-page: 193 year: 1991 ident: ref45 article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector publication-title: Gene doi: 10.1016/0378-1119(91)90434-D – volume: 1 start-page: 991 year: 1998 ident: ref31 article-title: Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80099-4 – volume: 84 start-page: 6909 year: 2010 ident: ref40 article-title: Inefficient control of host gene expression by the 2009 pandemic H1N1 influenza A virus NS1 protein publication-title: J Virol doi: 10.1128/JVI.00081-10 – volume: 446 start-page: 916 year: 2007 ident: ref25 article-title: TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity publication-title: Nature doi: 10.1038/nature05732 – volume: 314 start-page: 994 year: 2006 ident: ref22 article-title: 5′-Triphosphate RNA is the ligand for RIG-I publication-title: Science doi: 10.1126/science.1132505 – volume: 107 start-page: 16303 year: 2010 ident: ref24 article-title: Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1005077107 – volume: 77 start-page: 1501 year: 2003 ident: ref50 article-title: Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins publication-title: J Virol doi: 10.1128/JVI.77.2.1501-1511.2003 – volume: 314 start-page: 997 year: 2006 ident: ref23 article-title: RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates publication-title: Science doi: 10.1126/science.1132998 – volume: 442 start-page: 39 year: 2006 ident: ref21 article-title: Intracellular pattern recognition receptors in the host response publication-title: Nature doi: 10.1038/nature04946 – volume: 7 start-page: e1002067 year: 2011 ident: ref37 article-title: The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002067 – volume: 9 start-page: 590 year: 2011 ident: ref9 article-title: Influenza A viruses: new research developments publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2613 – volume: 9 start-page: 930 year: 2007 ident: ref30 article-title: IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2006.00841.x – volume: 77 start-page: 13257 year: 2003 ident: ref10 article-title: A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice publication-title: J Virol doi: 10.1128/JVI.77.24.13257-13266.2003 – volume: 285 start-page: 32064 year: 2010 ident: ref36 article-title: Influenza A virus polymerase inhibits type I interferon induction by binding to interferon beta promoter stimulator 1 publication-title: J Biol Chem doi: 10.1074/jbc.M110.112458 – volume: 252 start-page: 324 year: 1998 ident: ref42 article-title: Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems publication-title: Virology doi: 10.1006/viro.1998.9508 – volume: 89 start-page: 2359 year: 2008 ident: ref12 article-title: The multifunctional NS1 protein of influenza A viruses publication-title: J Gen Virol doi: 10.1099/vir.0.2008/004606-0 – ident: ref8 – volume: 73 start-page: 9679 year: 1999 ident: ref49 article-title: Rescue of influenza A virus from recombinant DNA publication-title: J Virol doi: 10.1128/JVI.73.11.9679-9682.1999 – volume: 7 start-page: 440 year: 2010 ident: ref3 article-title: Influenza virus evolution, host adaptation, and pandemic formation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.05.009 – volume: 472 start-page: 481 year: 2011 ident: ref17 article-title: A diverse range of gene products are effectors of the type I interferon antiviral response publication-title: Nature doi: 10.1038/nature09907 – volume: 107 start-page: 5913 year: 2010 ident: ref39 article-title: Association of RIG-I with innate immunity of ducks to influenza publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1001755107 |
SSID | ssj0041316 |
Score | 2.5163877 |
Snippet | Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses... Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1003059 |
SubjectTerms | Animals Biology Chlorocebus aethiops DEAD Box Protein 58 DEAD-box RNA Helicases - genetics DEAD-box RNA Helicases - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Dogs Health aspects HeLa Cells Hogs Humans Immune response Infections Influenza Influenza A virus - genetics Influenza A virus - metabolism Influenza viruses Influenza, Human - genetics Influenza, Human - metabolism Interferon Interferons - biosynthesis Interferons - genetics Medicine Mice Mice, Knockout Microscopy Physiological aspects Proteins Receptors, Immunologic Swine Transcription Factors - genetics Transcription Factors - metabolism Tripartite Motif Proteins Ubiquitin-proteasome system Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination Vero Cells Viral Nonstructural Proteins - genetics Viral Nonstructural Proteins - metabolism Viral proteins Virulence (Microbiology) Viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEOXVhYIMQuJkuontODkuiKWLxB5aKvUW-RUaVCVLs6lUfj0zdnbVoKJeuNqTSJ4Ze75Jxt8Q8s7aWZJb6VkutGIitykzklvmMLdwxs5MuPX-bZUdnYqvZ_LsRqsvrAmL9MBRcYdZ7lWRV5XzzgjE10VuOXKuZzNRGROYQCHmbZOpeAbDyRyanmJTHKZ4lg2X5rhKDgcbfVivNdJHo8MXo6AUuPt3J_RkfdF2t8HPv6sob4SlxSPycMCTdB7XsUfu-eYxuR87TF4_IT9Df3nfMbxRiVVBtG7OaxPqtGhb0ePlF7akval_9TAWvwxS3Ti6XKxA1EVuWWquKQBFGAgdTX5rOqdX9WXf0dVJQgPVQ908JaeLz98_HbGhvQKzAFo2zHJu87wwGLV1WiVG-QJCF1eQM6oKwrw0xmqvuHAqk1IjXFBwHLnUws73OX9GJk3b-H1Cs8wrLYtEGKeFT7wx2kPqKW3qOAQ8MyV8q9_SDtzj2ALjogw_1BTkIFFdJVqlHKwyJWz31Dpyb9wh_xFNt5NF5uwwAP5UDv5U3uVPU_IWDV8iN0aDxTc_dN915fJkVc45sq1JNcv-KXQ8Eno_CFUtLNbq4cIDqAw5t0aSByNJ2OF2NL2PTrhdc1cCpoAYlQql4MmtY94-_WY3jS_FgrrGtz3KIDCUQqRT8jz68U5vALIh6U9hRo08fKTY8UxTnwdqcg5HfCr5i_9hiZfkAaDTNF78PCCTzWXvXwEC3JjXYbP_AafUVfU priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9MwFLegCIkL4nuFgQxC4mTWxHacnFBBlBWJCm0U7RbZjrNlmpKuaQ_jr-c9xw0EDThFsl-ixO_b8fs9Ql5bO4lSKx1LhVZMpDZmRnLLCswtCmMnxle9f1kkh0vx-USehA23Nhyr3NlEb6iLxuIe-QHYUdDLWCj1bnXJsGsU_l0NLTRuklsIXYZSrU76hAvss299iq1xmOJJEkrnuIoOAqferlYaQaRR7LOBa_II_r2dHq0umva6IPTPs5S_OafZPXI3RJV02onBfXLD1Q_I7a7P5NVDcu67zLuW-WtZWTqvzyrjT2vRpqRH809sTpemutzCWLc_SHVd0PlsQbG5hy9-oOaKQrgIA76vyQ9Np_R7td62dHEc0a8I-FDVj8hy9vHbh0MWmiwwC6HLhlnObZpmBn23jsvIKJeBA-MKMkdVgrOXxljtFBeFSqTUGDQoMEpFbEH_Xcofk1Hd1G6P0CRxSsssEqbQwkXOGO0gAZU2Lji4PTMmfLe-uQ0I5NgI4yL3v9UUZCLdcuXIlTxwZUxYf9eqQ-D4D_17ZF1Pi_jZfqBZn-ZBHfMkdSpLy7JwhRGYtWWp5Yjkn0xEaYwYk1fI-BwRMmo8gnOqt22bz48X-ZQj5ppUk-SvREcDojeBqGzgY60OZQ-wZIi8NaDcH1CCntvB9B4K4e6b2_yXRsCdO8G8fvplP40PxWN1tWu2SIPhoRQiHpMnnRz36wahNqT-McyogYQPFnY4U1dnHqCcg6GPJX_679d6Ru5A9Bl3hZ37ZLRZb91ziPA25oVX458oJ0y_ priority: 102 providerName: ProQuest |
Title | Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23209422 https://www.proquest.com/docview/1289112477 https://www.proquest.com/docview/1222235442 https://pubmed.ncbi.nlm.nih.gov/PMC3510253 https://doaj.org/article/68e798ffdedb4154898c30314604fbb4 http://dx.doi.org/10.1371/journal.ppat.1003059 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZtysZextZdmq0L2hjsySW2ZMt-GCMdzZpBQkmXkTcjyXLrEZw0TmDZr9858oV5pAz2ZJCODD46OhdL-j5C3mvdd0PtGyfkUjg81J6jfKadBGuLROm-srfex5Pgcsa_zv35Aak5WysFFntLO-STmq0XZz_vdp9gwX-0rA3CrQedrVYSAaHRhKNDcgSxSSCnwZg3-wrgsS0ZKpLlOIIFQXWZ7r63IFQw86AC8rxW3LLw_o0T76wWy2Jfhvr3Qcs_ItfwCXlcpZx0UNrIU3Jg8mPyoCSh3B2Th-Nqe_0Z-WHZ6E3h2GeaaTrKbzNlT3XRZUqnoy_OiM5UdreFtvI_IpV5QkfDCUUSEHtJgqodhbQSGiz_yS9JB_R7tt4WdHLt0isEhsjy52Q2vPj2-dKpyBgcDSnOxtGM6TCMFMZ46aWuEiaCQMcEVJgihaTAV0pLIxhPROD7EpMLAc4r8TT4CROyF6STL3NzQmgQGCH9yOUqkdy4RilpoFD1tZcwCI-qS1it6lhXSOVImLGI7fabgIql1FyMcxVXc9UlTjNqVSJ1_EP-HGexkUWcbduwXN_E1bKNg9CIKEzTxCSKY3UXhZoh4n_Q56lSvEveoQ3EiKSR41GdG7ktinh0PYkHDLHZfNEP7hWatoQ-VELpEj5Wy-p6BKgMEbpakqctSfAHutV9gvZYf3MRQwYCEc3jQsDI2kb3d79tuvGlePwuN8stymAa6XPudcnL0qQbvdULpEtEy9hbim335NmtBTJnEBA8n73675GvySNIYL3ybugp6WzWW_MGksSN6pFDMRc9cnR-Mbma9uyvlp71Bb8BcDRmdw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAQXxLuBAgsCcTK1vWuvfUAoPEJN2wi1DcrNeNfr1qiy0zgRCj-K38jM-gFGBU49RdodW_HsPO2Z-Qh5ppTtBMrTVsATYfFAuZb0mLJSzC1SqWxput73J_7OlH-cebMN8qPthcGyytYmGkOdlgrfkW-DHQW9dLkQr-dnFqJG4dfVFkKjFotdvf4GKVv1KnoH5_vcdcfvj97uWA2qgKXAVy8txZgKglCis0rczJFCh2CxmYBUSWTg3TwpVaIF46nwPS9BLylAC1NXgcDrgMF9L5HL4HhtTPbErEvwwB8YqFWE4rEE8_2mVY8JZ7uRjJfzeYJDq1HNwp4rNIgBnV8YzE_L6ryg98_azd-c4fgGud5EsXRUi91NsqGLW-RKjWu5vk2-GlR7XVnmN8sVjYqTXJrqMFpm9CD6YEV0KvOzFazV7yNpUqQ0Gk8ogomYZgsq1xTCU1gwOCrfEzqin_PFqqKTQ4d-wgETeXGHTC-E_XfJoCgLvUmo72uReKHDZZpw7WgpEw0Jr6fclIGblUPCWv7Gqpl4jsAbp7H5jCcg86nZFeOpxM2pDInVXTWvJ378h_4NHl1Hi_O6zUK5OI4b9Y_9QIswyLJUp5JjlhgGiiFygG_zTEo-JE_x4GOcyFFgyc9xsqqqODqcxCOGM948Yft_JTroEb1oiLISHlYlTZsFsAwnffUot3qUYFdUb3sThbB95ir-pYFwZSuY528_6bbxpljGV-hyhTQYjnqcu0Nyr5bjjm8Q2tshd2FH9CS8x9j-TpGfmIHoDByL67H7__5bj8nVnaP9vXgvmuw-INcg8nXrptItMlguVvohRJdL-cioNCVfLtqG_ATKb4cy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviO8VBhgE4im0iZ04eUCoYysLg6jaKNpbsB1nC5qSrmmFyp_GX8ddPgpBA572VMm-RI3vfL-7xHc_Qp5rPbR97RrL51JY3NeOpVymrQRzi0Tpoaqq3j9G3v6Uvz92jzfIj7YWBo9Vtj6xctRJofEd-QD8KOxLhwsxSJtjEZPd8ZvZuYUMUviltaXTqE3kwKy-QfpWvg53QdcvHGe89-ntvtUwDFgacHthaca07wcKgUs6qa2ECcB7MwFpk0gB6VyltDSC8UR4risRMQXsyMTRYPzGZ3DfK2RTYFbUI5s7e9HksMUBQIeKeBWJeSzBPK8p3GPCHjR28mo2k9jCGjdd0AHGij9gjRK92VlRXhQC_3mS8zdoHN8kN5qYlo5qI7xFNkx-m1ytWS5Xd8jXiuPelFb1m2aahvlppqqzYrRI6WH4zgrpVGXnSxir305SmSc0HEcUqUWq0guqVhSCVRioWFW-Szqin7P5sqTRkU0n2G4iy--S6aUo4B7p5UVutgj1PCOkG9hcJZIb2yglDaS_rnYSBqCr-oS16xvrpv850nCcxdVHPQF5UL1cMWolbrTSJ9b6qlnd_-M_8juourUsdu-uBor5Sdw4g9jzjQj8NE1MojjmjIGvGfIIeEOeKsX75BkqPsb-HDla-olclmUcHkXxiGHHN1cMvb8KHXaEXjZCaQEPq2VTdAFLhn2_OpLbHUnwMrozvYVG2D5zGf_aj3Bla5gXTz9dT-NN8VBfboolymBw6nLu9Mn92o7X6waB_jDgDsyIjoV3FrY7k2enVXt0BjDjuOzBv__WE3IN_Ef8IYwOHpLrEAY7dYXpNukt5kvzCELNhXrc7GlKvly2G_kJHiWMzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species-Specific+Inhibition+of+RIG-I+Ubiquitination+and+IFN+Induction+by+the+Influenza+A+Virus+NS1+Protein&rft.jtitle=PLoS+pathogens&rft.au=Rajsbaum%2C+Ricardo&rft.au=Albrecht%2C+Randy+A.&rft.au=Wang%2C+May+K.&rft.au=Maharaj%2C+Natalya+P.&rft.date=2012-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=8&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.ppat.1003059&rft_id=info%3Apmid%2F23209422&rft.externalDocID=PMC3510253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |