STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection
One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infe...
Saved in:
Published in | PLoS pathogens Vol. 16; no. 3; p. e1008335 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
18.03.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infections. Here we reveal a distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1β secretion, and inflammatory responses in human cell lines, mice primary cells, and mice. Interestingly, upon HSV-1 infection and cytosolic DNA stimulation, STING binds to NLRP3 and promotes the inflammasome activation through two approaches. First, STING recruits NLRP3 and facilitates NLRP3 localization in the endoplasmic reticulum, thereby facilitating the inflammasome formation. Second, STING interacts with NLRP3 and attenuates K48- and K63-linked polyubiquitination of NLRP3, thereby promoting the inflammasome activation. Collectively, we demonstrate that the cGAS-STING-NLRP3 signaling is essential for host defense against HSV-1 infection. |
---|---|
AbstractList | One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infections. Here we reveal a distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1β secretion, and inflammatory responses in human cell lines, mice primary cells, and mice. Interestingly, upon HSV-1 infection and cytosolic DNA stimulation, STING binds to NLRP3 and promotes the inflammasome activation through two approaches. First, STING recruits NLRP3 and facilitates NLRP3 localization in the endoplasmic reticulum, thereby facilitating the inflammasome formation. Second, STING interacts with NLRP3 and attenuates K48- and K63-linked polyubiquitination of NLRP3, thereby promoting the inflammasome activation. Collectively, we demonstrate that the cGAS-STING-NLRP3 signaling is essential for host defense against HSV-1 infection. One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infections. Here we reveal a distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1β secretion, and inflammatory responses in human cell lines, mice primary cells, and mice. Interestingly, upon HSV-1 infection and cytosolic DNA stimulation, STING binds to NLRP3 and promotes the inflammasome activation through two approaches. First, STING recruits NLRP3 and facilitates NLRP3 localization in the endoplasmic reticulum, thereby facilitating the inflammasome formation. Second, STING interacts with NLRP3 and attenuates K48- and K63-linked polyubiquitination of NLRP3, thereby promoting the inflammasome activation. Collectively, we demonstrate that the cGAS-STING-NLRP3 signaling is essential for host defense against HSV-1 infection. The innate immune system is a primary host defense strategy to suppress the pathogen infections. One of the fundamental reactions of the innate immunity is the release of pro-inflammatory cytokines, including interleukine-1β (IL-1β), regulated by inflammasomes. The best-characterized inflammasomes is the NLRP3 inflammasome. STING has the essential roles in innate immune response against pathogen infections and is required for pathogen-induced inflammasome activation and IL-1β secretion. This study explores how STING regulates the NLRP3 inflammasome and reveals a distinct mechanism underlying such regulation upon herpes simplex virus type 1 (HSV-1) infection and cytosolic DNA stimulation. The authors propose that the cGAS-STING-NLRP3 axis is essential for host defense against HSV-1 infection. One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1[beta], processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infections. Here we reveal a distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1[beta] secretion, and inflammatory responses in human cell lines, mice primary cells, and mice. Interestingly, upon HSV-1 infection and cytosolic DNA stimulation, STING binds to NLRP3 and promotes the inflammasome activation through two approaches. First, STING recruits NLRP3 and facilitates NLRP3 localization in the endoplasmic reticulum, thereby facilitating the inflammasome formation. Second, STING interacts with NLRP3 and attenuates K48- and K63-linked polyubiquitination of NLRP3, thereby promoting the inflammasome activation. Collectively, we demonstrate that the cGAS-STING-NLRP3 signaling is essential for host defense against HSV-1 infection. One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infections. Here we reveal a distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1β secretion, and inflammatory responses in human cell lines, mice primary cells, and mice. Interestingly, upon HSV-1 infection and cytosolic DNA stimulation, STING binds to NLRP3 and promotes the inflammasome activation through two approaches. First, STING recruits NLRP3 and facilitates NLRP3 localization in the endoplasmic reticulum, thereby facilitating the inflammasome formation. Second, STING interacts with NLRP3 and attenuates K48- and K63-linked polyubiquitination of NLRP3, thereby promoting the inflammasome activation. Collectively, we demonstrate that the cGAS-STING-NLRP3 signaling is essential for host defense against HSV-1 infection.One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infections. Here we reveal a distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1β secretion, and inflammatory responses in human cell lines, mice primary cells, and mice. Interestingly, upon HSV-1 infection and cytosolic DNA stimulation, STING binds to NLRP3 and promotes the inflammasome activation through two approaches. First, STING recruits NLRP3 and facilitates NLRP3 localization in the endoplasmic reticulum, thereby facilitating the inflammasome formation. Second, STING interacts with NLRP3 and attenuates K48- and K63-linked polyubiquitination of NLRP3, thereby promoting the inflammasome activation. Collectively, we demonstrate that the cGAS-STING-NLRP3 signaling is essential for host defense against HSV-1 infection. |
Audience | Academic |
Author | Wu, Caifeng Zhang, Qi Xiao, Feng Liu, Weiyong Pan, Pan Feng, Yuqian Wu, Kailang Wan, Pin Tian, Mingfu Shereen, Muhammad Adnan Chen, Weijie Wu, Jianguo Wang, Wenbiao Li, Aixin Wang, Yingchong Chen, Keli Hu, Dingwen |
AuthorAffiliation | 1 Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China Florida State University, UNITED STATES 2 State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China |
AuthorAffiliation_xml | – name: 1 Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China – name: Florida State University, UNITED STATES – name: 2 State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China |
Author_xml | – sequence: 1 givenname: Wenbiao surname: Wang fullname: Wang, Wenbiao – sequence: 2 givenname: Dingwen surname: Hu fullname: Hu, Dingwen – sequence: 3 givenname: Caifeng surname: Wu fullname: Wu, Caifeng – sequence: 4 givenname: Yuqian surname: Feng fullname: Feng, Yuqian – sequence: 5 givenname: Aixin surname: Li fullname: Li, Aixin – sequence: 6 givenname: Weiyong surname: Liu fullname: Liu, Weiyong – sequence: 7 givenname: Yingchong surname: Wang fullname: Wang, Yingchong – sequence: 8 givenname: Keli surname: Chen fullname: Chen, Keli – sequence: 9 givenname: Mingfu surname: Tian fullname: Tian, Mingfu – sequence: 10 givenname: Feng surname: Xiao fullname: Xiao, Feng – sequence: 11 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 12 givenname: Muhammad Adnan surname: Shereen fullname: Shereen, Muhammad Adnan – sequence: 13 givenname: Weijie surname: Chen fullname: Chen, Weijie – sequence: 14 givenname: Pan surname: Pan fullname: Pan, Pan – sequence: 15 givenname: Pin surname: Wan fullname: Wan, Pin – sequence: 16 givenname: Kailang surname: Wu fullname: Wu, Kailang – sequence: 17 givenname: Jianguo orcidid: 0000-0002-8326-2895 surname: Wu fullname: Wu, Jianguo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32187211$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk01v1DAQhiNURD_gHyCIxAUOu9ixHSc9IFVVaVdaLWi3cLUmjrP1yonT2KmAEz8dh81Ct6qQkA-xJs_7zng0cxwdNLZRUfQSoykmHL_f2L5rwEzbFvwUI5QRwp5ER5gxMuGE04N798Po2LkNQhQTnD6LDkmCM55gfBT9XF3PFpdx29naeuXixXz5mcTGSjD6B3htm1g38cUyhqaMK5DaaA9_wVL1hb7ttdfNFvY2Bun1XWBif6OCuDJQ1-BsreK-DcTV6usED3ElB8Xz6GkFxqkX4_ck-vLx4vr8ajL_dDk7P5tPJE-4n5AKMaBpwVSaKF5CmkgKFWNQEAxFQhgAoCLhPE9SifKiRBmUKscY8kJCkZGT6PXWtzXWibF5TiQkR5whzGggZluitLARbadr6L4LC1r8DthuLaDzWholcIUVEEaAkpzSkoQEqlRYEUypzFkevD6M2fqiVqVUje_A7Jnu_2n0jVjbO8FRhhIylPt2NOjsba-cF7V2UhkDjbL9UDfPUYKyPA3omwfo468bqTWEB4T225BXDqbiLMU5JhnlAzV9hAqnVLWWYQArHeJ7gnd7gsB49c2voXdOzFbL_2AX--yr-w3807nd5AbgdAvIzjrXqUrIYTLDRIWKtREYiWFNdr0Qw5qIcU2CmD4Q7_z_KfsFrzQXSA |
CitedBy_id | crossref_primary_10_3390_ijms24076126 crossref_primary_10_1128_iai_00190_22 crossref_primary_10_1002_eji_202350386 crossref_primary_10_1016_j_isci_2023_107762 crossref_primary_10_1016_j_imbio_2023_152345 crossref_primary_10_3390_ijms25031828 crossref_primary_10_1080_22221751_2020_1785336 crossref_primary_10_1002_cti2_1404 crossref_primary_10_1093_toxres_tfae145 crossref_primary_10_1016_j_phymed_2024_156071 crossref_primary_10_1038_s41467_024_49549_7 crossref_primary_10_1016_j_canlet_2024_217183 crossref_primary_10_1242_dev_202998 crossref_primary_10_1093_ndt_gfae262 crossref_primary_10_1371_journal_ppat_1012915 crossref_primary_10_1002_wsbm_1597 crossref_primary_10_3389_fimmu_2022_842489 crossref_primary_10_1128_cmr_00147_24 crossref_primary_10_3389_fimmu_2020_624597 crossref_primary_10_1007_s00011_024_01973_7 crossref_primary_10_3390_biom12071005 crossref_primary_10_3390_v15010226 crossref_primary_10_1016_j_bioorg_2023_106362 crossref_primary_10_3390_v15081720 crossref_primary_10_4103_NRR_NRR_D_24_00015 crossref_primary_10_3389_fimmu_2024_1352479 crossref_primary_10_1007_s12013_024_01231_x crossref_primary_10_1515_mr_2023_0061 crossref_primary_10_3389_fcimb_2024_1416105 crossref_primary_10_1128_jvi_00003_23 crossref_primary_10_2147_JIR_S295706 crossref_primary_10_3389_fimmu_2024_1346878 crossref_primary_10_3389_fmicb_2023_1247377 crossref_primary_10_1016_j_it_2022_04_011 crossref_primary_10_3389_fmicb_2022_846543 crossref_primary_10_2139_ssrn_4104811 crossref_primary_10_3390_cells10123509 crossref_primary_10_3390_ijms221910447 crossref_primary_10_3390_v15071451 crossref_primary_10_1136_svn_2023_002320 crossref_primary_10_7554_eLife_83842 crossref_primary_10_1186_s12943_024_02183_9 crossref_primary_10_1093_procel_pwae049 crossref_primary_10_1186_s12964_023_01466_w crossref_primary_10_1186_s12950_024_00395_w crossref_primary_10_1002_ctm2_228 crossref_primary_10_1080_14728222_2021_2005027 crossref_primary_10_1167_iovs_65_12_38 crossref_primary_10_1186_s12974_022_02511_0 crossref_primary_10_1172_jci_insight_159430 crossref_primary_10_1038_s41423_021_00670_3 crossref_primary_10_1128_jvi_01022_22 crossref_primary_10_3389_fimmu_2022_853194 crossref_primary_10_1111_jnc_15678 crossref_primary_10_1126_sciimmunol_adp3475 crossref_primary_10_3389_fimmu_2020_610492 crossref_primary_10_1515_mr_2024_0016 crossref_primary_10_1016_j_ejphar_2023_175809 crossref_primary_10_1016_j_intimp_2024_113305 crossref_primary_10_3389_fimmu_2022_993771 crossref_primary_10_3389_fmicb_2022_869064 crossref_primary_10_3390_ijms24033029 crossref_primary_10_1016_j_nbd_2024_106710 crossref_primary_10_1038_s41423_024_01221_2 crossref_primary_10_1007_s12011_023_04012_4 crossref_primary_10_1016_j_nbd_2023_106253 crossref_primary_10_3390_cells11101681 crossref_primary_10_1016_j_biopha_2021_111442 crossref_primary_10_1080_08830185_2022_2070616 crossref_primary_10_1016_j_biopha_2023_114869 crossref_primary_10_1016_j_abb_2023_109558 crossref_primary_10_3390_v14092034 crossref_primary_10_1038_s41467_024_51780_1 crossref_primary_10_1007_s12011_020_02295_5 crossref_primary_10_1016_j_cytogfr_2022_08_006 crossref_primary_10_1371_journal_ppat_1011635 crossref_primary_10_1038_s41423_022_00922_w crossref_primary_10_1186_s12943_024_02217_2 crossref_primary_10_4049_jimmunol_2300241 crossref_primary_10_1371_journal_ppat_1009285 crossref_primary_10_2217_fvl_2023_0031 crossref_primary_10_1128_mbio_02651_23 crossref_primary_10_1242_jcs_248344 crossref_primary_10_3389_fcimb_2023_1098712 crossref_primary_10_1016_j_it_2023_01_006 crossref_primary_10_1016_j_pt_2020_07_001 crossref_primary_10_1002_JLB_3MR0720_513R crossref_primary_10_1016_j_scitotenv_2024_175681 crossref_primary_10_3390_biom10101437 crossref_primary_10_3390_ijms21124294 crossref_primary_10_3389_fimmu_2022_894847 crossref_primary_10_3390_cimb46050277 crossref_primary_10_1016_j_biopha_2023_116007 crossref_primary_10_1186_s40168_022_01402_z crossref_primary_10_1007_s10157_023_02448_5 crossref_primary_10_3389_fimmu_2023_1235590 crossref_primary_10_3389_fimmu_2022_1010764 crossref_primary_10_1111_acel_13594 crossref_primary_10_1186_s40001_022_00703_1 crossref_primary_10_3390_cells12242842 crossref_primary_10_3390_cells11121925 crossref_primary_10_1016_j_neuint_2024_105788 crossref_primary_10_1080_15548627_2023_2237794 crossref_primary_10_1016_j_intimp_2024_112271 crossref_primary_10_1165_rcmb_2023_0308OC crossref_primary_10_1016_j_celrep_2021_109205 crossref_primary_10_1186_s12964_024_01839_9 crossref_primary_10_3389_fnmol_2022_1050837 crossref_primary_10_1002_jmv_29403 crossref_primary_10_1038_s41418_022_01054_4 crossref_primary_10_1016_j_intimp_2023_110827 crossref_primary_10_1016_j_jhepr_2022_100532 crossref_primary_10_1002_smll_202307448 crossref_primary_10_18632_aging_205596 crossref_primary_10_1080_14728222_2023_2257888 crossref_primary_10_1016_j_intimp_2024_112428 crossref_primary_10_1111_aos_16646 crossref_primary_10_3389_fnmol_2022_963206 crossref_primary_10_1128_mbio_01737_21 crossref_primary_10_3389_fimmu_2020_625833 crossref_primary_10_1016_j_gendis_2023_01_009 crossref_primary_10_3389_fimmu_2023_1190177 crossref_primary_10_1016_j_immuni_2023_11_001 crossref_primary_10_1038_s41392_021_00613_4 crossref_primary_10_1016_j_molcel_2022_12_002 crossref_primary_10_1097_IN9_0000000000000053 crossref_primary_10_3389_fimmu_2022_860977 crossref_primary_10_1016_j_phrs_2021_105447 crossref_primary_10_1038_s41577_024_01112_7 crossref_primary_10_1016_j_celrep_2022_111681 crossref_primary_10_1038_s42003_022_03868_x crossref_primary_10_1371_journal_pntd_0009362 crossref_primary_10_1016_j_isci_2023_107158 crossref_primary_10_3390_cancers14143546 crossref_primary_10_1016_j_biopha_2022_113680 crossref_primary_10_1111_liv_70063 crossref_primary_10_3390_ijms25147952 crossref_primary_10_1002_jat_4332 crossref_primary_10_1083_jcb_202006194 crossref_primary_10_1186_s10020_023_00656_z crossref_primary_10_1080_21505594_2024_2425744 crossref_primary_10_3389_fimmu_2021_753789 crossref_primary_10_3389_fimmu_2023_1132653 crossref_primary_10_3389_fimmu_2022_826106 crossref_primary_10_1016_j_ijrobp_2023_05_032 |
Cites_doi | 10.1016/j.cell.2010.01.040 10.1074/jbc.M607594200 10.3389/fimmu.2018.02305 10.1038/nature07965 10.1182/blood-2013-05-504449 10.1126/science.1229963 10.1038/s41586-018-0761-3 10.1371/journal.ppat.1006383 10.1146/annurev.immunol.021908.132715 10.1128/JVI.00037-14 10.1126/science.1217141 10.1126/science.1244040 10.1128/JVI.00203-13 10.1074/jbc.M112.407130 10.1084/jem.20171749 10.1038/s41467-018-05321-2 10.1038/s41467-018-03669-z 10.1016/j.cell.2017.09.039 10.1128/JVI.05942-11 10.1371/journal.ppat.1003330 10.1016/j.cell.2013.02.054 10.1038/ncomms13727 10.1128/JVI.00082-13 10.1038/nature04516 10.1038/nature08476 10.1038/ni.2369 10.1016/j.cub.2004.10.027 10.1016/j.coi.2008.01.003 10.1016/j.immuni.2012.06.013 10.1128/JVI.01687-10 10.1016/j.molcel.2012.11.009 10.1038/nature07317 10.1016/j.celrep.2015.05.047 10.1016/j.immuni.2008.02.005 10.1016/j.immuni.2018.08.021 10.1016/j.cell.2014.11.047 10.1038/ni.1636 10.1016/j.chom.2017.12.014 10.1146/annurev.immunol.021908.132612 10.1038/s41467-017-02645-3 10.1016/j.molcel.2013.01.039 10.1371/journal.ppat.1003039 10.1038/ni.1932 10.1126/science.1184003 10.1038/ni.3558 10.1016/j.cell.2010.01.022 10.1016/j.cell.2006.02.015 10.1371/journal.ppat.1006123 10.1038/nature06664 10.1038/ni1087 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Wang et al 2020 Wang et al |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Wang et al 2020 Wang et al |
DBID | AAYXX CITATION NPM ISN ISR 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1008335 |
DatabaseName | CrossRef PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | STING activates the NLRP3 inflammasome |
EISSN | 1553-7374 |
ExternalDocumentID | 2390750154 oai_doaj_org_article_1f1ea353a43944d3ab8ede1e3144c959 PMC7080238 A619138474 32187211 10_1371_journal_ppat_1008335 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 2017ZX10202201 – fundername: ; grantid: 81471942 – fundername: ; grantid: 81730061 – fundername: ; grantid: 2018T110923 – fundername: ; grantid: 2017ZX10103005 – fundername: ; grantid: 2017ZT07Y580 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW ~8M 3V. ADRAZ H13 IPNFZ M~E NPM RIG WOQ PMFND 7QL 7U9 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO - AAPBV ABPTK ACDSR ADACO BBAFP |
ID | FETCH-LOGICAL-c727t-3f05a46b5e62e7da62c4af55ab31ab235aaa0b277926c09bd08ade911a9bcab83 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Jun 05 00:10:51 EDT 2022 Wed Aug 27 01:22:30 EDT 2025 Thu Aug 21 13:58:10 EDT 2025 Fri Jul 11 11:39:50 EDT 2025 Fri Jul 25 10:32:38 EDT 2025 Tue Jun 17 21:09:11 EDT 2025 Tue Jun 10 20:49:23 EDT 2025 Fri Jun 27 03:45:32 EDT 2025 Fri Jun 27 04:04:32 EDT 2025 Wed Feb 19 02:31:05 EST 2025 Thu Apr 24 22:56:42 EDT 2025 Tue Jul 01 03:38:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c727t-3f05a46b5e62e7da62c4af55ab31ab235aaa0b277926c09bd08ade911a9bcab83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0002-8326-2895 |
OpenAccessLink | https://www.proquest.com/docview/2390750154?pq-origsite=%requestingapplication% |
PMID | 32187211 |
PQID | 2390750154 |
PQPubID | 1436335 |
ParticipantIDs | plos_journals_2390750154 doaj_primary_oai_doaj_org_article_1f1ea353a43944d3ab8ede1e3144c959 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7080238 proquest_miscellaneous_2379020896 proquest_journals_2390750154 gale_infotracmisc_A619138474 gale_infotracacademiconefile_A619138474 gale_incontextgauss_ISR_A619138474 gale_incontextgauss_ISN_A619138474 pubmed_primary_32187211 crossref_citationtrail_10_1371_journal_ppat_1008335 crossref_primary_10_1371_journal_ppat_1008335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200318 |
PublicationDateYYYYMMDD | 2020-03-18 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200318 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | H Wang (ppat.1008335.ref029) 2015; 12 R Barry (ppat.1008335.ref044) 2018; 9 A R Shenoy (ppat.1008335.ref021) 2012; 336 M Yoneyama (ppat.1008335.ref003) 2004; 5 J Chen (ppat.1008335.ref041) 2018; 564 J P Ting (ppat.1008335.ref004) 2008; 28 T D Kanneganti (ppat.1008335.ref032) 2006; 281 J V Rajan (ppat.1008335.ref033) 2011; 85 O Takeuchi (ppat.1008335.ref002) 2010; 140 KE Johnson (ppat.1008335.ref024) 2013; 87 M M Gaidt (ppat.1008335.ref012) 2017; 171 W Wang (ppat.1008335.ref019) 2017; 13 E D Hottz (ppat.1008335.ref038) 2013; 122 H Ishikawa (ppat.1008335.ref018) 2008; 455 B F Py (ppat.1008335.ref045) 2013; 49 Z Ye (ppat.1008335.ref016) 2008; 20 Q Chen (ppat.1008335.ref031) 2016; 17 H J Ramos (ppat.1008335.ref035) 2012; 8 J Wu (ppat.1008335.ref011) 2013; 339 C Guo (ppat.1008335.ref042) 2018; 49 H Song (ppat.1008335.ref046) 2016; 7 B K D M Roizman (ppat.1008335.ref015) 2013 S Akira (ppat.1008335.ref001) 2006; 124 T M Lawrence (ppat.1008335.ref036) 2013; 87 F Martinon (ppat.1008335.ref008) 2004; 14 S E Hardison (ppat.1008335.ref005) 2012; 13 F Martinon (ppat.1008335.ref050) 2006; 440 F Humphries (ppat.1008335.ref048) 2018; 9 O Gross (ppat.1008335.ref025) 2009; 459 N Subramanian (ppat.1008335.ref040) 2013; 153 A Halle (ppat.1008335.ref049) 2008; 9 J Webster S (ppat.1008335.ref013) 2017; 13 K V Swanson (ppat.1008335.ref014) 2017; 214 W Wang (ppat.1008335.ref017) 2018; 9 H Ishikawa (ppat.1008335.ref009) 2009; 461 T Abe (ppat.1008335.ref010) 2014; 88 K Schroder (ppat.1008335.ref006) 2010; 140 XD Li (ppat.1008335.ref027) 2013; 341 N Komune (ppat.1008335.ref034) 2011; 85 L Unterholzner (ppat.1008335.ref026) 2010; 11 V Compan (ppat.1008335.ref020) 2012; 37 N Song (ppat.1008335.ref043) 2018; 9 C Juliana (ppat.1008335.ref030) 2012; 287 Y Yan (ppat.1008335.ref047) 2015; 160 K Schroder (ppat.1008335.ref051) 2010; 327 F Martinon (ppat.1008335.ref022) 2009; 27 A Dinarello C (ppat.1008335.ref007) 2009; 27 T Abe (ppat.1008335.ref023) 2013; 50 Y Maruzuru (ppat.1008335.ref028) 2018; 23 D A Muruve (ppat.1008335.ref039) 2008; 452 A A Negash (ppat.1008335.ref037) 2013; 9 |
References_xml | – volume: 140 start-page: 821 year: 2010 ident: ppat.1008335.ref006 article-title: The inflammasomes publication-title: Cell doi: 10.1016/j.cell.2010.01.040 – volume: 281 start-page: 36560 year: 2006 ident: ppat.1008335.ref032 article-title: Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA publication-title: J Biol Chem doi: 10.1074/jbc.M607594200 – volume: 9 start-page: 2305 year: 2018 ident: ppat.1008335.ref043 article-title: Regulation of NLRP3 Inflammasome by Phosphorylation publication-title: Front Immunol doi: 10.3389/fimmu.2018.02305 – volume: 459 start-page: 433 issue: 7245 year: 2009 ident: ppat.1008335.ref025 article-title: Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence publication-title: Nature doi: 10.1038/nature07965 – volume: 122 start-page: 3405 year: 2013 ident: ppat.1008335.ref038 article-title: Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation publication-title: Blood doi: 10.1182/blood-2013-05-504449 – volume: 339 start-page: 826 year: 2013 ident: ppat.1008335.ref011 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 564 start-page: 71 year: 2018 ident: ppat.1008335.ref041 article-title: PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/s41586-018-0761-3 – volume: 13 start-page: e1006383 year: 2017 ident: ppat.1008335.ref013 article-title: Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006383 – volume: 27 start-page: 229 year: 2009 ident: ppat.1008335.ref022 article-title: The inflammasomes: guardians of the body publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.021908.132715 – volume: 88 start-page: 5328 year: 2014 ident: ppat.1008335.ref010 article-title: Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1 publication-title: J Virol doi: 10.1128/JVI.00037-14 – volume: 336 start-page: 481 year: 2012 ident: ppat.1008335.ref021 article-title: GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals publication-title: Science doi: 10.1126/science.1217141 – volume: 341 start-page: 1390 issue: 6152 year: 2013 ident: ppat.1008335.ref027 article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science