Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening

This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the co...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 14; no. 1; p. e1005929
Main Authors Cang, Zixuan, Mu, Lin, Wei, Guo-Wei
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.01.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination.
AbstractList This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination.
This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination. Conventional persistent homology neglects chemical and biological information during the topological abstraction and thus has limited representational power for complex chemical and biological systems. In terms of methodological development, we introduce advanced persistent homology approaches for the characterization of small molecular structures which can capture subtle structural difference. We also introduce electrostatic persistent homology to embed physics in topological invariants. These approaches encipher physics, chemistry and biology, such as hydrogen bonds, electrostatics, van der Waals interactions, hydrophobicity and hydrophilicity, into topological fingerprints which, although cannot literally recast into physical interpretations, are ideally suitable for machine learning, particularly deep learning, rendering topological learning algorithms. In terms of applications, we construct a structure-based virtual screening model which outperforms other existing methods. This competitive model on the DUD database is derived by assessing the performance of a comprehensive collection of topological approaches proposed in this work and introduced in our earlier work, on the PDBBind database. The topological features constructed in this work can readily be applied to other biomolecular problems where the characterization of proteins or small molecules is needed.
This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination.This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination.
Audience Academic
Author Cang, Zixuan
Wei, Guo-Wei
Mu, Lin
AuthorAffiliation 4 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
1 Department of Mathematics, Michigan State University, East Lansing, Michigan, United States of America
3 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
University of Illinois at Urbana-Champaign, UNITED STATES
2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
AuthorAffiliation_xml – name: 2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
– name: 4 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
– name: 1 Department of Mathematics, Michigan State University, East Lansing, Michigan, United States of America
– name: University of Illinois at Urbana-Champaign, UNITED STATES
– name: 3 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
Author_xml – sequence: 1
  givenname: Zixuan
  orcidid: 0000-0002-9951-5586
  surname: Cang
  fullname: Cang, Zixuan
– sequence: 2
  givenname: Lin
  surname: Mu
  fullname: Mu, Lin
– sequence: 3
  givenname: Guo-Wei
  orcidid: 0000-0001-8132-5998
  surname: Wei
  fullname: Wei, Guo-Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29309403$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1627253$$D View this record in Osti.gov
BookMark eNqVk1tv1DAQhSNURNuFf4Agghd42MWXOI55QKoqLpUqkAo8WxNnknXltbd2UtF_j5fdVt0KIaE8xJ5850x8kjkuDnzwWBTPKVlQLum7yzBFD26xNq1dUEKEYupRcUSF4HPJRXNwb31YHKd0SUheqvpJccgUJ6oi_KgIF7iOmNCP0Fpnx5sy9CW4AdsI1pRjWAcXhpuyD7FsbVgFh2ZymErryxWYpfVYOoTorR_KFhJ2ZTIhbnbgu_LaxnECl2sRccM8LR734BI-291nxc9PH3-cfpmff_t8dnpyPjeS1eMclWhZrxitoO4EAGFcGlH1KAmgQFlXomGtFLSXNSeGSlVRaaqO1tL0lHZ8Vrzc-q5dSHqXVdKMEFYzxmSTibMt0QW41OtoVxBvdACr_xRCHDTE0RqHWhkJpEZUTZNTE6bhbSs4h6oGaBU32evDrtvUrrAzOc4Ibs90_4m3Sz2Eay2krJqqzgavtgYhjVYnY0c0SxO8RzNqWjPJcr9Z8WbXJYarCdOoVzYZdA48hilpqholKsFpldHXD9C_R7DYUgPkU1rfh_xyJl8drmzujr3N9RPBhKKSNRvB2z1BZkb8NQ4wpaTPvl_8B_t1n31xP7-74G7_0wxUW8DEkFLE_g6hRG_G4fZ8ejMOejcOWfb-gSwnC6MNm69g3b_FvwHdvBJ7
CitedBy_id crossref_primary_10_1039_D3CP03651K
crossref_primary_10_1021_acs_jcim_3c00251
crossref_primary_10_1021_acsomega_3c05931
crossref_primary_10_1016_j_memsci_2024_122927
crossref_primary_10_1021_acs_jcim_3c00253
crossref_primary_10_1111_cgf_15142
crossref_primary_10_1002_wcms_1429
crossref_primary_10_1109_TNB_2023_3274640
crossref_primary_10_1021_acs_jcim_0c00411
crossref_primary_10_1039_D0CP00305K
crossref_primary_10_1021_acsomega_3c00085
crossref_primary_10_1093_bib_bbab527
crossref_primary_10_2139_ssrn_3275996
crossref_primary_10_1080_17460441_2020_1758664
crossref_primary_10_1021_acsomega_0c06078
crossref_primary_10_1093_bib_bbab127
crossref_primary_10_1038_s42003_022_03416_7
crossref_primary_10_1098_rspa_2019_0662
crossref_primary_10_1007_s10822_019_00275_z
crossref_primary_10_1007_s41468_023_00135_8
crossref_primary_10_1021_acs_jcim_2c01251
crossref_primary_10_1073_pnas_2408431121
crossref_primary_10_1515_cmb_2020_0001
crossref_primary_10_1021_acs_jcim_1c00511
crossref_primary_10_1007_s10462_024_10710_9
crossref_primary_10_1016_j_cbpa_2018_06_006
crossref_primary_10_1155_2018_7329576
crossref_primary_10_1039_C9CP06554G
crossref_primary_10_1093_bib_bbad145
crossref_primary_10_1126_sciadv_abc5329
crossref_primary_10_1371_journal_pone_0237747
crossref_primary_10_1021_acs_jcim_2c01149
crossref_primary_10_1186_s13321_019_0369_0
crossref_primary_10_1021_acs_jcim_2c00697
crossref_primary_10_1371_journal_pcbi_1009943
crossref_primary_10_1002_minf_202100245
crossref_primary_10_1038_s42256_020_0149_6
crossref_primary_10_47743_jpd_2023_30_1_930
crossref_primary_10_1007_s12539_019_00327_w
crossref_primary_10_1186_s13321_021_00536_w
crossref_primary_10_1021_acs_jcim_2c00060
crossref_primary_10_1016_j_compbiolchem_2019_01_014
crossref_primary_10_1039_D0SC04641H
crossref_primary_10_1080_17460441_2025_2477625
crossref_primary_10_1021_acs_jcim_3c01961
crossref_primary_10_1021_acs_jcim_3c01841
crossref_primary_10_1038_s42256_024_00855_1
crossref_primary_10_1080_17460441_2021_1929921
crossref_primary_10_3389_fbinf_2022_885983
crossref_primary_10_1021_acsomega_2c02822
crossref_primary_10_1063_1674_0068_cjcp2109150
crossref_primary_10_1002_wcms_1567
crossref_primary_10_1146_annurev_biophys_062920_063711
crossref_primary_10_1515_mr_2023_0030
crossref_primary_10_1021_acs_jcim_2c00580
crossref_primary_10_1007_s10822_019_00237_5
crossref_primary_10_1016_j_matcom_2021_01_013
crossref_primary_10_1137_19M1272226
crossref_primary_10_1038_s41598_023_37853_z
crossref_primary_10_1007_s10489_022_04333_2
crossref_primary_10_1016_j_trechm_2020_04_009
crossref_primary_10_3390_math11081817
crossref_primary_10_1021_acs_jcim_9b00801
crossref_primary_10_1016_j_drudis_2022_103373
crossref_primary_10_1093_bib_bbad046
crossref_primary_10_1093_bib_bbac231
crossref_primary_10_1002_jcc_25213
crossref_primary_10_1093_bib_bbac626
crossref_primary_10_1021_acs_jcim_7b00558
crossref_primary_10_1021_acsomega_1c04996
crossref_primary_10_1093_bib_bbab136
crossref_primary_10_1007_s13042_023_01894_7
crossref_primary_10_1038_s43246_024_00545_w
crossref_primary_10_3389_fphar_2020_00069
crossref_primary_10_3390_ijms252312676
crossref_primary_10_1002_dvdy_175
crossref_primary_10_1177_11779322211030364
crossref_primary_10_1093_bib_bbae201
crossref_primary_10_1016_j_cplett_2023_140547
crossref_primary_10_1038_s41598_019_55660_3
crossref_primary_10_1007_s41468_020_00057_9
crossref_primary_10_1007_s11030_024_11044_y
crossref_primary_10_1021_acs_jcim_2c00916
crossref_primary_10_1007_s10114_022_2326_5
crossref_primary_10_1038_s41524_022_00883_8
crossref_primary_10_1093_bib_bbac024
crossref_primary_10_1021_acs_jcim_4c01116
crossref_primary_10_3934_math_20241333
crossref_primary_10_1002_wcms_1465
crossref_primary_10_1186_s13321_021_00507_1
crossref_primary_10_1021_acs_jcim_4c01907
crossref_primary_10_1016_j_ddtec_2020_09_001
crossref_primary_10_1039_C9CP03009C
crossref_primary_10_1021_acs_jcim_2c00485
crossref_primary_10_1098_rsos_211745
crossref_primary_10_3389_fgene_2019_00090
crossref_primary_10_1016_j_compbiomed_2021_105060
crossref_primary_10_1109_TPAMI_2024_3400515
crossref_primary_10_1093_bib_bbaa070
crossref_primary_10_1142_S2737416523500278
crossref_primary_10_1021_acs_jcim_0c01415
crossref_primary_10_1007_s10822_018_0146_6
crossref_primary_10_1021_acs_jcim_3c00567
crossref_primary_10_1038_s41598_020_66710_6
crossref_primary_10_1021_acs_jcim_4c00552
crossref_primary_10_1021_acs_jcim_4c02332
crossref_primary_10_3389_fphy_2020_00005
crossref_primary_10_1093_bib_bbz173
crossref_primary_10_1007_s10822_018_0180_4
crossref_primary_10_1007_s10822_020_00289_y
crossref_primary_10_3390_ijms20092060
crossref_primary_10_1002_jcc_27499
crossref_primary_10_1038_s41467_025_57536_9
crossref_primary_10_1016_j_compbiomed_2022_106262
crossref_primary_10_1038_s41596_023_00885_w
crossref_primary_10_1021_acs_jcim_9b00334
crossref_primary_10_1021_acs_jcim_3c00391
crossref_primary_10_1080_17460441_2024_2349169
crossref_primary_10_1021_acs_jcim_3c02054
crossref_primary_10_1021_acs_jcim_4c00481
crossref_primary_10_3390_genes11020131
crossref_primary_10_1021_acs_jpca_0c06231
crossref_primary_10_1093_bib_bbae465
crossref_primary_10_1038_s42003_023_04866_3
crossref_primary_10_1021_acs_jcim_9b00977
crossref_primary_10_3934_dcdsb_2020257
crossref_primary_10_1002_minf_202200135
crossref_primary_10_1016_j_physrep_2020_07_005
crossref_primary_10_1093_bib_bbab474
crossref_primary_10_1021_acs_jmedchem_1c01830
crossref_primary_10_1021_acs_jpclett_0c01579
crossref_primary_10_1186_s13321_025_00955_z
crossref_primary_10_1021_acs_jcim_1c01021
crossref_primary_10_1093_bib_bbaa411
crossref_primary_10_1021_acs_jpclett_2c00469
crossref_primary_10_1021_acs_jcim_1c00334
crossref_primary_10_1109_TNNLS_2023_3314928
crossref_primary_10_1007_s10462_022_10146_z
crossref_primary_10_1016_j_bpj_2024_02_008
crossref_primary_10_3934_fods_2022002
crossref_primary_10_1016_j_heliyon_2023_e17575
crossref_primary_10_1038_s41598_022_12877_z
crossref_primary_10_1038_s41559_021_01461_9
crossref_primary_10_1016_j_jmb_2020_07_009
crossref_primary_10_3390_ph18030329
crossref_primary_10_2174_1573409914666181018141602
crossref_primary_10_1021_acs_jcim_2c00705
crossref_primary_10_1021_acs_jcim_4c02033
crossref_primary_10_1093_bioinformatics_btaa982
crossref_primary_10_1002_wcms_1478
crossref_primary_10_1021_acs_jcim_1c01531
crossref_primary_10_3390_ijms22094435
crossref_primary_10_1016_j_str_2024_02_016
crossref_primary_10_1039_C8CP01552J
crossref_primary_10_1371_journal_pone_0284820
crossref_primary_10_1021_acs_jcim_2c01526
crossref_primary_10_1021_acsomega_1c06976
crossref_primary_10_1002_minf_202300292
crossref_primary_10_2139_ssrn_4399415
crossref_primary_10_1021_acs_jcim_4c02309
crossref_primary_10_1021_acsomega_3c04889
crossref_primary_10_3389_fmolb_2022_867241
crossref_primary_10_1093_bioadv_vbad155
crossref_primary_10_1021_acs_chemrev_1c00965
Cites_doi 10.1371/journal.pcbi.1005690
10.1007/s10822-010-9374-0
10.1002/9781119162254
10.1145/1064092.1064133
10.1002/cnm.2914
10.1002/jcc.23816
10.1002/cnm.2532
10.1109/TVCG.2011.177
10.1002/jcc.24512
10.1021/ci9000053
10.1002/jcc.23333
10.1090/S0273-0979-09-01249-X
10.1109/TMI.2011.2147327
10.1002/jcc.23364
10.1109/TMI.2012.2219590
10.1063/1.4931733
10.1007/s00454-002-2885-2
10.1017/S0962492914000051
10.1145/1998196.1998212
10.1007/s00285-008-0226-7
10.1109/TVCG.2012.248
10.1007/s00214-017-2083-1
10.1142/S0218654305000761
10.1088/1742-5468/2009/03/P03034
10.1371/journal.pcbi.1002581
10.1007/s10208-014-9206-z
10.1021/ci400187y
10.1002/jcc.21256
10.1002/cnm.2655
10.1093/bioinformatics/btu626
10.1137/090762932
10.1016/j.neunet.2014.09.003
10.1007/s00454-011-9344-x
10.1167/8.8.11
10.1090/psapm/045/1196715
10.1007/s10208-010-9066-0
10.1109/MSP.2012.2205597
10.1021/jm0608356
10.1002/minf.201400132
10.1021/acs.jcim.6b00355
10.1016/j.jcp.2010.06.036
10.1145/2462356.2462371
10.1093/bioinformatics/btm250
10.1371/journal.pcbi.1000531
10.1186/s12859-015-0645-6
10.1007/s10208-008-9027-z
10.1007/s11263-007-0056-x
10.1007/s10208-010-9060-6
10.1007/s00454-004-1146-y
10.1002/jcc.23953
10.1371/journal.pone.0058699
10.1007/s00454-009-9176-0
10.1007/s00285-011-0402-z
10.1007/s10208-010-9081-1
10.1109/38.865879
10.1007/s10208-011-9100-x
10.1093/nar/28.1.235
10.1021/ci900056c
10.1007/s00454-006-1276-5
10.1063/1.4830404
10.1007/s00454-013-9529-6
10.1006/jmbi.2001.4865
10.1063/1.3103496
10.1002/jcc.24682
10.1137/1.9781611973198.4
10.1103/PhysRevLett.82.1144
10.1021/ci400042y
10.1002/jcc.21334
10.1371/journal.pone.0136577
10.1038/nature14539
10.1021/ci100214a
10.1109/TVCG.2013.9
10.1137/1.9781611973068.110
10.1021/acs.jcim.7b00226
10.1007/s00454-006-1265-8
10.1093/nar/gkq325
10.1007/s13160-014-0153-5
10.1145/1542362.1542407
10.4310/HHA.2012.v14.n1.a11
10.1016/j.jcp.2015.10.036
10.1126/science.257.5073.1110
10.1109/TVCG.2010.139
10.1021/ci500028u
10.3390/molecules200610947
10.1021/acscentsci.5b00131
10.1145/1542362.1542408
10.1007/s10822-012-9547-0
10.1039/C7SC02664A
10.1016/j.patrec.2012.10.015
10.1021/ci049714+
10.1145/2582112.2582165
10.1042/BST20130004
10.1002/jcc.20796
10.1145/1391729.1391731
10.1090/S0273-0979-07-01191-3
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cang Z, Mu L, Wei G-W (2018) Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol 14(1): e1005929. https://doi.org/10.1371/journal.pcbi.1005929
2018 Cang et al 2018 Cang et al
2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cang Z, Mu L, Wei G-W (2018) Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol 14(1): e1005929. https://doi.org/10.1371/journal.pcbi.1005929
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cang Z, Mu L, Wei G-W (2018) Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol 14(1): e1005929. https://doi.org/10.1371/journal.pcbi.1005929
– notice: 2018 Cang et al 2018 Cang et al
– notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cang Z, Mu L, Wei G-W (2018) Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol 14(1): e1005929. https://doi.org/10.1371/journal.pcbi.1005929
CorporateAuthor Oak Ridge National Lab (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – sequence: 0
  name: Oak Ridge National Lab (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1371/journal.pcbi.1005929
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Publicly Available Content Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
Physics
DocumentTitleAlternate Representability of algebraic topology for biomolecules
EISSN 1553-7358
ExternalDocumentID 2002622278
oai_doaj_org_article_9c7a06ee9889405c83bb533a46aab93c
PMC5774846
1627253
A525917288
29309403
10_1371_journal_pcbi_1005929
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
East Lansing Michigan
Michigan
GeographicLocations_xml – name: East Lansing Michigan
– name: Michigan
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: IIS-1302285
– fundername: ;
  grantid: DMS-1721024
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
M~E
OIOZB
OTOTI
PGMZT
5PM
PUEGO
-
AAPBV
ABPTK
ADACO
BBAFP
ID FETCH-LOGICAL-c726t-e95b2f9214a6d5aa0237c54fe70ae5e764582b751f7630c179417c4d167cf11d3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:12:36 EST 2021
Wed Aug 27 01:10:31 EDT 2025
Thu Aug 21 13:51:23 EDT 2025
Thu Dec 05 06:34:58 EST 2024
Fri Jul 11 11:59:06 EDT 2025
Fri Jul 25 10:25:51 EDT 2025
Tue Jun 10 20:34:43 EDT 2025
Fri Jun 27 04:25:47 EDT 2025
Fri Jun 27 03:36:08 EDT 2025
Mon Jul 21 06:04:40 EDT 2025
Tue Jul 01 04:24:12 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c726t-e95b2f9214a6d5aa0237c54fe70ae5e764582b751f7630c179417c4d167cf11d3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Michigan State University (MSU)
USDOE Office of Science (SC)
AC05-00OR22725; IIS-1302285; DMS-1721024
National Science Foundation (NSF)
The authors have declared that no competing interests exist.
ORCID 0000-0001-8132-5998
0000-0002-9951-5586
0000000181325998
0000000299515586
OpenAccessLink https://www.proquest.com/docview/2002622278?pq-origsite=%requestingapplication%
PMID 29309403
PQID 2002622278
PQPubID 1436340
ParticipantIDs plos_journals_2002622278
doaj_primary_oai_doaj_org_article_9c7a06ee9889405c83bb533a46aab93c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5774846
osti_scitechconnect_1627253
proquest_miscellaneous_1989545314
proquest_journals_2002622278
gale_infotracacademiconefile_A525917288
gale_incontextgauss_ISR_A525917288
gale_incontextgauss_ISN_A525917288
pubmed_primary_29309403
crossref_primary_10_1371_journal_pcbi_1005929
crossref_citationtrail_10_1371_journal_pcbi_1005929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180108
PublicationDateYYYYMMDD 2018-01-08
PublicationDate_xml – month: 1
  year: 2018
  text: 20180108
  day: 8
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – sequence: 0
  name: Public Library of Science
– name: Public Library of Science
– name: Public Library of Science (PLoS)
References MM Mysinger (ref108) 2010; 50
ref52
H Li (ref105) 2015; 20
J Bennett (ref84) 2015
H Edelsbrunner (ref55) 2010
ref51
ref50
B Wang (ref88) 2016; 305
Z Chen (ref20) 2012; 137
JB Cross (ref116) 2009; 49
G Carlsson (ref56) 2009
ref48
ref47
ref42
ref41
ref44
D Horak (ref67) 2009; 2009
JD Durrant (ref97) 2013; 53
MA Neves (ref115) 2012; 26
SM Kandathil (ref25) 2013; 34
T Kaczynski (ref64) 2004
Z Cang (ref92) 2015; 3
ref8
KL Xia (ref87) 2015; 36
KL Xia (ref24) 2014; 275
Z Cang (ref27) 2017
ref6
Z Cang (ref14) 2017; 33
PM Kasson (ref118) 2007; 23
D Burago (ref123) 2001; vol. 33
ref40
PW Bates (ref15) 2008; 29
HW Chang (ref82) 2013; 8
V de Silva (ref45) 2011; 45
PK Agarwal (ref74) 2006; 36
KL Xia (ref121) 2013; 139
DD Nguyen (ref106) 2017; 57
JC Pereira (ref98) 2016; 56
A Zomorodian (ref29) 2005; 33
ref30
B Liu (ref93) 2017; 38
JA Perea (ref62) 2015; 15
D Pachauri (ref58) 2011; 30
Q Zheng (ref17) 2012; 28
D Cohen-Steiner (ref38) 2007; 37
G Hinton (ref4) 2012; 29
R Ghrist (ref54) 2008; 45
J Schmidhuber (ref5) 2015; 61
Z Chen (ref18) 2010; 229
VD Silva (ref65) 2005
Z Chen (ref19) 2011; 63
I Fujishiro (ref86) 2000; 20
KL Xia (ref91) 2015; 31
DD Nguyen (ref21) 2017; 38
ONA Demerdash (ref33) 2009; 5
G Carlsson (ref43) 2009; 42
Y Dabaghian (ref78) 2012; 8
A Krizhevsky (ref1) 2012
Z Cang (ref94) 2017; 13
X Feng (ref22) 2012; 28
ref13
ref12
S Biasotti (ref83) 2008; 40
H Edelsbrunner (ref117) 2010; xii
JA Perea (ref79) 2015; 16
ref126
ref11
G Carlsson (ref46) 2010; 10
N Huang (ref107) 2006; 49
ref10
ref125
PW Bates (ref16) 2009; 59
D Cohen-Steiner (ref39) 2009; 9
KL Xia (ref26) 2014; 30
B DasGupta (ref34) 2016
K Mischaikow (ref63) 1999; 82
G Singh (ref59) 2008; 8
KL Xia (ref89) 2015; 22
M Gameiro (ref77) 2014; 32
K Tian (ref124) 2015; 10
P Niyogi (ref69) 2011; 40
C Heitsch (ref32) 2014; Chapter 7
X Shi (ref35) 2011; 50
H Edelsbrunner (ref36) 2002; 28
A Lusci (ref9) 2013; 53
B Krishnamoorthy (ref80) 2007
X Feng (ref75) 2013; 19
Y LeCun (ref3) 2015; 521
KL Xia (ref119) 2015; 36
TB Hughes (ref7) 2015; 1
H Lee (ref66) 2012; 31
B Wang (ref70) 2011; 17
B Di Fabio (ref73) 2011; 11
GM Morris (ref112) 2009; 30
B Rieck (ref71) 2012; 18
T Cheng (ref102) 2009; 49
IK Darcy (ref31) 2013; 41
PM Kasson (ref76) 2007; 23
JJ Irwin (ref109) 2005; 45
X Feng (ref23) 2013; 34
MS Armstrong (ref110) 2010; 24
KL Xia (ref90) 2015; 143
ref2
Y Yao (ref81) 2009; 130
K Mischaikow (ref49) 2013; 50
B Wang (ref101) 2017; 136
G Carlsson (ref96) 2014; 23
O Trott (ref113) 2010; 31
Z Liu (ref99) 2015; 31
T Schlick (ref28) 1992; 257
P Frosini (ref61) 2013; 34
H Li (ref104) 2015; 34
M Arciniega (ref100) 2014; 54
Z Xiang (ref111) 2001; 311
F Pedregosa (ref114) 2011; 12
P Bendich (ref37) 2011; 11
G Carlsson (ref68) 2009; 46
D Cohen-Steiner (ref95) 2010; 10
MA Miteva (ref120) 2010; 38
G Carlsson (ref53) 2005; 11
HM Berman (ref103) 2000; 28
X Liu (ref72) 2012; 14
P Bendich (ref60) 2010; 16
ref122
G Carlsson (ref57) 2008; 76
PT Bremer (ref85) 2014
References_xml – volume: 137
  issue: 084101
  year: 2012
  ident: ref20
  article-title: Variational approach for nonpolar solvation analysis
  publication-title: Journal of Chemical Physics
– volume: 13
  start-page: 1
  issue: 7
  year: 2017
  ident: ref94
  article-title: TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005690
– volume: 24
  start-page: 789
  issue: 9
  year: 2010
  ident: ref110
  article-title: ElectroShape: fast molecular similarity calculations incorporating shape, chirality and electrostatics
  publication-title: Journal of computer-aided molecular design
  doi: 10.1007/s10822-010-9374-0
– start-page: 431
  year: 2007
  ident: ref80
  article-title: Data Mining in Biomedicine, Springer Optimization and Its Applications
– volume: 28
  start-page: 291
  year: 2012
  ident: ref17
  article-title: Molecular surface generation using PDE transform
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– year: 2016
  ident: ref34
  article-title: Models and Algorithms for Biomolecules and Molecular Networks
  doi: 10.1002/9781119162254
– volume: 275
  start-page: 912
  year: 2014
  ident: ref24
  article-title: Multiscale geometric modeling of macromolecules I: Cartesian representation
  publication-title: Journal of Computational Physics
– volume: 31
  start-page: e02719
  year: 2015
  ident: ref91
  article-title: Persistent topology for cryo-EM data analysis
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– year: 2014
  ident: ref85
  article-title: Mathematics and Visualization
– ident: ref122
  doi: 10.1145/1064092.1064133
– start-page: e2914
  year: 2017
  ident: ref27
  article-title: Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
  doi: 10.1002/cnm.2914
– volume: 36
  start-page: 408
  year: 2015
  ident: ref87
  article-title: Persistent Homology for the quantitative prediction of fullerene stability
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.23816
– volume: 28
  start-page: 1198
  year: 2012
  ident: ref22
  article-title: Geometric modeling of subcellular structures, organelles and large multiprotein complexes
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
  doi: 10.1002/cnm.2532
– volume: 17
  start-page: 1902
  year: 2011
  ident: ref70
  article-title: Branching and Circular Features in High Dimensional Data
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2011.177
– volume: 38
  start-page: 24
  year: 2017
  ident: ref21
  article-title: The impact of surface area, volume, curvature and Lennard-Jones potential to solvation modeling
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.24512
– volume: 49
  start-page: 1079
  year: 2009
  ident: ref102
  article-title: Comparative Assessment of Scoring Functions on a Diverse Test Set
  publication-title: J Chem Inf Model
  doi: 10.1021/ci9000053
– volume: vol. 33
  year: 2001
  ident: ref123
  article-title: A course in metric geometry
– ident: ref6
– volume: 34
  start-page: 1850
  issue: 21
  year: 2013
  ident: ref25
  article-title: Accuracy and tractability of a Kriging model of intramolecular polarizable multipolar electrostatics and its application to histidine
  publication-title: Journal of computational chemistry
  doi: 10.1002/jcc.23333
– volume: 46
  start-page: 255
  issue: 2
  year: 2009
  ident: ref68
  article-title: Topology and data
  publication-title: Am Math Soc
  doi: 10.1090/S0273-0979-09-01249-X
– volume: 30
  start-page: 1760
  issue: 10
  year: 2011
  ident: ref58
  article-title: Topology-Based Kernels With Application to Inference Problems in Alzheimer’s Disease
  publication-title: Medical Imaging, IEEE Transactions on
  doi: 10.1109/TMI.2011.2147327
– volume: 34
  start-page: 2100
  year: 2013
  ident: ref23
  article-title: Multiscale geometric modeling of macromolecules II: Lagrangian representation
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.23364
– volume: 31
  start-page: 2267
  issue: 12
  year: 2012
  ident: ref66
  article-title: Persistent Brain Network Homology From the Perspective of Dendrogram
  publication-title: Medical Imaging, IEEE Transactions on
  doi: 10.1109/TMI.2012.2219590
– volume: 143
  start-page: 134103
  year: 2015
  ident: ref90
  article-title: Multiresolution persistent homology for excessively large biomolecular datasets
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.4931733
– ident: ref50
– volume: 28
  start-page: 511
  year: 2002
  ident: ref36
  article-title: Topological persistence and simplification
  publication-title: Discrete Comput Geom
  doi: 10.1007/s00454-002-2885-2
– volume: 22
  start-page: 1
  year: 2015
  ident: ref89
  article-title: Multiresolution topological simplification
  publication-title: Journal of Computational Biology
– volume: 23
  start-page: 289
  year: 2014
  ident: ref96
  article-title: Topological pattern recognition for point cloud data
  publication-title: Acta Numerica
  doi: 10.1017/S0962492914000051
– ident: ref42
  doi: 10.1145/1998196.1998212
– volume: 59
  start-page: 193
  year: 2009
  ident: ref16
  article-title: Geometric and potential driving formation and evolution of biomolecular surfaces
  publication-title: J Math Biol
  doi: 10.1007/s00285-008-0226-7
– start-page: 730
  year: 2009
  ident: ref56
  article-title: Algorithms and computation
– volume: 18
  start-page: 2382
  year: 2012
  ident: ref71
  article-title: Multivariate Data Analysis Using Persistence-Based Filtering and Topological Signatures
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2012.248
– ident: ref12
– volume: 136
  start-page: 55
  year: 2017
  ident: ref101
  article-title: Feature functional theory—binding predictor (FFT-BP) for the blind prediction of binding free energies
  publication-title: Theoretical Chemistry Accounts
  doi: 10.1007/s00214-017-2083-1
– volume: 11
  start-page: 149
  issue: 2
  year: 2005
  ident: ref53
  article-title: Persistence Barcodes for Shapes
  publication-title: International Journal of Shape Modeling
  doi: 10.1142/S0218654305000761
– volume: 2009
  start-page: P03034
  issue: 03
  year: 2009
  ident: ref67
  article-title: Persistent homology of complex networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
  doi: 10.1088/1742-5468/2009/03/P03034
– volume: 8
  start-page: e1002581
  issue: 8
  year: 2012
  ident: ref78
  article-title: A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002581
– volume: 15
  start-page: 799
  year: 2015
  ident: ref62
  article-title: Sliding windows and persistence: An application of topological methods to signal analysis
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-014-9206-z
– volume: 53
  start-page: 1563
  issue: 7
  year: 2013
  ident: ref9
  article-title: Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/ci400187y
– volume: 30
  start-page: 2785
  issue: 16
  year: 2009
  ident: ref112
  article-title: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility
  publication-title: Journal of computational chemistry
  doi: 10.1002/jcc.21256
– volume: 30
  start-page: 814
  year: 2014
  ident: ref26
  article-title: Persistent homology analysis of protein structure, flexibility and folding
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
  doi: 10.1002/cnm.2655
– volume: 31
  start-page: 405
  issue: 3
  year: 2015
  ident: ref99
  article-title: PDB-wide collection of binding data: current status of the PDBbind database
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu626
– volume: Chapter 7
  start-page: 145
  year: 2014
  ident: ref32
  article-title: Discrete and Topological Models in Molecular Biology
– volume: 40
  start-page: 646
  year: 2011
  ident: ref69
  article-title: A Topological View of Unsupervised Learning from Noisy data
  publication-title: SIAM Journal on Computing
  doi: 10.1137/090762932
– volume: 61
  start-page: 85
  year: 2015
  ident: ref5
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 45
  start-page: 737
  year: 2011
  ident: ref45
  article-title: Persistent cohomology and circular coordinates
  publication-title: Discrete and Comput Geom
  doi: 10.1007/s00454-011-9344-x
– volume: 8
  issue: 8
  year: 2008
  ident: ref59
  article-title: Topological analysis of population activity in visual cortex
  publication-title: Journal of Vision
  doi: 10.1167/8.8.11
– ident: ref30
  doi: 10.1090/psapm/045/1196715
– volume: 10
  start-page: 367
  issue: 4
  year: 2010
  ident: ref46
  article-title: Zigzag persistence
  publication-title: Foundations of computational mathematics
  doi: 10.1007/s10208-010-9066-0
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: ref4
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2205597
– volume: 49
  start-page: 6789
  issue: 23
  year: 2006
  ident: ref107
  article-title: Benchmarking sets for molecular docking
  publication-title: Journal of medicinal chemistry
  doi: 10.1021/jm0608356
– volume: 34
  start-page: 115
  issue: 2-3
  year: 2015
  ident: ref104
  article-title: Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
  publication-title: Molecular Informatics
  doi: 10.1002/minf.201400132
– volume: 56
  start-page: 2495
  issue: 12
  year: 2016
  ident: ref98
  article-title: Boosting docking-based virtual screening with deep learning
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/acs.jcim.6b00355
– volume: 229
  start-page: 8231
  year: 2010
  ident: ref18
  article-title: Differential geometry based solvation models I: Eulerian formulation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.06.036
– ident: ref47
  doi: 10.1145/2462356.2462371
– volume: 23
  start-page: 1753
  issue: 14
  year: 2007
  ident: ref118
  article-title: Persistent voids: a new structural metric for membrane fusion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm250
– volume: 5
  start-page: e1000531
  year: 2009
  ident: ref33
  article-title: Structure-Based Predictive Models for Allosteric Hot Spots
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000531
– volume: 16
  start-page: 257
  year: 2015
  ident: ref79
  article-title: SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0645-6
– volume: 9
  start-page: 79
  issue: 1
  year: 2009
  ident: ref39
  article-title: Extending Persistence Using Poincaré and Lefschetz Duality
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-008-9027-z
– volume: 76
  start-page: 1
  issue: 1
  year: 2008
  ident: ref57
  article-title: On the local behavior of spaces of natural images
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-007-0056-x
– volume: 10
  start-page: 127
  issue: 2
  year: 2010
  ident: ref95
  article-title: Lipschitz functions have Lp-stable persistence
  publication-title: Foundations of computational mathematics
  doi: 10.1007/s10208-010-9060-6
– ident: ref125
– ident: ref8
– volume: 33
  start-page: 249
  year: 2005
  ident: ref29
  article-title: Computing persistent homology
  publication-title: Discrete Comput Geom
  doi: 10.1007/s00454-004-1146-y
– volume: xii
  start-page: 241
  year: 2010
  ident: ref117
  article-title: An introduction
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref114
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: Journal of Machine Learning Research
– ident: ref10
– year: 2004
  ident: ref64
  article-title: vol. 157 of Applied Mathematical Sciences
– volume: 36
  start-page: 1502
  year: 2015
  ident: ref119
  article-title: Multidimensional persistence in biomolecular data
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.23953
– volume: 8
  start-page: e58699
  issue: 4
  year: 2013
  ident: ref82
  article-title: Persistent topology and metastable state in conformational dynamics
  publication-title: PLos ONE
  doi: 10.1371/journal.pone.0058699
– start-page: 1097
  year: 2012
  ident: ref1
  article-title: Advances in neural information processing systems
– volume: 33
  start-page: 3549
  year: 2017
  ident: ref14
  article-title: Analysis and prediction of protein folding energy changes upon mutation by element specific persistent homology
  publication-title: Bioinformatics
– volume: 42
  start-page: 71
  issue: 1
  year: 2009
  ident: ref43
  article-title: The theory of multidimensional persistence
  publication-title: Discrete Computational Geometry
  doi: 10.1007/s00454-009-9176-0
– volume: 63
  start-page: 1139
  year: 2011
  ident: ref19
  article-title: Differential geometry based solvation models II: Lagrangian formulation
  publication-title: J Math Biol
  doi: 10.1007/s00285-011-0402-z
– volume: 11
  start-page: 305
  issue: 3
  year: 2011
  ident: ref37
  article-title: Persistent Intersection Homology
  publication-title: Foundations of Computational Mathematics (FOCM)
  doi: 10.1007/s10208-010-9081-1
– ident: ref126
– volume: 20
  start-page: 46
  issue: 5
  year: 2000
  ident: ref86
  article-title: Volume Data Mining Using 3D Field Topology Analysis
  publication-title: IEEE Computer Graphics and Applications
  doi: 10.1109/38.865879
– volume: 11
  start-page: 499
  year: 2011
  ident: ref73
  article-title: A Mayer-Vietoris Formula for Persistent Homology with an Application to Shape Recognition in the Presence of Occlusions
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-011-9100-x
– volume: 28
  start-page: 35
  issue: 1
  year: 2000
  ident: ref103
  article-title: The protein data bank
  publication-title: Nucleic acids research
  doi: 10.1093/nar/28.1.235
– volume: 49
  start-page: 1455
  issue: 6
  year: 2009
  ident: ref116
  article-title: Comparison of several molecular docking programs: pose prediction and virtual screening accuracy
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/ci900056c
– volume: 37
  start-page: 103
  issue: 1
  year: 2007
  ident: ref38
  article-title: Stability of Persistence Diagrams
  publication-title: Discrete & Computational Geometry
  doi: 10.1007/s00454-006-1276-5
– ident: ref11
– volume: 139
  start-page: 194109
  year: 2013
  ident: ref121
  article-title: Multiscale multiphysics and multidomain models—Flexibility and Rigidity
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.4830404
– volume: 50
  start-page: 330
  issue: 2
  year: 2013
  ident: ref49
  article-title: Morse Theory for Filtrations and Efficient Computation of Persistent Homology
  publication-title: Discrete and Computational Geometry
  doi: 10.1007/s00454-013-9529-6
– volume: 311
  issue: 2
  year: 2001
  ident: ref111
  article-title: Extending the accuracy limits of prediction for side-chain conformations
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.4865
– ident: ref2
– volume: 130
  start-page: 144115
  year: 2009
  ident: ref81
  article-title: Topological methods for exploring low-density states in biomolecular folding pathways
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.3103496
– volume: 38
  start-page: 446
  year: 2017
  ident: ref93
  article-title: ESES: software for Eulerian solvent excluded surface
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.24682
– ident: ref52
  doi: 10.1137/1.9781611973198.4
– volume: 82
  start-page: 1144
  year: 1999
  ident: ref63
  article-title: Construction of symbolic dynamics from experimental time series
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.82.1144
– volume: 53
  start-page: 1726
  issue: 7
  year: 2013
  ident: ref97
  article-title: Comparing neural-network scoring functions and the state of the art: applications to common library screening
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/ci400042y
– volume: 31
  start-page: 455
  issue: 2
  year: 2010
  ident: ref113
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J Computat Chem
  doi: 10.1002/jcc.21334
– volume: 10
  start-page: e0136577
  issue: 9
  year: 2015
  ident: ref124
  article-title: Two dimensional Yau-Hausdorff distance with applications on comparison of DNA and protein sequences
  publication-title: PloS one
  doi: 10.1371/journal.pone.0136577
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: ref3
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 50
  start-page: 1561
  issue: 9
  year: 2010
  ident: ref108
  article-title: Rapid context-dependent ligand desolvation in molecular docking
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/ci100214a
– volume: 19
  start-page: 1298
  issue: 8
  year: 2013
  ident: ref75
  article-title: Choking Loops on Surfaces
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2013.9
– ident: ref40
  doi: 10.1137/1.9781611973068.110
– volume: 57
  start-page: 1715
  year: 2017
  ident: ref106
  article-title: Rigidity strengthening: A mechanism for protein-ligand binding
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.7b00226
– volume: 36
  start-page: 553
  issue: 4
  year: 2006
  ident: ref74
  article-title: Extreme Elevation on a 2-Manifold
  publication-title: Discrete and Computational Geometry (DCG)
  doi: 10.1007/s00454-006-1265-8
– volume: 38
  start-page: W622
  issue: suppl 2
  year: 2010
  ident: ref120
  article-title: Frog2: Efficient 3D conformation ensemble generator for small compounds
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkq325
– year: 2015
  ident: ref84
  article-title: Mathematics and Visualization
– volume: 50
  start-page: 1
  year: 2011
  ident: ref35
  article-title: Geometry and topology for modeling biomolecular surfaces
  publication-title: Far East J Applied Math
– volume: 32
  start-page: 1
  year: 2014
  ident: ref77
  article-title: Topological measurement of protein compressibility via persistence diagrams
  publication-title: Japan Journal of Industrial and Applied Mathematics
  doi: 10.1007/s13160-014-0153-5
– ident: ref41
  doi: 10.1145/1542362.1542407
– ident: ref51
– volume: 14
  start-page: 221
  year: 2012
  ident: ref72
  article-title: A fast algorithm for constructing topological structure in large data
  publication-title: Homology, Homotopy and Applications
  doi: 10.4310/HHA.2012.v14.n1.a11
– volume: 305
  start-page: 276
  year: 2016
  ident: ref88
  article-title: Object-oriented Persistent Homology
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2015.10.036
– volume: 257
  start-page: 1110
  issue: 5073
  year: 1992
  ident: ref28
  article-title: Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA
  publication-title: Science
  doi: 10.1126/science.257.5073.1110
– year: 2010
  ident: ref55
  article-title: Computational topology: an introduction
– volume: 16
  start-page: 1251
  year: 2010
  ident: ref60
  article-title: Computing Robustness and Persistence for Images
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2010.139
– volume: 54
  start-page: 1401
  issue: 5
  year: 2014
  ident: ref100
  article-title: Improvement of virtual screening results by docking data feature analysis
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/ci500028u
– volume: 20
  start-page: 10947
  year: 2015
  ident: ref105
  article-title: Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest
  publication-title: Molecules
  doi: 10.3390/molecules200610947
– volume: 1
  start-page: 168
  issue: 4
  year: 2015
  ident: ref7
  article-title: Modeling epoxidation of drug-like molecules with a deep machine learning network
  publication-title: ACS Central Science
  doi: 10.1021/acscentsci.5b00131
– ident: ref44
  doi: 10.1145/1542362.1542408
– volume: 3
  start-page: 140
  year: 2015
  ident: ref92
  article-title: A topological approach for protein classification
  publication-title: Molecular based Mathematical Biology
– volume: 26
  start-page: 675
  issue: 6
  year: 2012
  ident: ref115
  article-title: Docking and scoring with ICM: the benchmarking results and strategies for improvement
  publication-title: Journal of computer-aided molecular design
  doi: 10.1007/s10822-012-9547-0
– ident: ref13
  doi: 10.1039/C7SC02664A
– volume: 34
  start-page: 863
  year: 2013
  ident: ref61
  article-title: Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2012.10.015
– volume: 45
  start-page: 177
  issue: 1
  year: 2005
  ident: ref109
  article-title: ZINC- a free database of commercially available compounds for virtual screening
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/ci049714+
– volume: 23
  start-page: 1753
  year: 2007
  ident: ref76
  article-title: Persistent voids a new structural metric for membrane fusion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm250
– start-page: 01
  year: 2005
  ident: ref65
  article-title: In Proceedings of Robotics: Science and Systems
– ident: ref48
  doi: 10.1145/2582112.2582165
– volume: 41
  start-page: 601
  year: 2013
  ident: ref31
  article-title: Determining the topology of stable protein-DNA complexes
  publication-title: Biochemical Society Transactions
  doi: 10.1042/BST20130004
– volume: 29
  start-page: 380
  issue: 3
  year: 2008
  ident: ref15
  article-title: Minimal molecular surfaces and their applications
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.20796
– volume: 40
  start-page: 12
  issue: 4
  year: 2008
  ident: ref83
  article-title: Describing Shapes by Geometrical-Topological Properties of Real Functions
  publication-title: ACM Computing Surveys
  doi: 10.1145/1391729.1391731
– volume: 45
  start-page: 61
  year: 2008
  ident: ref54
  article-title: Barcodes: The persistent topology of data
  publication-title: Bull Amer Math Soc
  doi: 10.1090/S0273-0979-07-01191-3
SSID ssj0035896
Score 2.6029172
Snippet This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and...
SourceID plos
doaj
pubmedcentral
osti
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1005929
SubjectTerms Accuracy
Algebra
Algorithms
Area Under Curve
Artificial intelligence
Artificial neural networks
Binding
Biochemistry & Molecular Biology
Bioinformatics
Biological research
Biology
Biology and Life Sciences
Biomolecules
Computational biology
Computational Biology - methods
Computational chemistry
Computer and Information Sciences
Coordination compounds
Databases, Protein
Datasets
Electrostatic properties
Electrostatics
Funding
Homology
Humans
Induction algorithms
Learning algorithms
Ligands
Machine Learning
Mathematical & Computational Biology
Mathematics
Methods
Models, Neurological
Molecular Dynamics Simulation
Molecular interactions
Neural networks
Neural Networks, Computer
Nucleic Acids - chemistry
Physical Sciences
Physics
Predictions
Protein Binding
Protein Interaction Mapping
Proteins
Proteins - chemistry
Research and Analysis Methods
Screening
Static Electricity
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEJSPhrbIICROoXHij_hYEFVBoodCpb1ZtuOUldqkarJI---ZcbKhQUW9cNiLM7srj8fjcfz8HiHvtAzSagmbHCd8yiH_pVqHPA24A3LwyR2-h_x2Kk_O-delWN6S-kJM2EAPPDjuUHtlMxmCLksNxYUvC-egRLFcWut04TH7wpq33UwNObgQZVTmQlGcVBV8OV6aKxQ7HMfow7V3K8QICB3Lyz-LUuTunzL0ooWphsynl213VxX6N5jy1up0_IQ8HstKejR05yl5EJod8nAQmtw8I-1ZBLwiTjyCYTe0rSkqfMBeeeVpPyglbChUsBQv5A-auaGjq4ZeRbhloKO-xAXFha-inY_QPWqbiv5a3eA1FGhDFA-0Pifnx59_fDpJR6mF1Ktc9mnQwuW1zhm3shLWwkquvOB1UJkNIiiJx2tOCVZDPso8zmKmPK-YVL5mrCpekEXTNmGXUM55jr_ii8zyzElbo4idlEgLFDxjCSm2vjZ-5CFHOYxLEw_XFOxHBp8ZHCEzjlBC0ulb1wMPxz32H3EYJ1tk0Y4NEFtmjC1zX2wl5C0GgUGejAaBOBd23XXmy_dTcyRg34jaXuU_jc5mRu9Ho7qFzno7Xn4AlyH_1sxyDyPOQAGELL4e4U6-N0zmKhdFQnYxELdd7lBFNJfxPnNC9rfBeffjN9NjyCB4LGSb0K47g6g5qKMLxhPycojlyW1QDCLBIvyvmkX5zK_zJ83qZ2QpFwppauWr_zEQe-QRFKplfPVV7pNFf7MOB1AM9u51nPe_AYTWW9U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLagCAkOCMaPZRvIICROYXXiH_EJDcQ0kLbDYFJvluM4XaWRlKad1P-e9xw3o2jAoRf7tU3sZ_s9-_P3EfJWSy-tlpDklMKlHOa_VGufpR4zoBI-WYn7kKdn8uSCf52ISdxw6yKscjMnhom6ah3ukR8imECGi5sf5j9TVI3C09UooXGX3EPqMoR0qcmQcOWiCPpcKI2TqpxP4tW5XLHD2FPv566cIVJA6BBk3ixNgcF_mKdHLQw45D-9arvbYtE_IZW_rVHHj8mjGFzSo94bnpA7vtkh93u5yfUOeXg6cLR2UB7An657StrzAIdFFHmAyq5pW1PU_4BMeubostdRWFOIbyle1-8VdX1HZw39EcCYnkb1iSnFZbGinQvAPmqbil7PFnhJBcoQ4wOlz8jF8efvn07SKMSQOpXJZeq1KLNaZ4xbWQlrYZ1XTvDaq7H1wiuJh2-lEqyG2WrscIwz5XjFpHI1Y1X-nIyatvG7hHLOM_wVl48tH5fS1ihxJyWSBnnHWELyTR8YF1nKUSzjyoSjNwXZSt-WBnvOxJ5LSDp8a96zdPzH_iN272CLHNuhoF1MTRyyRjtlx9J7XRQawlpX5GUJwbHl0tpS5y4hb9A5DLJoNAjTmdpV15kv387MkYCsEpW_ir8anW8ZvYtGdQsv62y8GgFNhuxcW5b76IkGwiPk-HUIhnJLw2SmMpEnZBcddPPKnbkZNAk52Djt7dWvh2qYX_DQyDa-XXUGMXUQZeeMJ-RF7-NDs0GoiPSL8L9qy_u32nW7ppldBg5zoZDEVu79-7H2yQMIUIuw5VUckNFysfIvIQhclq_CSP8FusdapQ
  priority: 102
  providerName: ProQuest
Title Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening
URI https://www.ncbi.nlm.nih.gov/pubmed/29309403
https://www.proquest.com/docview/2002622278
https://www.proquest.com/docview/1989545314
https://www.osti.gov/servlets/purl/1627253
https://pubmed.ncbi.nlm.nih.gov/PMC5774846
https://doaj.org/article/9c7a06ee9889405c83bb533a46aab93c
http://dx.doi.org/10.1371/journal.pcbi.1005929
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8IL4XNiqDkHjK1CT-SB4QamFlIK1ChUp9sxzHKZVKMpoW0f-eOyeNCOoED20l-5LK5zvfnX2-HyGvEmGFTgQEOSk3PoP1z08SG_oWI6AUPmGK-5DXE3E1Y5_mfH5E9pitDQOrg6Ed4knN1quLXz92b0Hh3zjUBhnsH7q4MekST_05mPxjcgK2SaKqXrP2XCHisUPsQrAcX0Zs3lymu-0tHWPlavq3K3evBBXEiqirsjrknf6dZPmH1RrfJ_cad5MOa_l4QI5s8ZDcqQEod49IOXWJsJg_7pJkd7TMKSJ_QAy9NHRTIyjsKHi2FC_q11i6tqLLgn53aZiWNrgTC4oGMaOVcSl9VBcZ_blc4_UUaMPsHmh9TGbjy6_vrvwGgsE3MhQb3yY8DfMkDJgWGdcaLLw0nOVWDrTlVgo8dkslD3JYpwYGtTuQhmWBkCYPgix6QnpFWdhTQhljIb7FRAPNBqnQOYLbCYHlgqwJAo9Ee14r09QnR5iMlXKHbhLilJpnCmdINTPkEb996qauz_EP-hFOY0uL1bVdQ7leqEZZVWKkHghrkzhOwKE1cZSm4BZrJrROk8h45CUKgcL6GQUm6Cz0tqrUxy8TNeQQTyLmV3wr0bRD9LohyksYrNHNpQhgGdbl6lCeocQpcIywuq_BNCizUYEIZcgjj5yiIO6HXCG6aCjcPWePnO-F83D3i7YbVhY8LtKFLbeVwmw68K-jgHnkaS3LLdvAScTCi_C_siPlHb52e4rlN1e9nEssXyue_ffIz8hd8FJjt-8Vn5PeZr21z8ET3KR9ciznEr7j8Yc-ORmO3o_G8Du6nHye9t3uSt-p_2-PF2Lj
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEQIeEIzLwgYYBOIpLBdfkgeExmVa2dqHsUl9M47jlEojKU0L6p_iN3KOk2YUDXjaQ1_s07Sxj-1z7M_fR8jzVFihUwFJTsaNz2D-89PURr7FDCiDT5ThPuRgKA5O2ccRH22Qn6u7MAirXM2JbqLOK4N75LsIJhDu4uab6TcfVaPwdHUlodG4xaFd_oCUrX7dfw_9-yKK9j-cvDvwW1UB38hIzH2b8iwq0ihkWuRca1i0pOGssDLQllsp8CQpkzwsYOgFBh02lIbloZCmCMM8hudeIVdh4Q1wRMlRl-DFPHF6YCjF48uYjdqrerEMd1vPeDU12QSRCTx1Qe35UugUA7p1oVfBAEe-1bOqvij2_RPC-duauH-b3GqDWbrXeN8dsmHLTXKtkbdcbpKbg44TtoZyBzY19V1SHTv4LaLWHTR3SauCot4IZO4TQ-eNbsOSQjxNkR6gUfC1NZ2U9KsDf1raql2MKS7DOa2NAxJSXeb0-2SGl2KgDDFFUHqPnF5KF90nvbIq7RahjLEIn2LiQLMgE7pAST0hkKTImjD0SLzqA2VaVnQU5zhT7qhPQnbUtKXCnlNtz3nE7741bVhB_mP_Fru3s0VOb1dQzcaqnSJUaqQOhLVpkqQQRpskzjIIxjUTWmdpbDzyDJ1DIWtHibCgsV7Utep_Gqo9DlksKo0lfzU6XjN62RoVFbys0e1VDGgyZANbs9xGT1QQjiGnsEHwlZmrUEQy4rFHttBBV69cq_NB6pGdldNeXP20q4b5DA-pdGmrRa0QwwdRfRwyjzxofLxrNghNke4Rfleuef9au67XlJMvjjOdSyTNFQ___beekOsHJ4MjddQfHm6TGxAcJ267LdkhvflsYR9BADrPHrtRT8nny55mfgHJgJYs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEQgeEIzLwgYYBOIptEl8SR4QGoxqZaxCg0l9M47jlEojKUsL6l_j13GOcxlFA5720BfbTRv7-Pgc-_P3EfI0EVboRECSk3LjM_B_fpLY0LeYAaXwCVPchzwci_1j9m7CJxvkZ3sXBmGVrU90jjorDe6R9xFMINzFzX7ewCI-7A1fzb_5qCCFJ62tnEZtIgd29QPSt-rlaA_G-lkYDt9-erPvNwoDvpGhWPg24WmYJ2HAtMi41rCAScNZbuVAW26lwFOlVPIgh2k4MGi8gTQsC4Q0eRBkETz3ErksIx7gHJOTLtmLeOy0wVCWx5cRmzTX9iIZ9BsreTE36QxRCjxxAe7ZsujUA7o1olfCZEfu1ZOyOi8O_hPO-dv6OLxJbjSBLd2tLfEW2bDFJrlSS12uNsn1w44ftoJyBzw11W1SHjkoLiLYHUx3RcucovYIZPEzQxe1hsOKQmxNkSqgVvO1FZ0V9KsDglraKF9MKS7JGa2MAxVSXWT0--wUL8hAGeKLoPQOOb6QIbpLekVZ2C1CGWMhPsVEA80GqdA5yusJgYRF1gSBR6J2DJRpGNJRqONEuWM_CZlS3ZcKR041I-cRv_vWvGYI-U_71zi8XVvk93YF5elUNe5CJUbqgbA2ieMEQmoTR2kKgblmQus0iYxHnqBxKGTwKHAuTPWyqtTo41jtcshoUXUs_mujo7VGz5tGeQkva3RzLQO6DJnB1lpuoyUqCM2QX9ggEMssVCBCGfLII1tooO0rV-pswnpkpzXa86sfd9Xg2_DAShe2XFYK8XwQ4UcB88i92sa7boMwFakf4XflmvWv9et6TTH74vjTuUQCXXH_33_rEbkKDka9H40Ptsk1iJNjt_MW75De4nRpH0AsukgfuklPyeeL9jK_APkEmmI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representability+of+algebraic+topology+for+biomolecules+in+machine+learning+based+scoring+and+virtual+screening&rft.jtitle=PLoS+computational+biology&rft.au=Cang%2C+Zixuan&rft.au=Mu%2C+Lin&rft.au=Wei%2C+Guo-Wei&rft.date=2018-01-08&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pcbi.1005929&rft.externalDocID=A525917288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon