Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening
This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the co...
Saved in:
Published in | PLoS computational biology Vol. 14; no. 1; p. e1005929 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
08.01.2018
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination. |
---|---|
AbstractList | This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination. This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination. Conventional persistent homology neglects chemical and biological information during the topological abstraction and thus has limited representational power for complex chemical and biological systems. In terms of methodological development, we introduce advanced persistent homology approaches for the characterization of small molecular structures which can capture subtle structural difference. We also introduce electrostatic persistent homology to embed physics in topological invariants. These approaches encipher physics, chemistry and biology, such as hydrogen bonds, electrostatics, van der Waals interactions, hydrophobicity and hydrophilicity, into topological fingerprints which, although cannot literally recast into physical interpretations, are ideally suitable for machine learning, particularly deep learning, rendering topological learning algorithms. In terms of applications, we construct a structure-based virtual screening model which outperforms other existing methods. This competitive model on the DUD database is derived by assessing the performance of a comprehensive collection of topological approaches proposed in this work and introduced in our earlier work, on the PDBBind database. The topological features constructed in this work can readily be applied to other biomolecular problems where the characterization of proteins or small molecules is needed. This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination.This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination. |
Audience | Academic |
Author | Cang, Zixuan Wei, Guo-Wei Mu, Lin |
AuthorAffiliation | 4 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America 1 Department of Mathematics, Michigan State University, East Lansing, Michigan, United States of America 3 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America University of Illinois at Urbana-Champaign, UNITED STATES 2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America |
AuthorAffiliation_xml | – name: 2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America – name: 4 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America – name: 1 Department of Mathematics, Michigan State University, East Lansing, Michigan, United States of America – name: University of Illinois at Urbana-Champaign, UNITED STATES – name: 3 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America |
Author_xml | – sequence: 1 givenname: Zixuan orcidid: 0000-0002-9951-5586 surname: Cang fullname: Cang, Zixuan – sequence: 2 givenname: Lin surname: Mu fullname: Mu, Lin – sequence: 3 givenname: Guo-Wei orcidid: 0000-0001-8132-5998 surname: Wei fullname: Wei, Guo-Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29309403$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1627253$$D View this record in Osti.gov |
BookMark | eNqVk1tv1DAQhSNURNuFf4Agghd42MWXOI55QKoqLpUqkAo8WxNnknXltbd2UtF_j5fdVt0KIaE8xJ5850x8kjkuDnzwWBTPKVlQLum7yzBFD26xNq1dUEKEYupRcUSF4HPJRXNwb31YHKd0SUheqvpJccgUJ6oi_KgIF7iOmNCP0Fpnx5sy9CW4AdsI1pRjWAcXhpuyD7FsbVgFh2ZymErryxWYpfVYOoTorR_KFhJ2ZTIhbnbgu_LaxnECl2sRccM8LR734BI-291nxc9PH3-cfpmff_t8dnpyPjeS1eMclWhZrxitoO4EAGFcGlH1KAmgQFlXomGtFLSXNSeGSlVRaaqO1tL0lHZ8Vrzc-q5dSHqXVdKMEFYzxmSTibMt0QW41OtoVxBvdACr_xRCHDTE0RqHWhkJpEZUTZNTE6bhbSs4h6oGaBU32evDrtvUrrAzOc4Ibs90_4m3Sz2Eay2krJqqzgavtgYhjVYnY0c0SxO8RzNqWjPJcr9Z8WbXJYarCdOoVzYZdA48hilpqholKsFpldHXD9C_R7DYUgPkU1rfh_xyJl8drmzujr3N9RPBhKKSNRvB2z1BZkb8NQ4wpaTPvl_8B_t1n31xP7-74G7_0wxUW8DEkFLE_g6hRG_G4fZ8ejMOejcOWfb-gSwnC6MNm69g3b_FvwHdvBJ7 |
CitedBy_id | crossref_primary_10_1039_D3CP03651K crossref_primary_10_1021_acs_jcim_3c00251 crossref_primary_10_1021_acsomega_3c05931 crossref_primary_10_1016_j_memsci_2024_122927 crossref_primary_10_1021_acs_jcim_3c00253 crossref_primary_10_1111_cgf_15142 crossref_primary_10_1002_wcms_1429 crossref_primary_10_1109_TNB_2023_3274640 crossref_primary_10_1021_acs_jcim_0c00411 crossref_primary_10_1039_D0CP00305K crossref_primary_10_1021_acsomega_3c00085 crossref_primary_10_1093_bib_bbab527 crossref_primary_10_2139_ssrn_3275996 crossref_primary_10_1080_17460441_2020_1758664 crossref_primary_10_1021_acsomega_0c06078 crossref_primary_10_1093_bib_bbab127 crossref_primary_10_1038_s42003_022_03416_7 crossref_primary_10_1098_rspa_2019_0662 crossref_primary_10_1007_s10822_019_00275_z crossref_primary_10_1007_s41468_023_00135_8 crossref_primary_10_1021_acs_jcim_2c01251 crossref_primary_10_1073_pnas_2408431121 crossref_primary_10_1515_cmb_2020_0001 crossref_primary_10_1021_acs_jcim_1c00511 crossref_primary_10_1007_s10462_024_10710_9 crossref_primary_10_1016_j_cbpa_2018_06_006 crossref_primary_10_1155_2018_7329576 crossref_primary_10_1039_C9CP06554G crossref_primary_10_1093_bib_bbad145 crossref_primary_10_1126_sciadv_abc5329 crossref_primary_10_1371_journal_pone_0237747 crossref_primary_10_1021_acs_jcim_2c01149 crossref_primary_10_1186_s13321_019_0369_0 crossref_primary_10_1021_acs_jcim_2c00697 crossref_primary_10_1371_journal_pcbi_1009943 crossref_primary_10_1002_minf_202100245 crossref_primary_10_1038_s42256_020_0149_6 crossref_primary_10_47743_jpd_2023_30_1_930 crossref_primary_10_1007_s12539_019_00327_w crossref_primary_10_1186_s13321_021_00536_w crossref_primary_10_1021_acs_jcim_2c00060 crossref_primary_10_1016_j_compbiolchem_2019_01_014 crossref_primary_10_1039_D0SC04641H crossref_primary_10_1080_17460441_2025_2477625 crossref_primary_10_1021_acs_jcim_3c01961 crossref_primary_10_1021_acs_jcim_3c01841 