doi: 10.1126/science.1244040 – volume: 87 start-page: 5848 year: 2013 ident: ppat.1008335.ref036 article-title: Rabies virus is recognized by the NLRP3 inflammasome and activates interleukin-1beta release in murine dendritic cells publication-title: J Virol doi: 10.1128/JVI.00203-13 – volume: 287 start-page: 36617 year: 2012 ident: ppat.1008335.ref030 article-title: Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation publication-title: J Biol Chem doi: 10.1074/jbc.M112.407130 – volume: 214 start-page: 3611 year: 2017 ident: ppat.1008335.ref014 article-title: A noncanonical function of cGAMP in inflammasome priming and activation publication-title: J Exp Med doi: 10.1084/jem.20171749 – volume: 9 start-page: 3001 year: 2018 ident: ppat.1008335.ref044 article-title: SUMO-mediated regulation of NLRP3 modulates inflammasome activity publication-title: Nat Commun doi: 10.1038/s41467-018-05321-2 – volume: 9 start-page: 1560 year: 2018 ident: ppat.1008335.ref048 article-title: The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome publication-title: Nat Commun doi: 10.1038/s41467-018-03669-z – volume: 171 start-page: 1110 year: 2017 ident: ppat.1008335.ref012 article-title: The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3 publication-title: Cell doi: 10.1016/j.cell.2017.09.039 – volume: 85 start-page: 13019 year: 2011 ident: ppat.1008335.ref034 article-title: Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1beta secretion publication-title: J Virol doi: 10.1128/JVI.05942-11 – volume: 9 start-page: e1003330 year: 2013 ident: ppat.1008335.ref037 article-title: IL-1beta production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003330 – volume: 153 start-page: 348 year: 2013 ident: ppat.1008335.ref040 article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation publication-title: Cell doi: 10.1016/j.cell.2013.02.054 – volume: 7 start-page: 13727 year: 2016 ident: ppat.1008335.ref046 article-title: The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3 publication-title: Nat Commun doi: 10.1038/ncomms13727 – volume: 87 start-page: 5005 year: 2013 ident: ppat.1008335.ref024 article-title: Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes publication-title: J Virol doi: 10.1128/JVI.00082-13 – volume: 440 start-page: 237 year: 2006 ident: ppat.1008335.ref050 article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome publication-title: Nature doi: 10.1038/nature04516 – volume: 461 start-page: 788 year: 2009 ident: ppat.1008335.ref009 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 13 start-page: 817 year: 2012 ident: ppat.1008335.ref005 article-title: C-type lectin receptors orchestrate antifungal immunity publication-title: Nat Immunol doi: 10.1038/ni.2369 – volume: 14 start-page: 1929 year: 2004 ident: ppat.1008335.ref008 article-title: Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome publication-title: Curr Biol doi: 10.1016/j.cub.2004.10.027 – volume: 20 start-page: 3 year: 2008 ident: ppat.1008335.ref016 article-title: NLR, the nucleotide-binding domain leucine-rich repeat containing gene family publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2008.01.003 – volume: 37 start-page: 487 year: 2012 ident: ppat.1008335.ref020 article-title: Cell volume regulation modulates NLRP3 inflammasome activation publication-title: Immunity doi: 10.1016/j.immuni.2012.06.013 – volume: 85 start-page: 4167 year: 2011 ident: ppat.1008335.ref033 article-title: The NLRP3 inflammasome detects encephalomyocarditis virus and vesicular stomatitis virus infection publication-title: J Virol doi: 10.1128/JVI.01687-10 – volume: 49 start-page: 331 year: 2013 ident: ppat.1008335.ref045 article-title: Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity publication-title: Mol Cell doi: 10.1016/j.molcel.2012.11.009 – volume: 455 start-page: 674 year: 2008 ident: ppat.1008335.ref018 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 – volume: 12 start-page: 42 year: 2015 ident: ppat.1008335.ref029 article-title: Reciprocal regulation between Enterovirus 71 and the NLRP3 Inflammasome publication-title: Cell Rep doi: 10.1016/j.celrep.2015.05.047 – volume: 28 start-page: 285 year: 2008 ident: ppat.1008335.ref004 article-title: The NLR gene family: a standard nomenclature publication-title: Immunity doi: 10.1016/j.immuni.2008.02.005 – volume: 49 start-page: 842 year: 2018 ident: ppat.1008335.ref042 article-title: Cholesterol Homeostatic Regulator SCAP-SREBP2 Integrates NLRP3 Inflammasome Activation and Cholesterol Biosynthetic Signaling in Macrophages publication-title: Immunity doi: 10.1016/j.immuni.2018.08.021 – volume: 160 start-page: 62 year: 2015 ident: ppat.1008335.ref047 article-title: Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome publication-title: Cell doi: 10.1016/j.cell.2014.11.047 – year: 2013 ident: ppat.1008335.ref015 – volume: 9 start-page: 857 year: 2008 ident: ppat.1008335.ref049 article-title: The NALP3 inflammasome is involved in the innate immune response to amyloid-beta publication-title: Nat Immunol doi: 10.1038/ni.1636 – volume: 23 start-page: 254 year: 2018 ident: ppat.1008335.ref028 article-title: Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.12.014 – volume: 27 start-page: 519 year: 2009 ident: ppat.1008335.ref007 article-title: Immunological and inflammatory functions of the interleukin-1 family publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.021908.132612 – volume: 9 start-page: 106 year: 2018 ident: ppat.1008335.ref017 article-title: Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin-1beta secretion publication-title: Nat Commun doi: 10.1038/s41467-017-02645-3 – volume: 50 start-page: 5 year: 2013 ident: ppat.1008335.ref023 article-title: STING recognition of cytoplasmic DNA instigates cellular defense publication-title: Mol Cell doi: 10.1016/j.molcel.2013.01.039 – volume: 8 start-page: e1003039 year: 2012 ident: ppat.1008335.ref035 article-title: IL-1beta signaling promotes CNS-intrinsic immune control of West Nile virus infection publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003039 – volume: 11 start-page: 997 issue: 11 year: 2010 ident: ppat.1008335.ref026 article-title: IFI16 is an innate immune sensor for intracellular DNA publication-title: Nat Immunol doi: 10.1038/ni.1932 – volume: 327 start-page: 296 year: 2010 ident: ppat.1008335.ref051 article-title: The NLRP3 inflammasome: a sensor for metabolic danger? publication-title: Science doi: 10.1126/science.1184003 – volume: 17 start-page: 1142 year: 2016 ident: ppat.1008335.ref031 article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing publication-title: Nat Immunol doi: 10.1038/ni.3558 – volume: 140 start-page: 805 year: 2010 ident: ppat.1008335.ref002 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 124 start-page: 783 year: 2006 ident: ppat.1008335.ref001 article-title: Pathogen recognition and innate immunity publication-title: Cell doi: 10.1016/j.cell.2006.02.015 – volume: 13 start-page: e1006123 year: 2017 ident: ppat.1008335.ref019 article-title: EV71 3D Protein Binds with NLRP3 and Enhances the Assembly of Inflammasome Complex publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006123 – volume: 452 start-page: 103 year: 2008 ident: ppat.1008335.ref039 article-title: The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response publication-title: Nature doi: 10.1038/nature06664 – volume: 5 start-page: 730 year: 2004 ident: ppat.1008335.ref003 article-title: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses publication-title: Nat Immunol doi: 10.1038/ni1087 |
SSID | ssj0041316 |
Score | 2.6304498 |
Snippet | One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed... One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1[beta],... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1008335 |
SubjectTerms | Activation Biological response modifiers Biology and Life Sciences Cell lines Cells (Biology) Cytokines Deoxyribonucleic acid DNA Endoplasmic reticulum Genes Health aspects Herpes viruses IL-1β Immune response Immune system Infection Infections Inflammasomes Inflammation Innate immunity Interferon Laboratories Life sciences Localization Medicine and Health Sciences Pathogens Plasmids Proteins Research and analysis methods Stimulators Virology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEN9dKMggJE6hiZ3EybGgli2CFdptUW_R2HFKpDZJmw0SN346M042alBRL1zj51U8MzseOzNvGHsrjAwl2MJTUuReaALrJVpKLwyEQYVr3yqqd_66jBcn4efT6PRaqy_KCevpgXvB7QVFYEFGElwJZy5BJza3gZV4EjBp5Er3cM_bHqZ6H4ye2TU9paY4-BZxPBTNSRXsDTp63zRA9NE-VR1NNiXH3T966FlzXrc3hZ9_Z1Fe25YOH7D7QzzJ9_t1PGR3bPWI3e07TP56zH6vj4-Wn3jjku5sy5dfVt8kdxvYUIDJy4ofrDhUOS_A9JzdIzC3nS4vu3JT9peGfFNzqoT4iRiOoSNOLtCkLqCtLyzvGkQs1t-9gG9zvKon7OTw4PjjwhuaLngGQ5mNJws_gjDWkY0F6gliYUIoogi0DEALGQGAr4VSqYiNn-rcTyC36DIh1QaVI5-yWVVXdofxCBIiPUpQb2EIQmolwHU3L-I0FoWaM7mVemYGRnJqjHGeuc9sCk8mvRAz0lU26GrOvHFW0zNy3IL_QAodscSn7R6glWWDlWW3WdmcvSFzyIgxo6KUnDPo2jY7Wi-zfTyCBhI3-fCfoNUE9G4AFTUu1sBQBoEiIyauCXJ3gsT_vZkM75BpbtfcZkKmFP9hTIwzt-Z68_DrcZh-lNLsKlt3hFEpdW1N4zl71lv3KDeJwSBdF8yZmtj9RLDTkar84QjLFRV0y-T5_9DEC3ZP0JUHpVQmu2y2uersS4wLN_qVcwF_AGlnXyM priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELagCIkXxO8VBjIIiaewxE7i5AkNtNEhqFC7ob5FZ8cZlbYkWxok3vjTuUvcQNCAPsafq9h39p2du-8YeymMDCXYwlNS5F5oAuslWkovDIRBgWvfKsp3_jSPZyfhh1W0chdujQur3O6J3UadV4buyPcEHs7RuqHFf1NfeFQ1ir6uuhIa19kNoi4jrVar4cCF-3NX-pRK4-C7xLFLnZMq2HOSel3XQCTSPuUejUxTx-A_7NOT-qxqrnJC_4yl_M04Hd5ht51Xyfd7NbjLrtnyHrvZ15n8fp_9WB4fzd_zugu9sw2ff1x8lrwzYy4Nk69LfrDgUOa8ANMzdw_A3LZ6fdGuN-v-6pBvKk75EN8Qw9GBxM4FKtY5NNW55W2NiNnyixfwbaRX-YCdHB4cv5t5rvSCZ9Ch2Xiy8CMIYx3ZWKC0IBYmhCKKQMsAtJARAPhaKJWK2Pipzv0EcosbJ6TagE7kQzYpq9LuMB5BQtRHSRriD4TUSkBX47yI01gUasrkdtYz43jJqTzGWdZ9bFN4PuknMSNZZU5WU-YNveqel-M_-Lck0AFLrNrdg-ryNHOLNAuKwIKMJHTpwrnEgdjcBlbiqdOgek3ZC1KHjHgzSgrMOYW2abKj5Tzbx4NoINHUh38FLUagVw5UVDhYAy4ZAqeM-LhGyN0REle_GTXvkGpux9xkv9YJ9tyq69XNz4dm-lMKtitt1RJGpVS7NY2n7FGv3cO8SXQJ6dJgytRI70cTO24p11872nJFad0yefzv13rCbgm60qCQyWSXTTaXrX2Kft9GP-sW90_5jlaL priority: 102 providerName: ProQuest |
Title | STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32187211 https://www.proquest.com/docview/2390750154 https://www.proquest.com/docview/2379020896 https://pubmed.ncbi.nlm.nih.gov/PMC7080238 https://doaj.org/article/1f1ea353a43944d3ab8ede1e3144c959 http://dx.doi.org/10.1371/journal.ppat.1008335 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe2Tki8IL5XGJVBSDxlSuwkTh4Q2lBHh1g1tSvaW2QnzlapS7KmQeyNP50750MEddDH-OeovjvbZ-fufoS8ZzF3udSpJThLLDd2tBUozi3XYTEoXNlaYL7z2dSfLNyvl97lDmk5WxsBlluPdsgntVivDn_e3n2CCf_RsDYIp-10WBQSC0LbmEe0S_ZgbxLIaXDmdt8VYMU2ZKhIlgP_zvebZLr73tLbrExN_27lHhSrvNzmlv4dXfnHdnXymDxq_Ex6VBvGE7Kjs6fkQc08efeM_JpfnE6_0MIE4-mSTr_Nzjk1G1uTmEmXGR3PqMwSmsq4ruXdARNdqeVttdws68tEuskpZkj8AAwFlxI6p2BqN7LMbzStCkBM5t8th7axX9lzsjgZX3yeWA0ZgxWDi7OxeGp70vWVp30G-pM-i12Zep5U3JGKcU9KaSsmRMj82A5VYgcy0bCUylDFUgX8BRlkeab3CfVkgMWQgtCFn2RcCSYN63nqhz5LxZDwVupR3FQqR8KMVWQ-vwk4sdRCjFBXUaOrIbG6XkVdqeM_-GNUaIfFOtvmQb6-ipppGzmpoyX3uDQJxAmHgehEO5rDOTQOvXBI3qE5RFhJI8NQnStZlWV0Op9GR3A0dThs_u69oFkP9KEBpTkMNpZNegSIDCt09ZAHPSSsB3GveR9Nsx1zGTEeol8IvjL0bM11e_PbrhlfiuF3mc4rxIgQ2VxDf0he1tbdyY2Dk4jXCEMienbfE2y_JVtem0LmAhO9efDq3wN6TR4yvOTAIMrggAw260q_AU9wo0ZkV1yKEdk7Hk_PZyNznzIyE_43M69flw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgQXxLsLBQwCcQpN7CRODggVaNml2xXabdHegu04ZaU2SZsNqDd-Eb-RmbwgqMCpOcafo9gzmYczD0KeMc1dLk1iCc5iy9WOsQLFueU6TAPBlW0E5jvvTf3Rgfth4S3WyI82FwbDKluZWAnqONN4Rr7JwDkH7QYa_3V-YmHXKPy72rbQqNli15x9A5eteDV-B_R9ztjO9v7bkdV0FbA06OqVxRPbk66vPOMzeBHpM-3KxPOk4o5UjHtSSlsxIULmaztUsR3I2IBMkKHSUgUcnnuJXAbFa6OzJxadgwf6oGq1iq14YO2-36TqceFsNpzxMs8lFq22MdeppwqrjgGdXhjkR1lxntH7Z-zmb8pw5wa53lixdKtmu5tkzaS3yJW6r-XZbfJ9vj-evqd5FepnCjqdzD5yWqnNJu2TLlO6PaMyjWkidV0pvAPGplTLk3K5WtZHlXSVUcy_-AoYCgYrTE6AkY9lkR0bWuaAGM0_WQ5tI8vSO-TgQohylwzSLDXrhHoywFJLQejCJRlXgsmqp3rihz5LxJDwdtcj3dRBx3YcR1H1c0-AP1RvYoS0ihpaDYnVzcrrOiD_wb9BgnZYrOJd3chOD6NGKERO4hjJPS6r9OSYw0JMbBzDwcvVoRcOyVNkhwjrdKQYCHQoy6KIxvNptAWOr8PBtHD_Cpr1QC8aUJLBYrVski9gy7D-Vw-50UOCtNG94XVkzXbNRfTru4SZLbueP_ykG8aHYnBfarISMSLEXrGhPyT3au7u9o2DCYqHFEMienzf29j-SLr8UpVJF5hGzoP7_36tx-TqaH9vEk3G090H5BrD4xQM1ww2yGB1WpqHYHOu1KPqQ6fk80VLlp8a7ZTK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiHcDBRYE4mRi7_p5QKilCQktVpS0VW9md70ukVrbrRNQb_wufh0zfoFRgVNzzH62vDPjeaznQchLprjNhU4Mj7PYsJWlDV9ybtgWU8BwaWoP650_he74wP545BytkR9NLQymVTY6sVTUcabwjHzAIDgH6wYWf5DUaRHTndG7_MzACVL4pbUZp1GJyK6--AbhW_F2sgO8fsXYaLj_fmzUEwYMBXZ7afDEdITtSke7DB5KuEzZInEcIbklJOOOEMKUzPMC5iozkLHpi1iDfhCBVEL6HO57jax7GBX1yPr2MJzOGjsA1qEcvIqDeYASrlsX7nHPGtRy8ibPBbawNrHyqWMYy_kBrZXo5SdZcZkL_Gcm52-mcXSb3Kp9WrpVCeEdsqbTu-R6NeXy4h75Pt-fhB9oXib-6YKGe7Mpp6URrYtA6SKlwxkVaUwToaq-4S0w1iu5OFstlovq4JIuM4rVGF8BQ8F9hYsTEOtTUWSnmq5yQIznh4ZFmzyz9D45uBK2PCC9NEv1BqGO8LHxkh_Y8BOMS4-JcsJ64gYuS7w-4Q3VI1V3RcfhHCdR-anPg-ioImKEvIpqXvWJ0V6VV11B_oPfRoa2WOzpXf6RnR9HtYqIrMTSgjtclMXKMYeN6FhbmkPMqwIn6JMXKA4Rdu1IUf6Pxaooosk8jLYgDLY4OBr2X0GzDuh1DUoy2KwSdSkGkAy7gXWQmx0k6B7VWd5A0Wz2XES_3lK4shHXy5eft8t4U0z1S3W2QowX4OTYwO2Th5V0t3Tj4JDikUWfeB257xC2u5IuvpRN0z0sKuf-o38_1jNyA7RKtDcJdx-TmwzPVjB3098kveX5Sj8BB3Qpn9ZvOiWfr1q5_ATu_ppl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STING+promotes+NLRP3+localization+in+ER+and+facilitates+NLRP3+deubiquitination+to+activate+the+inflammasome+upon+HSV-1+infection&rft.jtitle=PLoS+pathogens&rft.au=Wang%2C+Wenbiao&rft.au=Hu%2C+Dingwen&rft.au=Wu%2C+Caifeng&rft.au=Feng%2C+Yuqian&rft.date=2020-03-18&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=16&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.ppat.1008335&rft.externalDocID=A619138474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |