Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels
We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise ce...
Saved in:
Published in | Biomaterials Vol. 30; no. 5; pp. 721 - 729 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.02.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-9612 1878-5905 1878-5905 |
DOI | 10.1016/j.biomaterials.2008.10.011 |
Cover
Abstract | We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar. |
---|---|
AbstractList | We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar. We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar. Abstract We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar. We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes – axons – but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of cell-repulsive poly(ethylene glycol) [PEG] nanohydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual nanohydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual nanohydrogels was increased, patterns were identified where axons could grow on the adhesive surface between nanohydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher nanohydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of nanoscale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar. |
Author | Libera, Matthew R. Krsko, Peter Thach, Thu-Trang Geller, Herbert M. Laabs, Tracy L. McCann, Thomas E. |
AuthorAffiliation | 1 Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 3 Developmental Neurobiology Section, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 |
AuthorAffiliation_xml | – name: 3 Developmental Neurobiology Section, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 – name: 1 Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 |
Author_xml | – sequence: 1 givenname: Peter surname: Krsko fullname: Krsko, Peter organization: Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA – sequence: 2 givenname: Thomas E. surname: McCann fullname: McCann, Thomas E. organization: Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 3 givenname: Thu-Trang surname: Thach fullname: Thach, Thu-Trang organization: Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 4 givenname: Tracy L. surname: Laabs fullname: Laabs, Tracy L. organization: Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 5 givenname: Herbert M. surname: Geller fullname: Geller, Herbert M. organization: Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 6 givenname: Matthew R. surname: Libera fullname: Libera, Matthew R. email: mlibera@stevens.edu organization: Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19026443$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFr4AiDogesthO7DgcKqD8lVbiAJwtx5lsvHjtrZ20yrevoy1VqYS6J8ueNz-_0bwTdOS8A4ReEbwkmPC3m2Vj_FYNEIyycUkxFqmwxIQ8QQsiKpGzGrMjtMCkpHnNCT1GJzFucLrjkj5Dx6TGlJdlsUDXK3Droc-jVhayLbQmcdtMtT1E412mXJu1JoCeX9fBXw995rvMwRiUzTRYG7NmyuIYOqUh36kh2XJJu_N2egNDP1lwkK3tpL09y_qpDX4NNj5HT7tkHl7cnqfo95fPvy6-5asfX79ffFjluqLVkKtO8LYiXVuJjjcad2XLRQ0lI6zu6lrXJe1A17hRjItSEU5YI5ioGCsUJaotTtH5nrsbmzSdBjck43IXzFaFSXpl5L8VZ3q59leyoIJywhPg9S0g-MsR4iC3Js5zKwd-jJLzqhQFZY8KC1YyzoR4VEgxrSjnNAlf3vd-Z_rv9pLg_V6gg48xQCe1GdSQ9pZGMVYSLOfAyI28Hxg5B2aupcAkxLsHiLtfDmn-tG9OC4UrA0FGbcBp2CdGtt4chjl_gNHWOJMS-QcmiBs_Bjf3EBmpxPLnHOs51VhgXNWiToCP_wcc6uIG5jESrw |
CitedBy_id | crossref_primary_10_1007_s12975_018_0655_6 crossref_primary_10_1039_c0jm04335d crossref_primary_10_3390_ma14247652 crossref_primary_10_1021_acs_langmuir_7b03132 crossref_primary_10_1039_c1sm06702h crossref_primary_10_1098_rsfs_2013_0041 crossref_primary_10_1016_j_mtchem_2018_02_004 crossref_primary_10_1039_b914279g crossref_primary_10_1002_smll_201201774 crossref_primary_10_1088_0960_1317_25_12_125001 crossref_primary_10_1021_acsami_5b05383 crossref_primary_10_1021_cm202669f crossref_primary_10_1160_TH13_09_0752 crossref_primary_10_1002_term_520 crossref_primary_10_1039_C5TB01370D crossref_primary_10_1016_j_actbio_2010_02_018 crossref_primary_10_1016_j_cap_2014_02_023 crossref_primary_10_1007_s10544_010_9448_8 crossref_primary_10_1021_acsami_8b16232 crossref_primary_10_1039_c0jm00734j crossref_primary_10_1016_j_biomaterials_2010_01_020 crossref_primary_10_1002_adfm_201100659 crossref_primary_10_1002_jbm_a_35738 crossref_primary_10_1016_j_jcis_2022_02_047 crossref_primary_10_14233_ajchem_2021_23124 crossref_primary_10_1002_adma_201000468 crossref_primary_10_1517_17460441_2010_489606 crossref_primary_10_1021_cn200030w crossref_primary_10_1109_RBME_2021_3056455 crossref_primary_10_1142_S1793984410000055 crossref_primary_10_1002_adhm_201500427 crossref_primary_10_3390_fermentation1010038 crossref_primary_10_1039_c2sm07075h crossref_primary_10_1016_j_colsurfb_2012_01_024 crossref_primary_10_1016_j_procbio_2022_04_009 crossref_primary_10_4103_1673_5374_208597 crossref_primary_10_1016_j_colsurfb_2009_11_013 crossref_primary_10_1080_01616412_2016_1248626 crossref_primary_10_1039_C4TB00585F crossref_primary_10_1021_ja205524x crossref_primary_10_1002_smll_201102405 crossref_primary_10_1021_acsami_6b07730 crossref_primary_10_1155_2018_7848901 crossref_primary_10_1002_asia_201801333 crossref_primary_10_1002_bit_23284 crossref_primary_10_1016_j_progpolymsci_2013_11_006 crossref_primary_10_1021_la201595e crossref_primary_10_1016_j_jare_2013_07_006 crossref_primary_10_1515_polyeng_2019_0290 crossref_primary_10_1002_polb_23367 crossref_primary_10_1021_acsami_6b09393 crossref_primary_10_1016_j_cis_2020_102316 crossref_primary_10_1002_mabi_201100235 crossref_primary_10_3390_polym12051146 crossref_primary_10_1021_acs_biomac_8b00264 crossref_primary_10_3390_gels7030084 crossref_primary_10_1016_j_actbio_2012_03_033 crossref_primary_10_1016_j_eurpolymj_2018_08_002 crossref_primary_10_1021_am5023946 |
Cites_doi | 10.1242/jcs.105.1.203 10.1002/glia.20537 10.1016/S1369-7021(05)71223-2 10.1016/S0361-9230(99)00072-6 10.1016/j.biomaterials.2008.03.042 10.1063/1.329366 10.1016/j.jneumeth.2004.01.011 10.1242/jcs.108.8.2747 10.1089/10763270152044125 10.1016/S0142-9612(03)00116-9 10.1016/S0014-4886(03)00253-X 10.1006/exnr.2002.7865 10.1114/B:ABME.0000036648.68804.e7 10.1016/j.biomaterials.2008.04.004 10.1016/S0142-9612(00)00352-5 10.1021/la034157r 10.1088/1741-2560/1/2/003 10.1021/la048651m 10.1126/science.276.5317.1425 10.1007/s10439-007-9348-0 10.1089/ten.2005.11.1085 10.1016/j.expneurol.2007.06.023 10.1016/j.biomaterials.2005.07.047 10.1016/j.biomaterials.2006.07.043 10.1016/j.biomaterials.2005.12.024 10.1166/jnn.2007.675 10.1002/neu.480080503 10.1016/j.brainresrev.2004.11.002 10.1021/bp980031m 10.1016/S0142-9612(98)00026-X 10.1242/jcs.107.6.1687 10.1016/S0142-9612(02)00427-1 10.1002/jbm.820290211 10.1016/S0165-0270(98)00154-X 10.1016/0012-1606(75)90379-6 10.1016/j.biomaterials.2006.07.021 10.1002/jbm.a.30520 10.1242/jcs.110.23.2915 10.1021/la0531493 10.1016/j.mcna.2007.04.005 10.1016/j.biomaterials.2007.08.034 10.1016/S0142-9612(01)00199-5 10.1016/j.jneumeth.2007.06.006 10.1016/0142-9612(92)90160-P 10.1682/JRRD.2003.08.0055 10.1038/37776 10.1007/s10439-005-9006-3 10.1016/j.actbio.2008.08.025 10.1146/annurev.bioeng.5.011303.120731 10.1007/s10439-005-1740-z 10.1111/j.1460-9568.1994.tb01011.x 10.1002/(SICI)1097-4636(20000615)50:4<465::AID-JBM1>3.0.CO;2-K 10.1016/j.biomaterials.2003.11.045 10.1016/j.biomaterials.2004.04.046 10.1089/neu.2006.23.371 10.1039/b611000b 10.1163/156856200743869 10.1038/35039559 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Ltd Elsevier Ltd |
Copyright_xml | – notice: 2008 Elsevier Ltd – notice: Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7X8 5PM |
DOI | 10.1016/j.biomaterials.2008.10.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 729 |
ExternalDocumentID | PMC3282616 19026443 10_1016_j_biomaterials_2008_10_011 S0142961208007989 1_s2_0_S0142961208007989 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA HL006021 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c727t-af86d71fd78f6bc0f4d689e45159f99c942fec90ba5684a1615b8587553a21ad3 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Thu Aug 21 18:34:37 EDT 2025 Fri Sep 05 05:27:43 EDT 2025 Fri Sep 05 05:13:34 EDT 2025 Thu Sep 04 20:19:47 EDT 2025 Fri May 30 10:59:47 EDT 2025 Tue Jul 01 03:47:17 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Fri Feb 23 02:17:11 EST 2024 Sun Feb 23 10:19:01 EST 2025 Tue Aug 26 16:33:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Micropatterning Hydrogel Astrocyte Polyethylene oxide Nerve regeneration Cell adhesion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c727t-af86d71fd78f6bc0f4d689e45159f99c942fec90ba5684a1615b8587553a21ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Present address: Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3282616 |
PMID | 19026443 |
PQID | 20272662 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282616 proquest_miscellaneous_66748325 proquest_miscellaneous_35456588 proquest_miscellaneous_20272662 pubmed_primary_19026443 crossref_citationtrail_10_1016_j_biomaterials_2008_10_011 crossref_primary_10_1016_j_biomaterials_2008_10_011 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2008_10_011 elsevier_clinicalkeyesjournals_1_s2_0_S0142961208007989 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2008_10_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-02-01 |
PublicationDateYYYYMMDD | 2009-02-01 |
PublicationDate_xml | – month: 02 year: 2009 text: 2009-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2009 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Shi (bib62) 2007; 165 Morra (bib56) 2000; 11 Martinoia, Bove, Tedesco, Margesin, Grattarola (bib31) 1999; 87 Biran, Noble, Tresco (bib61) 2003; 184 Smith-Thomas, Fok-Seang, Stevens, Du, Muir, Faissner (bib38) 1994; 107 Schmalenberg, Uhrich (bib22) 2005; 26 Rajnicek, McCaig (bib15) 1997; 110 Dowell-Mesfin, Abdul-Karim, Turner, Schanz, Craighead, Roysam (bib57) 2004; 1 Gris, Tighe, Levin, Sharma, Brown (bib49) 2007; 55 Geller, Fawcett (bib10) 2002; 174 Letourneau (bib20) 1975; 44 Gomez, Lu, Chen, Schmidt (bib58) 2007; 28 Lee, Moon, West (bib7) 2008; 29 Fawcett (bib48) 2006; 23 Golden, Pearse, Blits, Garg, Oudega, Wood (bib13) 2007; 207 Scott (bib39) 1977; 8 Chang, Brewer, Wheeler (bib60) 2003; 24 Krsko, Libera (bib51) 2005; 8 Sniadecki, Desai, Ruiz, Chen (bib8) 2006; 34 Christman, Enriquez-Rios, Maynard (bib3) 2006; 2 Zhang, Yan, Wen (bib28) 2005; 49 Bunge, Pearse (bib12) 2003; 40 Saneinejad, Shoichet (bib21) 2000; 50 Fawcett, Asher (bib14) 1999; 49 Kim, Haftel, Kumar, Bellamkonda (bib33) 2008; 29 . Walsh, Manwaring, Tresco (bib59) 2005; 11 Smeal, Rabbitt, Biran, Tresco (bib16) 2005; 33 Gunawan, Silvestre, Gaskins, Kenis, Leckband (bib6) 2006; 2006 Dalby, Childs, Riehle, Johnstone, Affrossman, Curtis (bib4) 2003; 24 Johansson, Carlberg, Danielsen, Montelius, Kanje (bib19) 2006; 27 Sanjana, Fuller (bib32) 2004; 136 Schmidt, Leach (bib11) 2003; 5 Rasband (bib40) 1997–2008 Drumheller, Hubbell (bib55) 1995; 29 Wen, Tresco (bib17) 2006; 76 Desai, Hossainy, Hubbell (bib53) 1992; 13 Sorribas, Padeste, Tiefenauer (bib24) 2002; 23 Thompson, Buettner (bib25) 2001; 7 Ellis-Behnke (bib9) 2007; 91 Davies, Fitch, Memberg, Hall, Raisman, Silver (bib45) 1997; 390 Clark, Britland, Connolly (bib18) 1993; 105 Rai-Choudary (bib37) 1997 Recknor, Recknor, Sakaguchi, Mallapragada (bib43) 2004; 25 Sorenson, Alekseeva, Katechia, Robertson, Riehle, Barnett (bib46) 2007; 28 Murata, Kyser, Ting (bib36) 1981; 52 Thompson, Buettner (bib26) 2004; 32 Krsko P, Kaplan J, Libera M. Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels. Acta Biomaterialia, in press. Zhang, Venkataramani, Xu, Song, Song, Palmore (bib27) 2006; 27 Chen, Mrksich, Huang, Whitesides, Ingber (bib2) 1998; 14 Fromherz, Schaden (bib29) 1994; 6 Song, Uhrich (bib23) 2006; 35 Krsko, Sukhishvili, Mansfield, Clancy, Libera (bib35) 2003; 19 Miller (bib47) 2006 Hong, Krsko, Libera (bib41) 2004; 20 Chen, Mrksich, Huang, Whitesides, Ingber (bib1) 1997; 276 Kam, Shain, Turner, Bizios (bib30) 2001; 22 Saaem, Papasotiropoulos, Wang, Soteropoulos, Libera (bib42) 2007; 7 Webb, Clark, Skepper, Compston, Wood (bib44) 1995; 108 Krsko, Saaem, Clancy, Geller, Soteropoulos, Libera (bib34) 2005 Horner, Gage (bib50) 26 October 2000; 407 Zhang, Desai, Ferrari (bib52) 1998; 19 Falconnet, Csucs, Grandin, Textor (bib5) 2006; 27 Desai (10.1016/j.biomaterials.2008.10.011_bib53) 1992; 13 Miller (10.1016/j.biomaterials.2008.10.011_bib47) 2006 Gris (10.1016/j.biomaterials.2008.10.011_bib49) 2007; 55 10.1016/j.biomaterials.2008.10.011_bib54 Fromherz (10.1016/j.biomaterials.2008.10.011_bib29) 1994; 6 Davies (10.1016/j.biomaterials.2008.10.011_bib45) 1997; 390 Walsh (10.1016/j.biomaterials.2008.10.011_bib59) 2005; 11 Sorenson (10.1016/j.biomaterials.2008.10.011_bib46) 2007; 28 Saaem (10.1016/j.biomaterials.2008.10.011_bib42) 2007; 7 Horner (10.1016/j.biomaterials.2008.10.011_bib50) 2000; 407 Hong (10.1016/j.biomaterials.2008.10.011_bib41) 2004; 20 Smeal (10.1016/j.biomaterials.2008.10.011_bib16) 2005; 33 Sorribas (10.1016/j.biomaterials.2008.10.011_bib24) 2002; 23 Schmidt (10.1016/j.biomaterials.2008.10.011_bib11) 2003; 5 Krsko (10.1016/j.biomaterials.2008.10.011_bib34) 2005 Rasband (10.1016/j.biomaterials.2008.10.011_bib40) 1997 Johansson (10.1016/j.biomaterials.2008.10.011_bib19) 2006; 27 Recknor (10.1016/j.biomaterials.2008.10.011_bib43) 2004; 25 Fawcett (10.1016/j.biomaterials.2008.10.011_bib48) 2006; 23 Zhang (10.1016/j.biomaterials.2008.10.011_bib52) 1998; 19 Falconnet (10.1016/j.biomaterials.2008.10.011_bib5) 2006; 27 Smith-Thomas (10.1016/j.biomaterials.2008.10.011_bib38) 1994; 107 Martinoia (10.1016/j.biomaterials.2008.10.011_bib31) 1999; 87 Song (10.1016/j.biomaterials.2008.10.011_bib23) 2006; 35 Zhang (10.1016/j.biomaterials.2008.10.011_bib27) 2006; 27 Krsko (10.1016/j.biomaterials.2008.10.011_bib35) 2003; 19 Letourneau (10.1016/j.biomaterials.2008.10.011_bib20) 1975; 44 Saneinejad (10.1016/j.biomaterials.2008.10.011_bib21) 2000; 50 Kim (10.1016/j.biomaterials.2008.10.011_bib33) 2008; 29 Morra (10.1016/j.biomaterials.2008.10.011_bib56) 2000; 11 Gunawan (10.1016/j.biomaterials.2008.10.011_bib6) 2006; 2006 Rajnicek (10.1016/j.biomaterials.2008.10.011_bib15) 1997; 110 Chen (10.1016/j.biomaterials.2008.10.011_bib2) 1998; 14 Sniadecki (10.1016/j.biomaterials.2008.10.011_bib8) 2006; 34 Murata (10.1016/j.biomaterials.2008.10.011_bib36) 1981; 52 Webb (10.1016/j.biomaterials.2008.10.011_bib44) 1995; 108 Golden (10.1016/j.biomaterials.2008.10.011_bib13) 2007; 207 Sanjana (10.1016/j.biomaterials.2008.10.011_bib32) 2004; 136 Clark (10.1016/j.biomaterials.2008.10.011_bib18) 1993; 105 Chang (10.1016/j.biomaterials.2008.10.011_bib60) 2003; 24 Ellis-Behnke (10.1016/j.biomaterials.2008.10.011_bib9) 2007; 91 Krsko (10.1016/j.biomaterials.2008.10.011_bib51) 2005; 8 Drumheller (10.1016/j.biomaterials.2008.10.011_bib55) 1995; 29 Fawcett (10.1016/j.biomaterials.2008.10.011_bib14) 1999; 49 Dowell-Mesfin (10.1016/j.biomaterials.2008.10.011_bib57) 2004; 1 Dalby (10.1016/j.biomaterials.2008.10.011_bib4) 2003; 24 Zhang (10.1016/j.biomaterials.2008.10.011_bib28) 2005; 49 Bunge (10.1016/j.biomaterials.2008.10.011_bib12) 2003; 40 Wen (10.1016/j.biomaterials.2008.10.011_bib17) 2006; 76 Thompson (10.1016/j.biomaterials.2008.10.011_bib26) 2004; 32 Rai-Choudary (10.1016/j.biomaterials.2008.10.011_bib37) 1997 Schmalenberg (10.1016/j.biomaterials.2008.10.011_bib22) 2005; 26 Kam (10.1016/j.biomaterials.2008.10.011_bib30) 2001; 22 Thompson (10.1016/j.biomaterials.2008.10.011_bib25) 2001; 7 Chen (10.1016/j.biomaterials.2008.10.011_bib1) 1997; 276 Geller (10.1016/j.biomaterials.2008.10.011_bib10) 2002; 174 Christman (10.1016/j.biomaterials.2008.10.011_bib3) 2006; 2 Lee (10.1016/j.biomaterials.2008.10.011_bib7) 2008; 29 Scott (10.1016/j.biomaterials.2008.10.011_bib39) 1977; 8 Li (10.1016/j.biomaterials.2008.10.011_bib62) 2007; 165 Gomez (10.1016/j.biomaterials.2008.10.011_bib58) 2007; 28 Biran (10.1016/j.biomaterials.2008.10.011_bib61) 2003; 184 |
References_xml | – volume: 34 start-page: 59 year: 2006 end-page: 74 ident: bib8 article-title: Nanotechnology for cell-substrate interactions publication-title: Annals of Biomedical Engineering – volume: 91 start-page: 937 year: 2007 end-page: 962 ident: bib9 article-title: Nano neurology and the four P's of central nervous system regeneration: preserve, permit, promote, plasticity publication-title: Medical Clinics of North America – volume: 52 start-page: 4396 year: 1981 end-page: 4405 ident: bib36 article-title: Monte Carlo simulation of fast secondary electron production in electron beam resists publication-title: Journal of Applied Physics – volume: 2 start-page: 928 year: 2006 end-page: 939 ident: bib3 article-title: Nanopatterning proteins and peptides publication-title: Soft Matter – volume: 24 start-page: 927 year: 2003 end-page: 935 ident: bib4 article-title: Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time publication-title: Biomaterials – volume: 11 start-page: 1085 year: 2005 end-page: 1094 ident: bib59 article-title: Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates publication-title: Tissue Engineering – volume: 1 start-page: 78 year: 2004 end-page: 90 ident: bib57 article-title: Topographically modified surfaces affect orientation and growth of hippocampal neurons publication-title: Journal of Neural Engineering – volume: 24 start-page: 2863 year: 2003 end-page: 2870 ident: bib60 article-title: A modified microstamping technique enhances polylysine transfer and neuronal cell patterning publication-title: Biomaterials – year: 1997–2008 ident: bib40 article-title: ImageJ – volume: 35 start-page: 1812 year: 2006 end-page: 1820 ident: bib23 article-title: Optimal micropattern dimensions enhance neurite outgrowth rates, lengths, and orientations publication-title: Annals of Biomedical Engineering – volume: 28 start-page: 271 year: 2007 end-page: 284 ident: bib58 article-title: Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture publication-title: Biomaterials – volume: 33 start-page: 376 year: 2005 end-page: 382 ident: bib16 article-title: Substrate curvature influences the direction of nerve outgrowth publication-title: Annals of Biomedical Engineering – year: 1997 ident: bib37 article-title: Handbook of microlithography, micromaching, and microfabrication: volume I – volume: 390 start-page: 680 year: 1997 end-page: 683 ident: bib45 article-title: Regeneration of adult axons in white matter tracts of the central nervous system publication-title: Nature – volume: 108 start-page: 2747 year: 1995 end-page: 2760 ident: bib44 article-title: Guidance of oligodendrocytes and their progenitors by substratum topography publication-title: Journal of Cell Science – volume: 23 start-page: 371 year: 2006 end-page: 383 ident: bib48 article-title: Overcoming inhibition in the damaged spinal cord publication-title: Journal of Neurotrauma – volume: 5 start-page: 293 year: 2003 end-page: 347 ident: bib11 article-title: Neural tissue engineering: strategies for repair and regeneration publication-title: Annual Review of Biomedical Engineering – volume: 105 start-page: 203 year: 1993 end-page: 212 ident: bib18 article-title: Growth cone guidance and neuron morphology on micropatterned laminin surfaces publication-title: J Cell Sci – volume: 276 start-page: 1425 year: 1997 end-page: 1428 ident: bib1 article-title: Geometric control of cell life and death publication-title: Science – volume: 13 start-page: 417 year: 1992 end-page: 420 ident: bib53 article-title: Surface-immobilized polyethylene oxide for bacterial repellence publication-title: Biomaterials – volume: 20 start-page: 11123 year: 2004 end-page: 11126 ident: bib41 article-title: Protein surface patterning using nanoscale PEG hydrogels publication-title: Langmuir – volume: 19 start-page: 953 year: 1998 end-page: 960 ident: bib52 article-title: Proteins and cells on PEG immobilized silicon surfaces publication-title: Biomaterials – volume: 29 start-page: 3117 year: 2008 end-page: 3127 ident: bib33 article-title: The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps publication-title: Biomaterials – volume: 32 start-page: 1120 year: 2004 end-page: 1130 ident: bib26 article-title: Oriented Schwann cell monolayers for directed neurite outgrowth publication-title: Annals of Biomedical Engineering – volume: 29 start-page: 2962 year: 2008 end-page: 2968 ident: bib7 article-title: Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration publication-title: Biomaterials – volume: 8 start-page: 36 year: 2005 end-page: 44 ident: bib51 article-title: Bio-interactive hydrogels publication-title: Materials Today – start-page: 5 year: 2006 ident: bib47 article-title: Building bridges with astrocytes for spinal cord repair publication-title: Journal of Biology – volume: 207 start-page: 203 year: 2007 end-page: 217 ident: bib13 article-title: Transduced Schwann cells promote axon growth and myelination after spinal cord injury publication-title: Experimental Neurology – reference: . – volume: 165 start-page: 257 year: 2007 end-page: 264 ident: bib62 article-title: Fabrication of patterned multi-walled poly- publication-title: Journal of Neuroscience Methods – volume: 110 start-page: 2915 year: 1997 end-page: 2924 ident: bib15 article-title: Guidance of CNS growth cones by substratum grooves and ridges: effects of inhibitors of the cytoskeleton, calcium channels and signal transduction pathways publication-title: Journal of Cell Science – reference: Krsko P, Kaplan J, Libera M. Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels. Acta Biomaterialia, in press. – volume: 22 start-page: 1049 year: 2001 end-page: 1054 ident: bib30 article-title: Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin publication-title: Biomaterials – volume: 55 start-page: 1145 year: 2007 end-page: 1155 ident: bib49 article-title: Transcriptional regulation of scar gene expression in primary astrocytes publication-title: Glia – volume: 27 start-page: 3044 year: 2006 end-page: 3063 ident: bib5 article-title: Surface engineering approaches to micropattern surfaces for cell-based assays publication-title: Biomaterials – volume: 28 start-page: 5498 year: 2007 end-page: 5508 ident: bib46 article-title: Long-term neurite orientation on astrocyte monolayers aligned by microtopography publication-title: Biomaterials – volume: 29 start-page: 207 year: 1995 end-page: 215 ident: bib55 article-title: Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces publication-title: Journal of Biomedical Materials Research – volume: 184 start-page: 151 year: 2003 end-page: 152 ident: bib61 article-title: Directed nerve outgrowth is enhanced by engineered glial substrates publication-title: Experimental Neurology – volume: 19 start-page: 5618 year: 2003 end-page: 5625 ident: bib35 article-title: Electron-beam surface-patterned poly(ethylene glycol) microhydrogels publication-title: Langmuir – volume: 407 start-page: 963 year: 26 October 2000 end-page: 970 ident: bib50 article-title: Regenerating the damaged central nervous system publication-title: Nature – volume: 11 start-page: 547 year: 2000 end-page: 569 ident: bib56 article-title: On the molecular basis of fouling resistance publication-title: Journal of Biomaterials Science Polymer Edition – volume: 23 start-page: 893 year: 2002 end-page: 900 ident: bib24 article-title: Photolithographic generation of protein micropatterns for neuron culture applications publication-title: Biomaterials – volume: 6 start-page: 1500 year: 1994 end-page: 1504 ident: bib29 article-title: Defined neuronal arborizations by guided outgrowth of leech neurons in culture publication-title: European Journal of Neuroscience – start-page: 600201 year: 2005 ident: bib34 article-title: E-beam patterned hydrogels to control nanoscale surface bioactivity publication-title: Nanofabrication: technologies, devices, and applications II – volume: 174 start-page: 125 year: 2002 end-page: 136 ident: bib10 article-title: Building a bridge: engineering spinal cord repair publication-title: Experimental Neurology – volume: 7 start-page: 247 year: 2001 end-page: 265 ident: bib25 article-title: Schwann cell response to micropatterned laminin surfaces publication-title: Tissue Engineering – volume: 27 start-page: 5734 year: 2006 end-page: 5739 ident: bib27 article-title: Combined topographical and chemical micropatterns for templating neuronal networks publication-title: Biomaterials – volume: 7 start-page: 2623 year: 2007 end-page: 2632 ident: bib42 article-title: Hydrogel-based protein nanoarrays publication-title: Journal of Nanoscience and Nanotechnology – volume: 76 start-page: 626 year: 2006 end-page: 637 ident: bib17 article-title: Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro publication-title: Journal of Biomedical Materials Research – Part A – volume: 26 start-page: 1423 year: 2005 end-page: 1430 ident: bib22 article-title: Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration publication-title: Biomaterials – volume: 136 start-page: 151 year: 2004 end-page: 163 ident: bib32 article-title: A fast flexible ink-jet printing method for patterning dissociated neurons in culture publication-title: Journal of Neuroscience Methods – volume: 107 start-page: 1 year: 1994 end-page: 9 ident: bib38 article-title: An inhibitor of neurite outgrowth produced by astrocytes publication-title: Journal of Cell Science – volume: 50 start-page: 465 year: 2000 end-page: 474 ident: bib21 article-title: Patterned poly(chlorotrifluoroethylene) guides primary nerve cell adhesion and neurite outgrowth publication-title: Journal of Biomedical Materials Research – volume: 8 start-page: 417 year: 1977 end-page: 427 ident: bib39 article-title: Adult mouse dorsal root ganglia neurons in cell culture publication-title: Journal of Neurobiology – volume: 87 start-page: 35 year: 1999 end-page: 44 ident: bib31 article-title: A simple microfluidic system for patterning populations of neurons on silicon micromachined substrates publication-title: Journal of Neuroscience Methods – volume: 25 start-page: 2753 year: 2004 end-page: 2767 ident: bib43 article-title: Oriented astroglial cell growth on micropatterned polystyrene substrates publication-title: Biomaterials – volume: 40 start-page: 55 year: 2003 end-page: 62 ident: bib12 article-title: Transplantation strategies to promote repair of the injured spinal cord publication-title: Journal of Rehabilitation Research and Development – volume: 44 start-page: 92 year: 1975 end-page: 101 ident: bib20 article-title: Cell to substratum adhesion and guidance of axonal elongation publication-title: Developmental Biology – volume: 49 start-page: 377 year: 1999 end-page: 391 ident: bib14 article-title: The glial scar and central nervous system repair publication-title: Brain Research Bulletin – volume: 14 start-page: 356 year: 1998 end-page: 363 ident: bib2 article-title: Micropatterned surfaces for control of cell shape, position, and function publication-title: Biotechnology Progress – volume: 27 start-page: 1251 year: 2006 end-page: 1258 ident: bib19 article-title: Axonal outgrowth on nano-imprinted patterns publication-title: Biomaterials – volume: 2006 start-page: 4250 year: 2006 end-page: 4258 ident: bib6 article-title: Cell migration and polarity on microfabricated gradients of extracellular matrix proteins publication-title: Langmuir – volume: 49 start-page: 48 year: 2005 end-page: 64 ident: bib28 article-title: Tissue-engineering approaches for axonal guidance publication-title: Brain Research Reviews – volume: 105 start-page: 203 year: 1993 ident: 10.1016/j.biomaterials.2008.10.011_bib18 article-title: Growth cone guidance and neuron morphology on micropatterned laminin surfaces publication-title: J Cell Sci doi: 10.1242/jcs.105.1.203 – volume: 55 start-page: 1145 issue: 11 year: 2007 ident: 10.1016/j.biomaterials.2008.10.011_bib49 article-title: Transcriptional regulation of scar gene expression in primary astrocytes publication-title: Glia doi: 10.1002/glia.20537 – volume: 8 start-page: 36 issue: 12 year: 2005 ident: 10.1016/j.biomaterials.2008.10.011_bib51 article-title: Bio-interactive hydrogels publication-title: Materials Today doi: 10.1016/S1369-7021(05)71223-2 – volume: 49 start-page: 377 issue: 6 year: 1999 ident: 10.1016/j.biomaterials.2008.10.011_bib14 article-title: The glial scar and central nervous system repair publication-title: Brain Research Bulletin doi: 10.1016/S0361-9230(99)00072-6 – volume: 29 start-page: 3117 issue: 21 year: 2008 ident: 10.1016/j.biomaterials.2008.10.011_bib33 article-title: The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.03.042 – volume: 52 start-page: 4396 year: 1981 ident: 10.1016/j.biomaterials.2008.10.011_bib36 article-title: Monte Carlo simulation of fast secondary electron production in electron beam resists publication-title: Journal of Applied Physics doi: 10.1063/1.329366 – volume: 136 start-page: 151 issue: 2 year: 2004 ident: 10.1016/j.biomaterials.2008.10.011_bib32 article-title: A fast flexible ink-jet printing method for patterning dissociated neurons in culture publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2004.01.011 – volume: 108 start-page: 2747 year: 1995 ident: 10.1016/j.biomaterials.2008.10.011_bib44 article-title: Guidance of oligodendrocytes and their progenitors by substratum topography publication-title: Journal of Cell Science doi: 10.1242/jcs.108.8.2747 – volume: 7 start-page: 247 issue: 3 year: 2001 ident: 10.1016/j.biomaterials.2008.10.011_bib25 article-title: Schwann cell response to micropatterned laminin surfaces publication-title: Tissue Engineering doi: 10.1089/10763270152044125 – volume: 24 start-page: 2863 issue: 17 year: 2003 ident: 10.1016/j.biomaterials.2008.10.011_bib60 article-title: A modified microstamping technique enhances polylysine transfer and neuronal cell patterning publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00116-9 – volume: 184 start-page: 151 issue: 1 year: 2003 ident: 10.1016/j.biomaterials.2008.10.011_bib61 article-title: Directed nerve outgrowth is enhanced by engineered glial substrates publication-title: Experimental Neurology doi: 10.1016/S0014-4886(03)00253-X – volume: 174 start-page: 125 issue: 2 year: 2002 ident: 10.1016/j.biomaterials.2008.10.011_bib10 article-title: Building a bridge: engineering spinal cord repair publication-title: Experimental Neurology doi: 10.1006/exnr.2002.7865 – volume: 32 start-page: 1120 issue: 8 year: 2004 ident: 10.1016/j.biomaterials.2008.10.011_bib26 article-title: Oriented Schwann cell monolayers for directed neurite outgrowth publication-title: Annals of Biomedical Engineering doi: 10.1114/B:ABME.0000036648.68804.e7 – volume: 29 start-page: 2962 year: 2008 ident: 10.1016/j.biomaterials.2008.10.011_bib7 article-title: Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.04.004 – volume: 22 start-page: 1049 issue: 10 year: 2001 ident: 10.1016/j.biomaterials.2008.10.011_bib30 article-title: Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00352-5 – volume: 19 start-page: 5618 issue: 14 year: 2003 ident: 10.1016/j.biomaterials.2008.10.011_bib35 article-title: Electron-beam surface-patterned poly(ethylene glycol) microhydrogels publication-title: Langmuir doi: 10.1021/la034157r – volume: 1 start-page: 78 issue: 2 year: 2004 ident: 10.1016/j.biomaterials.2008.10.011_bib57 article-title: Topographically modified surfaces affect orientation and growth of hippocampal neurons publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/1/2/003 – volume: 20 start-page: 11123 issue: 25 year: 2004 ident: 10.1016/j.biomaterials.2008.10.011_bib41 article-title: Protein surface patterning using nanoscale PEG hydrogels publication-title: Langmuir doi: 10.1021/la048651m – volume: 276 start-page: 1425 issue: 5317 year: 1997 ident: 10.1016/j.biomaterials.2008.10.011_bib1 article-title: Geometric control of cell life and death publication-title: Science doi: 10.1126/science.276.5317.1425 – volume: 35 start-page: 1812 issue: 10 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib23 article-title: Optimal micropattern dimensions enhance neurite outgrowth rates, lengths, and orientations publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-007-9348-0 – volume: 11 start-page: 1085 issue: 7–8 year: 2005 ident: 10.1016/j.biomaterials.2008.10.011_bib59 article-title: Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates publication-title: Tissue Engineering doi: 10.1089/ten.2005.11.1085 – volume: 207 start-page: 203 year: 2007 ident: 10.1016/j.biomaterials.2008.10.011_bib13 article-title: Transduced Schwann cells promote axon growth and myelination after spinal cord injury publication-title: Experimental Neurology doi: 10.1016/j.expneurol.2007.06.023 – volume: 27 start-page: 1251 issue: 8 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib19 article-title: Axonal outgrowth on nano-imprinted patterns publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.047 – volume: 28 start-page: 271 issue: 2 year: 2007 ident: 10.1016/j.biomaterials.2008.10.011_bib58 article-title: Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.07.043 – year: 1997 ident: 10.1016/j.biomaterials.2008.10.011_bib40 – start-page: 5 issue: 6 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib47 article-title: Building bridges with astrocytes for spinal cord repair publication-title: Journal of Biology – volume: 27 start-page: 3044 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib5 article-title: Surface engineering approaches to micropattern surfaces for cell-based assays publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.12.024 – volume: 7 start-page: 2623 issue: 8 year: 2007 ident: 10.1016/j.biomaterials.2008.10.011_bib42 article-title: Hydrogel-based protein nanoarrays publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2007.675 – volume: 8 start-page: 417 issue: 5 year: 1977 ident: 10.1016/j.biomaterials.2008.10.011_bib39 article-title: Adult mouse dorsal root ganglia neurons in cell culture publication-title: Journal of Neurobiology doi: 10.1002/neu.480080503 – volume: 49 start-page: 48 issue: 1 year: 2005 ident: 10.1016/j.biomaterials.2008.10.011_bib28 article-title: Tissue-engineering approaches for axonal guidance publication-title: Brain Research Reviews doi: 10.1016/j.brainresrev.2004.11.002 – volume: 14 start-page: 356 issue: 3 year: 1998 ident: 10.1016/j.biomaterials.2008.10.011_bib2 article-title: Micropatterned surfaces for control of cell shape, position, and function publication-title: Biotechnology Progress doi: 10.1021/bp980031m – volume: 19 start-page: 953 year: 1998 ident: 10.1016/j.biomaterials.2008.10.011_bib52 article-title: Proteins and cells on PEG immobilized silicon surfaces publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00026-X – volume: 107 start-page: 1 year: 1994 ident: 10.1016/j.biomaterials.2008.10.011_bib38 article-title: An inhibitor of neurite outgrowth produced by astrocytes publication-title: Journal of Cell Science doi: 10.1242/jcs.107.6.1687 – volume: 24 start-page: 927 year: 2003 ident: 10.1016/j.biomaterials.2008.10.011_bib4 article-title: Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00427-1 – volume: 29 start-page: 207 issue: 2 year: 1995 ident: 10.1016/j.biomaterials.2008.10.011_bib55 article-title: Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces publication-title: Journal of Biomedical Materials Research doi: 10.1002/jbm.820290211 – volume: 87 start-page: 35 issue: 1 year: 1999 ident: 10.1016/j.biomaterials.2008.10.011_bib31 article-title: A simple microfluidic system for patterning populations of neurons on silicon micromachined substrates publication-title: Journal of Neuroscience Methods doi: 10.1016/S0165-0270(98)00154-X – volume: 44 start-page: 92 issue: 1 year: 1975 ident: 10.1016/j.biomaterials.2008.10.011_bib20 article-title: Cell to substratum adhesion and guidance of axonal elongation publication-title: Developmental Biology doi: 10.1016/0012-1606(75)90379-6 – volume: 27 start-page: 5734 issue: 33 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib27 article-title: Combined topographical and chemical micropatterns for templating neuronal networks publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.07.021 – volume: 76 start-page: 626 issue: 3 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib17 article-title: Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro publication-title: Journal of Biomedical Materials Research – Part A doi: 10.1002/jbm.a.30520 – volume: 110 start-page: 2915 year: 1997 ident: 10.1016/j.biomaterials.2008.10.011_bib15 article-title: Guidance of CNS growth cones by substratum grooves and ridges: effects of inhibitors of the cytoskeleton, calcium channels and signal transduction pathways publication-title: Journal of Cell Science doi: 10.1242/jcs.110.23.2915 – volume: 2006 start-page: 4250 issue: 22 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib6 article-title: Cell migration and polarity on microfabricated gradients of extracellular matrix proteins publication-title: Langmuir doi: 10.1021/la0531493 – volume: 91 start-page: 937 issue: 5 year: 2007 ident: 10.1016/j.biomaterials.2008.10.011_bib9 article-title: Nano neurology and the four P's of central nervous system regeneration: preserve, permit, promote, plasticity publication-title: Medical Clinics of North America doi: 10.1016/j.mcna.2007.04.005 – volume: 28 start-page: 5498 year: 2007 ident: 10.1016/j.biomaterials.2008.10.011_bib46 article-title: Long-term neurite orientation on astrocyte monolayers aligned by microtopography publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.08.034 – volume: 23 start-page: 893 issue: 3 year: 2002 ident: 10.1016/j.biomaterials.2008.10.011_bib24 article-title: Photolithographic generation of protein micropatterns for neuron culture applications publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00199-5 – volume: 165 start-page: 257 issue: 2 year: 2007 ident: 10.1016/j.biomaterials.2008.10.011_bib62 article-title: Fabrication of patterned multi-walled poly-l-lactic acid conduits for nerve regeneration publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2007.06.006 – volume: 13 start-page: 417 year: 1992 ident: 10.1016/j.biomaterials.2008.10.011_bib53 article-title: Surface-immobilized polyethylene oxide for bacterial repellence publication-title: Biomaterials doi: 10.1016/0142-9612(92)90160-P – volume: 40 start-page: 55 issue: 4 Suppl. 1 year: 2003 ident: 10.1016/j.biomaterials.2008.10.011_bib12 article-title: Transplantation strategies to promote repair of the injured spinal cord publication-title: Journal of Rehabilitation Research and Development doi: 10.1682/JRRD.2003.08.0055 – volume: 390 start-page: 680 issue: 6661 year: 1997 ident: 10.1016/j.biomaterials.2008.10.011_bib45 article-title: Regeneration of adult axons in white matter tracts of the central nervous system publication-title: Nature doi: 10.1038/37776 – volume: 34 start-page: 59 issue: 1 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib8 article-title: Nanotechnology for cell-substrate interactions publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-005-9006-3 – ident: 10.1016/j.biomaterials.2008.10.011_bib54 doi: 10.1016/j.actbio.2008.08.025 – volume: 5 start-page: 293 year: 2003 ident: 10.1016/j.biomaterials.2008.10.011_bib11 article-title: Neural tissue engineering: strategies for repair and regeneration publication-title: Annual Review of Biomedical Engineering doi: 10.1146/annurev.bioeng.5.011303.120731 – start-page: 600201 year: 2005 ident: 10.1016/j.biomaterials.2008.10.011_bib34 article-title: E-beam patterned hydrogels to control nanoscale surface bioactivity – volume: 33 start-page: 376 issue: 3 year: 2005 ident: 10.1016/j.biomaterials.2008.10.011_bib16 article-title: Substrate curvature influences the direction of nerve outgrowth publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-005-1740-z – volume: 6 start-page: 1500 issue: 9 year: 1994 ident: 10.1016/j.biomaterials.2008.10.011_bib29 article-title: Defined neuronal arborizations by guided outgrowth of leech neurons in culture publication-title: European Journal of Neuroscience doi: 10.1111/j.1460-9568.1994.tb01011.x – volume: 50 start-page: 465 issue: 4 year: 2000 ident: 10.1016/j.biomaterials.2008.10.011_bib21 article-title: Patterned poly(chlorotrifluoroethylene) guides primary nerve cell adhesion and neurite outgrowth publication-title: Journal of Biomedical Materials Research doi: 10.1002/(SICI)1097-4636(20000615)50:4<465::AID-JBM1>3.0.CO;2-K – volume: 25 start-page: 2753 issue: 14 year: 2004 ident: 10.1016/j.biomaterials.2008.10.011_bib43 article-title: Oriented astroglial cell growth on micropatterned polystyrene substrates publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.11.045 – volume: 26 start-page: 1423 issue: 12 year: 2005 ident: 10.1016/j.biomaterials.2008.10.011_bib22 article-title: Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.04.046 – volume: 23 start-page: 371 issue: 3–4 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib48 article-title: Overcoming inhibition in the damaged spinal cord publication-title: Journal of Neurotrauma doi: 10.1089/neu.2006.23.371 – volume: 2 start-page: 928 year: 2006 ident: 10.1016/j.biomaterials.2008.10.011_bib3 article-title: Nanopatterning proteins and peptides publication-title: Soft Matter doi: 10.1039/b611000b – volume: 11 start-page: 547 year: 2000 ident: 10.1016/j.biomaterials.2008.10.011_bib56 article-title: On the molecular basis of fouling resistance publication-title: Journal of Biomaterials Science Polymer Edition doi: 10.1163/156856200743869 – volume: 407 start-page: 963 year: 2000 ident: 10.1016/j.biomaterials.2008.10.011_bib50 article-title: Regenerating the damaged central nervous system publication-title: Nature doi: 10.1038/35039559 – year: 1997 ident: 10.1016/j.biomaterials.2008.10.011_bib37 |
SSID | ssj0014042 |
Score | 2.227132 |
Snippet | We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was... Abstract We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This... We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes – axons – but that prevent the adhesion of astrocytes. This... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 721 |
SubjectTerms | Advanced Basic Science Animals Astrocyte Astrocytes - cytology Astrocytes - drug effects Cell adhesion Cell Adhesion - drug effects Cell Line Cell Proliferation - drug effects Dentistry Hydrogel Hydrogels - chemistry Hydrogels - pharmacology Mice Micropatterning Nerve regeneration Polyethylene Glycols - chemistry Polyethylene Glycols - pharmacology Polyethylene oxide Rats Surface Properties |
Title | Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961208007989 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961208007989 https://dx.doi.org/10.1016/j.biomaterials.2008.10.011 https://www.ncbi.nlm.nih.gov/pubmed/19026443 https://www.proquest.com/docview/20272662 https://www.proquest.com/docview/35456588 https://www.proquest.com/docview/66748325 https://pubmed.ncbi.nlm.nih.gov/PMC3282616 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaKDhi2w7B1r-zR6bDDdvBiy7ZsYdihKFZkj_a0Ar0Jsh5xisAJYgdDLv3tJS07S9YFCLCrLcKWSJOf5I8kIe9NqDkgXREwrVyQMIfdAOF7tIVLNAsLw1tW5fkFH10m36_SqwNy2ufCIK2y8_3ep7feursy7FZzOJ9MhkhLYgICNGKeTOSYxJckGdr6p5s1zQOrxzBPY2QBju4Lj7YcL0xxV41XtedVItMrinYFqbsg9G8u5UZwOntMHnWokp74F39CDmx1RB5u1Bo8IvfPu7_oT8nvn7YaN2VQg34sbXNHAHdSZUqLZ2dUVYb6ZYGrY9inNyWdOYqlL-EheNRf02JF6-XCKW2DeVuiE9w1nc-mqw8WVA-hzNLxdAVW9pGWK7OYjWF6z8jl2ddfp6Oga8AQaIA1TaBczk0WOZPljhc6dInhubAJYiAnhBagW6tFWKiU54lC8FjkKeyA0lixSJn4OTmsZpV9SajiWawB26W60EkOZiNSx43Go0xmAAMOiOhXXOquOjk2yZjKnoZ2LTe15dtnwj3Q1oDEa9m5r9Gxl9TnXrGyz0IFvykhlOwlnf1L2tadC6hlJGsmQ3nHTAfky1pyy9L3fvK73goluAJUuqrsbImDWAZ4i-0eESNeTvN89wiOzWdilg7IC2_Xf1ZUhAieY5j5lsWvB2Ch8u071aRsC5bHsK_nEX_1nzN_TR74f3lIJnpDDpvF0r4FSNgUx-03f0zunXz7Mbq4BQYAZwc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWReJxQLC8ymt94ACH0MRJnFiIA1qxKtDuaVfam-X40RRVSdWkQr3w25nJo7QslSpxTWaU2DOZ-ex8niHkrfE1B6QrPKaV8yLmsBsgfI82c5FmfmZ4w6qcXPDRVfTtOr4-Imf9WRikVXaxv43pTbTurgy72RwuZrMh0pKYgASNmCcRqbhFbkdxmCCv78OvDc8Dy8ewlsfIPBTvK482JC88467q1tYtsRKpXkGwL0vdRKF_kym3stP5Q_Kgg5X0c_vmj8iRLU7I_a1igyfkzqT7jf6Y_BzbYlrnXgUGsrQ5PALAkyqTW9w8o6owtJ0XuDqFhXqd09JRrH0JD8G9_opma1qtlk5p6y2aGp0Qr-minK_fWbA95DJLp_M1uNl7mq_NspzC8J6Qq_Mvl2cjr-vA4GnANbWnXMpNEjiTpI5n2neR4amwEYIgJ4QWYFyrhZ-pmKeRQvSYpTEsgeJQsUCZ8Ck5LsrCPidU8STUAO5inekoBb8RseNG414mMwACB0T0My51V54cu2TMZc9D-yG3rdX2z4R7YK0BCTe6i7ZIx0FaH3vDyv4YKgROCbnkIO3kX9q26mJAJQNZMenLG346IJ82mjuufvCTT3svlBAL0OiqsOUKhVgCgIvtlwgRMMdpul-CY_eZkMUD8qz16z8zKnxEzyGMfMfjNwJYqXz3TjHLm4rlISzsecBf_OfIT8nd0eVkLMdfL76_JPfaH3vILHpFjuvlyr4GfFhnb5rv_ze5OGia |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Length-scale+mediated+adhesion+and+directed+growth+of+neural+cells+by+surface-patterned+poly%28ethylene+glycol%29+hydrogels&rft.jtitle=Biomaterials&rft.au=Krsko%2C+Peter&rft.au=McCann%2C+Thomas+E.&rft.au=Thach%2C+Thu-Trang&rft.au=Laabs%2C+Tracy+L.&rft.date=2009-02-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=30&rft.issue=5&rft.spage=721&rft.epage=729&rft_id=info:doi/10.1016%2Fj.biomaterials.2008.10.011&rft.externalDocID=S0142961208007989 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961208X00328%2Fcov150h.gif |