A new model for simultaneous dimensionality reduction and time-varying functional connectivity estimation

An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliab...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 17; no. 4; p. e1008580
Main Author Vidaurre, Diego
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.04.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1008580

Cover

Abstract An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain.
AbstractList An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain.
An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain. I show that PCA, although widely used in practice, can introduce important biases and loss of sensitivity in the estimation of time-varying functional connectivity on high-dimensional fMRI data. I discuss these limitations and propose a new method that, by performing dimensionality reduction and time-varying functional connectivity estimation in one single step, can effectively overcome these limitations.
[...]if an HMM with twelve states was trained on 820 subjects from the Human Connectome Project (HCP) data set [17], each state would be on average estimated on 68.3h of data; compared to a typical 1min window, the statistical noise in this estimation is very small. See S1 Fig for representations in the form of graphical models. https://doi.org/10.1371/journal.pcbi.1008580.g001 Materials and methods The problem of estimating time-varying FC in high dimensions Let be the multivariate source signal at volume (time point) t = 1… Alternatively, the mixture model of Gaussian distributions dispenses with the transition probability matrix, thus ignoring the temporal structure of the data and treating the time points (volumes) as independently distributed and exchangeable [19]. [...]here we prespecify K and submit the data to an inference algorithm that will return the state probabilities γtk, the state parameters (Σk), and the transition probability matrix and γtk. Because n is often large in comparison to T, PCA is typically used as an intermediate dimensionality reduction step.
[...]if an HMM with twelve states was trained on 820 subjects from the Human Connectome Project (HCP) data set [17], each state would be on average estimated on 68.3h of data; compared to a typical 1min window, the statistical noise in this estimation is very small. See S1 Fig for representations in the form of graphical models. https://doi.org/10.1371/journal.pcbi.1008580.g001 Materials and methods The problem of estimating time-varying FC in high dimensions Let be the multivariate source signal at volume (time point) t = 1… Alternatively, the mixture model of Gaussian distributions dispenses with the transition probability matrix, thus ignoring the temporal structure of the data and treating the time points (volumes) as independently distributed and exchangeable [19]. [...]here we prespecify K and submit the data to an inference algorithm that will return the state probabilities γtk, the state parameters (Σk), and the transition probability matrix and γtk. Because n is often large in comparison to T, PCA is typically used as an intermediate dimensionality reduction step.
An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain.An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain.
Audience Academic
Author Vidaurre, Diego
AuthorAffiliation Ghent University, BELGIUM
2 Department of Psychiatry, University of Oxford, Oxford, United Kingdom
1 Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
AuthorAffiliation_xml – name: Ghent University, BELGIUM
– name: 2 Department of Psychiatry, University of Oxford, Oxford, United Kingdom
– name: 1 Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
Author_xml – sequence: 1
  givenname: Diego
  orcidid: 0000-0002-9650-2229
  surname: Vidaurre
  fullname: Vidaurre, Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33861733$$D View this record in MEDLINE/PubMed