crossref_primary_10_1038_s42256_024_00855_1 crossref_primary_10_1080_17460441_2021_1929921 crossref_primary_10_3389_fbinf_2022_885983 crossref_primary_10_1021_acsomega_2c02822 crossref_primary_10_1063_1674_0068_cjcp2109150 crossref_primary_10_1002_wcms_1567 crossref_primary_10_1146_annurev_biophys_062920_063711 crossref_primary_10_1515_mr_2023_0030 crossref_primary_10_1021_acs_jcim_2c00580 crossref_primary_10_1007_s10822_019_00237_5 crossref_primary_10_1016_j_matcom_2021_01_013 crossref_primary_10_1137_19M1272226 crossref_primary_10_1038_s41598_023_37853_z crossref_primary_10_1007_s10489_022_04333_2 crossref_primary_10_1016_j_trechm_2020_04_009 crossref_primary_10_3390_math11081817 crossref_primary_10_1021_acs_jcim_9b00801 crossref_primary_10_1016_j_drudis_2022_103373 crossref_primary_10_1093_bib_bbad046 crossref_primary_10_1093_bib_bbac231 crossref_primary_10_1002_jcc_25213 crossref_primary_10_1093_bib_bbac626 crossref_primary_10_1021_acs_jcim_7b00558 crossref_primary_10_1021_acsomega_1c04996 crossref_primary_10_1093_bib_bbab136 crossref_primary_10_1007_s13042_023_01894_7 crossref_primary_10_1038_s43246_024_00545_w crossref_primary_10_3389_fphar_2020_00069 crossref_primary_10_3390_ijms252312676 crossref_primary_10_1002_dvdy_175 crossref_primary_10_1177_11779322211030364 crossref_primary_10_1093_bib_bbae201 crossref_primary_10_1016_j_cplett_2023_140547 crossref_primary_10_1038_s41598_019_55660_3 crossref_primary_10_1007_s41468_020_00057_9 crossref_primary_10_1007_s11030_024_11044_y crossref_primary_10_1021_acs_jcim_2c00916 crossref_primary_10_1007_s10114_022_2326_5 crossref_primary_10_1038_s41524_022_00883_8 crossref_primary_10_1093_bib_bbac024 crossref_primary_10_1021_acs_jcim_4c01116 crossref_primary_10_3934_math_20241333 crossref_primary_10_1002_wcms_1465 crossref_primary_10_1186_s13321_021_00507_1 crossref_primary_10_1021_acs_jcim_4c01907 crossref_primary_10_1016_j_ddtec_2020_09_001 crossref_primary_10_1039_C9CP03009C crossref_primary_10_1021_acs_jcim_2c00485 crossref_primary_10_1098_rsos_211745 crossref_primary_10_3389_fgene_2019_00090 crossref_primary_10_1016_j_compbiomed_2021_105060 crossref_primary_10_1109_TPAMI_2024_3400515 crossref_primary_10_1093_bib_bbaa070 crossref_primary_10_1142_S2737416523500278 crossref_primary_10_1021_acs_jcim_0c01415 crossref_primary_10_1007_s10822_018_0146_6 crossref_primary_10_1021_acs_jcim_3c00567 crossref_primary_10_1038_s41598_020_66710_6 crossref_primary_10_1021_acs_jcim_4c00552 crossref_primary_10_1021_acs_jcim_4c02332 crossref_primary_10_3389_fphy_2020_00005 crossref_primary_10_1093_bib_bbz173 crossref_primary_10_1007_s10822_018_0180_4 crossref_primary_10_1007_s10822_020_00289_y crossref_primary_10_3390_ijms20092060 crossref_primary_10_1002_jcc_27499 crossref_primary_10_1038_s41467_025_57536_9 crossref_primary_10_1016_j_compbiomed_2022_106262 crossref_primary_10_1038_s41596_023_00885_w crossref_primary_10_1021_acs_jcim_9b00334 crossref_primary_10_1021_acs_jcim_3c00391 crossref_primary_10_1080_17460441_2024_2349169 crossref_primary_10_1021_acs_jcim_3c02054 crossref_primary_10_1021_acs_jcim_4c00481 crossref_primary_10_3390_genes11020131 crossref_primary_10_1021_acs_jpca_0c06231 crossref_primary_10_1093_bib_bbae465 crossref_primary_10_1038_s42003_023_04866_3 crossref_primary_10_1021_acs_jcim_9b00977 crossref_primary_10_3934_dcdsb_2020257 crossref_primary_10_1002_minf_202200135 crossref_primary_10_1016_j_physrep_2020_07_005 crossref_primary_10_1093_bib_bbab474 crossref_primary_10_1021_acs_jmedchem_1c01830 crossref_primary_10_1021_acs_jpclett_0c01579 crossref_primary_10_1186_s13321_025_00955_z crossref_primary_10_1021_acs_jcim_1c01021 crossref_primary_10_1093_bib_bbaa411 crossref_primary_10_1021_acs_jpclett_2c00469 crossref_primary_10_1021_acs_jcim_1c00334 crossref_primary_10_1109_TNNLS_2023_3314928 crossref_primary_10_1007_s10462_022_10146_z crossref_primary_10_1016_j_bpj_2024_02_008 crossref_primary_10_3934_fods_2022002 crossref_primary_10_1016_j_heliyon_2023_e17575 crossref_primary_10_1038_s41598_022_12877_z crossref_primary_10_1038_s41559_021_01461_9 crossref_primary_10_1016_j_jmb_2020_07_009 crossref_primary_10_3390_ph18030329 crossref_primary_10_2174_1573409914666181018141602 crossref_primary_10_1021_acs_jcim_2c00705 crossref_primary_10_1021_acs_jcim_4c02033 crossref_primary_10_1093_bioinformatics_btaa982 crossref_primary_10_1002_wcms_1478 crossref_primary_10_1021_acs_jcim_1c01531 crossref_primary_10_3390_ijms22094435 crossref_primary_10_1016_j_str_2024_02_016 crossref_primary_10_1039_C8CP01552J crossref_primary_10_1371_journal_pone_0284820 crossref_primary_10_1021_acs_jcim_2c01526 crossref_primary_10_1021_acsomega_1c06976 crossref_primary_10_1002_minf_202300292 crossref_primary_10_2139_ssrn_4399415 crossref_primary_10_1021_acs_jcim_4c02309 crossref_primary_10_1021_acsomega_3c04889 crossref_primary_10_3389_fmolb_2022_867241 crossref_primary_10_1093_bioadv_vbad155 crossref_primary_10_1021_acs_chemrev_1c00965 |
Cites_doi | 10.1371/journal.pcbi.1005690 10.1007/s10822-010-9374-0 10.1002/9781119162254 10.1145/1064092.1064133 10.1002/cnm.2914 10.1002/jcc.23816 10.1002/cnm.2532 10.1109/TVCG.2011.177 10.1002/jcc.24512 10.1021/ci9000053 10.1002/jcc.23333 10.1090/S0273-0979-09-01249-X 10.1109/TMI.2011.2147327 10.1002/jcc.23364 10.1109/TMI.2012.2219590 10.1063/1.4931733 10.1007/s00454-002-2885-2 10.1017/S0962492914000051 10.1145/1998196.1998212 10.1007/s00285-008-0226-7 10.1109/TVCG.2012.248 10.1007/s00214-017-2083-1 10.1142/S0218654305000761 10.1088/1742-5468/2009/03/P03034 10.1371/journal.pcbi.1002581 10.1007/s10208-014-9206-z 10.1021/ci400187y 10.1002/jcc.21256 10.1002/cnm.2655 10.1093/bioinformatics/btu626 10.1137/090762932 10.1016/j.neunet.2014.09.003 10.1007/s00454-011-9344-x 10.1167/8.8.11 10.1090/psapm/045/1196715 10.1007/s10208-010-9066-0 10.1109/MSP.2012.2205597 10.1021/jm0608356 10.1002/minf.201400132 10.1021/acs.jcim.6b00355 10.1016/j.jcp.2010.06.036 10.1145/2462356.2462371 10.1093/bioinformatics/btm250 10.1371/journal.pcbi.1000531 10.1186/s12859-015-0645-6 10.1007/s10208-008-9027-z 10.1007/s11263-007-0056-x 10.1007/s10208-010-9060-6 10.1007/s00454-004-1146-y 10.1002/jcc.23953 10.1371/journal.pone.0058699 10.1007/s00454-009-9176-0 10.1007/s00285-011-0402-z 10.1007/s10208-010-9081-1 10.1109/38.865879 10.1007/s10208-011-9100-x 10.1093/nar/28.1.235 10.1021/ci900056c 10.1007/s00454-006-1276-5 10.1063/1.4830404 10.1007/s00454-013-9529-6 10.1006/jmbi.2001.4865 10.1063/1.3103496 10.1002/jcc.24682 10.1137/1.9781611973198.4 10.1103/PhysRevLett.82.1144 10.1021/ci400042y 10.1002/jcc.21334 10.1371/journal.pone.0136577 10.1038/nature14539 10.1021/ci100214a 10.1109/TVCG.2013.9 10.1137/1.9781611973068.110 10.1021/acs.jcim.7b00226 10.1007/s00454-006-1265-8 10.1093/nar/gkq325 10.1007/s13160-014-0153-5 10.1145/1542362.1542407 10.4310/HHA.2012.v14.n1.a11 10.1016/j.jcp.2015.10.036 10.1126/science.257.5073.1110 10.1109/TVCG.2010.139 10.1021/ci500028u 10.3390/molecules200610947 10.1021/acscentsci.5b00131 10.1145/1542362.1542408 10.1007/s10822-012-9547-0 10.1039/C7SC02664A 10.1016/j.patrec.2012.10.015 10.1021/ci049714+ 10.1145/2582112.2582165 10.1042/BST20130004 10.1002/jcc.20796 10.1145/1391729.1391731 10.1090/S0273-0979-07-01191-3 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Public Library of Science 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cang Z, Mu L, Wei G-W (2018) Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol 14(1): e1005929. https://doi.org/10.1371/journal.pcbi.1005929 2018 Cang et al 2018 Cang et al 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cang Z, Mu L, Wei G-W (2018) Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol 14(1): e1005929. https://doi.org/10.1371/journal.pcbi.1005929 |
Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cang Z, Mu L, Wei G-W (2018) Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol 14(1): e1005929. https://doi.org/10.1371/journal.pcbi.1005929 – notice: 2018 Cang et al 2018 Cang et al – notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cang Z, Mu L, Wei G-W (2018) Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol 14(1): e1005929. https://doi.org/10.1371/journal.pcbi.1005929 |
CorporateAuthor | Oak Ridge National Lab (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – sequence: 0 name: Oak Ridge National Lab (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1371/journal.pcbi.1005929 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics Physics |
DocumentTitleAlternate | Representability of algebraic topology for biomolecules |
EISSN | 1553-7358 |
ExternalDocumentID | 2002622278 oai_doaj_org_article_9c7a06ee9889405c83bb533a46aab93c PMC5774846 1627253 A525917288 29309403 10_1371_journal_pcbi_1005929 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US East Lansing Michigan Michigan |
GeographicLocations_xml | – name: East Lansing Michigan – name: Michigan – name: United States--US |
GrantInformation_xml | – fundername: ; grantid: IIS-1302285 – fundername: ; grantid: DMS-1721024 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 M~E OIOZB OTOTI PGMZT 5PM PUEGO - AAPBV ABPTK ADACO BBAFP |
ID | FETCH-LOGICAL-c726t-e95b2f9214a6d5aa0237c54fe70ae5e764582b751f7630c179417c4d167cf11d3 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:12:36 EST 2021 Wed Aug 27 01:10:31 EDT 2025 Thu Aug 21 13:51:23 EDT 2025 Thu Dec 05 06:34:58 EST 2024 Fri Jul 11 11:59:06 EDT 2025 Fri Jul 25 10:25:51 EDT 2025 Tue Jun 10 20:34:43 EDT 2025 Fri Jun 27 04:25:47 EDT 2025 Fri Jun 27 03:36:08 EDT 2025 Mon Jul 21 06:04:40 EDT 2025 Tue Jul 01 04:24:12 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c726t-e95b2f9214a6d5aa0237c54fe70ae5e764582b751f7630c179417c4d167cf11d3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Michigan State University (MSU) USDOE Office of Science (SC) AC05-00OR22725; IIS-1302285; DMS-1721024 National Science Foundation (NSF) The authors have declared that no competing interests exist. |
ORCID | 0000-0001-8132-5998 0000-0002-9951-5586 0000000181325998 0000000299515586 |
OpenAccessLink | https://www.proquest.com/docview/2002622278?pq-origsite=%requestingapplication% |
PMID | 29309403 |
PQID | 2002622278 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2002622278 doaj_primary_oai_doaj_org_article_9c7a06ee9889405c83bb533a46aab93c pubmedcentral_primary_oai_pubmedcentral_nih_gov_5774846 osti_scitechconnect_1627253 proquest_miscellaneous_1989545314 proquest_journals_2002622278 gale_infotracacademiconefile_A525917288 gale_incontextgauss_ISR_A525917288 gale_incontextgauss_ISN_A525917288 pubmed_primary_29309403 crossref_primary_10_1371_journal_pcbi_1005929 crossref_citationtrail_10_1371_journal_pcbi_1005929 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180108 |
PublicationDateYYYYMMDD | 2018-01-08 |
PublicationDate_xml | – month: 1 year: 2018 text: 20180108 day: 8 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2018 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – sequence: 0 name: Public Library of Science – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | MM Mysinger (ref108) 2010; 50 ref52 H Li (ref105) 2015; 20 J Bennett (ref84) 2015 H Edelsbrunner (ref55) 2010 ref51 ref50 B Wang (ref88) 2016; 305 Z Chen (ref20) 2012; 137 JB Cross (ref116) 2009; 49 G Carlsson (ref56) 2009 ref48 ref47 ref42 ref41 ref44 D Horak (ref67) 2009; 2009 JD Durrant (ref97) 2013; 53 MA Neves (ref115) 2012; 26 SM Kandathil (ref25) 2013; 34 T Kaczynski (ref64) 2004 Z Cang (ref92) 2015; 3 ref8 KL Xia (ref87) 2015; 36 KL Xia (ref24) 2014; 275 Z Cang (ref27) 2017 ref6 Z Cang (ref14) 2017; 33 PM Kasson (ref118) 2007; 23 D Burago (ref123) 2001; vol. 33 ref40 PW Bates (ref15) 2008; 29 HW Chang (ref82) 2013; 8 V de Silva (ref45) 2011; 45 PK Agarwal (ref74) 2006; 36 KL Xia (ref121) 2013; 139 DD Nguyen (ref106) 2017; 57 JC Pereira (ref98) 2016; 56 A Zomorodian (ref29) 2005; 33 ref30 B Liu (ref93) 2017; 38 JA Perea (ref62) 2015; 15 D Pachauri (ref58) 2011; 30 Q Zheng (ref17) 2012; 28 D Cohen-Steiner (ref38) 2007; 37 G Hinton (ref4) 2012; 29 R Ghrist (ref54) 2008; 45 J Schmidhuber (ref5) 2015; 61 Z Chen (ref18) 2010; 229 VD Silva (ref65) 2005 Z Chen (ref19) 2011; 63 I Fujishiro (ref86) 2000; 20 KL Xia (ref91) 2015; 31 DD Nguyen (ref21) 2017; 38 ONA Demerdash (ref33) 2009; 5 G Carlsson (ref43) 2009; 42 Y Dabaghian (ref78) 2012; 8 A Krizhevsky (ref1) 2012 Z Cang (ref94) 2017; 13 X Feng (ref22) 2012; 28 ref13 ref12 S Biasotti (ref83) 2008; 40 H Edelsbrunner (ref117) 2010; xii JA Perea (ref79) 2015; 16 ref126 ref11 G Carlsson (ref46) 2010; 10 N Huang (ref107) 2006; 49 ref10 ref125 PW Bates (ref16) 2009; 59 D Cohen-Steiner (ref39) 2009; 9 KL Xia (ref26) 2014; 30 B DasGupta (ref34) 2016 K Mischaikow (ref63) 1999; 82 G Singh (ref59) 2008; 8 KL Xia (ref89) 2015; 22 M Gameiro (ref77) 2014; 32 K Tian (ref124) 2015; 10 P Niyogi (ref69) 2011; 40 C Heitsch (ref32) 2014; Chapter 7 X Shi (ref35) 2011; 50 H Edelsbrunner (ref36) 2002; 28 A Lusci (ref9) 2013; 53 B Krishnamoorthy (ref80) 2007 X Feng (ref75) 2013; 19 Y LeCun (ref3) 2015; 521 KL Xia (ref119) 2015; 36 TB Hughes (ref7) 2015; 1 H Lee (ref66) 2012; 31 B Wang (ref70) 2011; 17 B Di Fabio (ref73) 2011; 11 GM Morris (ref112) 2009; 30 B Rieck (ref71) 2012; 18 T Cheng (ref102) 2009; 49 IK Darcy (ref31) 2013; 41 PM Kasson (ref76) 2007; 23 JJ Irwin (ref109) 2005; 45 X Feng (ref23) 2013; 34 MS Armstrong (ref110) 2010; 24 KL Xia (ref90) 2015; 143 ref2 Y Yao (ref81) 2009; 130 K Mischaikow (ref49) 2013; 50 B Wang (ref101) 2017; 136 G Carlsson (ref96) 2014; 23 O Trott (ref113) 2010; 31 Z Liu (ref99) 2015; 31 T Schlick (ref28) 1992; 257 P Frosini (ref61) 2013; 34 H Li (ref104) 2015; 34 M Arciniega (ref100) 2014; 54 Z Xiang (ref111) 2001; 311 F Pedregosa (ref114) 2011; 12 P Bendich (ref37) 2011; 11 G Carlsson (ref68) 2009; 46 D Cohen-Steiner (ref95) 2010; 10 MA Miteva (ref120) 2010; 38 G Carlsson (ref53) 2005; 11 HM Berman (ref103) 2000; 28 X Liu (ref72) 2012; 14 P Bendich (ref60) 2010; 16 ref122 G Carlsson (ref57) 2008; 76 PT Bremer (ref85) 2014 |
References_xml | – volume: 137 issue: 084101 year: 2012 ident: ref20 article-title: Variational approach for nonpolar solvation analysis publication-title: Journal of Chemical Physics – volume: 13 start-page: 1 issue: 7 year: 2017 ident: ref94 article-title: TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005690 – volume: 24 start-page: 789 issue: 9 year: 2010 ident: ref110 article-title: ElectroShape: fast molecular similarity calculations incorporating shape, chirality and electrostatics publication-title: Journal of computer-aided molecular design doi: 10.1007/s10822-010-9374-0 – start-page: 431 year: 2007 ident: ref80 article-title: Data Mining in Biomedicine, Springer Optimization and Its Applications – volume: 28 start-page: 291 year: 2012 ident: ref17 article-title: Molecular surface generation using PDE transform publication-title: International Journal for Numerical Methods in Biomedical Engineering – year: 2016 ident: ref34 article-title: Models and Algorithms for Biomolecules and Molecular Networks doi: 10.1002/9781119162254 – volume: 275 start-page: 912 year: 2014 ident: ref24 article-title: Multiscale geometric modeling of macromolecules I: Cartesian representation publication-title: Journal of Computational Physics – volume: 31 start-page: e02719 year: 2015 ident: ref91 article-title: Persistent topology for cryo-EM data analysis publication-title: International Journal for Numerical Methods in Biomedical Engineering – year: 2014 ident: ref85 article-title: Mathematics and Visualization – ident: ref122 doi: 10.1145/1064092.1064133 – start-page: e2914 year: 2017 ident: ref27 article-title: Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction publication-title: International Journal for Numerical Methods in Biomedical Engineering doi: 10.1002/cnm.2914 – volume: 36 start-page: 408 year: 2015 ident: ref87 article-title: Persistent Homology for the quantitative prediction of fullerene stability publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.23816 – volume: 28 start-page: 1198 year: 2012 ident: ref22 article-title: Geometric modeling of subcellular structures, organelles and large multiprotein complexes publication-title: International Journal for Numerical Methods in Biomedical Engineering doi: 10.1002/cnm.2532 – volume: 17 start-page: 1902 year: 2011 ident: ref70 article-title: Branching and Circular Features in High Dimensional Data publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2011.177 – volume: 38 start-page: 24 year: 2017 ident: ref21 article-title: The impact of surface area, volume, curvature and Lennard-Jones potential to solvation modeling publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.24512 – volume: 49 start-page: 1079 year: 2009 ident: ref102 article-title: Comparative Assessment of Scoring Functions on a Diverse Test Set publication-title: J Chem Inf Model doi: 10.1021/ci9000053 – volume: vol. 33 year: 2001 ident: ref123 article-title: A course in metric geometry – ident: ref6 – volume: 34 start-page: 1850 issue: 21 year: 2013 ident: ref25 article-title: Accuracy and tractability of a Kriging model of intramolecular polarizable multipolar electrostatics and its application to histidine publication-title: Journal of computational chemistry doi: 10.1002/jcc.23333 – volume: 46 start-page: 255 issue: 2 year: 2009 ident: ref68 article-title: Topology and data publication-title: Am Math Soc doi: 10.1090/S0273-0979-09-01249-X – volume: 30 start-page: 1760 issue: 10 year: 2011 ident: ref58 article-title: Topology-Based Kernels With Application to Inference Problems in Alzheimer’s Disease publication-title: Medical Imaging, IEEE Transactions on doi: 10.1109/TMI.2011.2147327 – volume: 34 start-page: 2100 year: 2013 ident: ref23 article-title: Multiscale geometric modeling of macromolecules II: Lagrangian representation publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.23364 – volume: 31 start-page: 2267 issue: 12 year: 2012 ident: ref66 article-title: Persistent Brain Network Homology From the Perspective of Dendrogram publication-title: Medical Imaging, IEEE Transactions on doi: 10.1109/TMI.2012.2219590 – volume: 143 start-page: 134103 year: 2015 ident: ref90 article-title: Multiresolution persistent homology for excessively large biomolecular datasets publication-title: Journal of Chemical Physics doi: 10.1063/1.4931733 – ident: ref50 – volume: 28 start-page: 511 year: 2002 ident: ref36 article-title: Topological persistence and simplification publication-title: Discrete Comput Geom doi: 10.1007/s00454-002-2885-2 – volume: 22 start-page: 1 year: 2015 ident: ref89 article-title: Multiresolution topological simplification publication-title: Journal of Computational Biology – volume: 23 start-page: 289 year: 2014 ident: ref96 article-title: Topological pattern recognition for point cloud data publication-title: Acta Numerica doi: 10.1017/S0962492914000051 – ident: ref42 doi: 10.1145/1998196.1998212 – volume: 59 start-page: 193 year: 2009 ident: ref16 article-title: Geometric and potential driving formation and evolution of biomolecular surfaces publication-title: J Math Biol doi: 10.1007/s00285-008-0226-7 – start-page: 730 year: 2009 ident: ref56 article-title: Algorithms and computation – volume: 18 start-page: 2382 year: 2012 ident: ref71 article-title: Multivariate Data Analysis Using Persistence-Based Filtering and Topological Signatures publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2012.248 – ident: ref12 – volume: 136 start-page: 55 year: 2017 ident: ref101 article-title: Feature functional theory—binding predictor (FFT-BP) for the blind prediction of binding free energies publication-title: Theoretical Chemistry Accounts doi: 10.1007/s00214-017-2083-1 – volume: 11 start-page: 149 issue: 2 year: 2005 ident: ref53 article-title: Persistence Barcodes for Shapes publication-title: International Journal of Shape Modeling doi: 10.1142/S0218654305000761 – volume: 2009 start-page: P03034 issue: 03 year: 2009 ident: ref67 article-title: Persistent homology of complex networks publication-title: Journal of Statistical Mechanics: Theory and Experiment doi: 10.1088/1742-5468/2009/03/P03034 – volume: 8 start-page: e1002581 issue: 8 year: 2012 ident: ref78 article-title: A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002581 – volume: 15 start-page: 799 year: 2015 ident: ref62 article-title: Sliding windows and persistence: An application of topological methods to signal analysis publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-014-9206-z – volume: 53 start-page: 1563 issue: 7 year: 2013 ident: ref9 article-title: Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules publication-title: Journal of chemical information and modeling doi: 10.1021/ci400187y – volume: 30 start-page: 2785 issue: 16 year: 2009 ident: ref112 article-title: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility publication-title: Journal of computational chemistry doi: 10.1002/jcc.21256 – volume: 30 start-page: 814 year: 2014 ident: ref26 article-title: Persistent homology analysis of protein structure, flexibility and folding publication-title: International Journal for Numerical Methods in Biomedical Engineering doi: 10.1002/cnm.2655 – volume: 31 start-page: 405 issue: 3 year: 2015 ident: ref99 article-title: PDB-wide collection of binding data: current status of the PDBbind database publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu626 – volume: Chapter 7 start-page: 145 year: 2014 ident: ref32 article-title: Discrete and Topological Models in Molecular Biology – volume: 40 start-page: 646 year: 2011 ident: ref69 article-title: A Topological View of Unsupervised Learning from Noisy data publication-title: SIAM Journal on Computing doi: 10.1137/090762932 – volume: 61 start-page: 85 year: 2015 ident: ref5 article-title: Deep learning in neural networks: An overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 45 start-page: 737 year: 2011 ident: ref45 article-title: Persistent cohomology and circular coordinates publication-title: Discrete and Comput Geom doi: 10.1007/s00454-011-9344-x – volume: 8 issue: 8 year: 2008 ident: ref59 article-title: Topological analysis of population activity in visual cortex publication-title: Journal of Vision doi: 10.1167/8.8.11 – ident: ref30 doi: 10.1090/psapm/045/1196715 – volume: 10 start-page: 367 issue: 4 year: 2010 ident: ref46 article-title: Zigzag persistence publication-title: Foundations of computational mathematics doi: 10.1007/s10208-010-9066-0 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: ref4 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2205597 – volume: 49 start-page: 6789 issue: 23 year: 2006 ident: ref107 article-title: Benchmarking sets for molecular docking publication-title: Journal of medicinal chemistry doi: 10.1021/jm0608356 – volume: 34 start-page: 115 issue: 2-3 year: 2015 ident: ref104 article-title: Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets publication-title: Molecular Informatics doi: 10.1002/minf.201400132 – volume: 56 start-page: 2495 issue: 12 year: 2016 ident: ref98 article-title: Boosting docking-based virtual screening with deep learning publication-title: Journal of chemical information and modeling doi: 10.1021/acs.jcim.6b00355 – volume: 229 start-page: 8231 year: 2010 ident: ref18 article-title: Differential geometry based solvation models I: Eulerian formulation publication-title: J Comput Phys doi: 10.1016/j.jcp.2010.06.036 – ident: ref47 doi: 10.1145/2462356.2462371 – volume: 23 start-page: 1753 issue: 14 year: 2007 ident: ref118 article-title: Persistent voids: a new structural metric for membrane fusion publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm250 – volume: 5 start-page: e1000531 year: 2009 ident: ref33 article-title: Structure-Based Predictive Models for Allosteric Hot Spots publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000531 – volume: 16 start-page: 257 year: 2015 ident: ref79 article-title: SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0645-6 – volume: 9 start-page: 79 issue: 1 year: 2009 ident: ref39 article-title: Extending Persistence Using Poincaré and Lefschetz Duality publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-008-9027-z – volume: 76 start-page: 1 issue: 1 year: 2008 ident: ref57 article-title: On the local behavior of spaces of natural images publication-title: International Journal of Computer Vision doi: 10.1007/s11263-007-0056-x – volume: 10 start-page: 127 issue: 2 year: 2010 ident: ref95 article-title: Lipschitz functions have Lp-stable persistence publication-title: Foundations of computational mathematics doi: 10.1007/s10208-010-9060-6 – ident: ref125 – ident: ref8 – volume: 33 start-page: 249 year: 2005 ident: ref29 article-title: Computing persistent homology publication-title: Discrete Comput Geom doi: 10.1007/s00454-004-1146-y – volume: xii start-page: 241 year: 2010 ident: ref117 article-title: An introduction – volume: 12 start-page: 2825 year: 2011 ident: ref114 article-title: Scikit-learn: Machine Learning in Python publication-title: Journal of Machine Learning Research – ident: ref10 – year: 2004 ident: ref64 article-title: vol. 157 of Applied Mathematical Sciences – volume: 36 start-page: 1502 year: 2015 ident: ref119 article-title: Multidimensional persistence in biomolecular data publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.23953 – volume: 8 start-page: e58699 issue: 4 year: 2013 ident: ref82 article-title: Persistent topology and metastable state in conformational dynamics publication-title: PLos ONE doi: 10.1371/journal.pone.0058699 – start-page: 1097 year: 2012 ident: ref1 article-title: Advances in neural information processing systems – volume: 33 start-page: 3549 year: 2017 ident: ref14 article-title: Analysis and prediction of protein folding energy changes upon mutation by element specific persistent homology publication-title: Bioinformatics – volume: 42 start-page: 71 issue: 1 year: 2009 ident: ref43 article-title: The theory of multidimensional persistence publication-title: Discrete Computational Geometry doi: 10.1007/s00454-009-9176-0 – volume: 63 start-page: 1139 year: 2011 ident: ref19 article-title: Differential geometry based solvation models II: Lagrangian formulation publication-title: J Math Biol doi: 10.1007/s00285-011-0402-z – volume: 11 start-page: 305 issue: 3 year: 2011 ident: ref37 article-title: Persistent Intersection Homology publication-title: Foundations of Computational Mathematics (FOCM) doi: 10.1007/s10208-010-9081-1 – ident: ref126 – volume: 20 start-page: 46 issue: 5 year: 2000 ident: ref86 article-title: Volume Data Mining Using 3D Field Topology Analysis publication-title: IEEE Computer Graphics and Applications doi: 10.1109/38.865879 – volume: 11 start-page: 499 year: 2011 ident: ref73 article-title: A Mayer-Vietoris Formula for Persistent Homology with an Application to Shape Recognition in the Presence of Occlusions publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-011-9100-x – volume: 28 start-page: 35 issue: 1 year: 2000 ident: ref103 article-title: The protein data bank publication-title: Nucleic acids research doi: 10.1093/nar/28.1.235 – volume: 49 start-page: 1455 issue: 6 year: 2009 ident: ref116 article-title: Comparison of several molecular docking programs: pose prediction and virtual screening accuracy publication-title: Journal of chemical information and modeling doi: 10.1021/ci900056c – volume: 37 start-page: 103 issue: 1 year: 2007 ident: ref38 article-title: Stability of Persistence Diagrams publication-title: Discrete & Computational Geometry doi: 10.1007/s00454-006-1276-5 – ident: ref11 – volume: 139 start-page: 194109 year: 2013 ident: ref121 article-title: Multiscale multiphysics and multidomain models—Flexibility and Rigidity publication-title: Journal of Chemical Physics doi: 10.1063/1.4830404 – volume: 50 start-page: 330 issue: 2 year: 2013 ident: ref49 article-title: Morse Theory for Filtrations and Efficient Computation of Persistent Homology publication-title: Discrete and Computational Geometry doi: 10.1007/s00454-013-9529-6 – volume: 311 issue: 2 year: 2001 ident: ref111 article-title: Extending the accuracy limits of prediction for side-chain conformations publication-title: J Mol Biol doi: 10.1006/jmbi.2001.4865 – ident: ref2 – volume: 130 start-page: 144115 year: 2009 ident: ref81 article-title: Topological methods for exploring low-density states in biomolecular folding pathways publication-title: The Journal of Chemical Physics doi: 10.1063/1.3103496 – volume: 38 start-page: 446 year: 2017 ident: ref93 article-title: ESES: software for Eulerian solvent excluded surface publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.24682 – ident: ref52 doi: 10.1137/1.9781611973198.4 – volume: 82 start-page: 1144 year: 1999 ident: ref63 article-title: Construction of symbolic dynamics from experimental time series publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.82.1144 – volume: 53 start-page: 1726 issue: 7 year: 2013 ident: ref97 article-title: Comparing neural-network scoring functions and the state of the art: applications to common library screening publication-title: Journal of chemical information and modeling doi: 10.1021/ci400042y – volume: 31 start-page: 455 issue: 2 year: 2010 ident: ref113 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J Computat Chem doi: 10.1002/jcc.21334 – volume: 10 start-page: e0136577 issue: 9 year: 2015 ident: ref124 article-title: Two dimensional Yau-Hausdorff distance with applications on comparison of DNA and protein sequences publication-title: PloS one doi: 10.1371/journal.pone.0136577 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: ref3 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 50 start-page: 1561 issue: 9 year: 2010 ident: ref108 article-title: Rapid context-dependent ligand desolvation in molecular docking publication-title: Journal of chemical information and modeling doi: 10.1021/ci100214a – volume: 19 start-page: 1298 issue: 8 year: 2013 ident: ref75 article-title: Choking Loops on Surfaces publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2013.9 – ident: ref40 doi: 10.1137/1.9781611973068.110 – volume: 57 start-page: 1715 year: 2017 ident: ref106 article-title: Rigidity strengthening: A mechanism for protein-ligand binding publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.7b00226 – volume: 36 start-page: 553 issue: 4 year: 2006 ident: ref74 article-title: Extreme Elevation on a 2-Manifold publication-title: Discrete and Computational Geometry (DCG) doi: 10.1007/s00454-006-1265-8 – volume: 38 start-page: W622 issue: suppl 2 year: 2010 ident: ref120 article-title: Frog2: Efficient 3D conformation ensemble generator for small compounds publication-title: Nucleic acids research doi: 10.1093/nar/gkq325 – year: 2015 ident: ref84 article-title: Mathematics and Visualization – volume: 50 start-page: 1 year: 2011 ident: ref35 article-title: Geometry and topology for modeling biomolecular surfaces publication-title: Far East J Applied Math – volume: 32 start-page: 1 year: 2014 ident: ref77 article-title: Topological measurement of protein compressibility via persistence diagrams publication-title: Japan Journal of Industrial and Applied Mathematics doi: 10.1007/s13160-014-0153-5 – ident: ref41 doi: 10.1145/1542362.1542407 – ident: ref51 – volume: 14 start-page: 221 year: 2012 ident: ref72 article-title: A fast algorithm for constructing topological structure in large data publication-title: Homology, Homotopy and Applications doi: 10.4310/HHA.2012.v14.n1.a11 – volume: 305 start-page: 276 year: 2016 ident: ref88 article-title: Object-oriented Persistent Homology publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2015.10.036 – volume: 257 start-page: 1110 issue: 5073 year: 1992 ident: ref28 article-title: Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA publication-title: Science doi: 10.1126/science.257.5073.1110 – year: 2010 ident: ref55 article-title: Computational topology: an introduction – volume: 16 start-page: 1251 year: 2010 ident: ref60 article-title: Computing Robustness and Persistence for Images publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2010.139 – volume: 54 start-page: 1401 issue: 5 year: 2014 ident: ref100 article-title: Improvement of virtual screening results by docking data feature analysis publication-title: Journal of chemical information and modeling doi: 10.1021/ci500028u – volume: 20 start-page: 10947 year: 2015 ident: ref105 article-title: Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest publication-title: Molecules doi: 10.3390/molecules200610947 – volume: 1 start-page: 168 issue: 4 year: 2015 ident: ref7 article-title: Modeling epoxidation of drug-like molecules with a deep machine learning network publication-title: ACS Central Science doi: 10.1021/acscentsci.5b00131 – ident: ref44 doi: 10.1145/1542362.1542408 – volume: 3 start-page: 140 year: 2015 ident: ref92 article-title: A topological approach for protein classification publication-title: Molecular based Mathematical Biology – volume: 26 start-page: 675 issue: 6 year: 2012 ident: ref115 article-title: Docking and scoring with ICM: the benchmarking results and strategies for improvement publication-title: Journal of computer-aided molecular design doi: 10.1007/s10822-012-9547-0 – ident: ref13 doi: 10.1039/C7SC02664A – volume: 34 start-page: 863 year: 2013 ident: ref61 article-title: Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2012.10.015 – volume: 45 start-page: 177 issue: 1 year: 2005 ident: ref109 article-title: ZINC- a free database of commercially available compounds for virtual screening publication-title: Journal of chemical information and modeling doi: 10.1021/ci049714+ – volume: 23 start-page: 1753 year: 2007 ident: ref76 article-title: Persistent voids a new structural metric for membrane fusion publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm250 – start-page: 01 year: 2005 ident: ref65 article-title: In Proceedings of Robotics: Science and Systems – ident: ref48 doi: 10.1145/2582112.2582165 – volume: 41 start-page: 601 year: 2013 ident: ref31 article-title: Determining the topology of stable protein-DNA complexes publication-title: Biochemical Society Transactions doi: 10.1042/BST20130004 – volume: 29 start-page: 380 issue: 3 year: 2008 ident: ref15 article-title: Minimal molecular surfaces and their applications publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.20796 – volume: 40 start-page: 12 issue: 4 year: 2008 ident: ref83 article-title: Describing Shapes by Geometrical-Topological Properties of Real Functions publication-title: ACM Computing Surveys doi: 10.1145/1391729.1391731 – volume: 45 start-page: 61 year: 2008 ident: ref54 article-title: Barcodes: The persistent topology of data publication-title: Bull Amer Math Soc doi: 10.1090/S0273-0979-07-01191-3 |
SSID | ssj0035896 |
Score | 2.6029172 |
Snippet | This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and... |
SourceID | plos doaj pubmedcentral osti proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1005929 |
SubjectTerms | Accuracy Algebra Algorithms Area Under Curve Artificial intelligence Artificial neural networks Binding Biochemistry & Molecular Biology Bioinformatics Biological research Biology Biology and Life Sciences Biomolecules Computational biology Computational Biology - methods Computational chemistry Computer and Information Sciences Coordination compounds Databases, Protein Datasets Electrostatic properties Electrostatics Funding Homology Humans Induction algorithms Learning algorithms Ligands Machine Learning Mathematical & Computational Biology Mathematics Methods Models, Neurological Molecular Dynamics Simulation Molecular interactions Neural networks Neural Networks, Computer Nucleic Acids - chemistry Physical Sciences Physics Predictions Protein Binding Protein Interaction Mapping Proteins Proteins - chemistry Research and Analysis Methods Screening Static Electricity Topology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEJSPhrbIICROoXHij_hYEFVBoodCpb1ZtuOUldqkarJI---ZcbKhQUW9cNiLM7srj8fjcfz8HiHvtAzSagmbHCd8yiH_pVqHPA24A3LwyR2-h_x2Kk_O-delWN6S-kJM2EAPPDjuUHtlMxmCLksNxYUvC-egRLFcWut04TH7wpq33UwNObgQZVTmQlGcVBV8OV6aKxQ7HMfow7V3K8QICB3Lyz-LUuTunzL0ooWphsynl213VxX6N5jy1up0_IQ8HstKejR05yl5EJod8nAQmtw8I-1ZBLwiTjyCYTe0rSkqfMBeeeVpPyglbChUsBQv5A-auaGjq4ZeRbhloKO-xAXFha-inY_QPWqbiv5a3eA1FGhDFA-0Pifnx59_fDpJR6mF1Ktc9mnQwuW1zhm3shLWwkquvOB1UJkNIiiJx2tOCVZDPso8zmKmPK-YVL5mrCpekEXTNmGXUM55jr_ii8zyzElbo4idlEgLFDxjCSm2vjZ-5CFHOYxLEw_XFOxHBp8ZHCEzjlBC0ulb1wMPxz32H3EYJ1tk0Y4NEFtmjC1zX2wl5C0GgUGejAaBOBd23XXmy_dTcyRg34jaXuU_jc5mRu9Ho7qFzno7Xn4AlyH_1sxyDyPOQAGELL4e4U6-N0zmKhdFQnYxELdd7lBFNJfxPnNC9rfBeffjN9NjyCB4LGSb0K47g6g5qKMLxhPycojlyW1QDCLBIvyvmkX5zK_zJ83qZ2QpFwppauWr_zEQe-QRFKplfPVV7pNFf7MOB1AM9u51nPe_AYTWW9U priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLagCAkOCMaPZRvIICROYXXiH_EJDcQ0kLbDYFJvluM4XaWRlKad1P-e9xw3o2jAoRf7tU3sZ_s9-_P3EfJWSy-tlpDklMKlHOa_VGufpR4zoBI-WYn7kKdn8uSCf52ISdxw6yKscjMnhom6ah3ukR8imECGi5sf5j9TVI3C09UooXGX3EPqMoR0qcmQcOWiCPpcKI2TqpxP4tW5XLHD2FPv566cIVJA6BBk3ixNgcF_mKdHLQw45D-9arvbYtE_IZW_rVHHj8mjGFzSo94bnpA7vtkh93u5yfUOeXg6cLR2UB7An657StrzAIdFFHmAyq5pW1PU_4BMeubostdRWFOIbyle1-8VdX1HZw39EcCYnkb1iSnFZbGinQvAPmqbil7PFnhJBcoQ4wOlz8jF8efvn07SKMSQOpXJZeq1KLNaZ4xbWQlrYZ1XTvDaq7H1wiuJh2-lEqyG2WrscIwz5XjFpHI1Y1X-nIyatvG7hHLOM_wVl48tH5fS1ihxJyWSBnnHWELyTR8YF1nKUSzjyoSjNwXZSt-WBnvOxJ5LSDp8a96zdPzH_iN272CLHNuhoF1MTRyyRjtlx9J7XRQawlpX5GUJwbHl0tpS5y4hb9A5DLJoNAjTmdpV15kv387MkYCsEpW_ir8anW8ZvYtGdQsv62y8GgFNhuxcW5b76IkGwiPk-HUIhnJLw2SmMpEnZBcddPPKnbkZNAk52Djt7dWvh2qYX_DQyDa-XXUGMXUQZeeMJ-RF7-NDs0GoiPSL8L9qy_u32nW7ppldBg5zoZDEVu79-7H2yQMIUIuw5VUckNFysfIvIQhclq_CSP8FusdapQ priority: 102 providerName: ProQuest |
Title | Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29309403 https://www.proquest.com/docview/2002622278 https://www.proquest.com/docview/1989545314 https://www.osti.gov/servlets/purl/1627253 https://pubmed.ncbi.nlm.nih.gov/PMC5774846 https://doaj.org/article/9c7a06ee9889405c83bb533a46aab93c http://dx.doi.org/10.1371/journal.pcbi.1005929 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8IL4XNiqDkHjK1CT-SB4QamFlIK1ChUp9sxzHKZVKMpoW0f-eOyeNCOoED20l-5LK5zvfnX2-HyGvEmGFTgQEOSk3PoP1z08SG_oWI6AUPmGK-5DXE3E1Y5_mfH5E9pitDQOrg6Ed4knN1quLXz92b0Hh3zjUBhnsH7q4MekST_05mPxjcgK2SaKqXrP2XCHisUPsQrAcX0Zs3lymu-0tHWPlavq3K3evBBXEiqirsjrknf6dZPmH1RrfJ_cad5MOa_l4QI5s8ZDcqQEod49IOXWJsJg_7pJkd7TMKSJ_QAy9NHRTIyjsKHi2FC_q11i6tqLLgn53aZiWNrgTC4oGMaOVcSl9VBcZ_blc4_UUaMPsHmh9TGbjy6_vrvwGgsE3MhQb3yY8DfMkDJgWGdcaLLw0nOVWDrTlVgo8dkslD3JYpwYGtTuQhmWBkCYPgix6QnpFWdhTQhljIb7FRAPNBqnQOYLbCYHlgqwJAo9Ee14r09QnR5iMlXKHbhLilJpnCmdINTPkEb996qauz_EP-hFOY0uL1bVdQ7leqEZZVWKkHghrkzhOwKE1cZSm4BZrJrROk8h45CUKgcL6GQUm6Cz0tqrUxy8TNeQQTyLmV3wr0bRD9LohyksYrNHNpQhgGdbl6lCeocQpcIywuq_BNCizUYEIZcgjj5yiIO6HXCG6aCjcPWePnO-F83D3i7YbVhY8LtKFLbeVwmw68K-jgHnkaS3LLdvAScTCi_C_siPlHb52e4rlN1e9nEssXyue_ffIz8hd8FJjt-8Vn5PeZr21z8ET3KR9ciznEr7j8Yc-ORmO3o_G8Du6nHye9t3uSt-p_2-PF2Lj |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEQIeEIzLwgYYBOIpLBdfkgeExmVa2dqHsUl9M47jlEojKU0L6p_iN3KOk2YUDXjaQ1_s07Sxj-1z7M_fR8jzVFihUwFJTsaNz2D-89PURr7FDCiDT5ThPuRgKA5O2ccRH22Qn6u7MAirXM2JbqLOK4N75LsIJhDu4uab6TcfVaPwdHUlodG4xaFd_oCUrX7dfw_9-yKK9j-cvDvwW1UB38hIzH2b8iwq0ihkWuRca1i0pOGssDLQllsp8CQpkzwsYOgFBh02lIbloZCmCMM8hudeIVdh4Q1wRMlRl-DFPHF6YCjF48uYjdqrerEMd1vPeDU12QSRCTx1Qe35UugUA7p1oVfBAEe-1bOqvij2_RPC-duauH-b3GqDWbrXeN8dsmHLTXKtkbdcbpKbg44TtoZyBzY19V1SHTv4LaLWHTR3SauCot4IZO4TQ-eNbsOSQjxNkR6gUfC1NZ2U9KsDf1raql2MKS7DOa2NAxJSXeb0-2SGl2KgDDFFUHqPnF5KF90nvbIq7RahjLEIn2LiQLMgE7pAST0hkKTImjD0SLzqA2VaVnQU5zhT7qhPQnbUtKXCnlNtz3nE7741bVhB_mP_Fru3s0VOb1dQzcaqnSJUaqQOhLVpkqQQRpskzjIIxjUTWmdpbDzyDJ1DIWtHibCgsV7Utep_Gqo9DlksKo0lfzU6XjN62RoVFbys0e1VDGgyZANbs9xGT1QQjiGnsEHwlZmrUEQy4rFHttBBV69cq_NB6pGdldNeXP20q4b5DA-pdGmrRa0QwwdRfRwyjzxofLxrNghNke4Rfleuef9au67XlJMvjjOdSyTNFQ___beekOsHJ4MjddQfHm6TGxAcJ267LdkhvflsYR9BADrPHrtRT8nny55mfgHJgJYs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEQgeEIzLwgYYBOIptEl8SR4QGoxqZaxCg0l9M47jlEojKUsL6l_j13GOcxlFA5720BfbTRv7-Pgc-_P3EfI0EVboRECSk3LjM_B_fpLY0LeYAaXwCVPchzwci_1j9m7CJxvkZ3sXBmGVrU90jjorDe6R9xFMINzFzX7ewCI-7A1fzb_5qCCFJ62tnEZtIgd29QPSt-rlaA_G-lkYDt9-erPvNwoDvpGhWPg24WmYJ2HAtMi41rCAScNZbuVAW26lwFOlVPIgh2k4MGi8gTQsC4Q0eRBkETz3ErksIx7gHJOTLtmLeOy0wVCWx5cRmzTX9iIZ9BsreTE36QxRCjxxAe7ZsujUA7o1olfCZEfu1ZOyOi8O_hPO-dv6OLxJbjSBLd2tLfEW2bDFJrlSS12uNsn1w44ftoJyBzw11W1SHjkoLiLYHUx3RcucovYIZPEzQxe1hsOKQmxNkSqgVvO1FZ0V9KsDglraKF9MKS7JGa2MAxVSXWT0--wUL8hAGeKLoPQOOb6QIbpLekVZ2C1CGWMhPsVEA80GqdA5yusJgYRF1gSBR6J2DJRpGNJRqONEuWM_CZlS3ZcKR041I-cRv_vWvGYI-U_71zi8XVvk93YF5elUNe5CJUbqgbA2ieMEQmoTR2kKgblmQus0iYxHnqBxKGTwKHAuTPWyqtTo41jtcshoUXUs_mujo7VGz5tGeQkva3RzLQO6DJnB1lpuoyUqCM2QX9ggEMssVCBCGfLII1tooO0rV-pswnpkpzXa86sfd9Xg2_DAShe2XFYK8XwQ4UcB88i92sa7boMwFakf4XflmvWv9et6TTH74vjTuUQCXXH_33_rEbkKDka9H40Ptsk1iJNjt_MW75De4nRpH0AsukgfuklPyeeL9jK_APkEmmI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representability+of+algebraic+topology+for+biomolecules+in+machine+learning+based+scoring+and+virtual+screening&rft.jtitle=PLoS+computational+biology&rft.au=Cang%2C+Zixuan&rft.au=Mu%2C+Lin&rft.au=Wei%2C+Guo-Wei&rft.date=2018-01-08&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pcbi.1005929&rft.externalDocID=A525917288 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |