A new model for simultaneous dimensionality reduction and time-varying functional connectivity estimation
An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliab...
Saved in:
Published in | PLoS computational biology Vol. 17; no. 4; p. e1008580 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
16.04.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1008580 |
Cover
Abstract | An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain. |
---|---|
AbstractList | An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain. An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain. I show that PCA, although widely used in practice, can introduce important biases and loss of sensitivity in the estimation of time-varying functional connectivity on high-dimensional fMRI data. I discuss these limitations and propose a new method that, by performing dimensionality reduction and time-varying functional connectivity estimation in one single step, can effectively overcome these limitations. [...]if an HMM with twelve states was trained on 820 subjects from the Human Connectome Project (HCP) data set [17], each state would be on average estimated on 68.3h of data; compared to a typical 1min window, the statistical noise in this estimation is very small. See S1 Fig for representations in the form of graphical models. https://doi.org/10.1371/journal.pcbi.1008580.g001 Materials and methods The problem of estimating time-varying FC in high dimensions Let be the multivariate source signal at volume (time point) t = 1… Alternatively, the mixture model of Gaussian distributions dispenses with the transition probability matrix, thus ignoring the temporal structure of the data and treating the time points (volumes) as independently distributed and exchangeable [19]. [...]here we prespecify K and submit the data to an inference algorithm that will return the state probabilities γtk, the state parameters (Σk), and the transition probability matrix and γtk. Because n is often large in comparison to T, PCA is typically used as an intermediate dimensionality reduction step. [...]if an HMM with twelve states was trained on 820 subjects from the Human Connectome Project (HCP) data set [17], each state would be on average estimated on 68.3h of data; compared to a typical 1min window, the statistical noise in this estimation is very small. See S1 Fig for representations in the form of graphical models. https://doi.org/10.1371/journal.pcbi.1008580.g001 Materials and methods The problem of estimating time-varying FC in high dimensions Let be the multivariate source signal at volume (time point) t = 1… Alternatively, the mixture model of Gaussian distributions dispenses with the transition probability matrix, thus ignoring the temporal structure of the data and treating the time points (volumes) as independently distributed and exchangeable [19]. [...]here we prespecify K and submit the data to an inference algorithm that will return the state probabilities γtk, the state parameters (Σk), and the transition probability matrix and γtk. Because n is often large in comparison to T, PCA is typically used as an intermediate dimensionality reduction step. An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain.An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain. |
Audience | Academic |
Author | Vidaurre, Diego |
AuthorAffiliation | Ghent University, BELGIUM 2 Department of Psychiatry, University of Oxford, Oxford, United Kingdom 1 Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark |
AuthorAffiliation_xml | – name: Ghent University, BELGIUM – name: 2 Department of Psychiatry, University of Oxford, Oxford, United Kingdom – name: 1 Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark |
Author_xml | – sequence: 1 givenname: Diego orcidid: 0000-0002-9650-2229 surname: Vidaurre fullname: Vidaurre, Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33861733$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk1uL1DAUx4usuBf9BqIFX_RhxqRJmtQHYVi8DCwKXp5DmiZjhjaZTdrR-faeznSXnWURpA9Ncn7nfy7JOc9OfPAmy55jNMeE47frMESv2vlG126OERJMoEfZGWaMzDhh4uTO-jQ7T2mNECyr8kl2SogoMSfkLHOL3JvfeRca0-Y2xDy5bmh75U0YUt64zvjkAsRx_S6Pphl0D9tc-SbvwTjbqrhzfpXbwe8tqs118N7AZju6mASYGi1Ps8dWtck8m_4X2c-PH35cfp5dff20vFxczTQveD8rkaZc6wrXUCVRhdDUWmpxYXBTaCEqRQtdUUNLVtqaEcwaIzQuLGVEKGvJRfbyoLtpQ5JTl5IsWCEKhEVVALE8EE1Qa7mJkGDcyaCc3B-EuJIq9k63RjaUVqjSNUcIU85qUVqFIIdGcMUZH7XeT9GGujONNr6Pqj0SPbZ490uuwlYKJDAhFAReTwIxXA_QLtm5pE3bHq4A8saUVWXBEaCv7qEPVzdRKwUFOG8DxNWjqFyUJSrHOkqg5g9Q8DWmc3CDxjo4P3J4c-QATG_-9Cs1pCSX37_9B_vlmH1xt4G3nbt5ogDQA6BjSCkae4tgJMdJuOmCHCdBTpMAbu_uuWnX7x8iFOrafzv_BZG6EH8 |
CitedBy_id | crossref_primary_10_1089_brain_2022_0031 crossref_primary_10_1016_j_neuroimage_2022_119026 crossref_primary_10_1186_s12957_022_02726_8 crossref_primary_10_1016_j_bspc_2025_107645 crossref_primary_10_1162_netn_a_00331 crossref_primary_10_1016_j_celrep_2021_109954 crossref_primary_10_1016_j_brainresbull_2023_110733 crossref_primary_10_1007_s11571_022_09874_3 crossref_primary_10_1111_ejn_15386 crossref_primary_10_1152_jn_00054_2023 crossref_primary_10_1162_imag_a_00460 crossref_primary_10_3390_sym16040474 crossref_primary_10_1371_journal_pcbi_1009112 crossref_primary_10_1016_j_jneumeth_2024_110275 crossref_primary_10_1016_j_media_2024_103290 crossref_primary_10_1016_j_tins_2024_05_011 crossref_primary_10_1364_BOE_434936 crossref_primary_10_1002_hbm_70157 crossref_primary_10_1186_s12868_024_00854_3 crossref_primary_10_1186_s12920_021_01085_9 crossref_primary_10_1017_S0890060423000021 crossref_primary_10_1103_PhysRevE_104_024305 crossref_primary_10_1002_hbm_25846 crossref_primary_10_1038_s41598_024_55201_7 |
Cites_doi | 10.1016/j.tics.2013.09.016 10.1089/brain.2011.0068 10.1016/j.neuroimage.2020.116604 10.1111/insr.12023 10.1073/pnas.98.2.676 10.1023/A:1008940618127 10.1016/j.neuroimage.2015.11.055 10.1016/j.neuroimage.2016.11.052 10.1073/pnas.1700765114 10.1162/089976699300016728 10.1093/cercor/bhs352 10.1016/j.neuroimage.2013.05.041 10.1038/s41583-018-0071-7 10.1073/pnas.1705120114 10.1089/brain.2012.0120 10.1016/j.jneumeth.2020.108600 10.1038/s41598-017-05425-7 10.1016/j.neuroimage.2017.12.084 10.1038/s41467-019-08934-3 10.1016/j.neuroimage.2015.05.092 10.1016/j.neuroimage.2017.06.077 10.1016/j.neuroimage.2015.11.047 10.1007/978-3-642-20192-9 10.1016/j.neuron.2018.03.035 10.1038/nn.4125 10.1002/nav.3800020109 10.1002/hbm.24442 10.1002/9780470689516 10.1016/j.neuroimage.2005.08.035 10.1016/j.neuroimage.2015.07.064 10.1109/5.18626 10.1162/netn_a_00116 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Diego Vidaurre. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Diego Vidaurre 2021 Diego Vidaurre |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Diego Vidaurre. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Diego Vidaurre 2021 Diego Vidaurre |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1008580 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | HMM-PCA performs simultaneous time-varying FC and dimensionality reduction |
EISSN | 1553-7358 |
ExternalDocumentID | 2528201892 oai_doaj_org_article_d44909cb7001475b86fa089ad87a7572 PMC8081334 A660614756 33861733 10_1371_journal_pcbi_1008580 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Denmark |
GeographicLocations_xml | – name: Denmark |
GrantInformation_xml | – fundername: ; grantid: NNF19OC-0054895 – fundername: ; grantid: ERC-StG-2019-850404 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ PMFND 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM - AAPBV ABPTK ADACO BBAFP M~E |
ID | FETCH-LOGICAL-c727t-60c47cc91b1373a28c4ff4f12e1d2c889a42c94e4656fb5315de8c12f4538aff3 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:12:07 EST 2021 Wed Aug 27 01:30:54 EDT 2025 Thu Aug 21 14:13:30 EDT 2025 Fri Sep 05 00:39:55 EDT 2025 Fri Jul 25 10:47:47 EDT 2025 Tue Jun 17 21:56:26 EDT 2025 Tue Jun 10 20:19:08 EDT 2025 Fri Jun 27 04:40:31 EDT 2025 Fri Jun 27 05:03:23 EDT 2025 Thu Apr 03 07:05:19 EDT 2025 Tue Jul 01 01:26:00 EDT 2025 Thu Apr 24 22:55:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c727t-60c47cc91b1373a28c4ff4f12e1d2c889a42c94e4656fb5315de8c12f4538aff3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current address: Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark The authors have declared that no competing interests exist. |
ORCID | 0000-0002-9650-2229 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1008580 |
PMID | 33861733 |
PQID | 2528201892 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2528201892 doaj_primary_oai_doaj_org_article_d44909cb7001475b86fa089ad87a7572 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081334 proquest_miscellaneous_2514596270 proquest_journals_2528201892 gale_infotracmisc_A660614756 gale_infotracacademiconefile_A660614756 gale_incontextgauss_ISR_A660614756 gale_incontextgauss_ISN_A660614756 pubmed_primary_33861733 crossref_primary_10_1371_journal_pcbi_1008580 crossref_citationtrail_10_1371_journal_pcbi_1008580 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210416 |
PublicationDateYYYYMMDD | 2021-04-16 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210416 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | E Glerean (pcbi.1008580.ref012) 2012; 2 A Winkler (pcbi.1008580.ref034) 2015; 123 D Vidaurre (pcbi.1008580.ref041) 2013; 81 DCV Essen (pcbi.1008580.ref017) 2013; 80 U Pervaiz (pcbi.1008580.ref036) 2020; 211 MD Luca (pcbi.1008580.ref001) 2006; 29 DJ Lurie (pcbi.1008580.ref009) 2020; 4 ABA Stevner (pcbi.1008580.ref021) 2019; 10 IT Jolliffe (pcbi.1008580.ref022) 2002 A Faghiri (pcbi.1008580.ref014) 2020; 334 LR Rabiner (pcbi.1008580.ref018) 1989; 72 F Pesarin (pcbi.1008580.ref037) 2010 D Vidaurre (pcbi.1008580.ref005) 2017; 114 R Hindriks (pcbi.1008580.ref011) 2016; 127 S Roweis (pcbi.1008580.ref028) 1998 SB Eickhoff (pcbi.1008580.ref020) 2018; 19 CE Rasmussen (pcbi.1008580.ref024) 1998 D Vidaurre (pcbi.1008580.ref016) 2018; 180 A Schaefer (pcbi.1008580.ref030) 2017; 28 T Ge (pcbi.1008580.ref006) 2017; 114 EA Allen (pcbi.1008580.ref010) 2012; 24 pcbi.1008580.ref027 P Buhlmann (pcbi.1008580.ref038) 2011 R Kong (pcbi.1008580.ref035) 2019; 29 JM Shine (pcbi.1008580.ref015) 2015; 122 HW Kuhn (pcbi.1008580.ref033) 1955; 2 ME Raichle (pcbi.1008580.ref002) 2001; 98 J Cabral (pcbi.1008580.ref013) 2017; 7 K Murphy (pcbi.1008580.ref039) 2017; 154 SFV Nielsen (pcbi.1008580.ref025) 2018; 171 D Vidaurre (pcbi.1008580.ref008) 2021; 117713 P Ritter (pcbi.1008580.ref040) 2013; 3 CM Bishop (pcbi.1008580.ref019) 2006 ME Tipping (pcbi.1008580.ref026) 1999; 11 P Smyth (pcbi.1008580.ref031) 2000; 10 SM Smith (pcbi.1008580.ref003) 2013; 17 D Vidaurre (pcbi.1008580.ref029) 2016; 126 D Vidaurre (pcbi.1008580.ref032) 2019; 40 C Gratton (pcbi.1008580.ref007) 2018; 98 ZG M J Beal (pcbi.1008580.ref023) 2002 SM Smith (pcbi.1008580.ref004) 2015; 18 34101724 - PLoS Comput Biol. 2021 Jun 8;17(6):e1009112. doi: 10.1371/journal.pcbi.1009112 |
References_xml | – start-page: 626 volume-title: Advances in neural information processing systems year: 1998 ident: pcbi.1008580.ref028 – volume: 17 start-page: 666 year: 2013 ident: pcbi.1008580.ref003 article-title: Functional connectomics from resting-state fMRI publication-title: Trends in cognitive sciences doi: 10.1016/j.tics.2013.09.016 – volume: 2 start-page: 91 year: 2012 ident: pcbi.1008580.ref012 article-title: Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity publication-title: Brain connectivity doi: 10.1089/brain.2011.0068 – volume: 211 start-page: 116604 year: 2020 ident: pcbi.1008580.ref036 article-title: Optimising network modelling methods for fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116604 – volume: 81 start-page: 361 year: 2013 ident: pcbi.1008580.ref041 article-title: A Survey of L1 Regression publication-title: International Statistical Review doi: 10.1111/insr.12023 – volume: 98 start-page: 676 year: 2001 ident: pcbi.1008580.ref002 article-title: A default mode of brain function publication-title: Proceedings of the National Academy of Sciences of the USA doi: 10.1073/pnas.98.2.676 – start-page: 577 volume-title: Advances in neural information processing systems year: 2002 ident: pcbi.1008580.ref023 – volume: 10 start-page: 63 year: 2000 ident: pcbi.1008580.ref031 article-title: Model selection for probabilistic clustering using cross-validated likelihood publication-title: Statistics and Computing doi: 10.1023/A:1008940618127 – volume: 127 start-page: 242 year: 2016 ident: pcbi.1008580.ref011 article-title: Can sliding-window correlations reveal dynamic functional connectivityin resting-state fMRI? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.11.055 – volume: 154 start-page: 169 year: 2017 ident: pcbi.1008580.ref039 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.052 – volume: 114 start-page: 5521 year: 2017 ident: pcbi.1008580.ref006 article-title: Heritability analysis with repeat measurements and its application to resting-state functional connectivity publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1700765114 – volume: 11 start-page: 443 year: 1999 ident: pcbi.1008580.ref026 article-title: Mixtures of Probabilistic Principal Component Analyzers publication-title: Neural Computation doi: 10.1162/089976699300016728 – volume: 24 start-page: 663 year: 2012 ident: pcbi.1008580.ref010 article-title: Tracking Whole-Brain Connectivity Dynamics in the Resting State publication-title: Cerebral Cortex doi: 10.1093/cercor/bhs352 – volume: 80 start-page: 62 year: 2013 ident: pcbi.1008580.ref017 article-title: The WU-Minn Human Connectome Project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – start-page: 554 volume-title: Advances in neural information processing systems year: 1998 ident: pcbi.1008580.ref024 – volume: 19 start-page: 672 year: 2018 ident: pcbi.1008580.ref020 article-title: Imaging-based parcellations of the human brain publication-title: Nature Reviews Neuroscience doi: 10.1038/s41583-018-0071-7 – ident: pcbi.1008580.ref027 – volume: 114 start-page: 12827 year: 2017 ident: pcbi.1008580.ref005 article-title: Brain network dynamics are hierarchically organized in time publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1705120114 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: pcbi.1008580.ref019 – volume: 3 start-page: 121 year: 2013 ident: pcbi.1008580.ref040 article-title: The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging publication-title: Brain Connectivity doi: 10.1089/brain.2012.0120 – volume: 334 start-page: 108600 year: 2020 ident: pcbi.1008580.ref014 article-title: Weighted average of shared trajectory: A new estimator for dynamic functional connectivity efficiently estimates both rapid and slow changes over time publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2020.108600 – volume: 7 start-page: 5135 year: 2017 ident: pcbi.1008580.ref013 article-title: Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest publication-title: Scientific Reports doi: 10.1038/s41598-017-05425-7 – volume: 171 start-page: 116 year: 2018 ident: pcbi.1008580.ref025 article-title: Predictive assessment of models for dynamic functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.12.084 – volume: 10 start-page: 1035 year: 2019 ident: pcbi.1008580.ref021 article-title: Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep publication-title: Nature communications doi: 10.1038/s41467-019-08934-3 – volume: 123 start-page: 253 year: 2015 ident: pcbi.1008580.ref034 article-title: Multi-level block permutation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.092 – volume-title: Principal Component Analysis year: 2002 ident: pcbi.1008580.ref022 – volume: 180 start-page: 646 year: 2018 ident: pcbi.1008580.ref016 article-title: Discovering dynamic brain networks from big data in rest and task publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.06.077 – volume: 126 start-page: 81 year: 2016 ident: pcbi.1008580.ref029 article-title: Spectrally resolved fast transient brain states in electrophysiological data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.11.047 – volume-title: Statistics for High-dimensional Data: Methods, Theory and Applications year: 2011 ident: pcbi.1008580.ref038 doi: 10.1007/978-3-642-20192-9 – volume: 98 start-page: 439 year: 2018 ident: pcbi.1008580.ref007 article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation publication-title: Neuron doi: 10.1016/j.neuron.2018.03.035 – volume: 117713 year: 2021 ident: pcbi.1008580.ref008 article-title: Behavioural relevance of spontaneous, transient brain network interactions in fMRI publication-title: NeuroImage – volume: 18 start-page: 1565 year: 2015 ident: pcbi.1008580.ref004 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nature neuroscience doi: 10.1038/nn.4125 – volume: 2 start-page: 83 year: 1955 ident: pcbi.1008580.ref033 article-title: The Hungarian Method for the assignment problem publication-title: Naval Research Logistics Quarterly doi: 10.1002/nav.3800020109 – volume: 28 start-page: 3095 year: 2017 ident: pcbi.1008580.ref030 article-title: Imaging-based parcellations of the human brain publication-title: Cerebral Cortex – volume: 40 start-page: 1234 year: 2019 ident: pcbi.1008580.ref032 article-title: Stable between-subject statistical inference from unstable within-subject functional connectivity estimates publication-title: Human brain mapping doi: 10.1002/hbm.24442 – volume-title: Permutation tests for complex data: Theory, applications and software year: 2010 ident: pcbi.1008580.ref037 doi: 10.1002/9780470689516 – volume: 29 start-page: 1359 year: 2006 ident: pcbi.1008580.ref001 article-title: FMRI resting state networks define distinct modes of long-distance interactions in the human brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.035 – volume: 122 start-page: 399 year: 2015 ident: pcbi.1008580.ref015 article-title: Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.064 – volume: 72 start-page: 257 year: 1989 ident: pcbi.1008580.ref018 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.18626 – volume: 4 start-page: 30 year: 2020 ident: pcbi.1008580.ref009 article-title: Questions and controversies in the study of time-varying functional connectivity in resting fMRI publication-title: Network Neuroscience doi: 10.1162/netn_a_00116 – volume: 29 start-page: 2533 year: 2019 ident: pcbi.1008580.ref035 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI publication-title: Cerebral Cortex – reference: 34101724 - PLoS Comput Biol. 2021 Jun 8;17(6):e1009112. doi: 10.1371/journal.pcbi.1009112 |
SSID | ssj0035896 |
Score | 2.49215 |
Snippet | An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we... [...]if an HMM with twelve states was trained on 820 subjects from the Human Connectome Project (HCP) data set [17], each state would be on average estimated... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1008580 |
SubjectTerms | Algorithms Biology and Life Sciences Brain Datasets Decomposition Markov Chains Markov processes Medicine and Health Sciences Models, Theoretical Neural circuitry Noise Parameter estimation Physical sciences Physiological aspects Principal Component Analysis Probabilistic models Probability Research and Analysis Methods Statistical analysis Time Factors Time series Transition probabilities |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA4yIHgRf-_oKFEET3Xb_GiS4yguq4c9qAtzC0na6MDSGaazgv-97yWdMpWVvXhtXkvz3kvypX35PkLeVqxtTGhdwSKSasM0WXjDfQGXg5Ie0iCkKt-L-vxSfFnJ1ZHUF9aEZXrg7LjTRghTmuDx_6iAu3UdXamNa7RySqo0-5amPGym8hzMpU7KXCiKUyguVsOhOa6q0yFG77fBr7FGQEukhDxalBJ3_zhDz7ZXm_4m-Pl3FeXRsnT2gNwf8CRd5n48JHfa7hG5mxUmfz8m6yUF3EyT3g0FfEr7NZYQuq6FHT9tkNo_03IAGKc7pHHFQFHXNRRV54tfbofnoCguf_mrIQ1YGhOy6ARFjo58-PEJuTz79P3jeTGoKxQBMMu-qMsgVAim8uAW7pgOIkYRIXhVw4IGFwsWjGiRUC16GKqyaXWoWBQwR7oY-VMy6zZde0JoJRrta81rZaQQDYBQqVCpCqAXV8zrOeEH99owUI-jAsaVTf_TFGxBsrcsBsUOQZmTYrxrm6k3brH_gJEbbZE4O12AdLJDOtnb0mlO3mDcLVJjdFh788Nd9739_O3CLusat89K1v80-joxejcYxQ10NrjhvAO4DCm3JpaLiSUM8DBpPsEcPPS5t0wyxG3awNsuDnl5c_PrsRkfivV0Kb_AphJJdwm89iyn8eg3zjXAWs7nRE0SfOLYaUu3_pmYyVHGhXPx_H9E4gW5x7B-CHk16wWZ7XfX7UsAgHv_Ko31P4IVV24 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXxLtbCjIIiZPpxnZi54QWRFU49ABU2pvlR9yuVGWXzbYS_54ZxxsaVOAaT6J4HvbYHn8fIW8K3oTaN5bxiKDaMEwyVwvH4LFXpQM38KnK96Q6PpVfFuUib7h1uaxyNyamgTqsPO6RH_KS42Sla_5-_YMhaxSermYKjdvkToIuA39Wi2HBJUqd-LmQGocpIRf56pxQxWG21Lu1d0usFNAlAkNem5oSgv8wTk_WF6vupiT0z1rKa5PT0QNyP2eVdN67wUNyq2kfkbs9z-TPx2Q5p5A908R6QyFLpd0SCwlt28C6nwYE-O_BOSAlpxsEc0VzUdsGitzz7Mpu8DYUxUmw3zukHgtkfE89QRGpo78C-YScHn36_vGYZY4F5iFz2bJq5qXyvi4cqEVYrr2MUUYwYRG417q2kvtaNgirFh0EbBka7QseJYyUNkbxlEzaVdvsEVrIoF2lRaXAEjJAKloq5KuCBEwo7vSUiJ16jc8A5MiDcWHSqZqChUivLYNGMdkoU8KGt9Y9AMd_5D-g5QZZhM9OD1abM5Oj0QQp61ntHR66S3BJXUU7g74GrawqFZ-S12h3gwAZLVbgnNnLrjOfv52YeVXhIlqV1V-Fvo6E3mahuILOeptvPYDKEHhrJHkwkoQw96PmPfTBXZ878zsg4M2dX97c_Gpoxo9iVV3yL5ApZGJfAq0969140JsQGpJbIaZEjRx8pNhxS7s8T_jkSOYihNz_9289J_c41gchbmZ1QCbbzWXzAhK8rXuZovgXy7dP2g priority: 102 providerName: ProQuest |
Title | A new model for simultaneous dimensionality reduction and time-varying functional connectivity estimation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33861733 https://www.proquest.com/docview/2528201892 https://www.proquest.com/docview/2514596270 https://pubmed.ncbi.nlm.nih.gov/PMC8081334 https://doaj.org/article/d44909cb7001475b86fa089ad87a7572 http://dx.doi.org/10.1371/journal.pcbi.1008580 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9NAEF_OHoIv4vf1rGUVwacczX5kNw8irV49BYucFvoWNpvkLJSkl7Ti_ffObD4w0tOXFrKTkJ2Z3Z3Jzv5-hLz2WZqENjUeyxBUG6ZJLw557MFlq2QMbmBdle8iuFiKzyu5OiItZ2ujwOpgaod8Ustyc_br-uYdDPi3jrVB-e1NZ1sbr3HXX0sNSfwxrE0BpmNfRLevwKV2jF1IluMpLlbNYbrbntJbrBymfzdzD7abojoUlv5dXfnHcjV_QO43cSad1o7xkByl-SNyt2aevHlM1lMK8TR1PDgU4lZarbG00ORpsa9ogpD_NVwHBOm0RHhXNCA1eUKRjd77aUo8H0VxWay_JlKLJTO2JqOgiN1RH4p8Qpbz8-_vL7yGdcGzEMvsvGBihbI29GNQCzdMW5FlIgOj-gmzWodGMBuKFIHWshiGsExSbX2WCZg7TZbxp2SQF3l6QqgvEh0HmgcqlEIkEJxKhQxWEJJxxWI9JLxVb2QbSHJkxthEbp9NQWpSaytCo0SNUYbE6-7a1pAc_5GfoeU6WQTUdheK8ipqxmeUCBFOQhvjNrwAJ9VBZibQ10Qro6RiQ_IK7R4hZEaONTlXZl9V0advi2gaBJhWKxncKnTZE3rTCGUFdNaa5hwEqAyhuHqSo54kDHzbaz5BH2z7XEVMMozndAhvO2r98nDzy64ZH4p1ds6_QMYXjo8JtPasduNOb5xrCHc5HxLVc_CeYvst-fqHQyxHehfOxem_X-s5ucewYgiRNIMRGezKffoCQr5dPCZ31ErBr55_HJPj6ezDbA7_s_PF18ux-4wyduP8N8D2W20 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwQviN8rDDAIxFNYYzux8zChDja1bFRobFLfjOMko9KUlKYD7Z_jb-POccqCBjztNb5E8flyd47vvo-QlyHLs8TmJmAFgmqDmwzShKcBXLYySsEMrKvyncSjY_FhGk3XyM-2FwbLKluf6Bx1Vln8R77FIobBSiXs7fxbgKxReLraUmgYT62QbTuIMd_YsZ-f_4AtXL09fg_r_Yqxvd2jd6PAswwEFmL3MogHVkhrkzANueSGKSuKQhQwiTBjVqnECGYTkSOwWJGCyUZZrmzICgG-whQFh-deI-sCO1x7ZH1nd_LpsI0FPFKOIQzJeQLJxdQ373EZbnlbeTO36QxrFVSE0JQXgqPjEFhFit78tKovS4P_rOa8EB73bpNbPq-lw8YQ75C1vLxLrjdMl-f3yGxIIX-njneHQp5M6xmWMpoyr85qmiHFQAMPApsCukA4WTQYasqMLmEw-G4W2I9FMQw3fy-pxRId25BfUMQKaZow75PjK9H_A9IrqzLfIDQUmUpjxWOZREJkkAxHEhmzIAXkkqWqT3irXm09BDoycZxqd64nYSvUaEvjomi_KH0SrO6aNxAg_5HfwZVbySKAt7tQLU609wc6EyIZJDbFY38BH4WKCzOAuWZKGhlJ1icvcN01QnSUWAN0Ys7qWo8_T_QwjnEbL6P4r0KHHaHXXqioYLLW-L4LUBlCf3UkNzuS4GhsZ3gDbbCdc61_f5JwZ2uXlw8_Xw3jQ7Guz9kXyITC8T-B1h42ZrzSG-cK0mvO-0R2DLyj2O5IOfvqENKRToZz8ejfr_WM3BgdfTzQB-PJ_mNyk2G1EqJ4xpukt1yc5U8g3VymT_03TcmXq3YjvwCHG5M2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJxAviN8rDDAIxFNoYzux8zChjq1aGaqmwaS-ZY4Tj0pTUpoWtH-Rv4q7xAkLGvC01_gSxefz3Tm5-z5CXvssSyOTaY9ZBNUGN-klEU88uGxkkIAZmKrKdxoenIiPs2C2QX42vTBYVtn4xMpRp4XBb-QDFjAMVipiA-vKIo72xu8X3zxkkMI_rQ2dhnY0C-lOBTfmmjwOs4sfcJwrdyZ7sPZvGBvvf_lw4DnGAc9AHF954dAIaUzkJz6XXDNlhLXCwoT8lBmlIi2YiUSGIGM2AfMN0kwZn1kBfkNby-G5N8imhCgpemRzd396dNzEBR6oii0MiXo8ycXMNfJx6Q-c3bxbmGSOdQsqQJjKS4Gy4hNoo0ZvcV6UV6XEf1Z2XgqV47vkjstx6ag2yntkI8vvk5s16-XFAzIfUcjlacXBQyFnpuUcyxp1nhXrkqZIN1BDhcABgS4RWhaNh-o8pSsY9L7rJfZmUQzJ9ZdMarBcx9REGBRxQ-qGzIfk5Fr0_4j08iLPtgj1RaqSUPFQRoEQKSTGgUT2LEgHuWSJ6hPeqDc2Dg4dWTnO4-ofn4RjUa2tGBcldovSJ15716KGA_mP_C6uXCuLYN7VhWJ5FjvfEKdCRMPIJFgCIGCDqNDqIcw1VVLLQLI-eYXrHiNcR46Gf6bXZRlPPk_jURjikV4G4V-FjjtCb52QLWCyRrseDFAZwoB1JLc7kuB0TGd4C22wmXMZ_96ecGdjl1cPv2yH8aFY41fZF8j4ouKCAq09rs241RvnClJtzvtEdgy8o9juSD7_WqGlI7UM5-LJv1_rBbkF7iT-NJkePiW3GRYuIaBnuE16q-U6ewaZ5yp57rY0JafX7UV-AVC2l2I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+model+for+simultaneous+dimensionality+reduction+and+time-varying+functional+connectivity+estimation&rft.jtitle=PLoS+computational+biology&rft.au=Diego+Vidaurre+Current+address%3A+Center+for+Functionally+Integrative+Neuroscience%2C+Department+of+Clinical+Medicine%2C+Aarhus+University%2C+Aarhus%2C+Denmark&rft.date=2021-04-16&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=17&rft.issue=4&rft.spage=e1008580&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008580&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |