Probabilistic reversal learning is impaired in Parkinson's disease
In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded lear...
Saved in:
Published in | Neuroscience Vol. 163; no. 4; pp. 1092 - 1101 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
10.11.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of dopamine cells in primate substantia nigra pars compacta [Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006) Midbrain dopamine neurons encode decisions for future action. Nat Neurosci 9:1057–1063] for use as a reversal learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward contingencies. Over the course of 256 trials subjects learned to choose the more favorable from among pairs of images with small or large differences in reward probabilities. During a subsequent otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed. Seventeen PD patients of mild to moderate severity were studied off of their dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to learn. The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects' trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies. |
---|---|
AbstractList | In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of dopamine cells in primate substantia nigra pars compacta [Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006) Midbrain dopamine neurons encode decisions for future action. Nat Neurosci 9:1057–1063] for use as a reversal learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward contingencies. Over the course of 256 trials subjects learned to choose the more favorable from among pairs of images with small or large differences in reward probabilities. During a subsequent otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed. Seventeen PD patients of mild to moderate severity were studied off of their dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to learn. The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects' trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies. In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of dopamine cells in primate substantia nigra pars compacta [Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006) Midbrain dopamine neurons encode decisions for future action. Nat Neurosci 9:1057-1063] for use as a reversal learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward contingencies. Over the course of 256 trials subjects learned to choose the more favorable from among pairs of images with small or large differences in reward probabilities. During a subsequent otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed. Seventeen PD patients of mild to moderate severity were studied off of their dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to learn. The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects' trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies.In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of dopamine cells in primate substantia nigra pars compacta [Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006) Midbrain dopamine neurons encode decisions for future action. Nat Neurosci 9:1057-1063] for use as a reversal learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward contingencies. Over the course of 256 trials subjects learned to choose the more favorable from among pairs of images with small or large differences in reward probabilities. During a subsequent otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed. Seventeen PD patients of mild to moderate severity were studied off of their dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to learn. The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects' trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies. In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of dopamine cells in primate substantia nigra pars compacta ( Morris et al. 2006 ) for use as a reversal learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward contingencies. Over the course of 256 trials subjects learned to choose the more favorable from among pairs of images with small or large differences in reward probabilities. During a subsequent otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed. Seventeen Parkinson's disease (PD) patients of mild to moderate severity were studied off of their dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to learn. The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects’ trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies. Abstract In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of dopamine cells in primate substantia nigra pars compacta [Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006) Midbrain dopamine neurons encode decisions for future action. Nat Neurosci 9:1057–1063] for use as a reversal learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward contingencies. Over the course of 256 trials subjects learned to choose the more favorable from among pairs of images with small or large differences in reward probabilities. During a subsequent otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed. Seventeen PD patients of mild to moderate severity were studied off of their dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to learn. The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects' trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies. |
Author | Peterson, D.A. Sejnowski, T.J. Song, D.D. Elliott, C. Makeig, S. Poizner, H. |
AuthorAffiliation | 2 Department of Neurosciences, School of Medicine, UCSD 1 Institute for Neural Computation, UCSD 3 Swartz Center for Computational Neuroscience, Institute for Neural Computation, UCSD 4 Salk Institute for Biological Studies |
AuthorAffiliation_xml | – name: 2 Department of Neurosciences, School of Medicine, UCSD – name: 3 Swartz Center for Computational Neuroscience, Institute for Neural Computation, UCSD – name: 1 Institute for Neural Computation, UCSD – name: 4 Salk Institute for Biological Studies |
Author_xml | – sequence: 1 givenname: D.A. surname: Peterson fullname: Peterson, D.A. organization: Institute for Neural Computation, UCSD – sequence: 2 givenname: C. surname: Elliott fullname: Elliott, C. organization: Institute for Neural Computation, UCSD – sequence: 3 givenname: D.D. surname: Song fullname: Song, D.D. organization: Department of Neurosciences, School of Medicine, UCSD – sequence: 4 givenname: S. surname: Makeig fullname: Makeig, S. organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, UCSD – sequence: 5 givenname: T.J. surname: Sejnowski fullname: Sejnowski, T.J. organization: Institute for Neural Computation, UCSD – sequence: 6 givenname: H. surname: Poizner fullname: Poizner, H. email: hpoizner@ucsd.edu organization: Institute for Neural Computation, UCSD |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22102354$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19628022$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhi1URNvAX0ArJOgpYTzetXc5VNDyKVWiEnC2vF5vmXRjB3sTqf8eRwlRqQSKLz74nUczfuaUHfngHWMvOMw4cPl6PvNuFUOy5Lx1MwRoZqBmIMQjdsJrJaaqKssjdgIC5LSsEI_ZaUpzyKcqxRN2zBuJNSCesIvrGFrT0kBpJFtEt3YxmaEYnIme_E1BqaDF0lB0XUG-uDbxlnwK_iwVHSVnknvKHvdmSO7Z7p6wHx8_fL_8PL36-unL5burqVWoxik2qoOyryXYqiu5RehtydtKoXS1FXVTmarnLba27UzfYV-3fVUDYGMqmQcRE3a-5S5X7cJ11vkxmkEvIy1MvNPBkP77xdNPfRPWGpUEWUIGnO0AMfxauTTqBSXrhsF4F1ZJK1FCjVxgTr76bxKhkaKSKgef3-9p38yfD86Bl7uASdYMfTTeUtrnEDmgyFIm7O02Z7PYFF2vLY1mpLAZhQbNQW_c67m-715v3GtQOrvPiDcPEPtuDil-vy122eCaXNS7VJfN21F3gQ7DnD_A2IE85clv3Z1L87CKPu-I5jqhBv1ts6GbBYUGOIKsM-Di34BDu_gNquX-bQ |
CODEN | NRSCDN |
CitedBy_id | crossref_primary_10_1007_s00213_023_06514_4 crossref_primary_10_1016_j_bbr_2015_12_011 crossref_primary_10_1016_j_neuropharm_2016_12_013 crossref_primary_10_1002_acn3_51185 crossref_primary_10_1111_ejn_15910 crossref_primary_10_1038_s41593_021_00810_y crossref_primary_10_1371_journal_pone_0228081 crossref_primary_10_1016_j_bandc_2012_02_002 crossref_primary_10_1109_JSTSP_2016_2594949 crossref_primary_10_1007_s00213_016_4497_1 crossref_primary_10_1016_j_expneurol_2024_114693 crossref_primary_10_1038_npp_2010_84 crossref_primary_10_1093_brain_aww188 crossref_primary_10_1109_JPROC_2014_2314297 crossref_primary_10_1016_j_mehy_2013_11_021 crossref_primary_10_1016_j_neubiorev_2013_10_005 crossref_primary_10_1016_j_brainresbull_2022_01_013 crossref_primary_10_1016_j_nicl_2015_11_006 crossref_primary_10_1016_j_dcn_2022_101106 crossref_primary_10_1371_journal_pcbi_1012119 crossref_primary_10_1016_j_neuroscience_2018_01_032 crossref_primary_10_1186_s12993_024_00262_x crossref_primary_10_1002_hbm_22594 crossref_primary_10_3390_ijms23073452 crossref_primary_10_1016_j_nicl_2016_12_019 crossref_primary_10_1016_j_conb_2010_01_007 crossref_primary_10_1016_j_neurobiolaging_2018_01_020 crossref_primary_10_1007_s00702_017_1713_z crossref_primary_10_1016_j_nlm_2016_03_010 crossref_primary_10_1162_NECO_a_00009 crossref_primary_10_3389_fnbeh_2016_00205 crossref_primary_10_1111_gbb_12230 crossref_primary_10_1038_npp_2009_233 crossref_primary_10_3389_fnhum_2018_00343 crossref_primary_10_1080_03036758_2020_1784240 crossref_primary_10_1016_j_neuroscience_2016_08_008 crossref_primary_10_1093_nc_niae040 crossref_primary_10_1016_j_neurobiolaging_2013_08_025 crossref_primary_10_1038_s41598_022_26980_8 crossref_primary_10_1016_j_neuroscience_2021_09_026 crossref_primary_10_1016_j_celrep_2024_114540 crossref_primary_10_1093_braincomms_fcae286 crossref_primary_10_1016_j_biopsych_2012_12_002 crossref_primary_10_7554_eLife_75474 crossref_primary_10_1016_j_biopsych_2010_12_040 crossref_primary_10_1038_s41514_023_00121_5 crossref_primary_10_1371_journal_pone_0078876 crossref_primary_10_1016_j_neuroimage_2010_09_051 crossref_primary_10_1371_journal_pone_0088915 crossref_primary_10_1111_ejn_14414 crossref_primary_10_3389_fnins_2020_00542 crossref_primary_10_1371_journal_pcbi_1002327 crossref_primary_10_1523_JNEUROSCI_5058_13_2014 crossref_primary_10_1111_j_1460_9568_2012_08012_x crossref_primary_10_1016_j_bbr_2024_114977 crossref_primary_10_1016_j_celrep_2022_110437 crossref_primary_10_3389_fncir_2016_00053 crossref_primary_10_1016_j_biopsych_2012_01_023 crossref_primary_10_3389_fnbeh_2022_1074682 crossref_primary_10_1016_j_bbr_2020_112473 |
Cites_doi | 10.3758/CABN.5.2.117 10.1016/S0896-6273(03)00568-3 10.1523/JNEUROSCI.22-11-04563.2002 10.1016/j.neuropsychologia.2006.03.030 10.1017/S1092852900013560 10.1007/s00221-006-0802-2 10.1038/nn1743 10.1016/S0165-0173(01)00089-3 10.1093/scan/nsl021 10.1056/NEJM198804073181402 10.1038/sj.npp.1301153 10.1007/s002210100871 10.1196/annals.1390.017 10.1016/j.neubiorev.2008.10.010 10.1016/0306-4522(91)90196-U 10.1080/01621459.1967.10482916 10.1016/S0028-3932(99)00103-7 10.1016/j.brainres.2006.12.051 10.1016/j.neuroimage.2006.01.001 10.1016/j.neuropsychologia.2008.05.008 10.1038/nn1954 10.1002/mds.870100305 10.1016/j.neubiorev.2007.07.008 10.1016/j.conb.2006.03.006 10.1038/nrn2357 10.1162/089892998563815 10.1146/annurev.neuro.28.061604.135722 10.1016/0028-3932(71)90067-4 10.1016/j.brainres.2007.06.080 10.1126/science.1077349 10.1002/1531-8257(199907)14:4<572::AID-MDS1005>3.0.CO;2-C 10.1126/science.275.5306.1593 10.1212/WNL.17.5.427 10.1090/S0002-9904-1952-09620-8 10.1016/0022-3956(75)90026-6 10.1126/science.1102941 10.1097/00001756-200011270-00019 10.1523/JNEUROSCI.16-05-01936.1996 |
ContentType | Journal Article |
Copyright | 2009 IBRO IBRO 2009 INIST-CNRS 2009 IBRO. Published by Elsevier Ltd. All rights reserved. 2009 |
Copyright_xml | – notice: 2009 IBRO – notice: IBRO – notice: 2009 INIST-CNRS – notice: 2009 IBRO. Published by Elsevier Ltd. All rights reserved. 2009 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1016/j.neuroscience.2009.07.033 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-7544 |
EndPage | 1101 |
ExternalDocumentID | PMC2760640 19628022 22102354 10_1016_j_neuroscience_2009_07_033 S0306452209012068 1_s2_0_S0306452209012068 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: 2 R01 NS036449. – fundername: Howard Hughes Medical Institute – fundername: NINDS NIH HHS grantid: R01 NS036449 |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q HMQ HZ~ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSN SSZ T5K UNMZH Z5R ~G- .55 .GJ 29N 53G AACTN AAQXK AFCTW AFJKZ AFKWA AGHFR AJOXV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 GBLVA HVGLF P-8 R2- RIG SEW SNS WUQ X7M YYP ZGI ZXP AADPK AAIAV ABYKQ AJBFU EFLBG AAYXX AGQPQ AGRNS AIGII APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c727t-297d04f860c5d41c20fc41b5726e8c3895a5f1b2bcbdafd2f8bf580029a563063 |
IEDL.DBID | .~1 |
ISSN | 0306-4522 1873-7544 |
IngestDate | Thu Aug 21 14:00:13 EDT 2025 Fri Jul 11 16:54:46 EDT 2025 Mon Jul 21 10:08:15 EDT 2025 Mon Jul 21 06:03:56 EDT 2025 Mon Jul 21 09:13:54 EDT 2025 Tue Jul 01 02:37:55 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Fri Feb 23 02:23:14 EST 2024 Sun Feb 23 10:18:49 EST 2025 Tue Aug 26 16:32:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | basal ganglia PD BDI MMSE UPDRS computational modeling dopamine reinforcement learning United Parkinson's Disease Rating Scale Parkinson's disease Mini-Mental State Exam Beck Depression Inventory Nervous system diseases Dopamine Central nervous system Parkinson disease Basal ganglion Catecholamine Encephalon Cerebral disorder Learning Acquisition process Central nervous system disease Neurotransmitter Reinforcement Degenerative disease Extrapyramidal syndrome |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c727t-297d04f860c5d41c20fc41b5726e8c3895a5f1b2bcbdafd2f8bf580029a563063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.neuroscience.2009.07.033 |
PMID | 19628022 |
PQID | 20963567 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2760640 proquest_miscellaneous_734082132 proquest_miscellaneous_20963567 pubmed_primary_19628022 pascalfrancis_primary_22102354 crossref_citationtrail_10_1016_j_neuroscience_2009_07_033 crossref_primary_10_1016_j_neuroscience_2009_07_033 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2009_07_033 elsevier_clinicalkeyesjournals_1_s2_0_S0306452209012068 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2009_07_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-11-10 |
PublicationDateYYYYMMDD | 2009-11-10 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Neuroscience |
PublicationTitleAlternate | Neuroscience |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hoehn, Yahr (bib20) 1967; 17 Schultz, Dayan, Montague (bib34) 1997; 275 Dauer, Przedborski (bib12) 2003; 39 Wilkinson, Jahanshahi (bib38) 2007; 1137 Brown, Braver (bib6) 2008; 1202 Folstein, Folstein, Mchugh (bib16) 1975; 12 Robbins (bib32) 1952; 58 Frank, Seeberger, O'Reilly (bib17) 2004; 306 Abler, Walter, Erk, Kammerer, Spitzer (bib1) 2006; 31 Kish, Shannak, Hornykiewicz (bib22) 1988; 318 Krebs, Hogan, Hening, Adamovich, Poizner (bib23) 2001; 141 Fiorillo, Tobler, Schultz (bib15) 2003; 299 Grace (bib19) 1991; 41 Lilliefors (bib25) 1967; 62 Sutton, Barto (bib36) 1998 Cools, Clark, Owen, Robbins (bib10) 2002; 22 Montague, Dayan, Sejnowski (bib28) 1996; 16 Daw, Doya (bib13) 2006; 16 Schultz (bib33) 2007; 30 Cohen, Ranganath (bib8) 2005; 5 Cools, Altamirano, D'Esposito (bib9) 2006; 44 Goetz, Stebbins, Chmura, Fahn, Klawans, Marsden (bib18) 1995; 10 Rangel, Camerer, Montague (bib31) 2008; 9 Wilkinson, Lagnado, Quallo, Jahanshahi (bib39) 2008; 46 Defer, Widner, Marie, Remy, Levivier (bib14) 1999; 14 Martin-Soelch, Leenders, Chevalley, Missimer, Kunig, Magyar, Mino, Schultz (bib26) 2001; 36 Cools, Lewis, Clark, Barker, Robbins (bib11) 2007; 32 Messier, Adamovich, Jack, Hening, Sage, Poizner (bib27) 2007; 179 Behrens, Woolrich, Walton, Rushworth (bib3) 2007; 10 Borek, Amick, Friedman (bib5) 2006; 11 Kunig, Leenders, Martin-Solch, Missimer, Magyar, Schultz (bib24) 2000; 11 Shohamy, Myers, Kalanithi, Gluck (bib35) 2008; 32 Berns, Sejnowski (bib4) 1998; 10 Cohen (bib7) 2007; 2 Morris, Nevet, Arkadir, Vaadia, Bergman (bib29) 2006; 9 Horvitz, Choi, Morvan, Eyny, Balsam (bib21) 2007; 1104 Oldfield (bib30) 1971; 9 Swainson, Rogers, Sahakian, Summers, Polkey, Robbins (bib37) 2000; 38 Assadi, Yucel, Pantelis (bib2) 2009; 33 Morris (10.1016/j.neuroscience.2009.07.033_bib29) 2006; 9 Robbins (10.1016/j.neuroscience.2009.07.033_bib32) 1952; 58 Daw (10.1016/j.neuroscience.2009.07.033_bib13) 2006; 16 Wilkinson (10.1016/j.neuroscience.2009.07.033_bib38) 2007; 1137 Kish (10.1016/j.neuroscience.2009.07.033_bib22) 1988; 318 Frank (10.1016/j.neuroscience.2009.07.033_bib17) 2004; 306 Sutton (10.1016/j.neuroscience.2009.07.033_bib36) 1998 Abler (10.1016/j.neuroscience.2009.07.033_bib1) 2006; 31 Messier (10.1016/j.neuroscience.2009.07.033_bib27) 2007; 179 Folstein (10.1016/j.neuroscience.2009.07.033_bib16) 1975; 12 Montague (10.1016/j.neuroscience.2009.07.033_bib28) 1996; 16 Schultz (10.1016/j.neuroscience.2009.07.033_bib34) 1997; 275 Defer (10.1016/j.neuroscience.2009.07.033_bib14) 1999; 14 Oldfield (10.1016/j.neuroscience.2009.07.033_bib30) 1971; 9 Shohamy (10.1016/j.neuroscience.2009.07.033_bib35) 2008; 32 Dauer (10.1016/j.neuroscience.2009.07.033_bib12) 2003; 39 Swainson (10.1016/j.neuroscience.2009.07.033_bib37) 2000; 38 Fiorillo (10.1016/j.neuroscience.2009.07.033_bib15) 2003; 299 Hoehn (10.1016/j.neuroscience.2009.07.033_bib20) 1967; 17 Behrens (10.1016/j.neuroscience.2009.07.033_bib3) 2007; 10 Martin-Soelch (10.1016/j.neuroscience.2009.07.033_bib26) 2001; 36 Berns (10.1016/j.neuroscience.2009.07.033_bib4) 1998; 10 Grace (10.1016/j.neuroscience.2009.07.033_bib19) 1991; 41 Schultz (10.1016/j.neuroscience.2009.07.033_bib33) 2007; 30 Cools (10.1016/j.neuroscience.2009.07.033_bib11) 2007; 32 Krebs (10.1016/j.neuroscience.2009.07.033_bib23) 2001; 141 Assadi (10.1016/j.neuroscience.2009.07.033_bib2) 2009; 33 Goetz (10.1016/j.neuroscience.2009.07.033_bib18) 1995; 10 Brown (10.1016/j.neuroscience.2009.07.033_bib6) 2008; 1202 Cohen (10.1016/j.neuroscience.2009.07.033_bib7) 2007; 2 Lilliefors (10.1016/j.neuroscience.2009.07.033_bib25) 1967; 62 Wilkinson (10.1016/j.neuroscience.2009.07.033_bib39) 2008; 46 Cohen (10.1016/j.neuroscience.2009.07.033_bib8) 2005; 5 Cools (10.1016/j.neuroscience.2009.07.033_bib9) 2006; 44 Horvitz (10.1016/j.neuroscience.2009.07.033_bib21) 2007; 1104 Kunig (10.1016/j.neuroscience.2009.07.033_bib24) 2000; 11 Rangel (10.1016/j.neuroscience.2009.07.033_bib31) 2008; 9 Borek (10.1016/j.neuroscience.2009.07.033_bib5) 2006; 11 Cools (10.1016/j.neuroscience.2009.07.033_bib10) 2002; 22 |
References_xml | – volume: 10 start-page: 108 year: 1998 end-page: 121 ident: bib4 article-title: A computational model of how the basal ganglia produce sequences publication-title: J Cogn Neurosci – volume: 10 start-page: 263 year: 1995 end-page: 266 ident: bib18 article-title: Teaching tape for the motor section of the Unified Parkinson's Disease Rating Scale publication-title: Mov Disord – volume: 14 start-page: 572 year: 1999 end-page: 584 ident: bib14 article-title: Core assessment program for surgical interventional therapies in Parkinson's disease (CAPSIT-PD) publication-title: Mov Disord – volume: 31 start-page: 790 year: 2006 end-page: 795 ident: bib1 article-title: Prediction error as a linear function of reward probability is coded in human nucleus accumbens publication-title: Neuroimage – volume: 9 start-page: 97 year: 1971 end-page: 113 ident: bib30 article-title: Assessment and analysis of handedness—Edinburgh Inventory publication-title: Neuropsychologia – volume: 10 start-page: 1214 year: 2007 end-page: 1221 ident: bib3 article-title: Learning the value of information in an uncertain world publication-title: Nat Neurosci – volume: 16 start-page: 199 year: 2006 end-page: 204 ident: bib13 article-title: The computational neurobiology of learning and reward publication-title: Curr Opin Neurobiol – volume: 62 start-page: 399 year: 1967 end-page: 402 ident: bib25 article-title: On Kolmogorov-Smirnov test for normality with mean and variance unknown publication-title: J Am Stat Assoc – volume: 179 start-page: 457 year: 2007 end-page: 474 ident: bib27 article-title: Visuomotor learning in immersive 3D virtual reality in Parkinson's disease and in aging publication-title: Exp Brain Res – volume: 22 start-page: 4563 year: 2002 end-page: 4567 ident: bib10 article-title: Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging publication-title: J Neurosci – volume: 30 start-page: 259 year: 2007 end-page: 288 ident: bib33 article-title: Multiple dopamine functions at different time courses publication-title: Annu Rev Neurosci – volume: 32 start-page: 180 year: 2007 end-page: 189 ident: bib11 article-title: L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease publication-title: Neuropsychopharmacology – volume: 16 start-page: 1936 year: 1996 end-page: 1947 ident: bib28 article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning publication-title: J Neurosci – volume: 9 start-page: 1057 year: 2006 end-page: 1063 ident: bib29 article-title: Midbrain dopamine neurons encode decisions for future action publication-title: Nat Neurosci – volume: 2 start-page: 20 year: 2007 end-page: 30 ident: bib7 article-title: Individual differences and the neural representations of reward expectation and reward prediction error publication-title: Soc Cogn Affect Neurosci – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: bib16 article-title: Mini-Mental State—practical method for grading cognitive state of patients for clinician publication-title: J Psychiatr Res – volume: 1137 start-page: 117 year: 2007 end-page: 130 ident: bib38 article-title: The striatum and probabilistic implicit sequence learning publication-title: Brain Res – volume: 318 start-page: 876 year: 1988 end-page: 880 ident: bib22 article-title: Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease—pathophysiologic and clinical implications publication-title: N Engl J Med – volume: 141 start-page: 425 year: 2001 end-page: 437 ident: bib23 article-title: Procedural motor learning in Parkinson's disease publication-title: Exp Brain Res – volume: 11 start-page: 541 year: 2006 end-page: 554 ident: bib5 article-title: Non-motor aspects of Parkinson's disease publication-title: CNS Spectr – volume: 39 start-page: 889 year: 2003 end-page: 909 ident: bib12 article-title: Parkinson's disease: mechanisms and models publication-title: Neuron – volume: 32 start-page: 219 year: 2008 end-page: 236 ident: bib35 article-title: Basal ganglia and dopamine contributions to probabilistic category learning publication-title: Neurosci Biobehav Rev – volume: 46 start-page: 2683 year: 2008 end-page: 2695 ident: bib39 article-title: The effect of feedback on non-motor probabilistic classification learning in Parkinson's disease publication-title: Neuropsychologia – volume: 5 start-page: 117 year: 2005 end-page: 126 ident: bib8 article-title: Behavioral and neural predictors of upcoming decisions publication-title: Cogn Affect Behav Neurosci – volume: 299 start-page: 1898 year: 2003 end-page: 1902 ident: bib15 article-title: Discrete coding of reward probability and uncertainty by dopamine neurons publication-title: Science – volume: 275 start-page: 1593 year: 1997 end-page: 1599 ident: bib34 article-title: A neural substrate of prediction and reward publication-title: Science – volume: 1104 start-page: 270 year: 2007 end-page: 288 ident: bib21 article-title: A “good parent” function of dopamine: transient modulation of learning and performance during early stages of training publication-title: Ann N Y Acad Sci – year: 1998 ident: bib36 article-title: Reinforcement learning: an introduction – volume: 38 start-page: 596 year: 2000 end-page: 612 ident: bib37 article-title: Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication publication-title: Neuropsychologia – volume: 17 start-page: 427 year: 1967 end-page: 442 ident: bib20 article-title: Parkinsonism: onset, progression, and mortality publication-title: Neurology – volume: 11 start-page: 3681 year: 2000 end-page: 3687 ident: bib24 article-title: Reduced reward processing in the brains of parkinsonian patients publication-title: Neuroreport – volume: 44 start-page: 1663 year: 2006 end-page: 1673 ident: bib9 article-title: Reversal learning in Parkinson's disease depends on medication status and outcome valence publication-title: Neuropsychologia – volume: 41 start-page: 1 year: 1991 end-page: 24 ident: bib19 article-title: Phasic versus tonic dopamine release and the modulation of dopamine system responsivity—a hypothesis for the etiology of schizophrenia publication-title: Neuroscience – volume: 58 start-page: 527 year: 1952 end-page: 535 ident: bib32 article-title: Some aspects of the sequential design of experiments publication-title: Bull Amer Math. Soc – volume: 33 start-page: 383 year: 2009 end-page: 393 ident: bib2 article-title: Dopamine modulates neural networks involved in effort-based decision-making publication-title: Neurosci Biobehav Rev – volume: 36 start-page: 139 year: 2001 end-page: 149 ident: bib26 article-title: Reward mechanisms in the brain and their role in dependence: evidence from neurophysiological and neuroimaging studies publication-title: Brain Res Brain Res Rev – volume: 9 start-page: 545 year: 2008 end-page: 556 ident: bib31 article-title: A framework for studying the neurobiology of value-based decision making publication-title: Nat Rev Neurosci – volume: 1202 start-page: 99 year: 2008 end-page: 108 ident: bib6 article-title: A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex publication-title: Brain Res – volume: 306 start-page: 1940 year: 2004 end-page: 1943 ident: bib17 article-title: By carrot or by stick: cognitive reinforcement learning in Parkinsonism publication-title: Science – volume: 5 start-page: 117 year: 2005 ident: 10.1016/j.neuroscience.2009.07.033_bib8 article-title: Behavioral and neural predictors of upcoming decisions publication-title: Cogn Affect Behav Neurosci doi: 10.3758/CABN.5.2.117 – volume: 39 start-page: 889 year: 2003 ident: 10.1016/j.neuroscience.2009.07.033_bib12 article-title: Parkinson's disease: mechanisms and models publication-title: Neuron doi: 10.1016/S0896-6273(03)00568-3 – volume: 22 start-page: 4563 year: 2002 ident: 10.1016/j.neuroscience.2009.07.033_bib10 article-title: Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-11-04563.2002 – volume: 44 start-page: 1663 year: 2006 ident: 10.1016/j.neuroscience.2009.07.033_bib9 article-title: Reversal learning in Parkinson's disease depends on medication status and outcome valence publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2006.03.030 – volume: 11 start-page: 541 year: 2006 ident: 10.1016/j.neuroscience.2009.07.033_bib5 article-title: Non-motor aspects of Parkinson's disease publication-title: CNS Spectr doi: 10.1017/S1092852900013560 – volume: 179 start-page: 457 year: 2007 ident: 10.1016/j.neuroscience.2009.07.033_bib27 article-title: Visuomotor learning in immersive 3D virtual reality in Parkinson's disease and in aging publication-title: Exp Brain Res doi: 10.1007/s00221-006-0802-2 – volume: 9 start-page: 1057 year: 2006 ident: 10.1016/j.neuroscience.2009.07.033_bib29 article-title: Midbrain dopamine neurons encode decisions for future action publication-title: Nat Neurosci doi: 10.1038/nn1743 – volume: 36 start-page: 139 year: 2001 ident: 10.1016/j.neuroscience.2009.07.033_bib26 article-title: Reward mechanisms in the brain and their role in dependence: evidence from neurophysiological and neuroimaging studies publication-title: Brain Res Brain Res Rev doi: 10.1016/S0165-0173(01)00089-3 – volume: 2 start-page: 20 year: 2007 ident: 10.1016/j.neuroscience.2009.07.033_bib7 article-title: Individual differences and the neural representations of reward expectation and reward prediction error publication-title: Soc Cogn Affect Neurosci doi: 10.1093/scan/nsl021 – volume: 318 start-page: 876 year: 1988 ident: 10.1016/j.neuroscience.2009.07.033_bib22 article-title: Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease—pathophysiologic and clinical implications publication-title: N Engl J Med doi: 10.1056/NEJM198804073181402 – volume: 32 start-page: 180 year: 2007 ident: 10.1016/j.neuroscience.2009.07.033_bib11 article-title: L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1301153 – volume: 141 start-page: 425 year: 2001 ident: 10.1016/j.neuroscience.2009.07.033_bib23 article-title: Procedural motor learning in Parkinson's disease publication-title: Exp Brain Res doi: 10.1007/s002210100871 – volume: 1104 start-page: 270 year: 2007 ident: 10.1016/j.neuroscience.2009.07.033_bib21 article-title: A “good parent” function of dopamine: transient modulation of learning and performance during early stages of training publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1390.017 – volume: 33 start-page: 383 year: 2009 ident: 10.1016/j.neuroscience.2009.07.033_bib2 article-title: Dopamine modulates neural networks involved in effort-based decision-making publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2008.10.010 – volume: 41 start-page: 1 year: 1991 ident: 10.1016/j.neuroscience.2009.07.033_bib19 article-title: Phasic versus tonic dopamine release and the modulation of dopamine system responsivity—a hypothesis for the etiology of schizophrenia publication-title: Neuroscience doi: 10.1016/0306-4522(91)90196-U – volume: 62 start-page: 399 year: 1967 ident: 10.1016/j.neuroscience.2009.07.033_bib25 article-title: On Kolmogorov-Smirnov test for normality with mean and variance unknown publication-title: J Am Stat Assoc doi: 10.1080/01621459.1967.10482916 – volume: 38 start-page: 596 year: 2000 ident: 10.1016/j.neuroscience.2009.07.033_bib37 article-title: Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication publication-title: Neuropsychologia doi: 10.1016/S0028-3932(99)00103-7 – volume: 1137 start-page: 117 year: 2007 ident: 10.1016/j.neuroscience.2009.07.033_bib38 article-title: The striatum and probabilistic implicit sequence learning publication-title: Brain Res doi: 10.1016/j.brainres.2006.12.051 – volume: 31 start-page: 790 year: 2006 ident: 10.1016/j.neuroscience.2009.07.033_bib1 article-title: Prediction error as a linear function of reward probability is coded in human nucleus accumbens publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.001 – volume: 46 start-page: 2683 year: 2008 ident: 10.1016/j.neuroscience.2009.07.033_bib39 article-title: The effect of feedback on non-motor probabilistic classification learning in Parkinson's disease publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2008.05.008 – volume: 10 start-page: 1214 year: 2007 ident: 10.1016/j.neuroscience.2009.07.033_bib3 article-title: Learning the value of information in an uncertain world publication-title: Nat Neurosci doi: 10.1038/nn1954 – volume: 10 start-page: 263 year: 1995 ident: 10.1016/j.neuroscience.2009.07.033_bib18 article-title: Teaching tape for the motor section of the Unified Parkinson's Disease Rating Scale publication-title: Mov Disord doi: 10.1002/mds.870100305 – volume: 32 start-page: 219 year: 2008 ident: 10.1016/j.neuroscience.2009.07.033_bib35 article-title: Basal ganglia and dopamine contributions to probabilistic category learning publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2007.07.008 – volume: 16 start-page: 199 year: 2006 ident: 10.1016/j.neuroscience.2009.07.033_bib13 article-title: The computational neurobiology of learning and reward publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2006.03.006 – volume: 9 start-page: 545 year: 2008 ident: 10.1016/j.neuroscience.2009.07.033_bib31 article-title: A framework for studying the neurobiology of value-based decision making publication-title: Nat Rev Neurosci doi: 10.1038/nrn2357 – volume: 10 start-page: 108 year: 1998 ident: 10.1016/j.neuroscience.2009.07.033_bib4 article-title: A computational model of how the basal ganglia produce sequences publication-title: J Cogn Neurosci doi: 10.1162/089892998563815 – year: 1998 ident: 10.1016/j.neuroscience.2009.07.033_bib36 – volume: 30 start-page: 259 year: 2007 ident: 10.1016/j.neuroscience.2009.07.033_bib33 article-title: Multiple dopamine functions at different time courses publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.28.061604.135722 – volume: 9 start-page: 97 year: 1971 ident: 10.1016/j.neuroscience.2009.07.033_bib30 article-title: Assessment and analysis of handedness—Edinburgh Inventory publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 1202 start-page: 99 year: 2008 ident: 10.1016/j.neuroscience.2009.07.033_bib6 article-title: A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex publication-title: Brain Res doi: 10.1016/j.brainres.2007.06.080 – volume: 299 start-page: 1898 year: 2003 ident: 10.1016/j.neuroscience.2009.07.033_bib15 article-title: Discrete coding of reward probability and uncertainty by dopamine neurons publication-title: Science doi: 10.1126/science.1077349 – volume: 14 start-page: 572 year: 1999 ident: 10.1016/j.neuroscience.2009.07.033_bib14 article-title: Core assessment program for surgical interventional therapies in Parkinson's disease (CAPSIT-PD) publication-title: Mov Disord doi: 10.1002/1531-8257(199907)14:4<572::AID-MDS1005>3.0.CO;2-C – volume: 275 start-page: 1593 year: 1997 ident: 10.1016/j.neuroscience.2009.07.033_bib34 article-title: A neural substrate of prediction and reward publication-title: Science doi: 10.1126/science.275.5306.1593 – volume: 17 start-page: 427 year: 1967 ident: 10.1016/j.neuroscience.2009.07.033_bib20 article-title: Parkinsonism: onset, progression, and mortality publication-title: Neurology doi: 10.1212/WNL.17.5.427 – volume: 58 start-page: 527 year: 1952 ident: 10.1016/j.neuroscience.2009.07.033_bib32 article-title: Some aspects of the sequential design of experiments publication-title: Bull Amer Math. Soc doi: 10.1090/S0002-9904-1952-09620-8 – volume: 12 start-page: 189 year: 1975 ident: 10.1016/j.neuroscience.2009.07.033_bib16 article-title: Mini-Mental State—practical method for grading cognitive state of patients for clinician publication-title: J Psychiatr Res doi: 10.1016/0022-3956(75)90026-6 – volume: 306 start-page: 1940 year: 2004 ident: 10.1016/j.neuroscience.2009.07.033_bib17 article-title: By carrot or by stick: cognitive reinforcement learning in Parkinsonism publication-title: Science doi: 10.1126/science.1102941 – volume: 11 start-page: 3681 year: 2000 ident: 10.1016/j.neuroscience.2009.07.033_bib24 article-title: Reduced reward processing in the brains of parkinsonian patients publication-title: Neuroreport doi: 10.1097/00001756-200011270-00019 – volume: 16 start-page: 1936 year: 1996 ident: 10.1016/j.neuroscience.2009.07.033_bib28 article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-05-01936.1996 |
SSID | ssj0000543 |
Score | 2.2517626 |
Snippet | In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the... Abstract In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition,... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1092 |
SubjectTerms | Adaptation, Psychological Aged Aged, 80 and over Algorithms basal ganglia Biological and medical sciences computational modeling Computer Simulation Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases dopamine Feedback, Psychological Female Fundamental and applied biological sciences. Psychology Humans Learning Disabilities - etiology Male Medical sciences Middle Aged Models, Psychological Neurology Neuropsychological Tests Parkinson Disease - complications Primates Probability Learning reinforcement learning Reversal Learning Reward Vertebrates: nervous system and sense organs |
Title | Probabilistic reversal learning is impaired in Parkinson's disease |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452209012068 https://www.clinicalkey.es/playcontent/1-s2.0-S0306452209012068 https://dx.doi.org/10.1016/j.neuroscience.2009.07.033 https://www.ncbi.nlm.nih.gov/pubmed/19628022 https://www.proquest.com/docview/20963567 https://www.proquest.com/docview/734082132 https://pubmed.ncbi.nlm.nih.gov/PMC2760640 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5N4wUJocH4kQHFDwiesia2Y9dCPJSJqYCYkGDS3qzEdkYQZFXTPfDC347PcboWNqkSr6mvkc_n8zl333cALwrjCuryPHXKlSm3kqUVoyYVynHrj2PqBAKcP52I2Sn_cFac7cDRgIXBssro-3ufHrx1fDKO2hzPm2b8BaNd5APPFAJABQJ-OZdo5Ye_r8o8fEjSt0j2N2ccPRCPhhqvNc5IF7kr5WHG2E2H1J152XnV1X3Pi-uC0r9rK9cOq-M9uBujTDLtJ3IPdlx7H_anrb9h__xFXpJQ9xk-qO_D288Lv6exRhYpmwlSOi06Lxz7SZyTpiOIpfR6sqRpCeKkA2TsVUdieucBnB6_-3o0S2NnhdT4eGWZUiVtxuuJyExheW5oVhueV4Wkwk2Mj2GKsqjzilamsmVtaT2p6gJDS1Uin5hgD2G3vWjdYyCspNZS5IipHTeUTqziFrOntrZGUZuAGlSpTaQdx-4XP_RQX_Zdry8D9sVUOpPaL0MCbCU778k3tpJ6PayYHuCl3iFqf0ZsJS2vk3Zd3NudznVHdab_sb8E3qwkN0x46zePNsxrNWWK13JW8ASeD_amvRPAzE7ZuovLzv-LQp5BmQC5YYRk2Fk8ZzSBR72BXmlUCYqAaz_zDdNdDUAG8s1f2uZbYCKnUmAm-OA_Z_4EbockXaiufAq7y8Wle-ZjvWU1Cpt5BLem7z_OTv4A9aRYmw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOYCEEFAe4dHOgccp3WQyeYxQD22h2tKHkGil3oZkZgJBkK42W6Fe-FP8Qexkst2FVloJ9ZrEScZ2bE9sfwZ4GWsbcxuGvpU294VJI7-IuPYTaYVBd8xtQg3OB4fJ8Fh8OIlPluB33wtDZZXO9nc2vbXW7sjAcXMwqqrBJ4p2CQ88kNQAmmSusnLPnv_EfVuzsfsOhfyK8533R9tD340W8DU67InPZWoCUWZJoGMjQs2DUouwiFOe2EyjE4_zuAwLXujC5KXhZVaUMcVWMidArSTC-96AmwLNBY1NWP91UVeCMVA3kxm36vR6PdJpW1Q2A1JpHVhmuh5E0VVe8c4ob1BWZTdk47Io-O9izhnvuHMP7rqwlm12nLsPS7Z-ACubNW7pf5yz16wtNG3_4K_A1scxGhEqyiWMaEYYUuMGid0Aiy-sahg1b6JgDKtqRo3ZbY_am4a5fNJDOL4Wfj-C5fq0tk-ARTk3hhMoTWmF5jwzUhhK15rSaMmNB7JnpdIO55zGbXxXfUHbNzUrBhrEKVWQKhSDB9GUdtShfSxE9baXmOr7WdECK3RKC1Gnl1HbxhmTRoWq4SpQ_yi8BxtTyrlvZuEnr86p13TJnP4DRLHwYK3XN4VWh1JJeW1Pzxq8iyRgw9QDdsUVaUSjzMOIe_C4U9ALjsqEU4c3rnxOdacXEOT5_Jm6-tpCn_M0odTz0_9c-RrcGh4d7Kv93cO9Z3C7zRC2pZ3PYXkyPrMvMNCcFKvth83g83Vbkj-ZhpP5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+reversal+learning+is+impaired+in+Parkinson%27s+disease&rft.jtitle=Neuroscience&rft.au=Peterson%2C+David+A.&rft.au=Elliott%2C+Christian&rft.au=Song%2C+David+D.&rft.au=Makeig%2C+Scott&rft.date=2009-11-10&rft.issn=0306-4522&rft.eissn=1873-7544&rft.volume=163&rft.issue=4&rft.spage=1092&rft.epage=1101&rft_id=info:doi/10.1016%2Fj.neuroscience.2009.07.033&rft_id=info%3Apmid%2F19628022&rft.externalDocID=PMC2760640 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03064522%2FS0306452209X00229%2Fcov150h.gif |