Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels

We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise ce...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 30; no. 5; pp. 721 - 729
Main Authors Krsko, Peter, McCann, Thomas E., Thach, Thu-Trang, Laabs, Tracy L., Geller, Herbert M., Libera, Matthew R.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.02.2009
Subjects
Online AccessGet full text
ISSN0142-9612
1878-5905
1878-5905
DOI10.1016/j.biomaterials.2008.10.011

Cover

Abstract We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.
AbstractList We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.
We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.
Abstract We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.
We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes – axons – but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of cell-repulsive poly(ethylene glycol) [PEG] nanohydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual nanohydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual nanohydrogels was increased, patterns were identified where axons could grow on the adhesive surface between nanohydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher nanohydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of nanoscale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.
Author Libera, Matthew R.
Krsko, Peter
Thach, Thu-Trang
Geller, Herbert M.
Laabs, Tracy L.
McCann, Thomas E.
AuthorAffiliation 1 Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030
3 Developmental Neurobiology Section, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
AuthorAffiliation_xml – name: 3 Developmental Neurobiology Section, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
– name: 1 Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030
Author_xml – sequence: 1
  givenname: Peter
  surname: Krsko
  fullname: Krsko, Peter
  organization: Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
– sequence: 2
  givenname: Thomas E.
  surname: McCann
  fullname: McCann, Thomas E.
  organization: Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 3
  givenname: Thu-Trang
  surname: Thach
  fullname: Thach, Thu-Trang
  organization: Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 4
  givenname: Tracy L.
  surname: Laabs
  fullname: Laabs, Tracy L.
  organization: Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 5
  givenname: Herbert M.
  surname: Geller
  fullname: Geller, Herbert M.
  organization: Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 6
  givenname: Matthew R.
  surname: Libera
  fullname: Libera, Matthew R.
  email: mlibera@stevens.edu
  organization: Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19026443$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFr4AiDogesthO7DgcKqD8lVbiAJwtx5lsvHjtrZ20yrevoy1VqYS6J8ueNz-_0bwTdOS8A4ReEbwkmPC3m2Vj_FYNEIyycUkxFqmwxIQ8QQsiKpGzGrMjtMCkpHnNCT1GJzFucLrjkj5Dx6TGlJdlsUDXK3Droc-jVhayLbQmcdtMtT1E412mXJu1JoCeX9fBXw995rvMwRiUzTRYG7NmyuIYOqUh36kh2XJJu_N2egNDP1lwkK3tpL09y_qpDX4NNj5HT7tkHl7cnqfo95fPvy6-5asfX79ffFjluqLVkKtO8LYiXVuJjjcad2XLRQ0lI6zu6lrXJe1A17hRjItSEU5YI5ioGCsUJaotTtH5nrsbmzSdBjck43IXzFaFSXpl5L8VZ3q59leyoIJywhPg9S0g-MsR4iC3Js5zKwd-jJLzqhQFZY8KC1YyzoR4VEgxrSjnNAlf3vd-Z_rv9pLg_V6gg48xQCe1GdSQ9pZGMVYSLOfAyI28Hxg5B2aupcAkxLsHiLtfDmn-tG9OC4UrA0FGbcBp2CdGtt4chjl_gNHWOJMS-QcmiBs_Bjf3EBmpxPLnHOs51VhgXNWiToCP_wcc6uIG5jESrw
CitedBy_id crossref_primary_10_1007_s12975_018_0655_6
crossref_primary_10_1039_c0jm04335d
crossref_primary_10_3390_ma14247652
crossref_primary_10_1021_acs_langmuir_7b03132
crossref_primary_10_1039_c1sm06702h
crossref_primary_10_1098_rsfs_2013_0041
crossref_primary_10_1016_j_mtchem_2018_02_004
crossref_primary_10_1039_b914279g
crossref_primary_10_1002_smll_201201774
crossref_primary_10_1088_0960_1317_25_12_125001
crossref_primary_10_1021_acsami_5b05383
crossref_primary_10_1021_cm202669f
crossref_primary_10_1160_TH13_09_0752
crossref_primary_10_1002_term_520
crossref_primary_10_1039_C5TB01370D
crossref_primary_10_1016_j_actbio_2010_02_018
crossref_primary_10_1016_j_cap_2014_02_023
crossref_primary_10_1007_s10544_010_9448_8
crossref_primary_10_1021_acsami_8b16232
crossref_primary_10_1039_c0jm00734j
crossref_primary_10_1016_j_biomaterials_2010_01_020
crossref_primary_10_1002_adfm_201100659
crossref_primary_10_1002_jbm_a_35738
crossref_primary_10_1016_j_jcis_2022_02_047
crossref_primary_10_14233_ajchem_2021_23124
crossref_primary_10_1002_adma_201000468
crossref_primary_10_1517_17460441_2010_489606
crossref_primary_10_1021_cn200030w
crossref_primary_10_1109_RBME_2021_3056455
crossref_primary_10_1142_S1793984410000055
crossref_primary_10_1002_adhm_201500427
crossref_primary_10_3390_fermentation1010038
crossref_primary_10_1039_c2sm07075h
crossref_primary_10_1016_j_colsurfb_2012_01_024
crossref_primary_10_1016_j_procbio_2022_04_009
crossref_primary_10_4103_1673_5374_208597
crossref_primary_10_1016_j_colsurfb_2009_11_013
crossref_primary_10_1080_01616412_2016_1248626
crossref_primary_10_1039_C4TB00585F
crossref_primary_10_1021_ja205524x
crossref_primary_10_1002_smll_201102405
crossref_primary_10_1021_acsami_6b07730
crossref_primary_10_1155_2018_7848901
crossref_primary_10_1002_asia_201801333
crossref_primary_10_1002_bit_23284
crossref_primary_10_1016_j_progpolymsci_2013_11_006
crossref_primary_10_1021_la201595e
crossref_primary_10_1016_j_jare_2013_07_006
crossref_primary_10_1515_polyeng_2019_0290
crossref_primary_10_1002_polb_23367
crossref_primary_10_1021_acsami_6b09393
crossref_primary_10_1016_j_cis_2020_102316
crossref_primary_10_1002_mabi_201100235
crossref_primary_10_3390_polym12051146
crossref_primary_10_1021_acs_biomac_8b00264
crossref_primary_10_3390_gels7030084
crossref_primary_10_1016_j_actbio_2012_03_033
crossref_primary_10_1016_j_eurpolymj_2018_08_002
crossref_primary_10_1021_am5023946
Cites_doi 10.1242/jcs.105.1.203
10.1002/glia.20537
10.1016/S1369-7021(05)71223-2
10.1016/S0361-9230(99)00072-6
10.1016/j.biomaterials.2008.03.042
10.1063/1.329366
10.1016/j.jneumeth.2004.01.011
10.1242/jcs.108.8.2747
10.1089/10763270152044125
10.1016/S0142-9612(03)00116-9
10.1016/S0014-4886(03)00253-X
10.1006/exnr.2002.7865
10.1114/B:ABME.0000036648.68804.e7
10.1016/j.biomaterials.2008.04.004
10.1016/S0142-9612(00)00352-5
10.1021/la034157r
10.1088/1741-2560/1/2/003
10.1021/la048651m
10.1126/science.276.5317.1425
10.1007/s10439-007-9348-0
10.1089/ten.2005.11.1085
10.1016/j.expneurol.2007.06.023
10.1016/j.biomaterials.2005.07.047
10.1016/j.biomaterials.2006.07.043
10.1016/j.biomaterials.2005.12.024
10.1166/jnn.2007.675
10.1002/neu.480080503
10.1016/j.brainresrev.2004.11.002
10.1021/bp980031m
10.1016/S0142-9612(98)00026-X
10.1242/jcs.107.6.1687
10.1016/S0142-9612(02)00427-1
10.1002/jbm.820290211
10.1016/S0165-0270(98)00154-X
10.1016/0012-1606(75)90379-6
10.1016/j.biomaterials.2006.07.021
10.1002/jbm.a.30520
10.1242/jcs.110.23.2915
10.1021/la0531493
10.1016/j.mcna.2007.04.005
10.1016/j.biomaterials.2007.08.034
10.1016/S0142-9612(01)00199-5
10.1016/j.jneumeth.2007.06.006
10.1016/0142-9612(92)90160-P
10.1682/JRRD.2003.08.0055
10.1038/37776
10.1007/s10439-005-9006-3
10.1016/j.actbio.2008.08.025
10.1146/annurev.bioeng.5.011303.120731
10.1007/s10439-005-1740-z
10.1111/j.1460-9568.1994.tb01011.x
10.1002/(SICI)1097-4636(20000615)50:4<465::AID-JBM1>3.0.CO;2-K
10.1016/j.biomaterials.2003.11.045
10.1016/j.biomaterials.2004.04.046
10.1089/neu.2006.23.371
10.1039/b611000b
10.1163/156856200743869
10.1038/35039559
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
5PM
DOI 10.1016/j.biomaterials.2008.10.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic




MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 729
ExternalDocumentID PMC3282616
19026443
10_1016_j_biomaterials_2008_10_011
S0142961208007989
1_s2_0_S0142961208007989
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA HL006021
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c727t-af86d71fd78f6bc0f4d689e45159f99c942fec90ba5684a1615b8587553a21ad3
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Thu Aug 21 18:34:37 EDT 2025
Fri Sep 05 05:27:43 EDT 2025
Fri Sep 05 05:13:34 EDT 2025
Thu Sep 04 20:19:47 EDT 2025
Fri May 30 10:59:47 EDT 2025
Tue Jul 01 03:47:17 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Fri Feb 23 02:17:11 EST 2024
Sun Feb 23 10:19:01 EST 2025
Tue Aug 26 16:33:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Micropatterning
Hydrogel
Astrocyte
Polyethylene oxide
Nerve regeneration
Cell adhesion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c727t-af86d71fd78f6bc0f4d689e45159f99c942fec90ba5684a1615b8587553a21ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Present address: Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3282616
PMID 19026443
PQID 20272662
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282616
proquest_miscellaneous_66748325
proquest_miscellaneous_35456588
proquest_miscellaneous_20272662
pubmed_primary_19026443
crossref_citationtrail_10_1016_j_biomaterials_2008_10_011
crossref_primary_10_1016_j_biomaterials_2008_10_011
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2008_10_011
elsevier_clinicalkeyesjournals_1_s2_0_S0142961208007989
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2008_10_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-02-01
PublicationDateYYYYMMDD 2009-02-01
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Shi (bib62) 2007; 165
Morra (bib56) 2000; 11
Martinoia, Bove, Tedesco, Margesin, Grattarola (bib31) 1999; 87
Biran, Noble, Tresco (bib61) 2003; 184
Smith-Thomas, Fok-Seang, Stevens, Du, Muir, Faissner (bib38) 1994; 107
Schmalenberg, Uhrich (bib22) 2005; 26
Rajnicek, McCaig (bib15) 1997; 110
Dowell-Mesfin, Abdul-Karim, Turner, Schanz, Craighead, Roysam (bib57) 2004; 1
Gris, Tighe, Levin, Sharma, Brown (bib49) 2007; 55
Geller, Fawcett (bib10) 2002; 174
Letourneau (bib20) 1975; 44
Gomez, Lu, Chen, Schmidt (bib58) 2007; 28
Lee, Moon, West (bib7) 2008; 29
Fawcett (bib48) 2006; 23
Golden, Pearse, Blits, Garg, Oudega, Wood (bib13) 2007; 207
Scott (bib39) 1977; 8
Chang, Brewer, Wheeler (bib60) 2003; 24
Krsko, Libera (bib51) 2005; 8
Sniadecki, Desai, Ruiz, Chen (bib8) 2006; 34
Christman, Enriquez-Rios, Maynard (bib3) 2006; 2
Zhang, Yan, Wen (bib28) 2005; 49
Bunge, Pearse (bib12) 2003; 40
Saneinejad, Shoichet (bib21) 2000; 50
Fawcett, Asher (bib14) 1999; 49
Kim, Haftel, Kumar, Bellamkonda (bib33) 2008; 29
.
Walsh, Manwaring, Tresco (bib59) 2005; 11
Smeal, Rabbitt, Biran, Tresco (bib16) 2005; 33
Gunawan, Silvestre, Gaskins, Kenis, Leckband (bib6) 2006; 2006
Dalby, Childs, Riehle, Johnstone, Affrossman, Curtis (bib4) 2003; 24
Johansson, Carlberg, Danielsen, Montelius, Kanje (bib19) 2006; 27
Sanjana, Fuller (bib32) 2004; 136
Schmidt, Leach (bib11) 2003; 5
Rasband (bib40) 1997–2008
Drumheller, Hubbell (bib55) 1995; 29
Wen, Tresco (bib17) 2006; 76
Desai, Hossainy, Hubbell (bib53) 1992; 13
Sorribas, Padeste, Tiefenauer (bib24) 2002; 23
Thompson, Buettner (bib25) 2001; 7
Ellis-Behnke (bib9) 2007; 91
Davies, Fitch, Memberg, Hall, Raisman, Silver (bib45) 1997; 390
Clark, Britland, Connolly (bib18) 1993; 105
Rai-Choudary (bib37) 1997
Recknor, Recknor, Sakaguchi, Mallapragada (bib43) 2004; 25
Sorenson, Alekseeva, Katechia, Robertson, Riehle, Barnett (bib46) 2007; 28
Murata, Kyser, Ting (bib36) 1981; 52
Thompson, Buettner (bib26) 2004; 32
Krsko P, Kaplan J, Libera M. Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels. Acta Biomaterialia, in press.
Zhang, Venkataramani, Xu, Song, Song, Palmore (bib27) 2006; 27
Chen, Mrksich, Huang, Whitesides, Ingber (bib2) 1998; 14
Fromherz, Schaden (bib29) 1994; 6
Song, Uhrich (bib23) 2006; 35
Krsko, Sukhishvili, Mansfield, Clancy, Libera (bib35) 2003; 19
Miller (bib47) 2006
Hong, Krsko, Libera (bib41) 2004; 20
Chen, Mrksich, Huang, Whitesides, Ingber (bib1) 1997; 276
Kam, Shain, Turner, Bizios (bib30) 2001; 22
Saaem, Papasotiropoulos, Wang, Soteropoulos, Libera (bib42) 2007; 7
Webb, Clark, Skepper, Compston, Wood (bib44) 1995; 108
Krsko, Saaem, Clancy, Geller, Soteropoulos, Libera (bib34) 2005
Horner, Gage (bib50) 26 October 2000; 407
Zhang, Desai, Ferrari (bib52) 1998; 19
Falconnet, Csucs, Grandin, Textor (bib5) 2006; 27
Desai (10.1016/j.biomaterials.2008.10.011_bib53) 1992; 13
Miller (10.1016/j.biomaterials.2008.10.011_bib47) 2006
Gris (10.1016/j.biomaterials.2008.10.011_bib49) 2007; 55
10.1016/j.biomaterials.2008.10.011_bib54
Fromherz (10.1016/j.biomaterials.2008.10.011_bib29) 1994; 6
Davies (10.1016/j.biomaterials.2008.10.011_bib45) 1997; 390
Walsh (10.1016/j.biomaterials.2008.10.011_bib59) 2005; 11
Sorenson (10.1016/j.biomaterials.2008.10.011_bib46) 2007; 28
Saaem (10.1016/j.biomaterials.2008.10.011_bib42) 2007; 7
Horner (10.1016/j.biomaterials.2008.10.011_bib50) 2000; 407
Hong (10.1016/j.biomaterials.2008.10.011_bib41) 2004; 20
Smeal (10.1016/j.biomaterials.2008.10.011_bib16) 2005; 33
Sorribas (10.1016/j.biomaterials.2008.10.011_bib24) 2002; 23
Schmidt (10.1016/j.biomaterials.2008.10.011_bib11) 2003; 5
Krsko (10.1016/j.biomaterials.2008.10.011_bib34) 2005
Rasband (10.1016/j.biomaterials.2008.10.011_bib40) 1997
Johansson (10.1016/j.biomaterials.2008.10.011_bib19) 2006; 27
Recknor (10.1016/j.biomaterials.2008.10.011_bib43) 2004; 25
Fawcett (10.1016/j.biomaterials.2008.10.011_bib48) 2006; 23
Zhang (10.1016/j.biomaterials.2008.10.011_bib52) 1998; 19
Falconnet (10.1016/j.biomaterials.2008.10.011_bib5) 2006; 27
Smith-Thomas (10.1016/j.biomaterials.2008.10.011_bib38) 1994; 107
Martinoia (10.1016/j.biomaterials.2008.10.011_bib31) 1999; 87
Song (10.1016/j.biomaterials.2008.10.011_bib23) 2006; 35
Zhang (10.1016/j.biomaterials.2008.10.011_bib27) 2006; 27
Krsko (10.1016/j.biomaterials.2008.10.011_bib35) 2003; 19
Letourneau (10.1016/j.biomaterials.2008.10.011_bib20) 1975; 44
Saneinejad (10.1016/j.biomaterials.2008.10.011_bib21) 2000; 50
Kim (10.1016/j.biomaterials.2008.10.011_bib33) 2008; 29
Morra (10.1016/j.biomaterials.2008.10.011_bib56) 2000; 11
Gunawan (10.1016/j.biomaterials.2008.10.011_bib6) 2006; 2006
Rajnicek (10.1016/j.biomaterials.2008.10.011_bib15) 1997; 110
Chen (10.1016/j.biomaterials.2008.10.011_bib2) 1998; 14
Sniadecki (10.1016/j.biomaterials.2008.10.011_bib8) 2006; 34
Murata (10.1016/j.biomaterials.2008.10.011_bib36) 1981; 52
Webb (10.1016/j.biomaterials.2008.10.011_bib44) 1995; 108
Golden (10.1016/j.biomaterials.2008.10.011_bib13) 2007; 207
Sanjana (10.1016/j.biomaterials.2008.10.011_bib32) 2004; 136
Clark (10.1016/j.biomaterials.2008.10.011_bib18) 1993; 105
Chang (10.1016/j.biomaterials.2008.10.011_bib60) 2003; 24
Ellis-Behnke (10.1016/j.biomaterials.2008.10.011_bib9) 2007; 91
Krsko (10.1016/j.biomaterials.2008.10.011_bib51) 2005; 8
Drumheller (10.1016/j.biomaterials.2008.10.011_bib55) 1995; 29
Fawcett (10.1016/j.biomaterials.2008.10.011_bib14) 1999; 49
Dowell-Mesfin (10.1016/j.biomaterials.2008.10.011_bib57) 2004; 1
Dalby (10.1016/j.biomaterials.2008.10.011_bib4) 2003; 24
Zhang (10.1016/j.biomaterials.2008.10.011_bib28) 2005; 49
Bunge (10.1016/j.biomaterials.2008.10.011_bib12) 2003; 40
Wen (10.1016/j.biomaterials.2008.10.011_bib17) 2006; 76
Thompson (10.1016/j.biomaterials.2008.10.011_bib26) 2004; 32
Rai-Choudary (10.1016/j.biomaterials.2008.10.011_bib37) 1997
Schmalenberg (10.1016/j.biomaterials.2008.10.011_bib22) 2005; 26
Kam (10.1016/j.biomaterials.2008.10.011_bib30) 2001; 22
Thompson (10.1016/j.biomaterials.2008.10.011_bib25) 2001; 7
Chen (10.1016/j.biomaterials.2008.10.011_bib1) 1997; 276
Geller (10.1016/j.biomaterials.2008.10.011_bib10) 2002; 174
Christman (10.1016/j.biomaterials.2008.10.011_bib3) 2006; 2
Lee (10.1016/j.biomaterials.2008.10.011_bib7) 2008; 29
Scott (10.1016/j.biomaterials.2008.10.011_bib39) 1977; 8
Li (10.1016/j.biomaterials.2008.10.011_bib62) 2007; 165
Gomez (10.1016/j.biomaterials.2008.10.011_bib58) 2007; 28
Biran (10.1016/j.biomaterials.2008.10.011_bib61) 2003; 184
References_xml – volume: 34
  start-page: 59
  year: 2006
  end-page: 74
  ident: bib8
  article-title: Nanotechnology for cell-substrate interactions
  publication-title: Annals of Biomedical Engineering
– volume: 91
  start-page: 937
  year: 2007
  end-page: 962
  ident: bib9
  article-title: Nano neurology and the four P's of central nervous system regeneration: preserve, permit, promote, plasticity
  publication-title: Medical Clinics of North America
– volume: 52
  start-page: 4396
  year: 1981
  end-page: 4405
  ident: bib36
  article-title: Monte Carlo simulation of fast secondary electron production in electron beam resists
  publication-title: Journal of Applied Physics
– volume: 2
  start-page: 928
  year: 2006
  end-page: 939
  ident: bib3
  article-title: Nanopatterning proteins and peptides
  publication-title: Soft Matter
– volume: 24
  start-page: 927
  year: 2003
  end-page: 935
  ident: bib4
  article-title: Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time
  publication-title: Biomaterials
– volume: 11
  start-page: 1085
  year: 2005
  end-page: 1094
  ident: bib59
  article-title: Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates
  publication-title: Tissue Engineering
– volume: 1
  start-page: 78
  year: 2004
  end-page: 90
  ident: bib57
  article-title: Topographically modified surfaces affect orientation and growth of hippocampal neurons
  publication-title: Journal of Neural Engineering
– volume: 24
  start-page: 2863
  year: 2003
  end-page: 2870
  ident: bib60
  article-title: A modified microstamping technique enhances polylysine transfer and neuronal cell patterning
  publication-title: Biomaterials
– year: 1997–2008
  ident: bib40
  article-title: ImageJ
– volume: 35
  start-page: 1812
  year: 2006
  end-page: 1820
  ident: bib23
  article-title: Optimal micropattern dimensions enhance neurite outgrowth rates, lengths, and orientations
  publication-title: Annals of Biomedical Engineering
– volume: 28
  start-page: 271
  year: 2007
  end-page: 284
  ident: bib58
  article-title: Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture
  publication-title: Biomaterials
– volume: 33
  start-page: 376
  year: 2005
  end-page: 382
  ident: bib16
  article-title: Substrate curvature influences the direction of nerve outgrowth
  publication-title: Annals of Biomedical Engineering
– year: 1997
  ident: bib37
  article-title: Handbook of microlithography, micromaching, and microfabrication: volume I
– volume: 390
  start-page: 680
  year: 1997
  end-page: 683
  ident: bib45
  article-title: Regeneration of adult axons in white matter tracts of the central nervous system
  publication-title: Nature
– volume: 108
  start-page: 2747
  year: 1995
  end-page: 2760
  ident: bib44
  article-title: Guidance of oligodendrocytes and their progenitors by substratum topography
  publication-title: Journal of Cell Science
– volume: 23
  start-page: 371
  year: 2006
  end-page: 383
  ident: bib48
  article-title: Overcoming inhibition in the damaged spinal cord
  publication-title: Journal of Neurotrauma
– volume: 5
  start-page: 293
  year: 2003
  end-page: 347
  ident: bib11
  article-title: Neural tissue engineering: strategies for repair and regeneration
  publication-title: Annual Review of Biomedical Engineering
– volume: 105
  start-page: 203
  year: 1993
  end-page: 212
  ident: bib18
  article-title: Growth cone guidance and neuron morphology on micropatterned laminin surfaces
  publication-title: J Cell Sci
– volume: 276
  start-page: 1425
  year: 1997
  end-page: 1428
  ident: bib1
  article-title: Geometric control of cell life and death
  publication-title: Science
– volume: 13
  start-page: 417
  year: 1992
  end-page: 420
  ident: bib53
  article-title: Surface-immobilized polyethylene oxide for bacterial repellence
  publication-title: Biomaterials
– volume: 20
  start-page: 11123
  year: 2004
  end-page: 11126
  ident: bib41
  article-title: Protein surface patterning using nanoscale PEG hydrogels
  publication-title: Langmuir
– volume: 19
  start-page: 953
  year: 1998
  end-page: 960
  ident: bib52
  article-title: Proteins and cells on PEG immobilized silicon surfaces
  publication-title: Biomaterials
– volume: 29
  start-page: 3117
  year: 2008
  end-page: 3127
  ident: bib33
  article-title: The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps
  publication-title: Biomaterials
– volume: 32
  start-page: 1120
  year: 2004
  end-page: 1130
  ident: bib26
  article-title: Oriented Schwann cell monolayers for directed neurite outgrowth
  publication-title: Annals of Biomedical Engineering
– volume: 29
  start-page: 2962
  year: 2008
  end-page: 2968
  ident: bib7
  article-title: Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration
  publication-title: Biomaterials
– volume: 8
  start-page: 36
  year: 2005
  end-page: 44
  ident: bib51
  article-title: Bio-interactive hydrogels
  publication-title: Materials Today
– start-page: 5
  year: 2006
  ident: bib47
  article-title: Building bridges with astrocytes for spinal cord repair
  publication-title: Journal of Biology
– volume: 207
  start-page: 203
  year: 2007
  end-page: 217
  ident: bib13
  article-title: Transduced Schwann cells promote axon growth and myelination after spinal cord injury
  publication-title: Experimental Neurology
– reference: .
– volume: 165
  start-page: 257
  year: 2007
  end-page: 264
  ident: bib62
  article-title: Fabrication of patterned multi-walled poly-
  publication-title: Journal of Neuroscience Methods
– volume: 110
  start-page: 2915
  year: 1997
  end-page: 2924
  ident: bib15
  article-title: Guidance of CNS growth cones by substratum grooves and ridges: effects of inhibitors of the cytoskeleton, calcium channels and signal transduction pathways
  publication-title: Journal of Cell Science
– reference: Krsko P, Kaplan J, Libera M. Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels. Acta Biomaterialia, in press.
– volume: 22
  start-page: 1049
  year: 2001
  end-page: 1054
  ident: bib30
  article-title: Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin
  publication-title: Biomaterials
– volume: 55
  start-page: 1145
  year: 2007
  end-page: 1155
  ident: bib49
  article-title: Transcriptional regulation of scar gene expression in primary astrocytes
  publication-title: Glia
– volume: 27
  start-page: 3044
  year: 2006
  end-page: 3063
  ident: bib5
  article-title: Surface engineering approaches to micropattern surfaces for cell-based assays
  publication-title: Biomaterials
– volume: 28
  start-page: 5498
  year: 2007
  end-page: 5508
  ident: bib46
  article-title: Long-term neurite orientation on astrocyte monolayers aligned by microtopography
  publication-title: Biomaterials
– volume: 29
  start-page: 207
  year: 1995
  end-page: 215
  ident: bib55
  article-title: Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces
  publication-title: Journal of Biomedical Materials Research
– volume: 184
  start-page: 151
  year: 2003
  end-page: 152
  ident: bib61
  article-title: Directed nerve outgrowth is enhanced by engineered glial substrates
  publication-title: Experimental Neurology
– volume: 19
  start-page: 5618
  year: 2003
  end-page: 5625
  ident: bib35
  article-title: Electron-beam surface-patterned poly(ethylene glycol) microhydrogels
  publication-title: Langmuir
– volume: 407
  start-page: 963
  year: 26 October 2000
  end-page: 970
  ident: bib50
  article-title: Regenerating the damaged central nervous system
  publication-title: Nature
– volume: 11
  start-page: 547
  year: 2000
  end-page: 569
  ident: bib56
  article-title: On the molecular basis of fouling resistance
  publication-title: Journal of Biomaterials Science Polymer Edition
– volume: 23
  start-page: 893
  year: 2002
  end-page: 900
  ident: bib24
  article-title: Photolithographic generation of protein micropatterns for neuron culture applications
  publication-title: Biomaterials
– volume: 6
  start-page: 1500
  year: 1994
  end-page: 1504
  ident: bib29
  article-title: Defined neuronal arborizations by guided outgrowth of leech neurons in culture
  publication-title: European Journal of Neuroscience
– start-page: 600201
  year: 2005
  ident: bib34
  article-title: E-beam patterned hydrogels to control nanoscale surface bioactivity
  publication-title: Nanofabrication: technologies, devices, and applications II
– volume: 174
  start-page: 125
  year: 2002
  end-page: 136
  ident: bib10
  article-title: Building a bridge: engineering spinal cord repair
  publication-title: Experimental Neurology
– volume: 7
  start-page: 247
  year: 2001
  end-page: 265
  ident: bib25
  article-title: Schwann cell response to micropatterned laminin surfaces
  publication-title: Tissue Engineering
– volume: 27
  start-page: 5734
  year: 2006
  end-page: 5739
  ident: bib27
  article-title: Combined topographical and chemical micropatterns for templating neuronal networks
  publication-title: Biomaterials
– volume: 7
  start-page: 2623
  year: 2007
  end-page: 2632
  ident: bib42
  article-title: Hydrogel-based protein nanoarrays
  publication-title: Journal of Nanoscience and Nanotechnology
– volume: 76
  start-page: 626
  year: 2006
  end-page: 637
  ident: bib17
  article-title: Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro
  publication-title: Journal of Biomedical Materials Research – Part A
– volume: 26
  start-page: 1423
  year: 2005
  end-page: 1430
  ident: bib22
  article-title: Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration
  publication-title: Biomaterials
– volume: 136
  start-page: 151
  year: 2004
  end-page: 163
  ident: bib32
  article-title: A fast flexible ink-jet printing method for patterning dissociated neurons in culture
  publication-title: Journal of Neuroscience Methods
– volume: 107
  start-page: 1
  year: 1994
  end-page: 9
  ident: bib38
  article-title: An inhibitor of neurite outgrowth produced by astrocytes
  publication-title: Journal of Cell Science
– volume: 50
  start-page: 465
  year: 2000
  end-page: 474
  ident: bib21
  article-title: Patterned poly(chlorotrifluoroethylene) guides primary nerve cell adhesion and neurite outgrowth
  publication-title: Journal of Biomedical Materials Research
– volume: 8
  start-page: 417
  year: 1977
  end-page: 427
  ident: bib39
  article-title: Adult mouse dorsal root ganglia neurons in cell culture
  publication-title: Journal of Neurobiology
– volume: 87
  start-page: 35
  year: 1999
  end-page: 44
  ident: bib31
  article-title: A simple microfluidic system for patterning populations of neurons on silicon micromachined substrates
  publication-title: Journal of Neuroscience Methods
– volume: 25
  start-page: 2753
  year: 2004
  end-page: 2767
  ident: bib43
  article-title: Oriented astroglial cell growth on micropatterned polystyrene substrates
  publication-title: Biomaterials
– volume: 40
  start-page: 55
  year: 2003
  end-page: 62
  ident: bib12
  article-title: Transplantation strategies to promote repair of the injured spinal cord
  publication-title: Journal of Rehabilitation Research and Development
– volume: 44
  start-page: 92
  year: 1975
  end-page: 101
  ident: bib20
  article-title: Cell to substratum adhesion and guidance of axonal elongation
  publication-title: Developmental Biology
– volume: 49
  start-page: 377
  year: 1999
  end-page: 391
  ident: bib14
  article-title: The glial scar and central nervous system repair
  publication-title: Brain Research Bulletin
– volume: 14
  start-page: 356
  year: 1998
  end-page: 363
  ident: bib2
  article-title: Micropatterned surfaces for control of cell shape, position, and function
  publication-title: Biotechnology Progress
– volume: 27
  start-page: 1251
  year: 2006
  end-page: 1258
  ident: bib19
  article-title: Axonal outgrowth on nano-imprinted patterns
  publication-title: Biomaterials
– volume: 2006
  start-page: 4250
  year: 2006
  end-page: 4258
  ident: bib6
  article-title: Cell migration and polarity on microfabricated gradients of extracellular matrix proteins
  publication-title: Langmuir
– volume: 49
  start-page: 48
  year: 2005
  end-page: 64
  ident: bib28
  article-title: Tissue-engineering approaches for axonal guidance
  publication-title: Brain Research Reviews
– volume: 105
  start-page: 203
  year: 1993
  ident: 10.1016/j.biomaterials.2008.10.011_bib18
  article-title: Growth cone guidance and neuron morphology on micropatterned laminin surfaces
  publication-title: J Cell Sci
  doi: 10.1242/jcs.105.1.203
– volume: 55
  start-page: 1145
  issue: 11
  year: 2007
  ident: 10.1016/j.biomaterials.2008.10.011_bib49
  article-title: Transcriptional regulation of scar gene expression in primary astrocytes
  publication-title: Glia
  doi: 10.1002/glia.20537
– volume: 8
  start-page: 36
  issue: 12
  year: 2005
  ident: 10.1016/j.biomaterials.2008.10.011_bib51
  article-title: Bio-interactive hydrogels
  publication-title: Materials Today
  doi: 10.1016/S1369-7021(05)71223-2
– volume: 49
  start-page: 377
  issue: 6
  year: 1999
  ident: 10.1016/j.biomaterials.2008.10.011_bib14
  article-title: The glial scar and central nervous system repair
  publication-title: Brain Research Bulletin
  doi: 10.1016/S0361-9230(99)00072-6
– volume: 29
  start-page: 3117
  issue: 21
  year: 2008
  ident: 10.1016/j.biomaterials.2008.10.011_bib33
  article-title: The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.03.042
– volume: 52
  start-page: 4396
  year: 1981
  ident: 10.1016/j.biomaterials.2008.10.011_bib36
  article-title: Monte Carlo simulation of fast secondary electron production in electron beam resists
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.329366
– volume: 136
  start-page: 151
  issue: 2
  year: 2004
  ident: 10.1016/j.biomaterials.2008.10.011_bib32
  article-title: A fast flexible ink-jet printing method for patterning dissociated neurons in culture
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2004.01.011
– volume: 108
  start-page: 2747
  year: 1995
  ident: 10.1016/j.biomaterials.2008.10.011_bib44
  article-title: Guidance of oligodendrocytes and their progenitors by substratum topography
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.108.8.2747
– volume: 7
  start-page: 247
  issue: 3
  year: 2001
  ident: 10.1016/j.biomaterials.2008.10.011_bib25
  article-title: Schwann cell response to micropatterned laminin surfaces
  publication-title: Tissue Engineering
  doi: 10.1089/10763270152044125
– volume: 24
  start-page: 2863
  issue: 17
  year: 2003
  ident: 10.1016/j.biomaterials.2008.10.011_bib60
  article-title: A modified microstamping technique enhances polylysine transfer and neuronal cell patterning
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00116-9
– volume: 184
  start-page: 151
  issue: 1
  year: 2003
  ident: 10.1016/j.biomaterials.2008.10.011_bib61
  article-title: Directed nerve outgrowth is enhanced by engineered glial substrates
  publication-title: Experimental Neurology
  doi: 10.1016/S0014-4886(03)00253-X
– volume: 174
  start-page: 125
  issue: 2
  year: 2002
  ident: 10.1016/j.biomaterials.2008.10.011_bib10
  article-title: Building a bridge: engineering spinal cord repair
  publication-title: Experimental Neurology
  doi: 10.1006/exnr.2002.7865
– volume: 32
  start-page: 1120
  issue: 8
  year: 2004
  ident: 10.1016/j.biomaterials.2008.10.011_bib26
  article-title: Oriented Schwann cell monolayers for directed neurite outgrowth
  publication-title: Annals of Biomedical Engineering
  doi: 10.1114/B:ABME.0000036648.68804.e7
– volume: 29
  start-page: 2962
  year: 2008
  ident: 10.1016/j.biomaterials.2008.10.011_bib7
  article-title: Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.04.004
– volume: 22
  start-page: 1049
  issue: 10
  year: 2001
  ident: 10.1016/j.biomaterials.2008.10.011_bib30
  article-title: Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00352-5
– volume: 19
  start-page: 5618
  issue: 14
  year: 2003
  ident: 10.1016/j.biomaterials.2008.10.011_bib35
  article-title: Electron-beam surface-patterned poly(ethylene glycol) microhydrogels
  publication-title: Langmuir
  doi: 10.1021/la034157r
– volume: 1
  start-page: 78
  issue: 2
  year: 2004
  ident: 10.1016/j.biomaterials.2008.10.011_bib57
  article-title: Topographically modified surfaces affect orientation and growth of hippocampal neurons
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/1/2/003
– volume: 20
  start-page: 11123
  issue: 25
  year: 2004
  ident: 10.1016/j.biomaterials.2008.10.011_bib41
  article-title: Protein surface patterning using nanoscale PEG hydrogels
  publication-title: Langmuir
  doi: 10.1021/la048651m
– volume: 276
  start-page: 1425
  issue: 5317
  year: 1997
  ident: 10.1016/j.biomaterials.2008.10.011_bib1
  article-title: Geometric control of cell life and death
  publication-title: Science
  doi: 10.1126/science.276.5317.1425
– volume: 35
  start-page: 1812
  issue: 10
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib23
  article-title: Optimal micropattern dimensions enhance neurite outgrowth rates, lengths, and orientations
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-007-9348-0
– volume: 11
  start-page: 1085
  issue: 7–8
  year: 2005
  ident: 10.1016/j.biomaterials.2008.10.011_bib59
  article-title: Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates
  publication-title: Tissue Engineering
  doi: 10.1089/ten.2005.11.1085
– volume: 207
  start-page: 203
  year: 2007
  ident: 10.1016/j.biomaterials.2008.10.011_bib13
  article-title: Transduced Schwann cells promote axon growth and myelination after spinal cord injury
  publication-title: Experimental Neurology
  doi: 10.1016/j.expneurol.2007.06.023
– volume: 27
  start-page: 1251
  issue: 8
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib19
  article-title: Axonal outgrowth on nano-imprinted patterns
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.047
– volume: 28
  start-page: 271
  issue: 2
  year: 2007
  ident: 10.1016/j.biomaterials.2008.10.011_bib58
  article-title: Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.07.043
– year: 1997
  ident: 10.1016/j.biomaterials.2008.10.011_bib40
– start-page: 5
  issue: 6
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib47
  article-title: Building bridges with astrocytes for spinal cord repair
  publication-title: Journal of Biology
– volume: 27
  start-page: 3044
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib5
  article-title: Surface engineering approaches to micropattern surfaces for cell-based assays
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.12.024
– volume: 7
  start-page: 2623
  issue: 8
  year: 2007
  ident: 10.1016/j.biomaterials.2008.10.011_bib42
  article-title: Hydrogel-based protein nanoarrays
  publication-title: Journal of Nanoscience and Nanotechnology
  doi: 10.1166/jnn.2007.675
– volume: 8
  start-page: 417
  issue: 5
  year: 1977
  ident: 10.1016/j.biomaterials.2008.10.011_bib39
  article-title: Adult mouse dorsal root ganglia neurons in cell culture
  publication-title: Journal of Neurobiology
  doi: 10.1002/neu.480080503
– volume: 49
  start-page: 48
  issue: 1
  year: 2005
  ident: 10.1016/j.biomaterials.2008.10.011_bib28
  article-title: Tissue-engineering approaches for axonal guidance
  publication-title: Brain Research Reviews
  doi: 10.1016/j.brainresrev.2004.11.002
– volume: 14
  start-page: 356
  issue: 3
  year: 1998
  ident: 10.1016/j.biomaterials.2008.10.011_bib2
  article-title: Micropatterned surfaces for control of cell shape, position, and function
  publication-title: Biotechnology Progress
  doi: 10.1021/bp980031m
– volume: 19
  start-page: 953
  year: 1998
  ident: 10.1016/j.biomaterials.2008.10.011_bib52
  article-title: Proteins and cells on PEG immobilized silicon surfaces
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00026-X
– volume: 107
  start-page: 1
  year: 1994
  ident: 10.1016/j.biomaterials.2008.10.011_bib38
  article-title: An inhibitor of neurite outgrowth produced by astrocytes
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.107.6.1687
– volume: 24
  start-page: 927
  year: 2003
  ident: 10.1016/j.biomaterials.2008.10.011_bib4
  article-title: Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00427-1
– volume: 29
  start-page: 207
  issue: 2
  year: 1995
  ident: 10.1016/j.biomaterials.2008.10.011_bib55
  article-title: Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces
  publication-title: Journal of Biomedical Materials Research
  doi: 10.1002/jbm.820290211
– volume: 87
  start-page: 35
  issue: 1
  year: 1999
  ident: 10.1016/j.biomaterials.2008.10.011_bib31
  article-title: A simple microfluidic system for patterning populations of neurons on silicon micromachined substrates
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/S0165-0270(98)00154-X
– volume: 44
  start-page: 92
  issue: 1
  year: 1975
  ident: 10.1016/j.biomaterials.2008.10.011_bib20
  article-title: Cell to substratum adhesion and guidance of axonal elongation
  publication-title: Developmental Biology
  doi: 10.1016/0012-1606(75)90379-6
– volume: 27
  start-page: 5734
  issue: 33
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib27
  article-title: Combined topographical and chemical micropatterns for templating neuronal networks
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.07.021
– volume: 76
  start-page: 626
  issue: 3
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib17
  article-title: Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro
  publication-title: Journal of Biomedical Materials Research – Part A
  doi: 10.1002/jbm.a.30520
– volume: 110
  start-page: 2915
  year: 1997
  ident: 10.1016/j.biomaterials.2008.10.011_bib15
  article-title: Guidance of CNS growth cones by substratum grooves and ridges: effects of inhibitors of the cytoskeleton, calcium channels and signal transduction pathways
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.110.23.2915
– volume: 2006
  start-page: 4250
  issue: 22
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib6
  article-title: Cell migration and polarity on microfabricated gradients of extracellular matrix proteins
  publication-title: Langmuir
  doi: 10.1021/la0531493
– volume: 91
  start-page: 937
  issue: 5
  year: 2007
  ident: 10.1016/j.biomaterials.2008.10.011_bib9
  article-title: Nano neurology and the four P's of central nervous system regeneration: preserve, permit, promote, plasticity
  publication-title: Medical Clinics of North America
  doi: 10.1016/j.mcna.2007.04.005
– volume: 28
  start-page: 5498
  year: 2007
  ident: 10.1016/j.biomaterials.2008.10.011_bib46
  article-title: Long-term neurite orientation on astrocyte monolayers aligned by microtopography
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.08.034
– volume: 23
  start-page: 893
  issue: 3
  year: 2002
  ident: 10.1016/j.biomaterials.2008.10.011_bib24
  article-title: Photolithographic generation of protein micropatterns for neuron culture applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00199-5
– volume: 165
  start-page: 257
  issue: 2
  year: 2007
  ident: 10.1016/j.biomaterials.2008.10.011_bib62
  article-title: Fabrication of patterned multi-walled poly-l-lactic acid conduits for nerve regeneration
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2007.06.006
– volume: 13
  start-page: 417
  year: 1992
  ident: 10.1016/j.biomaterials.2008.10.011_bib53
  article-title: Surface-immobilized polyethylene oxide for bacterial repellence
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(92)90160-P
– volume: 40
  start-page: 55
  issue: 4 Suppl. 1
  year: 2003
  ident: 10.1016/j.biomaterials.2008.10.011_bib12
  article-title: Transplantation strategies to promote repair of the injured spinal cord
  publication-title: Journal of Rehabilitation Research and Development
  doi: 10.1682/JRRD.2003.08.0055
– volume: 390
  start-page: 680
  issue: 6661
  year: 1997
  ident: 10.1016/j.biomaterials.2008.10.011_bib45
  article-title: Regeneration of adult axons in white matter tracts of the central nervous system
  publication-title: Nature
  doi: 10.1038/37776
– volume: 34
  start-page: 59
  issue: 1
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib8
  article-title: Nanotechnology for cell-substrate interactions
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-005-9006-3
– ident: 10.1016/j.biomaterials.2008.10.011_bib54
  doi: 10.1016/j.actbio.2008.08.025
– volume: 5
  start-page: 293
  year: 2003
  ident: 10.1016/j.biomaterials.2008.10.011_bib11
  article-title: Neural tissue engineering: strategies for repair and regeneration
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev.bioeng.5.011303.120731
– start-page: 600201
  year: 2005
  ident: 10.1016/j.biomaterials.2008.10.011_bib34
  article-title: E-beam patterned hydrogels to control nanoscale surface bioactivity
– volume: 33
  start-page: 376
  issue: 3
  year: 2005
  ident: 10.1016/j.biomaterials.2008.10.011_bib16
  article-title: Substrate curvature influences the direction of nerve outgrowth
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-005-1740-z
– volume: 6
  start-page: 1500
  issue: 9
  year: 1994
  ident: 10.1016/j.biomaterials.2008.10.011_bib29
  article-title: Defined neuronal arborizations by guided outgrowth of leech neurons in culture
  publication-title: European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.1994.tb01011.x
– volume: 50
  start-page: 465
  issue: 4
  year: 2000
  ident: 10.1016/j.biomaterials.2008.10.011_bib21
  article-title: Patterned poly(chlorotrifluoroethylene) guides primary nerve cell adhesion and neurite outgrowth
  publication-title: Journal of Biomedical Materials Research
  doi: 10.1002/(SICI)1097-4636(20000615)50:4<465::AID-JBM1>3.0.CO;2-K
– volume: 25
  start-page: 2753
  issue: 14
  year: 2004
  ident: 10.1016/j.biomaterials.2008.10.011_bib43
  article-title: Oriented astroglial cell growth on micropatterned polystyrene substrates
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.11.045
– volume: 26
  start-page: 1423
  issue: 12
  year: 2005
  ident: 10.1016/j.biomaterials.2008.10.011_bib22
  article-title: Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.04.046
– volume: 23
  start-page: 371
  issue: 3–4
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib48
  article-title: Overcoming inhibition in the damaged spinal cord
  publication-title: Journal of Neurotrauma
  doi: 10.1089/neu.2006.23.371
– volume: 2
  start-page: 928
  year: 2006
  ident: 10.1016/j.biomaterials.2008.10.011_bib3
  article-title: Nanopatterning proteins and peptides
  publication-title: Soft Matter
  doi: 10.1039/b611000b
– volume: 11
  start-page: 547
  year: 2000
  ident: 10.1016/j.biomaterials.2008.10.011_bib56
  article-title: On the molecular basis of fouling resistance
  publication-title: Journal of Biomaterials Science Polymer Edition
  doi: 10.1163/156856200743869
– volume: 407
  start-page: 963
  year: 2000
  ident: 10.1016/j.biomaterials.2008.10.011_bib50
  article-title: Regenerating the damaged central nervous system
  publication-title: Nature
  doi: 10.1038/35039559
– year: 1997
  ident: 10.1016/j.biomaterials.2008.10.011_bib37
SSID ssj0014042
Score 2.227132
Snippet We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was...
Abstract We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This...
We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes – axons – but that prevent the adhesion of astrocytes. This...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 721
SubjectTerms Advanced Basic Science
Animals
Astrocyte
Astrocytes - cytology
Astrocytes - drug effects
Cell adhesion
Cell Adhesion - drug effects
Cell Line
Cell Proliferation - drug effects
Dentistry
Hydrogel
Hydrogels - chemistry
Hydrogels - pharmacology
Mice
Micropatterning
Nerve regeneration
Polyethylene Glycols - chemistry
Polyethylene Glycols - pharmacology
Polyethylene oxide
Rats
Surface Properties
Title Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961208007989
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961208007989
https://dx.doi.org/10.1016/j.biomaterials.2008.10.011
https://www.ncbi.nlm.nih.gov/pubmed/19026443
https://www.proquest.com/docview/20272662
https://www.proquest.com/docview/35456588
https://www.proquest.com/docview/66748325
https://pubmed.ncbi.nlm.nih.gov/PMC3282616
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaKDhi2w7B1r-zR6bDDdvBiy7ZsYdihKFZkj_a0Ar0Jsh5xisAJYgdDLv3tJS07S9YFCLCrLcKWSJOf5I8kIe9NqDkgXREwrVyQMIfdAOF7tIVLNAsLw1tW5fkFH10m36_SqwNy2ufCIK2y8_3ep7feursy7FZzOJ9MhkhLYgICNGKeTOSYxJckGdr6p5s1zQOrxzBPY2QBju4Lj7YcL0xxV41XtedVItMrinYFqbsg9G8u5UZwOntMHnWokp74F39CDmx1RB5u1Bo8IvfPu7_oT8nvn7YaN2VQg34sbXNHAHdSZUqLZ2dUVYb6ZYGrY9inNyWdOYqlL-EheNRf02JF6-XCKW2DeVuiE9w1nc-mqw8WVA-hzNLxdAVW9pGWK7OYjWF6z8jl2ddfp6Oga8AQaIA1TaBczk0WOZPljhc6dInhubAJYiAnhBagW6tFWKiU54lC8FjkKeyA0lixSJn4OTmsZpV9SajiWawB26W60EkOZiNSx43Go0xmAAMOiOhXXOquOjk2yZjKnoZ2LTe15dtnwj3Q1oDEa9m5r9Gxl9TnXrGyz0IFvykhlOwlnf1L2tadC6hlJGsmQ3nHTAfky1pyy9L3fvK73goluAJUuqrsbImDWAZ4i-0eESNeTvN89wiOzWdilg7IC2_Xf1ZUhAieY5j5lsWvB2Ch8u071aRsC5bHsK_nEX_1nzN_TR74f3lIJnpDDpvF0r4FSNgUx-03f0zunXz7Mbq4BQYAZwc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWReJxQLC8ymt94ACH0MRJnFiIA1qxKtDuaVfam-X40RRVSdWkQr3w25nJo7QslSpxTWaU2DOZ-ex8niHkrfE1B6QrPKaV8yLmsBsgfI82c5FmfmZ4w6qcXPDRVfTtOr4-Imf9WRikVXaxv43pTbTurgy72RwuZrMh0pKYgASNmCcRqbhFbkdxmCCv78OvDc8Dy8ewlsfIPBTvK482JC88467q1tYtsRKpXkGwL0vdRKF_kym3stP5Q_Kgg5X0c_vmj8iRLU7I_a1igyfkzqT7jf6Y_BzbYlrnXgUGsrQ5PALAkyqTW9w8o6owtJ0XuDqFhXqd09JRrH0JD8G9_opma1qtlk5p6y2aGp0Qr-minK_fWbA95DJLp_M1uNl7mq_NspzC8J6Qq_Mvl2cjr-vA4GnANbWnXMpNEjiTpI5n2neR4amwEYIgJ4QWYFyrhZ-pmKeRQvSYpTEsgeJQsUCZ8Ck5LsrCPidU8STUAO5inekoBb8RseNG414mMwACB0T0My51V54cu2TMZc9D-yG3rdX2z4R7YK0BCTe6i7ZIx0FaH3vDyv4YKgROCbnkIO3kX9q26mJAJQNZMenLG346IJ82mjuufvCTT3svlBAL0OiqsOUKhVgCgIvtlwgRMMdpul-CY_eZkMUD8qz16z8zKnxEzyGMfMfjNwJYqXz3TjHLm4rlISzsecBf_OfIT8nd0eVkLMdfL76_JPfaH3vILHpFjuvlyr4GfFhnb5rv_ze5OGia
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Length-scale+mediated+adhesion+and+directed+growth+of+neural+cells+by+surface-patterned+poly%28ethylene+glycol%29+hydrogels&rft.jtitle=Biomaterials&rft.au=Krsko%2C+Peter&rft.au=McCann%2C+Thomas+E.&rft.au=Thach%2C+Thu-Trang&rft.au=Laabs%2C+Tracy+L.&rft.date=2009-02-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=30&rft.issue=5&rft.spage=721&rft.epage=729&rft_id=info:doi/10.1016%2Fj.biomaterials.2008.10.011&rft.externalDocID=S0142961208007989
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961208X00328%2Fcov150h.gif