BookMark eNqVk1uL1DAUx4usuBf9BqIFX_RhxqRJmtQHYVi8DCwKXp5DmiZjhjaZTdrR-faeznSXnWURpA9Ncn7nfy7JOc9OfPAmy55jNMeE47frMESv2vlG126OERJMoEfZGWaMzDhh4uTO-jQ7T2mNECyr8kl2SogoMSfkLHOL3JvfeRca0-Y2xDy5bmh75U0YUt64zvjkAsRx_S6Pphl0D9tc-SbvwTjbqrhzfpXbwe8tqs118N7AZju6mASYGi1Ps8dWtck8m_4X2c-PH35cfp5dff20vFxczTQveD8rkaZc6wrXUCVRhdDUWmpxYXBTaCEqRQtdUUNLVtqaEcwaIzQuLGVEKGvJRfbyoLtpQ5JTl5IsWCEKhEVVALE8EE1Qa7mJkGDcyaCc3B-EuJIq9k63RjaUVqjSNUcIU85qUVqFIIdGcMUZH7XeT9GGujONNr6Pqj0SPbZ490uuwlYKJDAhFAReTwIxXA_QLtm5pE3bHq4A8saUVWXBEaCv7qEPVzdRKwUFOG8DxNWjqFyUJSrHOkqg5g9Q8DWmc3CDxjo4P3J4c-QATG_-9Cs1pCSX37_9B_vlmH1xt4G3nbt5ogDQA6BjSCkae4tgJMdJuOmCHCdBTpMAbu_uuWnX7x8iFOrafzv_BZG6EH8
CitedBy_id crossref_primary_10_1089_brain_2022_0031
crossref_primary_10_1016_j_neuroimage_2022_119026
crossref_primary_10_1186_s12957_022_02726_8
crossref_primary_10_1016_j_bspc_2025_107645
crossref_primary_10_1162_netn_a_00331
crossref_primary_10_1016_j_celrep_2021_109954
crossref_primary_10_1016_j_brainresbull_2023_110733
crossref_primary_10_1007_s11571_022_09874_3
crossref_primary_10_1111_ejn_15386
crossref_primary_10_1152_jn_00054_2023
crossref_primary_10_1162_imag_a_00460
crossref_primary_10_3390_sym16040474
crossref_primary_10_1371_journal_pcbi_1009112
crossref_primary_10_1016_j_jneumeth_2024_110275
crossref_primary_10_1016_j_media_2024_103290
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1364_BOE_434936
crossref_primary_10_1002_hbm_70157
crossref_primary_10_1186_s12868_024_00854_3
crossref_primary_10_1186_s12920_021_01085_9
crossref_primary_10_1017_S0890060423000021
crossref_primary_10_1103_PhysRevE_104_024305
crossref_primary_10_1002_hbm_25846
crossref_primary_10_1038_s41598_024_55201_7
Cites_doi 10.1016/j.tics.2013.09.016
10.1089/brain.2011.0068
10.1016/j.neuroimage.2020.116604
10.1111/insr.12023
10.1073/pnas.98.2.676
10.1023/A:1008940618127
10.1016/j.neuroimage.2015.11.055
10.1016/j.neuroimage.2016.11.052
10.1073/pnas.1700765114
10.1162/089976699300016728
10.1093/cercor/bhs352
10.1016/j.neuroimage.2013.05.041
10.1038/s41583-018-0071-7
10.1073/pnas.1705120114
10.1089/brain.2012.0120
10.1016/j.jneumeth.2020.108600
10.1038/s41598-017-05425-7
10.1016/j.neuroimage.2017.12.084
10.1038/s41467-019-08934-3
10.1016/j.neuroimage.2015.05.092
10.1016/j.neuroimage.2017.06.077
10.1016/j.neuroimage.2015.11.047
10.1007/978-3-642-20192-9
10.1016/j.neuron.2018.03.035
10.1038/nn.4125
10.1002/nav.3800020109
10.1002/hbm.24442
10.1002/9780470689516
10.1016/j.neuroimage.2005.08.035
10.1016/j.neuroimage.2015.07.064
10.1109/5.18626
10.1162/netn_a_00116
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Diego Vidaurre. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Diego Vidaurre 2021 Diego Vidaurre
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Diego Vidaurre. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Diego Vidaurre 2021 Diego Vidaurre
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1008580
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE



Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate HMM-PCA performs simultaneous time-varying FC and dimensionality reduction
EISSN 1553-7358
ExternalDocumentID 2528201892
oai_doaj_org_article_d44909cb7001475b86fa089ad87a7572
PMC8081334
A660614756
33861733
10_1371_journal_pcbi_1008580
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Denmark
GeographicLocations_xml – name: Denmark
GrantInformation_xml – fundername: ;
  grantid: NNF19OC-0054895
– fundername: ;
  grantid: ERC-StG-2019-850404
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
ID FETCH-LOGICAL-c727t-60c47cc91b1373a28c4ff4f12e1d2c889a42c94e4656fb5315de8c12f4538aff3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:12:07 EST 2021
Wed Aug 27 01:30:54 EDT 2025
Thu Aug 21 14:13:30 EDT 2025
Fri Sep 05 00:39:55 EDT 2025
Fri Jul 25 10:47:47 EDT 2025
Tue Jun 17 21:56:26 EDT 2025
Tue Jun 10 20:19:08 EDT 2025
Fri Jun 27 04:40:31 EDT 2025
Fri Jun 27 05:03:23 EDT 2025
Thu Apr 03 07:05:19 EDT 2025
Tue Jul 01 01:26:00 EDT 2025
Thu Apr 24 22:55:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c727t-60c47cc91b1373a28c4ff4f12e1d2c889a42c94e4656fb5315de8c12f4538aff3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current address: Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
The authors have declared that no competing interests exist.
ORCID 0000-0002-9650-2229
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1008580
PMID 33861733
PQID 2528201892
PQPubID 1436340
ParticipantIDs plos_journals_2528201892
doaj_primary_oai_doaj_org_article_d44909cb7001475b86fa089ad87a7572
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081334
proquest_miscellaneous_2514596270
proquest_journals_2528201892
gale_infotracmisc_A660614756
gale_infotracacademiconefile_A660614756
gale_incontextgauss_ISR_A660614756
gale_incontextgauss_ISN_A660614756
pubmed_primary_33861733
crossref_primary_10_1371_journal_pcbi_1008580
crossref_citationtrail_10_1371_journal_pcbi_1008580
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210416
PublicationDateYYYYMMDD 2021-04-16
PublicationDate_xml – month: 4
  year: 2021
  text: 20210416
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References E Glerean (pcbi.1008580.ref012) 2012; 2
A Winkler (pcbi.1008580.ref034) 2015; 123
D Vidaurre (pcbi.1008580.ref041) 2013; 81
DCV Essen (pcbi.1008580.ref017) 2013; 80
U Pervaiz (pcbi.1008580.ref036) 2020; 211
MD Luca (pcbi.1008580.ref001) 2006; 29
DJ Lurie (pcbi.1008580.ref009) 2020; 4
ABA Stevner (pcbi.1008580.ref021) 2019; 10
IT Jolliffe (pcbi.1008580.ref022) 2002
A Faghiri (pcbi.1008580.ref014) 2020; 334
LR Rabiner (pcbi.1008580.ref018) 1989; 72
F Pesarin (pcbi.1008580.ref037) 2010
D Vidaurre (pcbi.1008580.ref005) 2017; 114
R Hindriks (pcbi.1008580.ref011) 2016; 127
S Roweis (pcbi.1008580.ref028) 1998
SB Eickhoff (pcbi.1008580.ref020) 2018; 19
CE Rasmussen (pcbi.1008580.ref024) 1998
D Vidaurre (pcbi.1008580.ref016) 2018; 180
A Schaefer (pcbi.1008580.ref030) 2017; 28
T Ge (pcbi.1008580.ref006) 2017; 114
EA Allen (pcbi.1008580.ref010) 2012; 24
pcbi.1008580.ref027
P Buhlmann (pcbi.1008580.ref038) 2011
R Kong (pcbi.1008580.ref035) 2019; 29
JM Shine (pcbi.1008580.ref015) 2015; 122
HW Kuhn (pcbi.1008580.ref033) 1955; 2
ME Raichle (pcbi.1008580.ref002) 2001; 98
J Cabral (pcbi.1008580.ref013) 2017; 7
K Murphy (pcbi.1008580.ref039) 2017; 154
SFV Nielsen (pcbi.1008580.ref025) 2018; 171
D Vidaurre (pcbi.1008580.ref008) 2021; 117713
P Ritter (pcbi.1008580.ref040) 2013; 3
CM Bishop (pcbi.1008580.ref019) 2006
ME Tipping (pcbi.1008580.ref026) 1999; 11
P Smyth (pcbi.1008580.ref031) 2000; 10
SM Smith (pcbi.1008580.ref003) 2013; 17
D Vidaurre (pcbi.1008580.ref029) 2016; 126
D Vidaurre (pcbi.1008580.ref032) 2019; 40
C Gratton (pcbi.1008580.ref007) 2018; 98
ZG M J Beal (pcbi.1008580.ref023) 2002
SM Smith (pcbi.1008580.ref004) 2015; 18
34101724 - PLoS Comput Biol. 2021 Jun 8;17(6):e1009112. doi: 10.1371/journal.pcbi.1009112
References_xml – start-page: 626
  volume-title: Advances in neural information processing systems
  year: 1998
  ident: pcbi.1008580.ref028
– volume: 17
  start-page: 666
  year: 2013
  ident: pcbi.1008580.ref003
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends in cognitive sciences
  doi: 10.1016/j.tics.2013.09.016
– volume: 2
  start-page: 91
  year: 2012
  ident: pcbi.1008580.ref012
  article-title: Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity
  publication-title: Brain connectivity
  doi: 10.1089/brain.2011.0068
– volume: 211
  start-page: 116604
  year: 2020
  ident: pcbi.1008580.ref036
  article-title: Optimising network modelling methods for fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116604
– volume: 81
  start-page: 361
  year: 2013
  ident: pcbi.1008580.ref041
  article-title: A Survey of L1 Regression
  publication-title: International Statistical Review
  doi: 10.1111/insr.12023
– volume: 98
  start-page: 676
  year: 2001
  ident: pcbi.1008580.ref002
  article-title: A default mode of brain function
  publication-title: Proceedings of the National Academy of Sciences of the USA
  doi: 10.1073/pnas.98.2.676
– start-page: 577
  volume-title: Advances in neural information processing systems
  year: 2002
  ident: pcbi.1008580.ref023
– volume: 10
  start-page: 63
  year: 2000
  ident: pcbi.1008580.ref031
  article-title: Model selection for probabilistic clustering using cross-validated likelihood
  publication-title: Statistics and Computing
  doi: 10.1023/A:1008940618127
– volume: 127
  start-page: 242
  year: 2016
  ident: pcbi.1008580.ref011
  article-title: Can sliding-window correlations reveal dynamic functional connectivityin resting-state fMRI?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.11.055
– volume: 154
  start-page: 169
  year: 2017
  ident: pcbi.1008580.ref039
  article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.052
– volume: 114
  start-page: 5521
  year: 2017
  ident: pcbi.1008580.ref006
  article-title: Heritability analysis with repeat measurements and its application to resting-state functional connectivity
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1700765114
– volume: 11
  start-page: 443
  year: 1999
  ident: pcbi.1008580.ref026
  article-title: Mixtures of Probabilistic Principal Component Analyzers
  publication-title: Neural Computation
  doi: 10.1162/089976699300016728
– volume: 24
  start-page: 663
  year: 2012
  ident: pcbi.1008580.ref010
  article-title: Tracking Whole-Brain Connectivity Dynamics in the Resting State
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhs352
– volume: 80
  start-page: 62
  year: 2013
  ident: pcbi.1008580.ref017
  article-title: The WU-Minn Human Connectome Project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– start-page: 554
  volume-title: Advances in neural information processing systems
  year: 1998
  ident: pcbi.1008580.ref024
– volume: 19
  start-page: 672
  year: 2018
  ident: pcbi.1008580.ref020
  article-title: Imaging-based parcellations of the human brain
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/s41583-018-0071-7
– ident: pcbi.1008580.ref027
– volume: 114
  start-page: 12827
  year: 2017
  ident: pcbi.1008580.ref005
  article-title: Brain network dynamics are hierarchically organized in time
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1705120114
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: pcbi.1008580.ref019
– volume: 3
  start-page: 121
  year: 2013
  ident: pcbi.1008580.ref040
  article-title: The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging
  publication-title: Brain Connectivity
  doi: 10.1089/brain.2012.0120
– volume: 334
  start-page: 108600
  year: 2020
  ident: pcbi.1008580.ref014
  article-title: Weighted average of shared trajectory: A new estimator for dynamic functional connectivity efficiently estimates both rapid and slow changes over time
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2020.108600
– volume: 7
  start-page: 5135
  year: 2017
  ident: pcbi.1008580.ref013
  article-title: Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-05425-7
– volume: 171
  start-page: 116
  year: 2018
  ident: pcbi.1008580.ref025
  article-title: Predictive assessment of models for dynamic functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.12.084
– volume: 10
  start-page: 1035
  year: 2019
  ident: pcbi.1008580.ref021
  article-title: Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep
  publication-title: Nature communications
  doi: 10.1038/s41467-019-08934-3
– volume: 123
  start-page: 253
  year: 2015
  ident: pcbi.1008580.ref034
  article-title: Multi-level block permutation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.092
– volume-title: Principal Component Analysis
  year: 2002
  ident: pcbi.1008580.ref022
– volume: 180
  start-page: 646
  year: 2018
  ident: pcbi.1008580.ref016
  article-title: Discovering dynamic brain networks from big data in rest and task
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.077
– volume: 126
  start-page: 81
  year: 2016
  ident: pcbi.1008580.ref029
  article-title: Spectrally resolved fast transient brain states in electrophysiological data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.11.047
– volume-title: Statistics for High-dimensional Data: Methods, Theory and Applications
  year: 2011
  ident: pcbi.1008580.ref038
  doi: 10.1007/978-3-642-20192-9
– volume: 98
  start-page: 439
  year: 2018
  ident: pcbi.1008580.ref007
  article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.03.035
– volume: 117713
  year: 2021
  ident: pcbi.1008580.ref008
  article-title: Behavioural relevance of spontaneous, transient brain network interactions in fMRI
  publication-title: NeuroImage
– volume: 18
  start-page: 1565
  year: 2015
  ident: pcbi.1008580.ref004
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nature neuroscience
  doi: 10.1038/nn.4125
– volume: 2
  start-page: 83
  year: 1955
  ident: pcbi.1008580.ref033
  article-title: The Hungarian Method for the assignment problem
  publication-title: Naval Research Logistics Quarterly
  doi: 10.1002/nav.3800020109
– volume: 28
  start-page: 3095
  year: 2017
  ident: pcbi.1008580.ref030
  article-title: Imaging-based parcellations of the human brain
  publication-title: Cerebral Cortex
– volume: 40
  start-page: 1234
  year: 2019
  ident: pcbi.1008580.ref032
  article-title: Stable between-subject statistical inference from unstable within-subject functional connectivity estimates
  publication-title: Human brain mapping
  doi: 10.1002/hbm.24442
– volume-title: Permutation tests for complex data: Theory, applications and software
  year: 2010
  ident: pcbi.1008580.ref037
  doi: 10.1002/9780470689516
– volume: 29
  start-page: 1359
  year: 2006
  ident: pcbi.1008580.ref001
  article-title: FMRI resting state networks define distinct modes of long-distance interactions in the human brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.035
– volume: 122
  start-page: 399
  year: 2015
  ident: pcbi.1008580.ref015
  article-title: Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.064
– volume: 72
  start-page: 257
  year: 1989
  ident: pcbi.1008580.ref018
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.18626
– volume: 4
  start-page: 30
  year: 2020
  ident: pcbi.1008580.ref009
  article-title: Questions and controversies in the study of time-varying functional connectivity in resting fMRI
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00116
– volume: 29
  start-page: 2533
  year: 2019
  ident: pcbi.1008580.ref035
  article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI
  publication-title: Cerebral Cortex
– reference: 34101724 - PLoS Comput Biol. 2021 Jun 8;17(6):e1009112. doi: 10.1371/journal.pcbi.1009112
SSID ssj0035896
Score 2.49215
Snippet An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we...
[...]if an HMM with twelve states was trained on 820 subjects from the Human Connectome Project (HCP) data set [17], each state would be on average estimated...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1008580
SubjectTerms Algorithms
Biology and Life Sciences
Brain
Datasets
Decomposition
Markov Chains
Markov processes
Medicine and Health Sciences
Models, Theoretical
Neural circuitry
Noise
Parameter estimation
Physical sciences
Physiological aspects
Principal Component Analysis
Probabilistic models
Probability
Research and Analysis Methods
Statistical analysis
Time Factors
Time series
Transition probabilities
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA4yIHgRf-_oKFEET3Xb_GiS4yguq4c9qAtzC0na6MDSGaazgv-97yWdMpWVvXhtXkvz3kvypX35PkLeVqxtTGhdwSKSasM0WXjDfQGXg5Ie0iCkKt-L-vxSfFnJ1ZHUF9aEZXrg7LjTRghTmuDx_6iAu3UdXamNa7RySqo0-5amPGym8hzMpU7KXCiKUyguVsOhOa6q0yFG77fBr7FGQEukhDxalBJ3_zhDz7ZXm_4m-Pl3FeXRsnT2gNwf8CRd5n48JHfa7hG5mxUmfz8m6yUF3EyT3g0FfEr7NZYQuq6FHT9tkNo_03IAGKc7pHHFQFHXNRRV54tfbofnoCguf_mrIQ1YGhOy6ARFjo58-PEJuTz79P3jeTGoKxQBMMu-qMsgVAim8uAW7pgOIkYRIXhVw4IGFwsWjGiRUC16GKqyaXWoWBQwR7oY-VMy6zZde0JoJRrta81rZaQQDYBQqVCpCqAXV8zrOeEH99owUI-jAsaVTf_TFGxBsrcsBsUOQZmTYrxrm6k3brH_gJEbbZE4O12AdLJDOtnb0mlO3mDcLVJjdFh788Nd9739_O3CLusat89K1v80-joxejcYxQ10NrjhvAO4DCm3JpaLiSUM8DBpPsEcPPS5t0wyxG3awNsuDnl5c_PrsRkfivV0Kb_AphJJdwm89iyn8eg3zjXAWs7nRE0SfOLYaUu3_pmYyVHGhXPx_H9E4gW5x7B-CHk16wWZ7XfX7UsAgHv_Ko31P4IVV24
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXxLtbCjIIiZPpxnZi54QWRFU49ABU2pvlR9yuVGWXzbYS_54ZxxsaVOAaT6J4HvbYHn8fIW8K3oTaN5bxiKDaMEwyVwvH4LFXpQM38KnK96Q6PpVfFuUib7h1uaxyNyamgTqsPO6RH_KS42Sla_5-_YMhaxSermYKjdvkToIuA39Wi2HBJUqd-LmQGocpIRf56pxQxWG21Lu1d0usFNAlAkNem5oSgv8wTk_WF6vupiT0z1rKa5PT0QNyP2eVdN67wUNyq2kfkbs9z-TPx2Q5p5A908R6QyFLpd0SCwlt28C6nwYE-O_BOSAlpxsEc0VzUdsGitzz7Mpu8DYUxUmw3zukHgtkfE89QRGpo78C-YScHn36_vGYZY4F5iFz2bJq5qXyvi4cqEVYrr2MUUYwYRG417q2kvtaNgirFh0EbBka7QseJYyUNkbxlEzaVdvsEVrIoF2lRaXAEjJAKloq5KuCBEwo7vSUiJ16jc8A5MiDcWHSqZqChUivLYNGMdkoU8KGt9Y9AMd_5D-g5QZZhM9OD1abM5Oj0QQp61ntHR66S3BJXUU7g74GrawqFZ-S12h3gwAZLVbgnNnLrjOfv52YeVXhIlqV1V-Fvo6E3mahuILOeptvPYDKEHhrJHkwkoQw96PmPfTBXZ878zsg4M2dX97c_Gpoxo9iVV3yL5ApZGJfAq0969140JsQGpJbIaZEjRx8pNhxS7s8T_jkSOYihNz_9289J_c41gchbmZ1QCbbzWXzAhK8rXuZovgXy7dP2g
  priority: 102
  providerName: ProQuest
Title A new model for simultaneous dimensionality reduction and time-varying functional connectivity estimation
URI https://www.ncbi.nlm.nih.gov/pubmed/33861733
https://www.proquest.com/docview/2528201892
https://www.proquest.com/docview/2514596270
https://pubmed.ncbi.nlm.nih.gov/PMC8081334
https://doaj.org/article/d44909cb7001475b86fa089ad87a7572
http://dx.doi.org/10.1371/journal.pcbi.1008580
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9NAEF_OHoIv4vf1rGUVwacczX5kNw8irV49BYucFvoWNpvkLJSkl7Ti_ffObD4w0tOXFrKTkJ2Z3Z3Jzv5-hLz2WZqENjUeyxBUG6ZJLw557MFlq2QMbmBdle8iuFiKzyu5OiItZ2ujwOpgaod8Ustyc_br-uYdDPi3jrVB-e1NZ1sbr3HXX0sNSfwxrE0BpmNfRLevwKV2jF1IluMpLlbNYbrbntJbrBymfzdzD7abojoUlv5dXfnHcjV_QO43cSad1o7xkByl-SNyt2aevHlM1lMK8TR1PDgU4lZarbG00ORpsa9ogpD_NVwHBOm0RHhXNCA1eUKRjd77aUo8H0VxWay_JlKLJTO2JqOgiN1RH4p8Qpbz8-_vL7yGdcGzEMvsvGBihbI29GNQCzdMW5FlIgOj-gmzWodGMBuKFIHWshiGsExSbX2WCZg7TZbxp2SQF3l6QqgvEh0HmgcqlEIkEJxKhQxWEJJxxWI9JLxVb2QbSHJkxthEbp9NQWpSaytCo0SNUYbE6-7a1pAc_5GfoeU6WQTUdheK8ipqxmeUCBFOQhvjNrwAJ9VBZibQ10Qro6RiQ_IK7R4hZEaONTlXZl9V0advi2gaBJhWKxncKnTZE3rTCGUFdNaa5hwEqAyhuHqSo54kDHzbaz5BH2z7XEVMMozndAhvO2r98nDzy64ZH4p1ds6_QMYXjo8JtPasduNOb5xrCHc5HxLVc_CeYvst-fqHQyxHehfOxem_X-s5ucewYgiRNIMRGezKffoCQr5dPCZ31ErBr55_HJPj6ezDbA7_s_PF18ux-4wyduP8N8D2W20
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwQviN8rDDAIxFNYYzux8zChDja1bFRobFLfjOMko9KUlKYD7Z_jb-POccqCBjztNb5E8flyd47vvo-QlyHLs8TmJmAFgmqDmwzShKcBXLYySsEMrKvyncSjY_FhGk3XyM-2FwbLKluf6Bx1Vln8R77FIobBSiXs7fxbgKxReLraUmgYT62QbTuIMd_YsZ-f_4AtXL09fg_r_Yqxvd2jd6PAswwEFmL3MogHVkhrkzANueSGKSuKQhQwiTBjVqnECGYTkSOwWJGCyUZZrmzICgG-whQFh-deI-sCO1x7ZH1nd_LpsI0FPFKOIQzJeQLJxdQ373EZbnlbeTO36QxrFVSE0JQXgqPjEFhFit78tKovS4P_rOa8EB73bpNbPq-lw8YQ75C1vLxLrjdMl-f3yGxIIX-njneHQp5M6xmWMpoyr85qmiHFQAMPApsCukA4WTQYasqMLmEw-G4W2I9FMQw3fy-pxRId25BfUMQKaZow75PjK9H_A9IrqzLfIDQUmUpjxWOZREJkkAxHEhmzIAXkkqWqT3irXm09BDoycZxqd64nYSvUaEvjomi_KH0SrO6aNxAg_5HfwZVbySKAt7tQLU609wc6EyIZJDbFY38BH4WKCzOAuWZKGhlJ1icvcN01QnSUWAN0Ys7qWo8_T_QwjnEbL6P4r0KHHaHXXqioYLLW-L4LUBlCf3UkNzuS4GhsZ3gDbbCdc61_f5JwZ2uXlw8_Xw3jQ7Guz9kXyITC8T-B1h42ZrzSG-cK0mvO-0R2DLyj2O5IOfvqENKRToZz8ejfr_WM3BgdfTzQB-PJ_mNyk2G1EqJ4xpukt1yc5U8g3VymT_03TcmXq3YjvwCHG5M2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJxAviN8rDDAIxFNoYzux8zChjq1aGaqmwaS-ZY4Tj0pTUpoWtH-Rv4q7xAkLGvC01_gSxefz3Tm5-z5CXvssSyOTaY9ZBNUGN-klEU88uGxkkIAZmKrKdxoenIiPs2C2QX42vTBYVtn4xMpRp4XBb-QDFjAMVipiA-vKIo72xu8X3zxkkMI_rQ2dhnY0C-lOBTfmmjwOs4sfcJwrdyZ7sPZvGBvvf_lw4DnGAc9AHF954dAIaUzkJz6XXDNlhLXCwoT8lBmlIi2YiUSGIGM2AfMN0kwZn1kBfkNby-G5N8imhCgpemRzd396dNzEBR6oii0MiXo8ycXMNfJx6Q-c3bxbmGSOdQsqQJjKS4Gy4hNoo0ZvcV6UV6XEf1Z2XgqV47vkjstx6ag2yntkI8vvk5s16-XFAzIfUcjlacXBQyFnpuUcyxp1nhXrkqZIN1BDhcABgS4RWhaNh-o8pSsY9L7rJfZmUQzJ9ZdMarBcx9REGBRxQ-qGzIfk5Fr0_4j08iLPtgj1RaqSUPFQRoEQKSTGgUT2LEgHuWSJ6hPeqDc2Dg4dWTnO4-ofn4RjUa2tGBcldovSJ15716KGA_mP_C6uXCuLYN7VhWJ5FjvfEKdCRMPIJFgCIGCDqNDqIcw1VVLLQLI-eYXrHiNcR46Gf6bXZRlPPk_jURjikV4G4V-FjjtCb52QLWCyRrseDFAZwoB1JLc7kuB0TGd4C22wmXMZ_96ecGdjl1cPv2yH8aFY41fZF8j4ouKCAq09rs241RvnClJtzvtEdgy8o9juSD7_WqGlI7UM5-LJv1_rBbkF7iT-NJkePiW3GRYuIaBnuE16q-U6ewaZ5yp57rY0JafX7UV-AVC2l2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+model+for+simultaneous+dimensionality+reduction+and+time-varying+functional+connectivity+estimation&rft.jtitle=PLoS+computational+biology&rft.au=Diego+Vidaurre+Current+address%3A+Center+for+Functionally+Integrative+Neuroscience%2C+Department+of+Clinical+Medicine%2C+Aarhus+University%2C+Aarhus%2C+Denmark&rft.date=2021-04-16&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=17&rft.issue=4&rft.spage=e1008580&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008580&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon